1 |
|
|
/* |
2 |
|
|
* G.729, G729 Annex D postfilter |
3 |
|
|
* Copyright (c) 2008 Vladimir Voroshilov |
4 |
|
|
* |
5 |
|
|
* This file is part of FFmpeg. |
6 |
|
|
* |
7 |
|
|
* FFmpeg is free software; you can redistribute it and/or |
8 |
|
|
* modify it under the terms of the GNU Lesser General Public |
9 |
|
|
* License as published by the Free Software Foundation; either |
10 |
|
|
* version 2.1 of the License, or (at your option) any later version. |
11 |
|
|
* |
12 |
|
|
* FFmpeg is distributed in the hope that it will be useful, |
13 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 |
|
|
* Lesser General Public License for more details. |
16 |
|
|
* |
17 |
|
|
* You should have received a copy of the GNU Lesser General Public |
18 |
|
|
* License along with FFmpeg; if not, write to the Free Software |
19 |
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
20 |
|
|
*/ |
21 |
|
|
#include <inttypes.h> |
22 |
|
|
#include <limits.h> |
23 |
|
|
|
24 |
|
|
#include "avcodec.h" |
25 |
|
|
#include "g729.h" |
26 |
|
|
#include "acelp_pitch_delay.h" |
27 |
|
|
#include "g729postfilter.h" |
28 |
|
|
#include "celp_math.h" |
29 |
|
|
#include "acelp_filters.h" |
30 |
|
|
#include "acelp_vectors.h" |
31 |
|
|
#include "celp_filters.h" |
32 |
|
|
|
33 |
|
|
#define FRAC_BITS 15 |
34 |
|
|
#include "mathops.h" |
35 |
|
|
|
36 |
|
|
/** |
37 |
|
|
* short interpolation filter (of length 33, according to spec) |
38 |
|
|
* for computing signal with non-integer delay |
39 |
|
|
*/ |
40 |
|
|
static const int16_t ff_g729_interp_filt_short[(ANALYZED_FRAC_DELAYS+1)*SHORT_INT_FILT_LEN] = { |
41 |
|
|
0, 31650, 28469, 23705, 18050, 12266, 7041, 2873, |
42 |
|
|
0, -1597, -2147, -1992, -1492, -933, -484, -188, |
43 |
|
|
}; |
44 |
|
|
|
45 |
|
|
/** |
46 |
|
|
* long interpolation filter (of length 129, according to spec) |
47 |
|
|
* for computing signal with non-integer delay |
48 |
|
|
*/ |
49 |
|
|
static const int16_t ff_g729_interp_filt_long[(ANALYZED_FRAC_DELAYS+1)*LONG_INT_FILT_LEN] = { |
50 |
|
|
0, 31915, 29436, 25569, 20676, 15206, 9639, 4439, |
51 |
|
|
0, -3390, -5579, -6549, -6414, -5392, -3773, -1874, |
52 |
|
|
0, 1595, 2727, 3303, 3319, 2850, 2030, 1023, |
53 |
|
|
0, -887, -1527, -1860, -1876, -1614, -1150, -579, |
54 |
|
|
0, 501, 859, 1041, 1044, 892, 631, 315, |
55 |
|
|
0, -266, -453, -543, -538, -455, -317, -156, |
56 |
|
|
0, 130, 218, 258, 253, 212, 147, 72, |
57 |
|
|
0, -59, -101, -122, -123, -106, -77, -40, |
58 |
|
|
}; |
59 |
|
|
|
60 |
|
|
/** |
61 |
|
|
* formant_pp_factor_num_pow[i] = FORMANT_PP_FACTOR_NUM^(i+1) |
62 |
|
|
*/ |
63 |
|
|
static const int16_t formant_pp_factor_num_pow[10]= { |
64 |
|
|
/* (0.15) */ |
65 |
|
|
18022, 9912, 5451, 2998, 1649, 907, 499, 274, 151, 83 |
66 |
|
|
}; |
67 |
|
|
|
68 |
|
|
/** |
69 |
|
|
* formant_pp_factor_den_pow[i] = FORMANT_PP_FACTOR_DEN^(i+1) |
70 |
|
|
*/ |
71 |
|
|
static const int16_t formant_pp_factor_den_pow[10] = { |
72 |
|
|
/* (0.15) */ |
73 |
|
|
22938, 16057, 11240, 7868, 5508, 3856, 2699, 1889, 1322, 925 |
74 |
|
|
}; |
75 |
|
|
|
76 |
|
|
/** |
77 |
|
|
* \brief Residual signal calculation (4.2.1 if G.729) |
78 |
|
|
