GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/h264dec.h Lines: 87 88 98.9 %
Date: 2019-11-22 03:34:36 Branches: 16 20 80.0 %

Line Branch Exec Source
1
/*
2
 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3
 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * H.264 / AVC / MPEG-4 part10 codec.
25
 * @author Michael Niedermayer <michaelni@gmx.at>
26
 */
27
28
#ifndef AVCODEC_H264DEC_H
29
#define AVCODEC_H264DEC_H
30
31
#include "libavutil/buffer.h"
32
#include "libavutil/intreadwrite.h"
33
#include "libavutil/thread.h"
34
35
#include "cabac.h"
36
#include "error_resilience.h"
37
#include "h264_parse.h"
38
#include "h264_ps.h"
39
#include "h264_sei.h"
40
#include "h2645_parse.h"
41
#include "h264chroma.h"
42
#include "h264dsp.h"
43
#include "h264pred.h"
44
#include "h264qpel.h"
45
#include "internal.h"
46
#include "mpegutils.h"
47
#include "parser.h"
48
#include "qpeldsp.h"
49
#include "rectangle.h"
50
#include "videodsp.h"
51
52
#define H264_MAX_PICTURE_COUNT 36
53
54
#define MAX_MMCO_COUNT         66
55
56
#define MAX_DELAYED_PIC_COUNT  16
57
58
/* Compiling in interlaced support reduces the speed
59
 * of progressive decoding by about 2%. */
60
#define ALLOW_INTERLACE
61
62
#define FMO 0
63
64
/**
65
 * The maximum number of slices supported by the decoder.
66
 * must be a power of 2
67
 */
68
#define MAX_SLICES 32
69
70
#ifdef ALLOW_INTERLACE
71
#define MB_MBAFF(h)    (h)->mb_mbaff
72
#define MB_FIELD(sl)  (sl)->mb_field_decoding_flag
73
#define FRAME_MBAFF(h) (h)->mb_aff_frame
74
#define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
75
#define LEFT_MBS 2
76
#define LTOP     0
77
#define LBOT     1
78
#define LEFT(i)  (i)
79
#else
80
#define MB_MBAFF(h)      0
81
#define MB_FIELD(sl)     0
82
#define FRAME_MBAFF(h)   0
83
#define FIELD_PICTURE(h) 0
84
#undef  IS_INTERLACED
85
#define IS_INTERLACED(mb_type) 0
86
#define LEFT_MBS 1
87
#define LTOP     0
88
#define LBOT     0
89
#define LEFT(i)  0
90
#endif
91
#define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
92
93
#ifndef CABAC
94
#define CABAC(h) (h)->ps.pps->cabac
95
#endif
96
97
#define CHROMA(h)    ((h)->ps.sps->chroma_format_idc)
98
#define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
99
#define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
100
101
#define MB_TYPE_REF0       MB_TYPE_ACPRED // dirty but it fits in 16 bit
102
#define MB_TYPE_8x8DCT     0x01000000
103
#define IS_REF0(a)         ((a) & MB_TYPE_REF0)
104
#define IS_8x8DCT(a)       ((a) & MB_TYPE_8x8DCT)
105
106
/**
107
 * Memory management control operation opcode.
108
 */
109
typedef enum MMCOOpcode {
110
    MMCO_END = 0,
111
    MMCO_SHORT2UNUSED,
112
    MMCO_LONG2UNUSED,
113
    MMCO_SHORT2LONG,
114
    MMCO_SET_MAX_LONG,
115
    MMCO_RESET,
116
    MMCO_LONG,
117
} MMCOOpcode;
118
119
/**
120
 * Memory management control operation.
