GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/h264dec.h Lines: 87 88 98.9 %
Date: 2021-04-20 15:25:36 Branches: 16 20 80.0 %

Line Branch Exec Source
1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * H.264 / AVC / MPEG-4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27
28
#ifndef AVCODEC_H264DEC_H
29
#define AVCODEC_H264DEC_H
30
31
#include "libavutil/buffer.h"
32
#include "libavutil/intreadwrite.h"
33
#include "libavutil/mem_internal.h"
34
#include "libavutil/thread.h"
35
36
#include "cabac.h"
37
#include "error_resilience.h"
38
#include "h264_parse.h"
39
#include "h264_ps.h"
40
#include "h264_sei.h"
41
#include "h2645_parse.h"
42
#include "h264chroma.h"
43
#include "h264dsp.h"
44
#include "h264pred.h"
45
#include "h264qpel.h"
46
#include "internal.h"
47
#include "mpegutils.h"
48
#include "parser.h"
49
#include "qpeldsp.h"
50
#include "rectangle.h"
51
#include "videodsp.h"
52
53
#define H264_MAX_PICTURE_COUNT 36
54
55
#define MAX_MMCO_COUNT         66
56
57
#define MAX_DELAYED_PIC_COUNT  16
58
59
/* Compiling in interlaced support reduces the speed
60
 * of progressive decoding by about 2%. */
61
#define ALLOW_INTERLACE
62
63
#define FMO 0
64
65
/**
66
 * The maximum number of slices supported by the decoder.
67
 * must be a power of 2
68
 */
69
#define MAX_SLICES 32
70
71
#ifdef ALLOW_INTERLACE
72
#define MB_MBAFF(h)    (h)->mb_mbaff
73
#define MB_FIELD(sl)  (sl)->mb_field_decoding_flag
74
#define FRAME_MBAFF(h) (h)->mb_aff_frame
75
#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
76
#define LEFT_MBS 2
77
#define LTOP     0
78
#define LBOT     1
79
#define LEFT(i)  (i)
80
#else
81
#define MB_MBAFF(h)      0
82
#define MB_FIELD(sl)     0
83
#define FRAME_MBAFF(h)   0
84
#define FIELD_PICTURE(h) 0
85
#undef  IS_INTERLACED
86
#define IS_INTERLACED(mb_type) 0
87
#define LEFT_MBS 1
88
#define LTOP     0
89
#define LBOT     0
90
#define LEFT(i)  0
91
#endif
92
#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
93
94
#ifndef CABAC
95
#define CABAC(h) (h)->ps.pps->cabac
96
#endif
97
98
#define CHROMA(h)    ((h)->ps.sps->chroma_format_idc)
99
#define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
100
#define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
101
102
#define MB_TYPE_REF0       MB_TYPE_ACPRED // dirty but it fits in 16 bit
103
#define MB_TYPE_8x8DCT     0x01000000
104
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
105
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
106
107
/**
108
 * Memory management control operation opcode.
109
 */
110
typedef enum MMCOOpcode {
111
    MMCO_END = 0,
112
    MMCO_SHORT2UNUSED,
113
    MMCO_LONG2UNUSED,
114
    MMCO_SHORT2LONG,
115
    MMCO_SET_MAX_LONG,
116
    MMCO_RESET,
117
    MMCO_LONG,
118
} MMCOOpcode;
119
120
/**
121
 * Memory management control operation.