* \param out [out] output data filtered through A(z/FORMANT_PP_FACTOR_NUM) |
79 |
|
|
* \param filter_coeffs (3.12) A(z/FORMANT_PP_FACTOR_NUM) filter coefficients |
80 |
|
|
* \param in input speech data to process |
81 |
|
|
* \param subframe_size size of one subframe |
82 |
|
|
* |
83 |
|
|
* \note in buffer must contain 10 items of previous speech data before top of the buffer |
84 |
|
|
* \remark It is safe to pass the same buffer for input and output. |
85 |
|
|
*/ |
86 |
|
|
static void residual_filter(int16_t* out, const int16_t* filter_coeffs, const int16_t* in, |
87 |
|
|
int subframe_size) |
88 |
|
|
{ |
89 |
|
|
int i, n; |
90 |
|
|
|
91 |
|
|
for (n = subframe_size - 1; n >= 0; n--) { |
92 |
|
|
int sum = 0x800; |
93 |
|
|
for (i = 0; i < 10; i++) |
94 |
|
|
sum += filter_coeffs[i] * in[n - i - 1]; |
95 |
|
|
|
96 |
|
|
out[n] = in[n] + (sum >> 12); |
97 |
|
|
} |
98 |
|
|
} |
99 |
|
|
|
100 |
|
|
/** |
101 |
|
|
* \brief long-term postfilter (4.2.1) |
102 |
|
|
* \param dsp initialized DSP context |
103 |
|
|
* \param pitch_delay_int integer part of the pitch delay in the first subframe |
104 |
|
|
* \param residual filtering input data |
105 |
|
|
* \param residual_filt [out] speech signal with applied A(z/FORMANT_PP_FACTOR_NUM) filter |
106 |
|
|
* \param subframe_size size of subframe |
107 |
|
|
* |
108 |
|
|
* \return 0 if long-term prediction gain is less than 3dB, 1 - otherwise |
109 |
|
|
*/ |
110 |
|
|
static int16_t long_term_filter(AudioDSPContext *adsp, int pitch_delay_int, |
111 |
|
|
const int16_t* residual, int16_t *residual_filt, |
112 |
|
|
int subframe_size) |
113 |
|
|
{ |
114 |
|
|
int i, k, tmp, tmp2; |
115 |
|
|
int sum; |
116 |
|
|
int L_temp0; |
117 |
|
|
int L_temp1; |
118 |
|
|
int64_t L64_temp0; |
119 |
|
|
int64_t L64_temp1; |
120 |
|
|
int16_t shift; |
121 |
|
|
int corr_int_num, corr_int_den; |
122 |
|
|
|
123 |
|
|
int ener; |
124 |
|
|
int16_t sh_ener; |
125 |
|
|
|
126 |
|
|
int16_t gain_num,gain_den; //selected signal's gain numerator and denominator |
127 |
|
|
int16_t sh_gain_num, sh_gain_den; |
128 |
|
|
int gain_num_square; |
129 |
|
|
|
130 |
|
|
int16_t gain_long_num,gain_long_den; //filtered through long interpolation filter signal's gain numerator and denominator |
131 |
|
|
int16_t sh_gain_long_num, sh_gain_long_den; |
132 |
|
|
|
133 |
|
|
int16_t best_delay_int, best_delay_frac; |
134 |
|
|
|
135 |
|
|
int16_t delayed_signal_offset; |
136 |
|
|
int lt_filt_factor_a, lt_filt_factor_b; |
137 |
|
|
|
138 |
|
|
int16_t * selected_signal; |
139 |
|
|
const int16_t * selected_signal_const; //Necessary to avoid compiler warning |
140 |
|
|
|
141 |
|
|
int16_t sig_scaled[SUBFRAME_SIZE + RES_PREV_DATA_SIZE]; |
142 |
|
|
int16_t delayed_signal[ANALYZED_FRAC_DELAYS][SUBFRAME_SIZE+1]; |
143 |
|
|
int corr_den[ANALYZED_FRAC_DELAYS][2]; |
144 |
|
|
|
145 |
|
|
tmp = 0; |
146 |
|
|
for(i=0; i<subframe_size + RES_PREV_DATA_SIZE; i++) |
147 |
|
|
tmp |= FFABS(residual[i]); |
148 |
|
|
|
149 |
|
|
if(!tmp) |
150 |
|
|
shift = 3; |
151 |
|
|
else |
152 |
|
|
shift = av_log2(tmp) - 11; |
153 |
|
|
|
154 |
|
|
if (shift > 0) |
155 |
|
|
for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++) |
156 |
|
|