121
 */
122
typedef struct MMCO {
123
    MMCOOpcode opcode;
124
    int short_pic_num;  ///< pic_num without wrapping (pic_num & max_pic_num)
125
    int long_arg;       ///< index, pic_num, or num long refs depending on opcode
126
} MMCO;
127
128
typedef struct H264Picture {
129
    AVFrame *f;
130
    ThreadFrame tf;
131
132
    AVBufferRef *qscale_table_buf;
133
    int8_t *qscale_table;
134
135
    AVBufferRef *motion_val_buf[2];
136
    int16_t (*motion_val[2])[2];
137
138
    AVBufferRef *mb_type_buf;
139
    uint32_t *mb_type;
140
141
    AVBufferRef *hwaccel_priv_buf;
142
    void *hwaccel_picture_private; ///< hardware accelerator private data
143
144
    AVBufferRef *ref_index_buf[2];
145
    int8_t *ref_index[2];
146
147
    int field_poc[2];       ///< top/bottom POC
148
    int poc;                ///< frame POC
149
    int frame_num;          ///< frame_num (raw frame_num from slice header)
150
    int mmco_reset;         /**< MMCO_RESET set this 1. Reordering code must
151
                                 not mix pictures before and after MMCO_RESET. */
152
    int pic_id;             /**< pic_num (short -> no wrap version of pic_num,
153
                                 pic_num & max_pic_num; long -> long_pic_num) */
154
    int long_ref;           ///< 1->long term reference 0->short term reference
155
    int ref_poc[2][2][32];  ///< POCs of the frames/fields used as reference (FIXME need per slice)
156
    int ref_count[2][2];    ///< number of entries in ref_poc         (FIXME need per slice)
157
    int mbaff;              ///< 1 -> MBAFF frame 0-> not MBAFF
158
    int field_picture;      ///< whether or not picture was encoded in separate fields
159
160
    int reference;
161
    int recovered;          ///< picture at IDR or recovery point + recovery count
162
    int invalid_gap;
163
    int sei_recovery_frame_cnt;
164
} H264Picture;
165
166
typedef struct H264Ref {
167
    uint8_t *data[3];
168
    int linesize[3];
169
170
    int reference;
171
    int poc;
172
    int pic_id;
173
174
    H264Picture *parent;
175
} H264Ref;
176
177
typedef struct H264SliceContext {
178
    struct H264Context *h264;
179
    GetBitContext gb;
180
    ERContext er;
181
182
    int slice_num;
183
    int slice_type;
184
    int slice_type_nos;         ///< S free slice type (SI/SP are remapped to I/P)
185
    int slice_type_fixed;
186
187
    int qscale;
188
    int chroma_qp[2];   // QPc
189
    int qp_thresh;      ///< QP threshold to skip loopfilter
190
    int last_qscale_diff;
191
192
    // deblock
193
    int deblocking_filter;          ///< disable_deblocking_filter_idc with 1 <-> 0
194
    int slice_alpha_c0_offset;
195
    int slice_beta_offset;
196
197
    H264PredWeightTable pwt;
198
199
    int prev_mb_skipped;
200
    int next_mb_skipped;
201
202
    int chroma_pred_mode;
203
    int intra16x16_pred_mode;
204
205
    int8_t intra4x4_pred_mode_cache[5 * 8];
206
    int8_t(*intra4x4_pred_mode);
207
208
    int topleft_mb_xy;
209
    int top_mb_xy;
210
    int topright_mb_xy;
211
    int left_mb_xy[LEFT_MBS];
212
213
    int topleft_type;
214
    int top_type;
215
    int topright_type;
216
    int left_type[LEFT_MBS];
217
218
    const uint8_t *left_block;
219
    int topleft_partition;
220
221
    unsigned int topleft_samples_available;
222
    unsigned int top_samples_available;
223
    unsigned int topright_samples_available;
224
    unsigned int left_samples_available;
225
226
    ptrdiff_t linesize, uvlinesize;
227
    ptrdiff_t mb_linesize;  ///< may be equal to s->linesize or s->linesize * 2, for mbaff
228
    ptrdiff_t mb_uvlinesize;
229
230
    int mb_x, mb_y;
231
    int mb_xy;
232
    int resync_mb_x;
233
    int resync_mb_y;
234
    unsigned int first_mb_addr;
235
    // index of the first MB of the next slice
236
    int next_slice_idx;
237
    int mb_skip_run;
238
    int is_complex;
239
240
    int picture_structure;
241
    int mb_field_decoding_flag;
242
    int mb_mbaff;               ///< mb_aff_frame && mb_field_decoding_flag
243
244
    int redundant_pic_count;
245
246
    /**
247
     * number of neighbors (top and/or left) that used 8x8 dct
248
     */
249
    int neighbor_transform_size;
250
251
    int direct_spatial_mv_pred;
252
    int col_parity;
253
    int col_fieldoff;
254
255
    int cbp;
256
    int top_cbp;
257
    int left_cbp;
258
259
    int dist_scale_factor[32];
260
    int dist_scale_factor_field[2][32];
261
    int map_col_to_list0[2][16 + 32];
262
    int map_col_to_list0_field[2][2][16 + 32];
263
264
    /**
265
     * num_ref_idx_l0/1_active_minus1 + 1
266
     */
267
    unsigned int ref_count[2];          ///< counts frames or fields, depending on current mb mode
268
    unsigned int list_count;
269
    H264Ref ref_list[2][48];        /**< 0..15: frame refs, 16..47: mbaff field refs.
