GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/h264dec.h Lines: 87 88 98.9 %
Date: 2020-09-25 23:16:12 Branches: 16 20 80.0 %

Line Branch Exec Source
1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * H.264 / AVC / MPEG-4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27
28
#ifndef AVCODEC_H264DEC_H
29
#define AVCODEC_H264DEC_H
30
31
#include "libavutil/buffer.h"
32
#include "libavutil/intreadwrite.h"
33
#include "libavutil/thread.h"
34
35
#include "cabac.h"
36
#include "error_resilience.h"
37
#include "h264_parse.h"
38
#include "h264_ps.h"
39
#include "h264_sei.h"
40
#include "h2645_parse.h"
41
#include "h264chroma.h"
42
#include "h264dsp.h"
43
#include "h264pred.h"
44
#include "h264qpel.h"
45
#include "internal.h"
46
#include "mpegutils.h"
47
#include "parser.h"
48
#include "qpeldsp.h"
49
#include "rectangle.h"
50
#include "videodsp.h"
51
52
#define H264_MAX_PICTURE_COUNT 36
53
54
#define MAX_MMCO_COUNT         66
55
56
#define MAX_DELAYED_PIC_COUNT  16
57
58
/* Compiling in interlaced support reduces the speed
59
 * of progressive decoding by about 2%. */
60
#define ALLOW_INTERLACE
61
62
#define FMO 0
63
64
/**
65
 * The maximum number of slices supported by the decoder.
66
 * must be a power of 2
67
 */
68
#define MAX_SLICES 32
69
70
#ifdef ALLOW_INTERLACE
71
#define MB_MBAFF(h)    (h)->mb_mbaff
72
#define MB_FIELD(sl)  (sl)->mb_field_decoding_flag
73
#define FRAME_MBAFF(h) (h)->mb_aff_frame
74
#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
75
#define LEFT_MBS 2
76
#define LTOP     0
77
#define LBOT     1
78
#define LEFT(i)  (i)
79
#else
80
#define MB_MBAFF(h)      0
81
#define MB_FIELD(sl)     0
82
#define FRAME_MBAFF(h)   0
83
#define FIELD_PICTURE(h) 0
84
#undef  IS_INTERLACED
85
#define IS_INTERLACED(mb_type) 0
86
#define LEFT_MBS 1
87
#define LTOP     0
88
#define LBOT     0
89
#define LEFT(i)  0
90
#endif
91
#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
92
93
#ifndef CABAC
94
#define CABAC(h) (h)->ps.pps->cabac
95
#endif
96
97
#define CHROMA(h)    ((h)->ps.sps->chroma_format_idc)
98
#define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
99
#define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
100
101
#define MB_TYPE_REF0       MB_TYPE_ACPRED // dirty but it fits in 16 bit
102
#define MB_TYPE_8x8DCT     0x01000000
103
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
104
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
105
106
/**
107
 * Memory management control operation opcode.
108
 */
109
typedef enum MMCOOpcode {
110
    MMCO_END = 0,
111
    MMCO_SHORT2UNUSED,
112
    MMCO_LONG2UNUSED,
113
    MMCO_SHORT2LONG,
114
    MMCO_SET_MAX_LONG,
115
    MMCO_RESET,
116
    MMCO_LONG,
117
} MMCOOpcode;
118
119
/**
120
 * Memory management control operation.