sig_scaled[i] = residual[i] >> shift; |
157 |
|
|
else |
158 |
|
|
for (i = 0; i < subframe_size + RES_PREV_DATA_SIZE; i++) |
159 |
|
|
sig_scaled[i] = (unsigned)residual[i] << -shift; |
160 |
|
|
|
161 |
|
|
/* Start of best delay searching code */ |
162 |
|
|
gain_num = 0; |
163 |
|
|
|
164 |
|
|
ener = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE, |
165 |
|
|
sig_scaled + RES_PREV_DATA_SIZE, |
166 |
|
|
subframe_size); |
167 |
|
|
if (ener) { |
168 |
|
|
sh_ener = av_log2(ener) - 14; |
169 |
|
|
sh_ener = FFMAX(sh_ener, 0); |
170 |
|
|
ener >>= sh_ener; |
171 |
|
|
/* Search for best pitch delay. |
172 |
|
|
|
173 |
|
|
sum{ r(n) * r(k,n) ] }^2 |
174 |
|
|
R'(k)^2 := ------------------------- |
175 |
|
|
sum{ r(k,n) * r(k,n) } |
176 |
|
|
|
177 |
|
|
|
178 |
|
|
R(T) := sum{ r(n) * r(n-T) ] } |
179 |
|
|
|
180 |
|
|
|
181 |
|
|
where |
182 |
|
|
r(n-T) is integer delayed signal with delay T |
183 |
|
|
r(k,n) is non-integer delayed signal with integer delay best_delay |
184 |
|
|
and fractional delay k */ |
185 |
|
|
|
186 |
|
|
/* Find integer delay best_delay which maximizes correlation R(T). |
187 |
|
|
|
188 |
|
|
This is also equals to numerator of R'(0), |
189 |
|
|
since the fine search (second step) is done with 1/8 |
190 |
|
|
precision around best_delay. */ |
191 |
|
|
corr_int_num = 0; |
192 |
|
|
best_delay_int = pitch_delay_int - 1; |
193 |
|
|
for (i = pitch_delay_int - 1; i <= pitch_delay_int + 1; i++) { |
194 |
|
|
sum = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE, |
195 |
|
|
sig_scaled + RES_PREV_DATA_SIZE - i, |
196 |
|
|
subframe_size); |
197 |
|
|
if (sum > corr_int_num) { |
198 |
|
|
corr_int_num = sum; |
199 |
|
|
best_delay_int = i; |
200 |
|
|
} |
201 |
|
|
} |
202 |
|
|
if (corr_int_num) { |
203 |
|
|
/* Compute denominator of pseudo-normalized correlation R'(0). */ |
204 |
|
|
corr_int_den = adsp->scalarproduct_int16(sig_scaled + RES_PREV_DATA_SIZE - best_delay_int, |
205 |
|
|
sig_scaled + RES_PREV_DATA_SIZE - best_delay_int, |
206 |
|
|
subframe_size); |
207 |
|
|
|
208 |
|
|
/* Compute signals with non-integer delay k (with 1/8 precision), |
209 |
|
|
where k is in [0;6] range. |
210 |
|
|
Entire delay is qual to best_delay+(k+1)/8 |
211 |
|
|
This is archieved by applying an interpolation filter of |
212 |
|
|
legth 33 to source signal. */ |
213 |
|
|
for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) { |
214 |
|
|
ff_acelp_interpolate(&delayed_signal[k][0], |
215 |
|
|
&sig_scaled[RES_PREV_DATA_SIZE - best_delay_int], |
216 |
|
|
ff_g729_interp_filt_short, |
217 |
|
|
ANALYZED_FRAC_DELAYS+1, |
218 |
|
|
8 - k - 1, |
219 |
|
|
SHORT_INT_FILT_LEN, |
220 |
|
|
subframe_size + 1); |
221 |
|
|
} |
222 |
|
|
|
223 |
|
|
/* Compute denominator of pseudo-normalized correlation R'(k). |
224 |
|
|
|
225 |
|
|
corr_den[k][0] is square root of R'(k) denominator, for int(T) == int(T0) |
226 |
|
|
corr_den[k][1] is square root of R'(k) denominator, for int(T) == int(T0)+1 |
227 |
|
|
|
228 |
|
|
Also compute maximum value of above denominators over all k. */ |
229 |
|
|
tmp = corr_int_den; |
230 |
|
|
for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) { |
231 |
|
|