122
 */
123
typedef struct MMCO {
124
    MMCOOpcode opcode;
125
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
126
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
127
} MMCO;
128
129
typedef struct H264Picture {
130
    AVFrame *f;
131
    ThreadFrame tf;
132
133
    AVBufferRef *qscale_table_buf;
134
    int8_t *qscale_table;
135
136
    AVBufferRef *motion_val_buf[2];
137
    int16_t (*motion_val[2])[2];
138
139
    AVBufferRef *mb_type_buf;
140
    uint32_t *mb_type;
141
142
    AVBufferRef *hwaccel_priv_buf;
143
    void *hwaccel_picture_private; ///< hardware accelerator private data
144
145
    AVBufferRef *ref_index_buf[2];
146
    int8_t *ref_index[2];
147
148
    int field_poc[2];       ///< top/bottom POC
149
    int poc;                ///< frame POC
150
    int frame_num;          ///< frame_num (raw frame_num from slice header)
151
    int mmco_reset;         /**< MMCO_RESET set this 1. Reordering code must
152
                                 not mix pictures before and after MMCO_RESET. */
153
    int pic_id;             /**< pic_num (short -> no wrap version of pic_num,
154
                                 pic_num & max_pic_num; long -> long_pic_num) */
155
    int long_ref;           ///< 1->long term reference 0->short term reference
156
    int ref_poc[2][2][32];  ///< POCs of the frames/fields used as reference (FIXME need per slice)
157
    int ref_count[2][2];    ///< number of entries in ref_poc         (FIXME need per slice)
158
    int mbaff;              ///< 1 -> MBAFF frame 0-> not MBAFF
159
    int field_picture;      ///< whether or not picture was encoded in separate fields
160
161
    int reference;
162
    int recovered;          ///< picture at IDR or recovery point + recovery count
163
    int invalid_gap;
164
    int sei_recovery_frame_cnt;
165
166
    AVBufferRef *pps_buf;
167
    const PPS   *pps;
168
169
    int mb_width, mb_height;
170
    int mb_stride;
171
} H264Picture;
172
173
typedef struct H264Ref {
174
    uint8_t *data[3];
175
    int linesize[3];
176
177
    int reference;
178
    int poc;
179
    int pic_id;
180
181
    H264Picture *parent;
182
} H264Ref;
183
184
typedef struct H264SliceContext {
185
    struct H264Context *h264;
186
    GetBitContext gb;
187
    ERContext er;
188
189
    int slice_num;
190
    int slice_type;
191
    int slice_type_nos;         ///< S free slice type (SI/SP are remapped to I/P)
192
    int slice_type_fixed;
193
194
    int qscale;
195
    int chroma_qp[2];   // QPc
196
    int qp_thresh;      ///< QP threshold to skip loopfilter
197
    int last_qscale_diff;
198
199
    // deblock
200
    int deblocking_filter;          ///< disable_deblocking_filter_idc with 1 <-> 0
201
    int slice_alpha_c0_offset;
202
    int slice_beta_offset;
203
204
    H264PredWeightTable pwt;
205
206
    int prev_mb_skipped;
207
    int next_mb_skipped;
208
209
    int chroma_pred_mode;
210
    int intra16x16_pred_mode;
211
212
    int8_t intra4x4_pred_mode_cache[5 * 8];
213
    int8_t(*intra4x4_pred_mode);
214
215
    int topleft_mb_xy;
216
    int top_mb_xy;
217
    int topright_mb_xy;
218
    int left_mb_xy[LEFT_MBS];
219
220
    int topleft_type;
221
    int top_type;
222
    int topright_type;
223
    int left_type[LEFT_MBS];
224
225
    const uint8_t *left_block;
226
    int topleft_partition;
227
228
    unsigned int topleft_samples_available;
229
    unsigned int top_samples_available;
230
    unsigned int topright_samples_available;
231
    unsigned int left_samples_available;
232
233
    ptrdiff_t linesize, uvlinesize;
234
    ptrdiff_t mb_linesize;  ///< may be equal to s->linesize or s->linesize * 2, for mbaff
235
    ptrdiff_t mb_uvlinesize;
236
237
    int mb_x, mb_y;
238
    int mb_xy;
239
    int resync_mb_x;
240
    int resync_mb_y;
241
    unsigned int first_mb_addr;
242
    // index of the first MB of the next slice
243
    int next_slice_idx;
244
    int mb_skip_run;
245
    int is_complex;
246
247
    int picture_structure;
248
    int mb_field_decoding_flag;
249
    int mb_mbaff;               ///< mb_aff_frame && mb_field_decoding_flag
250
251
    int redundant_pic_count;
252
253
    /**
254
     * number of neighbors (top and/or left) that used 8x8 dct
255
     */
256
    int neighbor_transform_size;
257
258
    int direct_spatial_mv_pred;
259
    int col_parity;
260
    int col_fieldoff;
261
262
    int cbp;
263
    int top_cbp;
264
    int left_cbp;
265
266
    int dist_scale_factor[32];
267
    int dist_scale_factor_field[2][32];
268
    int map_col_to_list0[2][16 + 32];
269
    int map_col_to_list0_field[2][2][16 + 32];
270
271
    /**
272
     * num_ref_idx_l0/1_active_minus1 + 1
273
     */
274
    unsigned int ref_count[2];          ///< counts frames or fields, depending on current mb mode
275
    unsigned int list_count;
276
    H264Ref ref_list[2][48];        /**< 0..15: frame refs, 16..47: mbaff field refs.