270
                                         *   Reordered version of default_ref_list
271
                                         *   according to picture reordering in slice header */
272
    struct {
273
        uint8_t op;
274
        uint32_t val;
275
    } ref_modifications[2][32];
276
    int nb_ref_modifications[2];
277
278
    unsigned int pps_id;
279
280
    const uint8_t *intra_pcm_ptr;
281
    int16_t *dc_val_base;
282
283
    uint8_t *bipred_scratchpad;
284
    uint8_t *edge_emu_buffer;
285
    uint8_t (*top_borders[2])[(16 * 3) * 2];
286
    int bipred_scratchpad_allocated;
287
    int edge_emu_buffer_allocated;
288
    int top_borders_allocated[2];
289
290
    /**
291
     * non zero coeff count cache.
292
     * is 64 if not available.
293
     */
294
    DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
295
296
    /**
297
     * Motion vector cache.
298
     */
299
    DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
300
    DECLARE_ALIGNED(8,  int8_t, ref_cache)[2][5 * 8];
301
    DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
302
    uint8_t direct_cache[5 * 8];
303
304
    DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
305
306
    ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
307
    DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
308
    DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
309
    ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
310
    ///< check that i is not too large or ensure that there is some unused stuff after mb
311
    int16_t mb_padding[256 * 2];
312
313
    uint8_t (*mvd_table[2])[2];
314
315
    /**
316
     * Cabac
317
     */
318
    CABACContext cabac;
319
    uint8_t cabac_state[1024];
320
    int cabac_init_idc;
321
322
    MMCO mmco[MAX_MMCO_COUNT];
323
    int  nb_mmco;
324
    int explicit_ref_marking;
325
326
    int frame_num;
327
    int poc_lsb;
328
    int delta_poc_bottom;
329
    int delta_poc[2];
330
    int curr_pic_num;
331
    int max_pic_num;
332
} H264SliceContext;
333
334
/**
335
 * H264Context
336
 */
337
typedef struct H264Context {
338
    const AVClass *class;
339
    AVCodecContext *avctx;
340
    VideoDSPContext vdsp;
341
    H264DSPContext h264dsp;
342
    H264ChromaContext h264chroma;
343
    H264QpelContext h264qpel;
344
345
    H264Picture DPB[H264_MAX_PICTURE_COUNT];
346
    H264Picture *cur_pic_ptr;
347
    H264Picture cur_pic;
348
    H264Picture last_pic_for_ec;
349
350
    H264SliceContext *slice_ctx;
351
    int            nb_slice_ctx;
352
    int            nb_slice_ctx_queued;
353
354
    H2645Packet pkt;
355
356
    int pixel_shift;    ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
357
358
    /* coded dimensions -- 16 * mb w/h */
359
    int width, height;
360
    int chroma_x_shift, chroma_y_shift;
361
362
    int droppable;
363
    int coded_picture_number;
364
365
    int context_initialized;
366
    int flags;
367
    int workaround_bugs;
368
    int x264_build;
369
    /* Set when slice threading is used and at least one slice uses deblocking
370
     * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
371
     * during normal MB decoding and execute it serially at the end.