121
 */
122
typedef struct MMCO {
123
    MMCOOpcode opcode;
124
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
125
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
126
} MMCO;
127
128
typedef struct H264Picture {
129
    AVFrame *f;
130
    ThreadFrame tf;
131
132
    AVBufferRef *qscale_table_buf;
133
    int8_t *qscale_table;
134
135
    AVBufferRef *motion_val_buf[2];
136
    int16_t (*motion_val[2])[2];
137
138
    AVBufferRef *mb_type_buf;
139
    uint32_t *mb_type;
140
141
    AVBufferRef *hwaccel_priv_buf;
142
    void *hwaccel_picture_private; ///< hardware accelerator private data
143
144
    AVBufferRef *ref_index_buf[2];
145
    int8_t *ref_index[2];
146
147
    int field_poc[2];       ///< top/bottom POC
148
    int poc;                ///< frame POC
149
    int frame_num;          ///< frame_num (raw frame_num from slice header)
150
    int mmco_reset;         /**< MMCO_RESET set this 1. Reordering code must
151
                                 not mix pictures before and after MMCO_RESET. */
152
    int pic_id;             /**< pic_num (short -> no wrap version of pic_num,
153
                                 pic_num & max_pic_num; long -> long_pic_num) */
154
    int long_ref;           ///< 1->long term reference 0->short term reference
155
    int ref_poc[2][2][32];  ///< POCs of the frames/fields used as reference (FIXME need per slice)
156
    int ref_count[2][2];    ///< number of entries in ref_poc         (FIXME need per slice)
157
    int mbaff;              ///< 1 -> MBAFF frame 0-> not MBAFF
158
    int field_picture;      ///< whether or not picture was encoded in separate fields
159
160
    int reference;
161
    int recovered;          ///< picture at IDR or recovery point + recovery count
162
    int invalid_gap;
163
    int sei_recovery_frame_cnt;
164
165
    AVBufferRef *pps_buf;
166
    const PPS   *pps;
167
168
    int mb_width, mb_height;
169
    int mb_stride;
170
} H264Picture;
171
172
typedef struct H264Ref {
173
    uint8_t *data[3];
174
    int linesize[3];
175
176
    int reference;
177
    int poc;
178
    int pic_id;
179
180
    H264Picture *parent;
181
} H264Ref;
182
183
typedef struct H264SliceContext {
184
    struct H264Context *h264;
185
    GetBitContext gb;
186
    ERContext er;
187
188
    int slice_num;
189
    int slice_type;
190
    int slice_type_nos;         ///< S free slice type (SI/SP are remapped to I/P)
191
    int slice_type_fixed;
192
193
    int qscale;
194
    int chroma_qp[2];   // QPc
195
    int qp_thresh;      ///< QP threshold to skip loopfilter
196
    int last_qscale_diff;
197
198
    // deblock
199
    int deblocking_filter;          ///< disable_deblocking_filter_idc with 1 <-> 0
200
    int slice_alpha_c0_offset;
201
    int slice_beta_offset;
202
203
    H264PredWeightTable pwt;
204
205
    int prev_mb_skipped;
206
    int next_mb_skipped;
207
208
    int chroma_pred_mode;
209
    int intra16x16_pred_mode;
210
211
    int8_t intra4x4_pred_mode_cache[5 * 8];
212
    int8_t(*intra4x4_pred_mode);
213
214
    int topleft_mb_xy;
215
    int top_mb_xy;
216
    int topright_mb_xy;
217
    int left_mb_xy[LEFT_MBS];
218
219
    int topleft_type;
220
    int top_type;
221
    int topright_type;
222
    int left_type[LEFT_MBS];
223
224
    const uint8_t *left_block;
225
    int topleft_partition;
226
227
    unsigned int topleft_samples_available;
228
    unsigned int top_samples_available;
229
    unsigned int topright_samples_available;
230
    unsigned int left_samples_available;
231
232
    ptrdiff_t linesize, uvlinesize;
233
    ptrdiff_t mb_linesize;  ///< may be equal to s->linesize or s->linesize * 2, for mbaff
234
    ptrdiff_t mb_uvlinesize;
235
236
    int mb_x, mb_y;
237
    int mb_xy;
238
    int resync_mb_x;
239
    int resync_mb_y;
240
    unsigned int first_mb_addr;
241
    // index of the first MB of the next slice
242
    int next_slice_idx;
243
    int mb_skip_run;
244
    int is_complex;
245
246
    int picture_structure;
247
    int mb_field_decoding_flag;
248
    int mb_mbaff;               ///< mb_aff_frame && mb_field_decoding_flag
249
250
    int redundant_pic_count;
251
252
    /**
253
     * number of neighbors (top and/or left) that used 8x8 dct
254
     */
255
    int neighbor_transform_size;
256
257
    int direct_spatial_mv_pred;
258
    int col_parity;
259
    int col_fieldoff;
260
261
    int cbp;
262
    int top_cbp;
263
    int left_cbp;
264
265
    int dist_scale_factor[32];
266
    int dist_scale_factor_field[2][32];
267
    int map_col_to_list0[2][16 + 32];
268
    int map_col_to_list0_field[2][2][16 + 32];
269
270
    /**
271
     * num_ref_idx_l0/1_active_minus1 + 1
272
     */
273
    unsigned int ref_count[2];          ///< counts frames or fields, depending on current mb mode
274
    unsigned int list_count;
275
    H264Ref ref_list[2][48];        /**< 0..15: frame refs, 16..47: mbaff field refs.