277
                                         *   Reordered version of default_ref_list
278
                                         *   according to picture reordering in slice header */
279
    struct {
280
        uint8_t op;
281
        uint32_t val;
282
    } ref_modifications[2][32];
283
    int nb_ref_modifications[2];
284
285
    unsigned int pps_id;
286
287
    const uint8_t *intra_pcm_ptr;
288
    int16_t *dc_val_base;
289
290
    uint8_t *bipred_scratchpad;
291
    uint8_t *edge_emu_buffer;
292
    uint8_t (*top_borders[2])[(16 * 3) * 2];
293
    int bipred_scratchpad_allocated;
294
    int edge_emu_buffer_allocated;
295
    int top_borders_allocated[2];
296
297
    /**
298
     * non zero coeff count cache.
299
     * is 64 if not available.
300
     */
301
    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
302
303
    /**
304
     * Motion vector cache.
305
     */
306
    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
307
    DECLARE_ALIGNED(8,  int8_t, ref_cache)[2][5 * 8];
308
    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
309
    uint8_t direct_cache[5 * 8];
310
311
    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
312
313
    ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
314
    DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
315
    DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
316
    ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
317
    ///< check that i is not too large or ensure that there is some unused stuff after mb
318
    int16_t mb_padding[256 * 2];
319
320
    uint8_t (*mvd_table[2])[2];
321
322
    /**
323
     * Cabac
324
     */
325
    CABACContext cabac;
326
    uint8_t cabac_state[1024];
327
    int cabac_init_idc;
328
329
    MMCO mmco[MAX_MMCO_COUNT];
330
    int  nb_mmco;
331
    int explicit_ref_marking;
332
333
    int frame_num;
334
    int poc_lsb;
335
    int delta_poc_bottom;
336
    int delta_poc[2];
337
    int curr_pic_num;
338
    int max_pic_num;
339
} H264SliceContext;
340
341
/**
342
 * H264Context
343
 */
344
typedef struct H264Context {
345
    const AVClass *class;
346
    AVCodecContext *avctx;
347
    VideoDSPContext vdsp;
348
    H264DSPContext h264dsp;
349
    H264ChromaContext h264chroma;
350
    H264QpelContext h264qpel;
351
352
    H264Picture DPB[H264_MAX_PICTURE_COUNT];
353
    H264Picture *cur_pic_ptr;
354
    H264Picture cur_pic;
355
    H264Picture last_pic_for_ec;
356
357
    H264SliceContext *slice_ctx;
358
    int            nb_slice_ctx;
359
    int            nb_slice_ctx_queued;
360
361
    H2645Packet pkt;
362
363
    int pixel_shift;    ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
364
365
    /* coded dimensions -- 16 * mb w/h */
366
    int width, height;
367
    int chroma_x_shift, chroma_y_shift;
368
369
    int droppable;
370
    int coded_picture_number;
371
372
    int context_initialized;
373
    int flags;
374
    int workaround_bugs;
375
    int x264_build;
376
    /* Set when slice threading is used and at least one slice uses deblocking
377
     * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
378
     * during normal MB decoding and execute it serially at the end.