372
     */
373
    int postpone_filter;
374
375
    /*
376
     * Set to 1 when the current picture is IDR, 0 otherwise.
377
     */
378
    int picture_idr;
379
380
    int crop_left;
381
    int crop_right;
382
    int crop_top;
383
    int crop_bottom;
384
385
    int8_t(*intra4x4_pred_mode);
386
    H264PredContext hpc;
387
388
    uint8_t (*non_zero_count)[48];
389
390
#define LIST_NOT_USED -1 // FIXME rename?
391
#define PART_NOT_AVAILABLE -2
392
393
    /**
394
     * block_offset[ 0..23] for frame macroblocks
395
     * block_offset[24..47] for field macroblocks
396
     */
397
    int block_offset[2 * (16 * 3)];
398
399
    uint32_t *mb2b_xy;  // FIXME are these 4 a good idea?
400
    uint32_t *mb2br_xy;
401
    int b_stride;       // FIXME use s->b4_stride
402
403
    uint16_t *slice_table;      ///< slice_table_base + 2*mb_stride + 1
404
405
    // interlacing specific flags
406
    int mb_aff_frame;
407
    int picture_structure;
408
    int first_field;
409
410
    uint8_t *list_counts;               ///< Array of list_count per MB specifying the slice type
411
412
    /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
413
    uint16_t *cbp_table;
414
415
    /* chroma_pred_mode for i4x4 or i16x16, else 0 */
416
    uint8_t *chroma_pred_mode_table;
417
    uint8_t (*mvd_table[2])[2];
418
    uint8_t *direct_table;
419
420
    uint8_t scan_padding[16];
421
    uint8_t zigzag_scan[16];
422
    uint8_t zigzag_scan8x8[64];
423
    uint8_t zigzag_scan8x8_cavlc[64];
424
    uint8_t field_scan[16];
425
    uint8_t field_scan8x8[64];
426
    uint8_t field_scan8x8_cavlc[64];
427
    uint8_t zigzag_scan_q0[16];
428
    uint8_t zigzag_scan8x8_q0[64];
429
    uint8_t zigzag_scan8x8_cavlc_q0[64];
430
    uint8_t field_scan_q0[16];
431
    uint8_t field_scan8x8_q0[64];
432
    uint8_t field_scan8x8_cavlc_q0[64];
433
434
    int mb_y;
435
    int mb_height, mb_width;
436
    int mb_stride;
437
    int mb_num;
438
439
    // =============================================================
440
    // Things below are not used in the MB or more inner code
441
442
    int nal_ref_idc;
443
    int nal_unit_type;
444
445
    int has_slice;          ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
446
447
    /**
448
     * Used to parse AVC variant of H.264
449
     */
450
    int is_avc;           ///< this flag is != 0 if codec is avc1
451
    int nal_length_size;  ///< Number of bytes used for nal length (1, 2 or 4)
452
453
    int bit_depth_luma;         ///< luma bit depth from sps to detect changes
454
    int chroma_format_idc;      ///< chroma format from sps to detect changes
455
456
    H264ParamSets ps;
457
458
    uint16_t *slice_table_base;
459
460
    H264POCContext poc;
461
462
    H264Ref default_ref[2];
463
    H264Picture *short_ref[32];
464
    H264Picture *long_ref[32];
465
    H264Picture *delayed_pic[MAX_DELAYED_PIC_COUNT + 2]; // FIXME size?
466
    int last_pocs[MAX_DELAYED_PIC_COUNT];
467
    H264Picture *next_output_pic;
468
    int next_outputed_poc;
469
470
    /**
471
     * memory management control operations buffer.
472
     */
473
    MMCO mmco[MAX_MMCO_COUNT];
474
    int  nb_mmco;
475
    int mmco_reset;
476
    int explicit_ref_marking;
477
478
    int long_ref_count;     ///< number of actual long term references
479
    int short_ref_count;    ///< number of actual short term references
480
481
    /**
482
     * @name Members for slice based multithreading
483
     * @{
484
     */
485
    /**
486
     * current slice number, used to initialize slice_num of each thread/context
487
     */
488
    int current_slice;
489
490
    /** @} */
491
492
    /**
493
     * Complement sei_pic_struct
494
     * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
495
     * However, soft telecined frames may have these values.