276
                                         *   Reordered version of default_ref_list
277
                                         *   according to picture reordering in slice header */
278
    struct {
279
        uint8_t op;
280
        uint32_t val;
281
    } ref_modifications[2][32];
282
    int nb_ref_modifications[2];
283
284
    unsigned int pps_id;
285
286
    const uint8_t *intra_pcm_ptr;
287
    int16_t *dc_val_base;
288
289
    uint8_t *bipred_scratchpad;
290
    uint8_t *edge_emu_buffer;
291
    uint8_t (*top_borders[2])[(16 * 3) * 2];
292
    int bipred_scratchpad_allocated;
293
    int edge_emu_buffer_allocated;
294
    int top_borders_allocated[2];
295
296
    /**
297
     * non zero coeff count cache.
298
     * is 64 if not available.
299
     */
300
    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
301
302
    /**
303
     * Motion vector cache.
304
     */
305
    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
306
    DECLARE_ALIGNED(8,  int8_t, ref_cache)[2][5 * 8];
307
    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
308
    uint8_t direct_cache[5 * 8];
309
310
    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
311
312
    ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
313
    DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
314
    DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
315
    ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
316
    ///< check that i is not too large or ensure that there is some unused stuff after mb
317
    int16_t mb_padding[256 * 2];
318
319
    uint8_t (*mvd_table[2])[2];
320
321
    /**
322
     * Cabac
323
     */
324
    CABACContext cabac;
325
    uint8_t cabac_state[1024];
326
    int cabac_init_idc;
327
328
    MMCO mmco[MAX_MMCO_COUNT];
329
    int  nb_mmco;
330
    int explicit_ref_marking;
331
332
    int frame_num;
333
    int poc_lsb;
334
    int delta_poc_bottom;
335
    int delta_poc[2];
336
    int curr_pic_num;
337
    int max_pic_num;
338
} H264SliceContext;
339
340
/**
341
 * H264Context
342
 */
343
typedef struct H264Context {
344
    const AVClass *class;
345
    AVCodecContext *avctx;
346
    VideoDSPContext vdsp;
347
    H264DSPContext h264dsp;
348
    H264ChromaContext h264chroma;
349
    H264QpelContext h264qpel;
350
351
    H264Picture DPB[H264_MAX_PICTURE_COUNT];
352
    H264Picture *cur_pic_ptr;
353
    H264Picture cur_pic;
354
    H264Picture last_pic_for_ec;
355
356
    H264SliceContext *slice_ctx;
357
    int            nb_slice_ctx;
358
    int            nb_slice_ctx_queued;
359
360
    H2645Packet pkt;
361
362
    int pixel_shift;    ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
363
364
    /* coded dimensions -- 16 * mb w/h */
365
    int width, height;
366
    int chroma_x_shift, chroma_y_shift;
367
368
    int droppable;
369
    int coded_picture_number;
370
371
    int context_initialized;
372
    int flags;
373
    int workaround_bugs;
374
    int x264_build;
375
    /* Set when slice threading is used and at least one slice uses deblocking
376
     * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
377
     * during normal MB decoding and execute it serially at the end.