379
     */
380
    int postpone_filter;
381
382
    /*
383
     * Set to 1 when the current picture is IDR, 0 otherwise.
384
     */
385
    int picture_idr;
386
387
    int crop_left;
388
    int crop_right;
389
    int crop_top;
390
    int crop_bottom;
391
392
    int8_t(*intra4x4_pred_mode);
393
    H264PredContext hpc;
394
395
    uint8_t (*non_zero_count)[48];
396
397
#define LIST_NOT_USED -1 // FIXME rename?
398
#define PART_NOT_AVAILABLE -2
399
400
    /**
401
     * block_offset[ 0..23] for frame macroblocks
402
     * block_offset[24..47] for field macroblocks
403
     */
404
    int block_offset[2 * (16 * 3)];
405
406
    uint32_t *mb2b_xy;  // FIXME are these 4 a good idea?
407
    uint32_t *mb2br_xy;
408
    int b_stride;       // FIXME use s->b4_stride
409
410
    uint16_t *slice_table;      ///< slice_table_base + 2*mb_stride + 1
411
412
    // interlacing specific flags
413
    int mb_aff_frame;
414
    int picture_structure;
415
    int first_field;
416
417
    uint8_t *list_counts;               ///< Array of list_count per MB specifying the slice type
418
419
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
420
    uint16_t *cbp_table;
421
422
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
423
    uint8_t *chroma_pred_mode_table;
424
    uint8_t (*mvd_table[2])[2];
425
    uint8_t *direct_table;
426
427
    uint8_t scan_padding[16];
428
    uint8_t zigzag_scan[16];
429
    uint8_t zigzag_scan8x8[64];
430
    uint8_t zigzag_scan8x8_cavlc[64];
431
    uint8_t field_scan[16];
432
    uint8_t field_scan8x8[64];
433
    uint8_t field_scan8x8_cavlc[64];
434
    uint8_t zigzag_scan_q0[16];
435
    uint8_t zigzag_scan8x8_q0[64];
436
    uint8_t zigzag_scan8x8_cavlc_q0[64];
437
    uint8_t field_scan_q0[16];
438
    uint8_t field_scan8x8_q0[64];
439
    uint8_t field_scan8x8_cavlc_q0[64];
440
441
    int mb_y;
442
    int mb_height, mb_width;
443
    int mb_stride;
444
    int mb_num;
445
446
    // =============================================================
447
    // Things below are not used in the MB or more inner code
448
449
    int nal_ref_idc;
450
    int nal_unit_type;
451
452
    int has_slice;          ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
453
454
    /**
455
     * Used to parse AVC variant of H.264
456
     */
457
    int is_avc;           ///< this flag is != 0 if codec is avc1
458
    int nal_length_size;  ///< Number of bytes used for nal length (1, 2 or 4)
459
460
    int bit_depth_luma;         ///< luma bit depth from sps to detect changes
461
    int chroma_format_idc;      ///< chroma format from sps to detect changes
462
463
    H264ParamSets ps;
464
465
    uint16_t *slice_table_base;
466
467
    H264POCContext poc;
468
469
    H264Ref default_ref[2];
470
    H264Picture *short_ref[32];
471
    H264Picture *long_ref[32];
472
    H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
473
    int last_pocs[MAX_DELAYED_PIC_COUNT];
474
    H264Picture *next_output_pic;
475
    int next_outputed_poc;
476
477
    /**
478
     * memory management control operations buffer.
479
     */
480
    MMCO mmco[MAX_MMCO_COUNT];
481
    int  nb_mmco;
482
    int mmco_reset;
483
    int explicit_ref_marking;
484
485
    int long_ref_count;     ///< number of actual long term references
486
    int short_ref_count;    ///< number of actual short term references
487
488
    /**
489
     * @name Members for slice based multithreading
490
     * @{
491
     */
492
    /**
493
     * current slice number, used to initialize slice_num of each thread/context
494
     */
495
    int current_slice;
496
497
    /** @} */
498
499
    /**
500
     * Complement sei_pic_struct
501
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
502
     * However, soft telecined frames may have these values.