sum = adsp->scalarproduct_int16(&delayed_signal[k][1], |
232 |
|
|
&delayed_signal[k][1], |
233 |
|
|
subframe_size - 1); |
234 |
|
|
corr_den[k][0] = sum + delayed_signal[k][0 ] * delayed_signal[k][0 ]; |
235 |
|
|
corr_den[k][1] = sum + delayed_signal[k][subframe_size] * delayed_signal[k][subframe_size]; |
236 |
|
|
|
237 |
|
|
tmp = FFMAX3(tmp, corr_den[k][0], corr_den[k][1]); |
238 |
|
|
} |
239 |
|
|
|
240 |
|
|
sh_gain_den = av_log2(tmp) - 14; |
241 |
|
|
if (sh_gain_den >= 0) { |
242 |
|
|
|
243 |
|
|
sh_gain_num = FFMAX(sh_gain_den, sh_ener); |
244 |
|
|
/* Loop through all k and find delay that maximizes |
245 |
|
|
R'(k) correlation. |
246 |
|
|
Search is done in [int(T0)-1; intT(0)+1] range |
247 |
|
|
with 1/8 precision. */ |
248 |
|
|
delayed_signal_offset = 1; |
249 |
|
|
best_delay_frac = 0; |
250 |
|
|
gain_den = corr_int_den >> sh_gain_den; |
251 |
|
|
gain_num = corr_int_num >> sh_gain_num; |
252 |
|
|
gain_num_square = gain_num * gain_num; |
253 |
|
|
for (k = 0; k < ANALYZED_FRAC_DELAYS; k++) { |
254 |
|
|
for (i = 0; i < 2; i++) { |
255 |
|
|
int16_t gain_num_short, gain_den_short; |
256 |
|
|
int gain_num_short_square; |
257 |
|
|
/* Compute numerator of pseudo-normalized |
258 |
|
|
correlation R'(k). */ |
259 |
|
|
sum = adsp->scalarproduct_int16(&delayed_signal[k][i], |
260 |
|
|
sig_scaled + RES_PREV_DATA_SIZE, |
261 |
|
|
subframe_size); |
262 |
|
|
gain_num_short = FFMAX(sum >> sh_gain_num, 0); |
263 |
|
|
|
264 |
|
|
/* |
265 |
|
|
gain_num_short_square gain_num_square |
266 |
|
|
R'(T)^2 = -----------------------, max R'(T)^2= -------------- |
267 |
|
|
den gain_den |
268 |
|
|
*/ |
269 |
|
|
gain_num_short_square = gain_num_short * gain_num_short; |
270 |
|
|
gain_den_short = corr_den[k][i] >> sh_gain_den; |
271 |
|
|
|
272 |
|
|
tmp = MULL(gain_num_short_square, gain_den, FRAC_BITS); |
273 |
|
|
tmp2 = MULL(gain_num_square, gain_den_short, FRAC_BITS); |
274 |
|
|
|
275 |
|
|
// R'(T)^2 > max R'(T)^2 |
276 |
|
|
if (tmp > tmp2) { |
277 |
|
|
gain_num = gain_num_short; |
278 |
|
|
gain_den = gain_den_short; |
279 |
|
|
gain_num_square = gain_num_short_square; |
280 |
|
|
delayed_signal_offset = i; |
281 |
|
|
best_delay_frac = k + 1; |
282 |
|
|
} |
283 |
|
|
} |
284 |
|
|
} |
285 |
|
|
|
286 |
|
|
/* |
287 |
|
|
R'(T)^2 |
288 |
|
|
2 * --------- < 1 |
289 |
|
|
R(0) |
290 |
|
|
*/ |
291 |
|
|
L64_temp0 = (int64_t)gain_num_square << ((sh_gain_num << 1) + 1); |
292 |
|
|
L64_temp1 = ((int64_t)gain_den * ener) << (sh_gain_den + sh_ener); |
293 |
|
|
if (L64_temp0 < L64_temp1) |
294 |
|
|
gain_num = 0; |
295 |
|
|
} // if(sh_gain_den >= 0) |
296 |
|
|
} // if(corr_int_num) |
297 |
|
|
} // if(ener) |
298 |
|
|
/* End of best delay searching code */ |
299 |
|
|
|
300 |
|
|
if (!gain_num) { |
301 |
|
|
memcpy(residual_filt, residual + RES_PREV_DATA_SIZE, subframe_size * sizeof(int16_t)); |
302 |
|
|
|
303 |
|
|
/* Long-term prediction gain is less than 3dB. Long-term postfilter is disabled. */ |
304 |
|
|
return 0; |
305 |
|
|
} |
306 |
|
|
if (best_delay_frac) { |
307 |
|
|
/* Recompute delayed signal with an interpolation filter of length 129. */ |
308 |
|
|
ff_acelp_interpolate(residual_filt, |
309 |
|
|