378
     */
379
    int postpone_filter;
380
381
    /*
382
     * Set to 1 when the current picture is IDR, 0 otherwise.
383
     */
384
    int picture_idr;
385
386
    int crop_left;
387
    int crop_right;
388
    int crop_top;
389
    int crop_bottom;
390
391
    int8_t(*intra4x4_pred_mode);
392
    H264PredContext hpc;
393
394
    uint8_t (*non_zero_count)[48];
395
396
#define LIST_NOT_USED -1 // FIXME rename?
397
#define PART_NOT_AVAILABLE -2
398
399
    /**
400
     * block_offset[ 0..23] for frame macroblocks
401
     * block_offset[24..47] for field macroblocks
402
     */
403
    int block_offset[2 * (16 * 3)];
404
405
    uint32_t *mb2b_xy;  // FIXME are these 4 a good idea?
406
    uint32_t *mb2br_xy;
407
    int b_stride;       // FIXME use s->b4_stride
408
409
    uint16_t *slice_table;      ///< slice_table_base + 2*mb_stride + 1
410
411
    // interlacing specific flags
412
    int mb_aff_frame;
413
    int picture_structure;
414
    int first_field;
415
416
    uint8_t *list_counts;               ///< Array of list_count per MB specifying the slice type
417
418
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
419
    uint16_t *cbp_table;
420
421
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
422
    uint8_t *chroma_pred_mode_table;
423
    uint8_t (*mvd_table[2])[2];
424
    uint8_t *direct_table;
425
426
    uint8_t scan_padding[16];
427
    uint8_t zigzag_scan[16];
428
    uint8_t zigzag_scan8x8[64];
429
    uint8_t zigzag_scan8x8_cavlc[64];
430
    uint8_t field_scan[16];
431
    uint8_t field_scan8x8[64];
432
    uint8_t field_scan8x8_cavlc[64];
433
    uint8_t zigzag_scan_q0[16];
434
    uint8_t zigzag_scan8x8_q0[64];
435
    uint8_t zigzag_scan8x8_cavlc_q0[64];
436
    uint8_t field_scan_q0[16];
437
    uint8_t field_scan8x8_q0[64];
438
    uint8_t field_scan8x8_cavlc_q0[64];
439
440
    int mb_y;
441
    int mb_height, mb_width;
442
    int mb_stride;
443
    int mb_num;
444
445
    // =============================================================
446
    // Things below are not used in the MB or more inner code
447
448
    int nal_ref_idc;
449
    int nal_unit_type;
450
451
    int has_slice;          ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
452
453
    /**
454
     * Used to parse AVC variant of H.264
455
     */
456
    int is_avc;           ///< this flag is != 0 if codec is avc1
457
    int nal_length_size;  ///< Number of bytes used for nal length (1, 2 or 4)
458
459
    int bit_depth_luma;         ///< luma bit depth from sps to detect changes
460
    int chroma_format_idc;      ///< chroma format from sps to detect changes
461
462
    H264ParamSets ps;
463
464
    uint16_t *slice_table_base;
465
466
    H264POCContext poc;
467
468
    H264Ref default_ref[2];
469
    H264Picture *short_ref[32];
470
    H264Picture *long_ref[32];
471
    H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
472
    int last_pocs[MAX_DELAYED_PIC_COUNT];
473
    H264Picture *next_output_pic;
474
    int next_outputed_poc;
475
476
    /**
477
     * memory management control operations buffer.
478
     */
479
    MMCO mmco[MAX_MMCO_COUNT];
480
    int  nb_mmco;
481
    int mmco_reset;
482
    int explicit_ref_marking;
483
484
    int long_ref_count;     ///< number of actual long term references
485
    int short_ref_count;    ///< number of actual short term references
486
487
    /**
488
     * @name Members for slice based multithreading
489
     * @{
490
     */
491
    /**
492
     * current slice number, used to initialize slice_num of each thread/context
493
     */
494
    int current_slice;
495
496
    /** @} */
497
498
    /**
499
     * Complement sei_pic_struct
500
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
501
     * However, soft telecined frames may have these values.