503
     * This is used in an attempt to flag soft telecine progressive.
504
     */
505
    int prev_interlaced_frame;
506
507
    /**
508
     * Are the SEI recovery points looking valid.
509
     */
510
    int valid_recovery_point;
511
512
    /**
513
     * recovery_frame is the frame_num at which the next frame should
514
     * be fully constructed.
515
     *
516
     * Set to -1 when not expecting a recovery point.
517
     */
518
    int recovery_frame;
519
520
/**
521
 * We have seen an IDR, so all the following frames in coded order are correctly
522
 * decodable.
523
 */
524
#define FRAME_RECOVERED_IDR  (1 << 0)
525
/**
526
 * Sufficient number of frames have been decoded since a SEI recovery point,
527
 * so all the following frames in presentation order are correct.
528
 */
529
#define FRAME_RECOVERED_SEI  (1 << 1)
530
531
    int frame_recovered;    ///< Initial frame has been completely recovered
532
533
    int has_recovery_point;
534
535
    int missing_fields;
536
537
    /* for frame threading, this is set to 1
538
     * after finish_setup() has been called, so we cannot modify
539
     * some context properties (which are supposed to stay constant between
540
     * slices) anymore */
541
    int setup_finished;
542
543
    int cur_chroma_format_idc;
544
    int cur_bit_depth_luma;
545
    int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
546
547
    /* original AVCodecContext dimensions, used to handle container
548
     * cropping */
549
    int width_from_caller;
550
    int height_from_caller;
551
552
    int enable_er;
553
554
    H264SEIContext sei;
555
556
    AVBufferPool *qscale_table_pool;
557
    AVBufferPool *mb_type_pool;
558
    AVBufferPool *motion_val_pool;
559
    AVBufferPool *ref_index_pool;
560
    int ref2frm[MAX_SLICES][2][64];     ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
561
} H264Context;
562
563
extern const uint16_t ff_h264_mb_sizes[4];
564
565
/**
566
 * Reconstruct bitstream slice_type.
567
 */
568
int ff_h264_get_slice_type(const H264SliceContext *sl);
569
570
/**
571
 * Allocate tables.
572
 * needs width/height
573
 */
574
int ff_h264_alloc_tables(H264Context *h);
575
576
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
577
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
578
void ff_h264_remove_all_refs(H264Context *h);
579
580
/**
581
 * Execute the reference picture marking (memory management control operations).
582
 */
583
int ff_h264_execute_ref_pic_marking(H264Context *h);
584
585
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
586
                                   const H2645NAL *nal, void *logctx);
587
588
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
589
void ff_h264_decode_init_vlc(void);
590
591
/**
592
 * Decode a macroblock
593
 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
594
 */
595
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
596
597
/**
598
 * Decode a CABAC coded macroblock
599
 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
600
 */
601
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
602
603
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
604
605
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
606
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
607
void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
608
                                int *mb_type);
609
610
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
611
                            uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
612
                            unsigned int linesize, unsigned int uvlinesize);
613
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
614
                       uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
615
                       unsigned int linesize, unsigned int uvlinesize);
616
617
/*
618
 * o-o o-o
619
 *  / / /
620
 * o-o o-o
621
 *  ,---'
622
 * o-o o-o
623
 *  / / /
624
 * o-o o-o
625
 */
626
627
/* Scan8 organization:
628
 *    0 1 2 3 4 5 6 7
629
 * 0  DY    y y y y y
630
 * 1        y Y Y Y Y
631
 * 2        y Y Y Y Y
632
 * 3        y Y Y Y Y
633
 * 4        y Y Y Y Y
634
 * 5  DU    u u u u u
635
 * 6        u U U U U
636
 * 7        u U U U U
637
 * 8        u U U U U
638
 * 9        u U U U U
639
 * 10 DV    v v v v v
640
 * 11       v V V V V
641
 * 12       v V V V V
642
 * 13       v V V V V
643
 * 14       v V V V V
644
 * DY/DU/DV are for luma/chroma DC.