&sig_scaled[RES_PREV_DATA_SIZE - best_delay_int + delayed_signal_offset], |
310 |
|
|
ff_g729_interp_filt_long, |
311 |
|
|
ANALYZED_FRAC_DELAYS + 1, |
312 |
|
|
8 - best_delay_frac, |
313 |
|
|
LONG_INT_FILT_LEN, |
314 |
|
|
subframe_size + 1); |
315 |
|
|
/* Compute R'(k) correlation's numerator. */ |
316 |
|
|
sum = adsp->scalarproduct_int16(residual_filt, |
317 |
|
|
sig_scaled + RES_PREV_DATA_SIZE, |
318 |
|
|
subframe_size); |
319 |
|
|
|
320 |
|
|
if (sum < 0) { |
321 |
|
|
gain_long_num = 0; |
322 |
|
|
sh_gain_long_num = 0; |
323 |
|
|
} else { |
324 |
|
|
tmp = av_log2(sum) - 14; |
325 |
|
|
tmp = FFMAX(tmp, 0); |
326 |
|
|
sum >>= tmp; |
327 |
|
|
gain_long_num = sum; |
328 |
|
|
sh_gain_long_num = tmp; |
329 |
|
|
} |
330 |
|
|
|
331 |
|
|
/* Compute R'(k) correlation's denominator. */ |
332 |
|
|
sum = adsp->scalarproduct_int16(residual_filt, residual_filt, subframe_size); |
333 |
|
|
|
334 |
|
|
tmp = av_log2(sum) - 14; |
335 |
|
|
tmp = FFMAX(tmp, 0); |
336 |
|
|
sum >>= tmp; |
337 |
|
|
gain_long_den = sum; |
338 |
|
|
sh_gain_long_den = tmp; |
339 |
|
|
|
340 |
|
|
/* Select between original and delayed signal. |
341 |
|
|
Delayed signal will be selected if it increases R'(k) |
342 |
|
|
correlation. */ |
343 |
|
|
L_temp0 = gain_num * gain_num; |
344 |
|
|
L_temp0 = MULL(L_temp0, gain_long_den, FRAC_BITS); |
345 |
|
|
|
346 |
|
|
L_temp1 = gain_long_num * gain_long_num; |
347 |
|
|
L_temp1 = MULL(L_temp1, gain_den, FRAC_BITS); |
348 |
|
|
|
349 |
|
|
tmp = ((sh_gain_long_num - sh_gain_num) * 2) - (sh_gain_long_den - sh_gain_den); |
350 |
|
|
if (tmp > 0) |
351 |
|
|
L_temp0 >>= tmp; |
352 |
|
|
else |
353 |
|
|
L_temp1 >>= -tmp; |
354 |
|
|
|
355 |
|
|
/* Check if longer filter increases the values of R'(k). */ |
356 |
|
|
if (L_temp1 > L_temp0) { |
357 |
|
|
/* Select long filter. */ |
358 |
|
|
selected_signal = residual_filt; |
359 |
|
|
gain_num = gain_long_num; |
360 |
|
|
gain_den = gain_long_den; |
361 |
|
|
sh_gain_num = sh_gain_long_num; |
362 |
|
|
sh_gain_den = sh_gain_long_den; |
363 |
|
|
} else |
364 |
|
|
/* Select short filter. */ |
365 |
|
|
selected_signal = &delayed_signal[best_delay_frac-1][delayed_signal_offset]; |
366 |
|
|
|
367 |
|
|
/* Rescale selected signal to original value. */ |
368 |
|
|
if (shift > 0) |
369 |
|
|
for (i = 0; i < subframe_size; i++) |
370 |
|
|
selected_signal[i] *= 1 << shift; |
371 |
|
|
else |
372 |
|
|
for (i = 0; i < subframe_size; i++) |
373 |
|
|
selected_signal[i] >>= -shift; |
374 |
|
|
|
375 |
|
|
/* necessary to avoid compiler warning */ |
376 |
|
|
selected_signal_const = selected_signal; |
377 |
|
|
} // if(best_delay_frac) |
378 |
|
|
else |
379 |
|
|
selected_signal_const = residual + RES_PREV_DATA_SIZE - (best_delay_int + 1 - delayed_signal_offset); |
380 |
|
|
#ifdef G729_BITEXACT |
381 |
|
|
tmp = sh_gain_num - sh_gain_den; |
382 |
|
|
if (tmp > 0) |
383 |
|
|
gain_den >>= tmp; |
384 |
|
|
else |
385 |
|
|
gain_num >>= -tmp; |
386 |
|
|
|
387 |
|
|
if (gain_num > gain_den) |
388 |
|
|
lt_filt_factor_a = MIN_LT_FILT_FACTOR_A; |
389 |
|
|
else { |
390 |
|
|
gain_num >>= 2; |
391 |
|
|
gain_den >>= 1; |
392 |
|
|
lt_filt_factor_a = (gain_den << 15) / (gain_den + gain_num); |