496
     * This is used in an attempt to flag soft telecine progressive.
497
     */
498
    int prev_interlaced_frame;
499
500
    /**
501
     * Are the SEI recovery points looking valid.
502
     */
503
    int valid_recovery_point;
504
505
    /**
506
     * recovery_frame is the frame_num at which the next frame should
507
     * be fully constructed.
508
     *
509
     * Set to -1 when not expecting a recovery point.
510
     */
511
    int recovery_frame;
512
513
/**
514
 * We have seen an IDR, so all the following frames in coded order are correctly
515
 * decodable.
516
 */
517
#define FRAME_RECOVERED_IDR  (1 << 0)
518
/**
519
 * Sufficient number of frames have been decoded since a SEI recovery point,
520
 * so all the following frames in presentation order are correct.
521
 */
522
#define FRAME_RECOVERED_SEI  (1 << 1)
523
524
    int frame_recovered;    ///< Initial frame has been completely recovered
525
526
    int has_recovery_point;
527
528
    int missing_fields;
529
530
    /* for frame threading, this is set to 1
531
     * after finish_setup() has been called, so we cannot modify
532
     * some context properties (which are supposed to stay constant between
533
     * slices) anymore */
534
    int setup_finished;
535
536
    int cur_chroma_format_idc;
537
    int cur_bit_depth_luma;
538
    int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
539
540
    /* original AVCodecContext dimensions, used to handle container
541
     * cropping */
542
    int width_from_caller;
543
    int height_from_caller;
544
545
    int enable_er;
546
547
    H264SEIContext sei;
548
549
    AVBufferPool *qscale_table_pool;
550
    AVBufferPool *mb_type_pool;
551
    AVBufferPool *motion_val_pool;
552
    AVBufferPool *ref_index_pool;
553
    int ref2frm[MAX_SLICES][2][64];     ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
554
} H264Context;
555
556
extern const uint16_t ff_h264_mb_sizes[4];
557
558
/**
559
 * Reconstruct bitstream slice_type.
560
 */
561
int ff_h264_get_slice_type(const H264SliceContext *sl);
562
563
/**
564
 * Allocate tables.
565
 * needs width/height
566
 */
567
int ff_h264_alloc_tables(H264Context *h);
568
569
int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
570
int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
571
void ff_h264_remove_all_refs(H264Context *h);
572
573
/**
574
 * Execute the reference picture marking (memory management control operations).
575
 */
576
int ff_h264_execute_ref_pic_marking(H264Context *h);
577
578
int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
579
                                   const H2645NAL *nal, void *logctx);
580
581
void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
582
void ff_h264_decode_init_vlc(void);
583
584
/**
585
 * Decode a macroblock
586
 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
587
 */
588
int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
589
590
/**
591
 * Decode a CABAC coded macroblock
592
 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
593
 */
594
int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
595
596
void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
597
598
void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
599
void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
600
void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
601
                                int *mb_type);
602
603
void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
604
                            uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
605
                            unsigned int linesize, unsigned int uvlinesize);
606
void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
607
                       uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
608
                       unsigned int linesize, unsigned int uvlinesize);
609
610
/*
611
 * o-o o-o
612
 *  / / /
613
 * o-o o-o
614
 *  ,---'
615
 * o-o o-o
616
 *  / / /
617
 * o-o o-o
618
 */
619
620
/* Scan8 organization:
621
 *    0 1 2 3 4 5 6 7
622
 * 0  DY    y y y y y
623
 * 1        y Y Y Y Y
624
 * 2        y Y Y Y Y
625
 * 3        y Y Y Y Y
626
 * 4        y Y Y Y Y
627
 * 5  DU    u u u u u
628
 * 6        u U U U U
629
 * 7        u U U U U
630
 * 8        u U U U U
631
 * 9        u U U U U
632
 * 10 DV    v v v v v
633
 * 11       v V V V V
634
 * 12       v V V V V
635
 * 13       v V V V V
636
 * 14       v V V V V
637
 * DY/DU/DV are for luma/chroma DC.