645
 */
646
647
#define LUMA_DC_BLOCK_INDEX   48
648
#define CHROMA_DC_BLOCK_INDEX 49
649
650
// This table must be here because scan8[constant] must be known at compiletime
651
static const uint8_t scan8[16 * 3 + 3] = {
652
    4 +  1 * 8, 5 +  1 * 8, 4 +  2 * 8, 5 +  2 * 8,
653
    6 +  1 * 8, 7 +  1 * 8, 6 +  2 * 8, 7 +  2 * 8,
654
    4 +  3 * 8, 5 +  3 * 8, 4 +  4 * 8, 5 +  4 * 8,
655
    6 +  3 * 8, 7 +  3 * 8, 6 +  4 * 8, 7 +  4 * 8,
656
    4 +  6 * 8, 5 +  6 * 8, 4 +  7 * 8, 5 +  7 * 8,
657
    6 +  6 * 8, 7 +  6 * 8, 6 +  7 * 8, 7 +  7 * 8,
658
    4 +  8 * 8, 5 +  8 * 8, 4 +  9 * 8, 5 +  9 * 8,
659
    6 +  8 * 8, 7 +  8 * 8, 6 +  9 * 8, 7 +  9 * 8,
660
    4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
661
    6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
662
    4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
663
    6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
664
    0 +  0 * 8, 0 +  5 * 8, 0 + 10 * 8
665
};
666
667
34269250
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
668
{
669
#if HAVE_BIGENDIAN
670
    return (b & 0xFFFF) + (a << 16);
671
#else
672
34269250
    return (a & 0xFFFF) + (b << 16);
673
#endif
674
}
675
676
3897119
static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
677
{
678
#if HAVE_BIGENDIAN
679
    return (b & 0xFF) + (a << 8);
680
#else
681
3897119
    return (a & 0xFF) + (b << 8);
682
#endif
683
}
684
685
/**
686
 * Get the chroma qp.
687
 */
688
60081136
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
689
{
690
60081136
    return pps->chroma_qp_table[t][qscale];
691
}
692
693
/**
694
 * Get the predicted intra4x4 prediction mode.
695
 */
696
29176592
static av_always_inline int pred_intra_mode(const H264Context *h,
697
                                            H264SliceContext *sl, int n)
698
{
699
29176592
    const int index8 = scan8[n];
700
29176592
    const int left   = sl->intra4x4_pred_mode_cache[index8 - 1];
701
29176592
    const int top    = sl->intra4x4_pred_mode_cache[index8 - 8];
702
29176592
    const int min    = FFMIN(left, top);
703
704
    ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
705
706
29176592
    if (min < 0)
707
818542
        return DC_PRED;
708
    else
709
28358050
        return min;
710
}
711
712
2956505
static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
713
                                                        H264SliceContext *sl)
714
{
715
2956505
    int8_t *i4x4       = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
716
2956505
    int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
717
718
2956505
    AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
719
2956505
    i4x4[4] = i4x4_cache[7 + 8 * 3];
720
2956505
    i4x4[5] = i4x4_cache[7 + 8 * 2];
721
2956505
    i4x4[6] = i4x4_cache[7 + 8 * 1];
722
2956505
}
723
724
10137017
static av_always_inline void write_back_non_zero_count(const H264Context *h,
725
                                                       H264SliceContext *sl)
726
{
727
10137017
    const int mb_xy    = sl->mb_xy;
728
10137017
    uint8_t *nnz       = h->non_zero_count[mb_xy];
729
10137017
    uint8_t *nnz_cache = sl->non_zero_count_cache;
730
731
10137017
    AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
732
10137017
    AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
733
10137017
    AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
734
10137017
    AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
735
10137017
    AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
736
10137017
    AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
737
10137017
    AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
738
10137017
    AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
739
740
10137017
    if (!h->chroma_y_shift) {
741
958595
        AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
742
958595
        AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
743
958595
        AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
744
958595
        AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
745
    }
746
10137017
}
747
748
13330709
static av_always_inline void write_back_motion_list(const H264Context *h,
749
                                                    H264SliceContext *sl,
750
                                                    int b_stride,
751
                                                    int b_xy, int b8_xy,
752
                                                    int mb_type, int list)
753
{
754
13330709
    int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
755
13330709
    int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