393 |
|
|
} |
394 |
|
|
#else |
395 |
|
|
L64_temp0 = (((int64_t)gain_num) << sh_gain_num) >> 1; |
396 |
|
|
L64_temp1 = ((int64_t)gain_den) << sh_gain_den; |
397 |
|
|
lt_filt_factor_a = FFMAX((L64_temp1 << 15) / (L64_temp1 + L64_temp0), MIN_LT_FILT_FACTOR_A); |
398 |
|
|
#endif |
399 |
|
|
|
400 |
|
|
/* Filter through selected filter. */ |
401 |
|
|
lt_filt_factor_b = 32767 - lt_filt_factor_a + 1; |
402 |
|
|
|
403 |
|
|
ff_acelp_weighted_vector_sum(residual_filt, residual + RES_PREV_DATA_SIZE, |
404 |
|
|
selected_signal_const, |
405 |
|
|
lt_filt_factor_a, lt_filt_factor_b, |
406 |
|
|
1<<14, 15, subframe_size); |
407 |
|
|
|
408 |
|
|
// Long-term prediction gain is larger than 3dB. |
409 |
|
|
return 1; |
410 |
|
|
} |
411 |
|
|
|
412 |
|
|
/** |
413 |
|
|
* \brief Calculate reflection coefficient for tilt compensation filter (4.2.3). |
414 |
|
|
* \param dsp initialized DSP context |
415 |
|
|
* \param lp_gn (3.12) coefficients of A(z/FORMANT_PP_FACTOR_NUM) filter |
416 |
|
|
* \param lp_gd (3.12) coefficients of A(z/FORMANT_PP_FACTOR_DEN) filter |
417 |
|
|
* \param speech speech to update |
418 |
|
|
* \param subframe_size size of subframe |
419 |
|
|
* |
420 |
|
|
* \return (3.12) reflection coefficient |
421 |
|
|
* |
422 |
|
|
* \remark The routine also calculates the gain term for the short-term |
423 |
|
|
* filter (gf) and multiplies the speech data by 1/gf. |
424 |
|
|
* |
425 |
|
|
* \note All members of lp_gn, except 10-19 must be equal to zero. |
426 |
|
|
*/ |
427 |
|
|
static int16_t get_tilt_comp(AudioDSPContext *adsp, int16_t *lp_gn, |
428 |
|
|
const int16_t *lp_gd, int16_t* speech, |
429 |
|
|
int subframe_size) |
430 |
|
|
{ |
431 |
|
|
int rh1,rh0; // (3.12) |
432 |
|
|
int temp; |
433 |
|
|
int i; |
434 |
|
|
int gain_term; |
435 |
|
|
|
436 |
|
|
lp_gn[10] = 4096; //1.0 in (3.12) |
437 |
|
|
|
438 |
|
|
/* Apply 1/A(z/FORMANT_PP_FACTOR_DEN) filter to hf. */ |
439 |
|
|
ff_celp_lp_synthesis_filter(lp_gn + 11, lp_gd + 1, lp_gn + 11, 22, 10, 0, 0, 0x800); |
440 |
|
|
/* Now lp_gn (starting with 10) contains impulse response |
441 |
|
|
of A(z/FORMANT_PP_FACTOR_NUM)/A(z/FORMANT_PP_FACTOR_DEN) filter. */ |
442 |
|
|
|
443 |
|
|
rh0 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 10, 20); |
444 |
|
|
rh1 = adsp->scalarproduct_int16(lp_gn + 10, lp_gn + 11, 20); |
445 |
|
|
|
446 |
|
|
/* downscale to avoid overflow */ |
447 |
|
|
temp = av_log2(rh0) - 14; |
448 |
|
|
if (temp > 0) { |
449 |
|
|
rh0 >>= temp; |
450 |
|
|
rh1 >>= temp; |
451 |
|
|
} |
452 |
|
|
|
453 |
|
|
if (FFABS(rh1) > rh0 || !rh0) |
454 |
|
|
return 0; |
455 |
|
|
|
456 |
|
|
gain_term = 0; |
457 |
|
|
for (i = 0; i < 20; i++) |
458 |
|
|
gain_term += FFABS(lp_gn[i + 10]); |
459 |
|
|
gain_term >>= 2; // (3.12) -> (5.10) |
460 |
|
|
|
461 |
|
|
if (gain_term > 0x400) { // 1.0 in (5.10) |
462 |
|
|
temp = 0x2000000 / gain_term; // 1.0/gain_term in (0.15) |
463 |
|
|
for (i = 0; i < subframe_size; i++) |
464 |
|
|
speech[i] = (speech[i] * temp + 0x4000) >> 15; |
465 |
|
|
} |
466 |
|
|
|
467 |
|
|
return -(rh1 * (1 << 15)) / rh0; |
468 |
|
|
} |
469 |
|
|
|
470 |
|
|
/** |
471 |
|
|
* \brief Apply tilt compensation filter (4.2.3). |