502
     * This is used in an attempt to flag soft telecine progressive.
503
     */
504
    int prev_interlaced_frame;
505
506
    /**
507
     * Are the SEI recovery points looking valid.
508
     */
509
    int valid_recovery_point;
510
511
    /**
512
     * recovery_frame is the frame_num at which the next frame should
513
     * be fully constructed.
514
     *
515
     * Set to -1 when not expecting a recovery point.
516
     */
517
    int recovery_frame;
518
519
/**
520
 * We have seen an IDR, so all the following frames in coded order are correctly
521
 * decodable.
522
 */
523
#define FRAME_RECOVERED_IDR  (1 << 0)
524
/**
525
 * Sufficient number of frames have been decoded since a SEI recovery point,
526
 * so all the following frames in presentation order are correct.
527
 */
528
#define FRAME_RECOVERED_SEI  (1 << 1)
529
530
    int frame_recovered;    ///< Initial frame has been completely recovered
531
532
    int has_recovery_point;
533
534
    int missing_fields;
535
536
    /* for frame threading, this is set to 1
537
     * after finish_setup() has been called, so we cannot modify
538
     * some context properties (which are supposed to stay constant between
539
     * slices) anymore */
540
    int setup_finished;
541
542
    int cur_chroma_format_idc;
543
    int cur_bit_depth_luma;
544
    int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
545
546
    /* original AVCodecContext dimensions, used to handle container
547
     * cropping */
548
    int width_from_caller;
549
    int height_from_caller;
550
551
    int enable_er;
552
553
    H264SEIContext sei;
554
555
    AVBufferPool *qscale_table_pool;
556
    AVBufferPool *mb_type_pool;
557
    AVBufferPool *motion_val_pool;
558
    AVBufferPool *ref_index_pool;
559
    int ref2frm[MAX_SLICES][2][64];     ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
560
} H264Context;
561
562
extern const uint16_t ff_h264_mb_sizes[4];
563
564
/**
565
 * Reconstruct bitstream slice_type.
566
 */
567
int ff_h264_get_slice_type(const H264SliceContext *sl);
568
569
/**
570
 * Allocate tables.
571
 * needs width/height
572
 */
573
int ff_h264_alloc_tables(H264Context *h);
574
575
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
576
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
577
void ff_h264_remove_all_refs(H264Context *h);
578
579
/**
580
 * Execute the reference picture marking (memory management control operations).
581
 */
582
int ff_h264_execute_ref_pic_marking(H264Context *h);
583
584
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
585
                                   const H2645NAL *nal, void *logctx);
586
587
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
588
void ff_h264_decode_init_vlc(void);
589
590
/**
591
 * Decode a macroblock
592
 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
593
 */
594
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
595
596
/**
597
 * Decode a CABAC coded macroblock
598
 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
599
 */
600
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
601
602
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
603
604
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
605
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
606
void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
607
                                int *mb_type);
608
609
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
610
                            uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
611
                            unsigned int linesize, unsigned int uvlinesize);
612
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
613
                       uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
614
                       unsigned int linesize, unsigned int uvlinesize);
615
616
/*
617
 * o-o o-o
618
 *  / / /
619
 * o-o o-o
620
 *  ,---'
621
 * o-o o-o
622
 *  / / /
623
 * o-o o-o
624
 */
625
626
/* Scan8 organization:
627
 *    0 1 2 3 4 5 6 7
628
 * 0  DY    y y y y y
629
 * 1        y Y Y Y Y
630
 * 2        y Y Y Y Y
631
 * 3        y Y Y Y Y
632
 * 4        y Y Y Y Y
633
 * 5  DU    u u u u u
634
 * 6        u U U U U
635
 * 7        u U U U U
636
 * 8        u U U U U
637
 * 9        u U U U U
638
 * 10 DV    v v v v v
639
 * 11       v V V V V
640
 * 12       v V V V V
641
 * 13       v V V V V
642
 * 14       v V V V V
643
 * DY/DU/DV are for luma/chroma DC.