638
 */
639
640
#define LUMA_DC_BLOCK_INDEX   48
641
#define CHROMA_DC_BLOCK_INDEX 49
642
643
// This table must be here because scan8[constant] must be known at compiletime
644
static const uint8_t scan8[16 * 3 + 3] = {
645
    4 +  1 * 8, 5 +  1 * 8, 4 +  2 * 8, 5 +  2 * 8,
646
    6 +  1 * 8, 7 +  1 * 8, 6 +  2 * 8, 7 +  2 * 8,
647
    4 +  3 * 8, 5 +  3 * 8, 4 +  4 * 8, 5 +  4 * 8,
648
    6 +  3 * 8, 7 +  3 * 8, 6 +  4 * 8, 7 +  4 * 8,
649
    4 +  6 * 8, 5 +  6 * 8, 4 +  7 * 8, 5 +  7 * 8,
650
    6 +  6 * 8, 7 +  6 * 8, 6 +  7 * 8, 7 +  7 * 8,
651
    4 +  8 * 8, 5 +  8 * 8, 4 +  9 * 8, 5 +  9 * 8,
652
    6 +  8 * 8, 7 +  8 * 8, 6 +  9 * 8, 7 +  9 * 8,
653
    4 + 11 * 8, 5 + 11 * 8, 4 + 12 * 8, 5 + 12 * 8,
654
    6 + 11 * 8, 7 + 11 * 8, 6 + 12 * 8, 7 + 12 * 8,
655
    4 + 13 * 8, 5 + 13 * 8, 4 + 14 * 8, 5 + 14 * 8,
656
    6 + 13 * 8, 7 + 13 * 8, 6 + 14 * 8, 7 + 14 * 8,
657
    0 +  0 * 8, 0 +  5 * 8, 0 + 10 * 8
658
};
659
660
30808825
static av_always_inline uint32_t pack16to32(unsigned a, unsigned b)
661
{
662
#if HAVE_BIGENDIAN
663
    return (b & 0xFFFF) + (a << 16);
664
#else
665
30808825
    return (a & 0xFFFF) + (b << 16);
666
#endif
667
}
668
669
3719235
static av_always_inline uint16_t pack8to16(unsigned a, unsigned b)
670
{
671
#if HAVE_BIGENDIAN
672
    return (b & 0xFF) + (a << 8);
673
#else
674
3719235
    return (a & 0xFF) + (b << 8);
675
#endif
676
}
677
678
/**
679
 * Get the chroma qp.
680
 */
681
58463914
static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
682
{
683
58463914
    return pps->chroma_qp_table[t][qscale];
684
}
685
686
/**
687
 * Get the predicted intra4x4 prediction mode.