756
13330709
    AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
757
13330709
    AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
758
13330709
    AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
759
13330709
    AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
760
    if (CABAC(h)) {
761
9758096
        uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
762
9758096
                                                        : h->mb2br_xy[sl->mb_xy]];
763
9758096
        uint8_t(*mvd_src)[2]  = &sl->mvd_cache[list][scan8[0]];
764
9758096
        if (IS_SKIP(mb_type)) {
765
4383451
            AV_ZERO128(mvd_dst);
766
        } else {
767
5374645
            AV_COPY64(mvd_dst, mvd_src + 8 * 3);
768
5374645
            AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
769
5374645
            AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
770
5374645
            AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
771
        }
772
    }
773
774
    {
775
13330709
        int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
776
13330709
        int8_t *ref_cache = sl->ref_cache[list];
777
13330709
        ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
778
13330709
        ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
779
13330709
        ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
780
13330709
        ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
781
    }
782
13330709
}
783
784
9861704
static av_always_inline void write_back_motion(const H264Context *h,
785
                                               H264SliceContext *sl,
786
                                               int mb_type)
787
{
788
9861704
    const int b_stride      = h->b_stride;
789
9861704
    const int b_xy  = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
790
9861704
    const int b8_xy = 4 * sl->mb_xy;
791
792
9861704
    if (USES_LIST(mb_type, 0)) {
793
9140929
        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
794
    } else {
795
720775
        fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
796
                       2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
797
    }
798
9861704
    if (USES_LIST(mb_type, 1))
799
4189780
        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
800
801

6901739
    if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
802
4129859
        if (IS_8X8(mb_type)) {
803
415008
            uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
804
415008
            direct_table[1] = sl->sub_mb_type[1] >> 1;
805
415008
            direct_table[2] = sl->sub_mb_type[2] >> 1;
806
415008
            direct_table[3] = sl->sub_mb_type[3] >> 1;
807
        }
808
    }
809
9861704
}
810
811
265181
static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
812
{
813
265181
    if (h->ps.sps->direct_8x8_inference_flag)
814
260304
        return !(AV_RN64A(sl->sub_mb_type) &
815
                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
816
                  0x0001000100010001ULL));
817
    else
818
4877
        return !(AV_RN64A(sl->sub_mb_type) &
819
                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
820
                  0x0001000100010001ULL));
821
}
822
823
36351
static inline int find_start_code(const uint8_t *buf, int buf_size,
824
                           int buf_index, int next_avc)
825
{
826
36351
    uint32_t state = -1;
827
828
36351
    buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
829
830
36351
    return FFMIN(buf_index, buf_size);
831
}
832
833
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
834
835
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
836
void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
837
838
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
839
840
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
841
842
/**
843
 * Submit a slice for decoding.
844
 *
845
 * Parse the slice header, starting a new field/frame if necessary. If any
846
 * slices are queued for the previous field, they are decoded.
847
 */
848
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
849
int ff_h264_execute_decode_slices(H264Context *h);
850
int ff_h264_update_thread_context(AVCodecContext *dst,
851
                                  const AVCodecContext *src);
852
int ff_h264_update_thread_context_for_user(AVCodecContext *dst,
853
                                           const AVCodecContext *src);
854
855
void ff_h264_flush_change(H264Context *h);
856
857
void ff_h264_free_tables(H264Context *h);
858
859
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
860
861
#endif /* AVCODEC_H264DEC_H */