644
 */
645
646
#define LUMA_DC_BLOCK_INDEX   48
647
#define CHROMA_DC_BLOCK_INDEX 49
648
649
// This table must be here because scan8[constant] must be known at compiletime
650
static const uint8_t scan8[16 * 3 + 3] = {
651
    4 +  1 * 8, 5 +  1 * 8, 4 +  2 * 8, 5 +  2 * 8,
652
    6 +  1 * 8, 7 +  1 * 8, 6 +  2 * 8, 7 +  2 * 8,
653
    4 +  3 * 8, 5 +  3 * 8, 4 +  4 * 8, 5 +  4 * 8,
654
    6 +  3 * 8, 7 +  3 * 8, 6 +  4 * 8, 7 +  4 * 8,
655
    4 +  6 * 8, 5 +  6 * 8, 4 +  7 * 8, 5 +  7 * 8,
656
    6 +  6 * 8, 7 +  6 * 8, 6 +  7 * 8, 7 +  7 * 8,
657
    4 +  8 * 8, 5 +  8 * 8, 4 +  9 * 8, 5 +  9 * 8,
658
    6 +  8 * 8, 7 +  8 * 8, 6 +  9 * 8, 7 +  9 * 8,
659
    4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
660
    6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
661
    4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
662
    6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
663
    0 +  0 * 8, 0 +  5 * 8, 0 + 10 * 8
664
};
665
666
31328544
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
667
{
668
#if HAVE_BIGENDIAN
669
    return (b & 0xFFFF) + (a << 16);
670
#else
671
31328544
    return (a & 0xFFFF) + (b << 16);
672
#endif
673
}
674
675
3719437
static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
676
{
677
#if HAVE_BIGENDIAN
678
    return (b & 0xFF) + (a << 8);
679
#else
680
3719437
    return (a & 0xFF) + (b << 8);
681
#endif
682
}
683
684
/**
685
 * Get the chroma qp.
686
 */
687
58474014
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
688
{
689
58474014
    return pps->chroma_qp_table[t][qscale];
690
}
691
692
/**
693
 * Get the predicted intra4x4 prediction mode.
694
 */
695
28715316
static av_always_inline int pred_intra_mode(const H264Context *h,
696
                                            H264SliceContext *sl, int n)
697
{
698
28715316
    const int index8 = scan8[n];
699
28715316
    const int left   = sl->intra4x4_pred_mode_cache[index8 - 1];
700
28715316
    const int top    = sl->intra4x4_pred_mode_cache[index8 - 8];
701
28715316
    const int min    = FFMIN(left, top);
702
703
    ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
704
705
28715316
    if (min < 0)
706
814253
        return DC_PRED;
707
    else
708
27901063
        return min;
709
}
710
711
2884335
static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
712
                                                        H264SliceContext *sl)
713
{
714
2884335
    int8_t *i4x4       = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
715
2884335
    int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
716
717
2884335
    AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
718
2884335
    i4x4[4] = i4x4_cache[7 + 8 * 3];
719
2884335
    i4x4[5] = i4x4_cache[7 + 8 * 2];
720
2884335
    i4x4[6] = i4x4_cache[7 + 8 * 1];
721
2884335
}
722
723
9857218
static av_always_inline void write_back_non_zero_count(const H264Context *h,
724
                                                       H264SliceContext *sl)
725
{
726
9857218
    const int mb_xy    = sl->mb_xy;
727
9857218
    uint8_t *nnz       = h->non_zero_count[mb_xy];
728
9857218
    uint8_t *nnz_cache = sl->non_zero_count_cache;
729
730
9857218
    AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
731
9857218
    AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
732
9857218
    AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
733
9857218
    AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
734
9857218
    AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
735
9857218
    AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
736
9857218
    AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
737
9857218
    AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
738
739
9857218
    if (!h->chroma_y_shift) {
740
917795
        AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
741
917795
        AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
742
917795
        AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
743
917795
        AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
744
    }
745
9857218
}
746
747
11980092
static av_always_inline void write_back_motion_list(const H264Context *h,
748
                                                    H264SliceContext *sl,
749
                                                    int b_stride,
750
                                                    int b_xy, int b8_xy,
751
                                                    int mb_type, int list)
752
{
753
11980092
    int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
754