688
 */
689
28713732
static av_always_inline int pred_intra_mode(const H264Context *h,
690
                                            H264SliceContext *sl, int n)
691
{
692
28713732
    const int index8 = scan8[n];
693
28713732
    const int left   = sl->intra4x4_pred_mode_cache[index8 - 1];
694
28713732
    const int top    = sl->intra4x4_pred_mode_cache[index8 - 8];
695
28713732
    const int min    = FFMIN(left, top);
696
697
    ff_tlog(h->avctx, "mode:%d %d min:%d\n", left, top, min);
698
699
28713732
    if (min < 0)
700
814158
        return DC_PRED;
701
    else
702
27899574
        return min;
703
}
704
705
2883951
static av_always_inline void write_back_intra_pred_mode(const H264Context *h,
706
                                                        H264SliceContext *sl)
707
{
708
2883951
    int8_t *i4x4       = sl->intra4x4_pred_mode + h->mb2br_xy[sl->mb_xy];
709
2883951
    int8_t *i4x4_cache = sl->intra4x4_pred_mode_cache;
710
711
2883951
    AV_COPY32(i4x4, i4x4_cache + 4 + 8 * 4);
712
2883951
    i4x4[4] = i4x4_cache[7 + 8 * 3];
713
2883951
    i4x4[5] = i4x4_cache[7 + 8 * 2];
714
2883951
    i4x4[6] = i4x4_cache[7 + 8 * 1];
715
2883951
}
716
717
9855681
static av_always_inline void write_back_non_zero_count(const H264Context *h,
718
                                                       H264SliceContext *sl)
719
{
720
9855681
    const int mb_xy    = sl->mb_xy;
721
9855681
    uint8_t *nnz       = h->non_zero_count[mb_xy];
722
9855681
    uint8_t *nnz_cache = sl->non_zero_count_cache;
723
724
9855681
    AV_COPY32(&nnz[ 0], &nnz_cache[4 + 8 * 1]);
725
9855681
    AV_COPY32(&nnz[ 4], &nnz_cache[4 + 8 * 2]);
726
9855681
    AV_COPY32(&nnz[ 8], &nnz_cache[4 + 8 * 3]);
727
9855681
    AV_COPY32(&nnz[12], &nnz_cache[4 + 8 * 4]);
728
9855681
    AV_COPY32(&nnz[16], &nnz_cache[4 + 8 * 6]);
729
9855681
    AV_COPY32(&nnz[20], &nnz_cache[4 + 8 * 7]);
730
9855681
    AV_COPY32(&nnz[32], &nnz_cache[4 + 8 * 11]);
731
9855681
    AV_COPY32(&nnz[36], &nnz_cache[4 + 8 * 12]);
732
733
9855681
    if (!h->chroma_y_shift) {
734
917795
        AV_COPY32(&nnz[24], &nnz_cache[4 + 8 * 8]);
735
917795
        AV_COPY32(&nnz[28], &nnz_cache[4 + 8 * 9]);
736
917795
        AV_COPY32(&nnz[40], &nnz_cache[4 + 8 * 13]);
737
917795
        AV_COPY32(&nnz[44], &nnz_cache[4 + 8 * 14]);
738
    }
739
9855681
}
740
741
11978526
static av_always_inline void write_back_motion_list(const H264Context *h,
742
                                                    H264SliceContext *sl,
743
                                                    int b_stride,
744
                                                    int b_xy, int b8_xy,
745
                                                    int mb_type, int list)
746
{
747
11978526
    int16_t(*mv_dst)[2] = &h->cur_pic.motion_val[list][b_xy];
748
11978526
    int16_t(*mv_src)[2] = &sl->mv_cache[list][scan8[0]];
749
11978526
    AV_COPY128(mv_dst + 0 * b_stride, mv_src + 8 * 0);
750
11978526
    AV_COPY128(mv_dst + 1 * b_stride, mv_src + 8 * 1);
751
11978526
    AV_COPY128(mv_dst + 2 * b_stride, mv_src + 8 * 2);
752
11978526
    AV_COPY128(mv_dst + 3 * b_stride, mv_src + 8 * 3);
753
    if (CABAC(h)) {
754
8406656
        uint8_t (*mvd_dst)[2] = &sl->mvd_table[list][FMO ? 8 * sl->mb_xy
755
8406656
                                                        : h->mb2br_xy[sl->mb_xy]];
756
8406656
        uint8_t(*mvd_src)[2]  = &sl->mvd_cache[list][scan8[0]];
757
8406656
        if (IS_SKIP(mb_type)) {
758
3264950
            AV_ZERO128(mvd_dst);
759
        } else {
760
5141706
            AV_COPY64(mvd_dst, mvd_src + 8 * 3);
761
5141706
            AV_COPY16(mvd_dst + 3 + 3, mvd_src + 3 + 8 * 0);
762
5141706
            AV_COPY16(mvd_dst + 3 + 2, mvd_src + 3 + 8 * 1);
763
5141706
            AV_COPY16(mvd_dst + 3 + 1, mvd_src + 3 + 8 * 2);