472 |
|
|
* \param res_pst [in/out] residual signal (partially filtered) |
473 |
|
|
* \param k1 (3.12) reflection coefficient |
474 |
|
|
* \param subframe_size size of subframe |
475 |
|
|
* \param ht_prev_data previous data for 4.2.3, equation 86 |
476 |
|
|
* |
477 |
|
|
* \return new value for ht_prev_data |
478 |
|
|
*/ |
479 |
|
|
static int16_t apply_tilt_comp(int16_t* out, int16_t* res_pst, int refl_coeff, |
480 |
|
|
int subframe_size, int16_t ht_prev_data) |
481 |
|
|
{ |
482 |
|
|
int tmp, tmp2; |
483 |
|
|
int i; |
484 |
|
|
int gt, ga; |
485 |
|
|
int fact, sh_fact; |
486 |
|
|
|
487 |
|
|
if (refl_coeff > 0) { |
488 |
|
|
gt = (refl_coeff * G729_TILT_FACTOR_PLUS + 0x4000) >> 15; |
489 |
|
|
fact = 0x2000; // 0.5 in (0.15) |
490 |
|
|
sh_fact = 14; |
491 |
|
|
} else { |
492 |
|
|
gt = (refl_coeff * G729_TILT_FACTOR_MINUS + 0x4000) >> 15; |
493 |
|
|
fact = 0x400; // 0.5 in (3.12) |
494 |
|
|
sh_fact = 11; |
495 |
|
|
} |
496 |
|
|
ga = (fact << 16) / av_clip_int16(32768 - FFABS(gt)); |
497 |
|
|
gt >>= 1; |
498 |
|
|
|
499 |
|
|
/* Apply tilt compensation filter to signal. */ |
500 |
|
|
tmp = res_pst[subframe_size - 1]; |
501 |
|
|
|
502 |
|
|
for (i = subframe_size - 1; i >= 1; i--) { |
503 |
|
|
tmp2 = (gt * res_pst[i-1]) * 2 + 0x4000; |
504 |
|
|
tmp2 = res_pst[i] + (tmp2 >> 15); |
505 |
|
|
|
506 |
|
|
tmp2 = (tmp2 * ga + fact) >> sh_fact; |
507 |
|
|
out[i] = tmp2; |
508 |
|
|
} |
509 |
|
|
tmp2 = (gt * ht_prev_data) * 2 + 0x4000; |
510 |
|
|
tmp2 = res_pst[0] + (tmp2 >> 15); |
511 |
|
|
tmp2 = (tmp2 * ga + fact) >> sh_fact; |
512 |
|
|
out[0] = tmp2; |
513 |
|
|
|
514 |
|
|
return tmp; |
515 |
|
|
} |
516 |
|
|
|
517 |
|
|
void ff_g729_postfilter(AudioDSPContext *adsp, int16_t* ht_prev_data, int* voicing, |
518 |
|
|
const int16_t *lp_filter_coeffs, int pitch_delay_int, |
519 |
|
|
int16_t* residual, int16_t* res_filter_data, |
520 |
|
|
int16_t* pos_filter_data, int16_t *speech, int subframe_size) |
521 |
|
|
{ |
522 |
|
|
int16_t residual_filt_buf[SUBFRAME_SIZE+11]; |
523 |
|
|
int16_t lp_gn[33]; // (3.12) |
524 |
|
|
int16_t lp_gd[11]; // (3.12) |
525 |
|
|
int tilt_comp_coeff; |
526 |
|
|
int i; |
527 |
|
|
|
528 |
|
|
/* Zero-filling is necessary for tilt-compensation filter. */ |
529 |
|
|
memset(lp_gn, 0, 33 * sizeof(int16_t)); |
530 |
|
|
|
531 |
|
|
/* Calculate A(z/FORMANT_PP_FACTOR_NUM) filter coefficients. */ |
532 |
|
|
for (i = 0; i < 10; i++) |
533 |
|
|
lp_gn[i + 11] = (lp_filter_coeffs[i + 1] * formant_pp_factor_num_pow[i] + 0x4000) >> 15; |
534 |
|
|
|
535 |
|
|
/* Calculate A(z/FORMANT_PP_FACTOR_DEN) filter coefficients. */ |
536 |
|
|
for (i = 0; i < 10; i++) |
537 |
|
|
lp_gd[i + 1] = (lp_filter_coeffs[i + 1] * formant_pp_factor_den_pow[i] + 0x4000) >> 15; |
538 |
|
|
|
539 |
|
|
/* residual signal calculation (one-half of short-term postfilter) */ |
540 |
|
|
memcpy(speech - 10, res_filter_data, 10 * sizeof(int16_t)); |
541 |
|
|
residual_filter(residual + RES_PREV_DATA_SIZE, lp_gn + 11, speech, subframe_size); |
542 |
|
|
/* Save data to use it in the next subframe. */ |
543 |
|
|
memcpy(res_filter_data, speech + subframe_size - 10, 10 * sizeof(int16_t)); |
544 |
|
|
|