11980092
    int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
755
11980092
    AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
756
11980092
    AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
757
11980092
    AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
758
11980092
    AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
759
    if (CABAC(h)) {
760
8407479
        uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
761
8407479
                                                        : h->mb2br_xy[sl->mb_xy]];
762
8407479
        uint8_t(*mvd_src)[2]  = &sl->mvd_cache[list][scan8[0]];
763
8407479
        if (IS_SKIP(mb_type)) {
764
3265569
            AV_ZERO128(mvd_dst);
765
        } else {
766
5141910
            AV_COPY64(mvd_dst, mvd_src + 8 * 3);
767
5141910
            AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
768
5141910
            AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
769
5141910
            AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
770
        }
771
    }
772
773
    {
774
11980092
        int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
775
11980092
        int8_t *ref_cache = sl->ref_cache[list];
776
11980092
        ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
777
11980092
        ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
778
11980092
        ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
779
11980092
        ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
780
    }
781
11980092
}
782
783
9081359
static av_always_inline void write_back_motion(const H264Context *h,
784
                                               H264SliceContext *sl,
785
                                               int mb_type)
786
{
787
9081359
    const int b_stride      = h->b_stride;
788
9081359
    const int b_xy  = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
789
9081359
    const int b8_xy = 4 * sl->mb_xy;
790
791
9081359
    if (USES_LIST(mb_type, 0)) {
792
8379457
        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
793
    } else {
794
701902
        fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
795
                       2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
796
    }
797
9081359
    if (USES_LIST(mb_type, 1))
798
3600635
        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
799
800

6121394
    if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
801
3523311
        if (IS_8X8(mb_type)) {
802
414730
            uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
803
414730
            direct_table[1] = sl->sub_mb_type[1] >> 1;
804
414730
            direct_table[2] = sl->sub_mb_type[2] >> 1;
805
414730
            direct_table[3] = sl->sub_mb_type[3] >> 1;
806
        }
807
    }
808
9081359
}
809
810
261291
static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
811
{
812
261291
    if (h->ps.sps->direct_8x8_inference_flag)
813
256414
        return !(AV_RN64A(sl->sub_mb_type) &
814
                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
815
                  0x0001000100010001ULL));
816
    else
817
4877
        return !(AV_RN64A(sl->sub_mb_type) &
818
                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
819
                  0x0001000100010001ULL));
820
}
821
822
35979
static inline int find_start_code(const uint8_t *buf, int buf_size,
823
                           int buf_index, int next_avc)
824
{
825
35979
    uint32_t state = -1;
826
827
35979
    buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
828
829
35979
    return FFMIN(buf_index, buf_size);
830
}
831
832
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
833
834
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
835
void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
836
837
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
838
839
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
840
841
/**
842
 * Submit a slice for decoding.
843
 *
844
 * Parse the slice header, starting a new field/frame if necessary. If any
845
 * slices are queued for the previous field, they are decoded.
846
 */
847
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
848
int ff_h264_execute_decode_slices(H264Context *h);
849
int ff_h264_update_thread_context(AVCodecContext *dst,
850
                                  const AVCodecContext *src);
851
852
void ff_h264_flush_change(H264Context *h);
853
854
void ff_h264_free_tables(H264Context *h);
855
856
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
857
858
#endif /* AVCODEC_H264DEC_H */