764
        }
765
    }
766
767
    {
768
11978526
        int8_t *ref_index = &h->cur_pic.ref_index[list][b8_xy];
769
11978526
        int8_t *ref_cache = sl->ref_cache[list];
770
11978526
        ref_index[0 + 0 * 2] = ref_cache[scan8[0]];
771
11978526
        ref_index[1 + 0 * 2] = ref_cache[scan8[4]];
772
11978526
        ref_index[0 + 1 * 2] = ref_cache[scan8[8]];
773
11978526
        ref_index[1 + 1 * 2] = ref_cache[scan8[12]];
774
    }
775
11978526
}
776
777
9080061
static av_always_inline void write_back_motion(const H264Context *h,
778
                                               H264SliceContext *sl,
779
                                               int mb_type)
780
{
781
9080061
    const int b_stride      = h->b_stride;
782
9080061
    const int b_xy  = 4 * sl->mb_x + 4 * sl->mb_y * h->b_stride; // try mb2b(8)_xy
783
9080061
    const int b8_xy = 4 * sl->mb_xy;
784
785
9080061
    if (USES_LIST(mb_type, 0)) {
786
8378185
        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 0);
787
    } else {
788
701876
        fill_rectangle(&h->cur_pic.ref_index[0][b8_xy],
789
                       2, 2, 2, (uint8_t)LIST_NOT_USED, 1);
790
    }
791
9080061
    if (USES_LIST(mb_type, 1))
792
3600341
        write_back_motion_list(h, sl, b_stride, b_xy, b8_xy, mb_type, 1);
793
794

6120839
    if (sl->slice_type_nos == AV_PICTURE_TYPE_B && CABAC(h)) {
795
3523011
        if (IS_8X8(mb_type)) {
796
414728
            uint8_t *direct_table = &h->direct_table[4 * sl->mb_xy];
797
414728
            direct_table[1] = sl->sub_mb_type[1] >> 1;
798
414728
            direct_table[2] = sl->sub_mb_type[2] >> 1;
799
414728
            direct_table[3] = sl->sub_mb_type[3] >> 1;
800
        }
801
    }
802
9080061
}
803
804
261246
static av_always_inline int get_dct8x8_allowed(const H264Context *h, H264SliceContext *sl)
805
{
806
261246
    if (h->ps.sps->direct_8x8_inference_flag)
807
256369
        return !(AV_RN64A(sl->sub_mb_type) &
808
                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8) *
809
                  0x0001000100010001ULL));
810
    else
811
4877
        return !(AV_RN64A(sl->sub_mb_type) &
812
                 ((MB_TYPE_16x8 | MB_TYPE_8x16 | MB_TYPE_8x8 | MB_TYPE_DIRECT2) *
813
                  0x0001000100010001ULL));
814
}
815
816
35494
static inline int find_start_code(const uint8_t *buf, int buf_size,
817
                           int buf_index, int next_avc)
818
{
819
35494
    uint32_t state = -1;
820
821
35494
    buf_index = avpriv_find_start_code(buf + buf_index, buf + next_avc + 1, &state) - buf - 1;
822
823
35494
    return FFMIN(buf_index, buf_size);
824
}
825
826
int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
827
828
int ff_h264_ref_picture(H264Context *h, H264Picture *dst, H264Picture *src);
829
void ff_h264_unref_picture(H264Context *h, H264Picture *pic);
830
831
int ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
832
833
void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
834
835
int ff_h264_decode_slice_header(H264Context *h, H264SliceContext *sl,
836
                                const H2645NAL *nal);
837
/**
838
 * Submit a slice for decoding.
839
 *
840
 * Parse the slice header, starting a new field/frame if necessary. If any
841
 * slices are queued for the previous field, they are decoded.
842
 */
843
int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
844
int ff_h264_execute_decode_slices(H264Context *h);
845
int ff_h264_update_thread_context(AVCodecContext *dst,
846
                                  const AVCodecContext *src);
847
848
void ff_h264_flush_change(H264Context *h);
849
850
void ff_h264_free_tables(H264Context *h);
851
852
void ff_h264_set_erpic(ERPicture *dst, H264Picture *src);
853
854
#endif /* AVCODEC_H264DEC_H */