545 |
|
|
/* long-term filter. If long-term prediction gain is larger than 3dB (returned value is |
546 |
|
|
nonzero) then declare current subframe as periodic. */ |
547 |
|
|
i = long_term_filter(adsp, pitch_delay_int, |
548 |
|
|
residual, residual_filt_buf + 10, |
549 |
|
|
subframe_size); |
550 |
|
|
*voicing = FFMAX(*voicing, i); |
551 |
|
|
|
552 |
|
|
/* shift residual for using in next subframe */ |
553 |
|
|
memmove(residual, residual + subframe_size, RES_PREV_DATA_SIZE * sizeof(int16_t)); |
554 |
|
|
|
555 |
|
|
/* short-term filter tilt compensation */ |
556 |
|
|
tilt_comp_coeff = get_tilt_comp(adsp, lp_gn, lp_gd, residual_filt_buf + 10, subframe_size); |
557 |
|
|
|
558 |
|
|
/* Apply second half of short-term postfilter: 1/A(z/FORMANT_PP_FACTOR_DEN) */ |
559 |
|
|
ff_celp_lp_synthesis_filter(pos_filter_data + 10, lp_gd + 1, |
560 |
|
|
residual_filt_buf + 10, |
561 |
|
|
subframe_size, 10, 0, 0, 0x800); |
562 |
|
|
memcpy(pos_filter_data, pos_filter_data + subframe_size, 10 * sizeof(int16_t)); |
563 |
|
|
|
564 |
|
|
*ht_prev_data = apply_tilt_comp(speech, pos_filter_data + 10, tilt_comp_coeff, |
565 |
|
|
subframe_size, *ht_prev_data); |
566 |
|
|
} |
567 |
|
|
|
568 |
|
|
/** |
569 |
|
|
* \brief Adaptive gain control (4.2.4) |
570 |
|
|
* \param gain_before gain of speech before applying postfilters |
571 |
|
|
* \param gain_after gain of speech after applying postfilters |
572 |
|
|
* \param speech [in/out] signal buffer |
573 |
|
|
* \param subframe_size length of subframe |
574 |
|
|
* \param gain_prev (3.12) previous value of gain coefficient |
575 |
|
|
* |
576 |
|
|
* \return (3.12) last value of gain coefficient |
577 |
|
|
*/ |
578 |
|
|
int16_t ff_g729_adaptive_gain_control(int gain_before, int gain_after, int16_t *speech, |
579 |
|
|
int subframe_size, int16_t gain_prev) |
580 |
|
|
{ |
581 |
|
|
int gain; // (3.12) |
582 |
|
|
int n; |
583 |
|
|
int exp_before, exp_after; |
584 |
|
|
|
585 |
|
|
if(!gain_after && gain_before) |
586 |
|
|
return 0; |
587 |
|
|
|
588 |
|
|
if (gain_before) { |
589 |
|
|
|
590 |
|
|
exp_before = 14 - av_log2(gain_before); |
591 |
|
|
gain_before = bidir_sal(gain_before, exp_before); |
592 |
|
|
|
593 |
|
|
exp_after = 14 - av_log2(gain_after); |
594 |
|
|
gain_after = bidir_sal(gain_after, exp_after); |
595 |
|
|
|
596 |
|
|
if (gain_before < gain_after) { |
597 |
|
|
gain = (gain_before << 15) / gain_after; |
598 |
|
|
gain = bidir_sal(gain, exp_after - exp_before - 1); |
599 |
|
|
} else { |
600 |
|
|
gain = ((gain_before - gain_after) << 14) / gain_after + 0x4000; |
601 |
|
|
gain = bidir_sal(gain, exp_after - exp_before); |
602 |
|
|
} |
603 |
|
|
gain = av_clip_int16(gain); |
604 |
|
|
gain = (gain * G729_AGC_FAC1 + 0x4000) >> 15; // gain * (1-0.9875) |
605 |
|
|
} else |
606 |
|
|
gain = 0; |
607 |
|
|
|
608 |
|
|
for (n = 0; n < subframe_size; n++) { |
609 |
|
|
// gain_prev = gain + 0.9875 * gain_prev |
610 |
|
|
gain_prev = (G729_AGC_FACTOR * gain_prev + 0x4000) >> 15; |
611 |
|
|
gain_prev = av_clip_int16(gain + gain_prev); |
612 |
|
|
speech[n] = av_clip_int16((speech[n] * gain_prev + 0x2000) >> 14); |
613 |
|
|
} |
614 |
|
|
return gain_prev; |
615 |
|
|
} |