GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/g723_1dec.c Lines: 438 505 86.7 %
Date: 2021-01-21 13:05:02 Branches: 180 230 78.3 %

Line Branch Exec Source
1
/*
2
 * G.723.1 compatible decoder
3
 * Copyright (c) 2006 Benjamin Larsson
4
 * Copyright (c) 2010 Mohamed Naufal Basheer
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
/**
24
 * @file
25
 * G.723.1 compatible decoder
26
 */
27
28
#include "libavutil/channel_layout.h"
29
#include "libavutil/mem.h"
30
#include "libavutil/opt.h"
31
32
#define BITSTREAM_READER_LE
33
#include "acelp_vectors.h"
34
#include "avcodec.h"
35
#include "celp_filters.h"
36
#include "celp_math.h"
37
#include "get_bits.h"
38
#include "internal.h"
39
#include "g723_1.h"
40
41
#define CNG_RANDOM_SEED 12345
42
43
/**
44
 * Postfilter gain weighting factors scaled by 2^15
45
 */
46
static const int16_t ppf_gain_weight[2] = {0x1800, 0x2000};
47
48
static const int16_t pitch_contrib[340] = {
49
    60,     0,  0,  2489, 60,     0,  0,  5217,
50
     1,  6171,  0,  3953,  0, 10364,  1,  9357,
51
    -1,  8843,  1,  9396,  0,  5794, -1, 10816,
52
     2, 11606, -2, 12072,  0,  8616,  1, 12170,
53
     0, 14440,  0,  7787, -1, 13721,  0, 18205,
54
     0, 14471,  0, 15807,  1, 15275,  0, 13480,
55
    -1, 18375, -1,     0,  1, 11194, -1, 13010,
56
     1, 18836, -2, 20354,  1, 16233, -1,     0,
57
    60,     0,  0, 12130,  0, 13385,  1, 17834,
58
     1, 20875,  0, 21996,  1,     0,  1, 18277,
59
    -1, 21321,  1, 13738, -1, 19094, -1, 20387,
60
    -1,     0,  0, 21008, 60,     0, -2, 22807,
61
     0, 15900,  1,     0,  0, 17989, -1, 22259,
62
     1, 24395,  1, 23138,  0, 23948,  1, 22997,
63
     2, 22604, -1, 25942,  0, 26246,  1, 25321,
64
     0, 26423,  0, 24061,  0, 27247, 60,     0,
65
    -1, 25572,  1, 23918,  1, 25930,  2, 26408,
66
    -1, 19049,  1, 27357, -1, 24538, 60,     0,
67
    -1, 25093,  0, 28549,  1,     0,  0, 22793,
68
    -1, 25659,  0, 29377,  0, 30276,  0, 26198,
69
     1, 22521, -1, 28919,  0, 27384,  1, 30162,
70
    -1,     0,  0, 24237, -1, 30062,  0, 21763,
71
     1, 30917, 60,     0,  0, 31284,  0, 29433,
72
     1, 26821,  1, 28655,  0, 31327,  2, 30799,
73
     1, 31389,  0, 32322,  1, 31760, -2, 31830,
74
     0, 26936, -1, 31180,  1, 30875,  0, 27873,
75
    -1, 30429,  1, 31050,  0,     0,  0, 31912,
76
     1, 31611,  0, 31565,  0, 25557,  0, 31357,
77
    60,     0,  1, 29536,  1, 28985, -1, 26984,
78
    -1, 31587,  2, 30836, -2, 31133,  0, 30243,
79
    -1, 30742, -1, 32090, 60,     0,  2, 30902,
80
    60,     0,  0, 30027,  0, 29042, 60,     0,
81
     0, 31756,  0, 24553,  0, 25636, -2, 30501,
82
    60,     0, -1, 29617,  0, 30649, 60,     0,
83
     0, 29274,  2, 30415,  0, 27480,  0, 31213,
84
    -1, 28147,  0, 30600,  1, 31652,  2, 29068,
85
    60,     0,  1, 28571,  1, 28730,  1, 31422,
86
     0, 28257,  0, 24797, 60,     0,  0,     0,
87
    60,     0,  0, 22105,  0, 27852, 60,     0,
88
    60,     0, -1, 24214,  0, 24642,  0, 23305,
89
    60,     0, 60,     0,  1, 22883,  0, 21601,
90
    60,     0,  2, 25650, 60,     0, -2, 31253,
91
    -2, 25144,  0, 17998
92
};
93
94
/**
95
 * Size of the MP-MLQ fixed excitation codebooks
96
 */
97
static const int32_t max_pos[4] = {593775, 142506, 593775, 142506};
98
99
/**
100
 * 0.65^i (Zero part) and 0.75^i (Pole part) scaled by 2^15
101
 */
102
static const int16_t postfilter_tbl[2][LPC_ORDER] = {
103
    /* Zero */
104
    {21299, 13844,  8999,  5849, 3802, 2471, 1606, 1044,  679,  441},
105
    /* Pole */
106
    {24576, 18432, 13824, 10368, 7776, 5832, 4374, 3281, 2460, 1845}
107
};
108
109
static const int cng_adaptive_cb_lag[4] = { 1, 0, 1, 3 };
110
111
static const int cng_filt[4] = { 273, 998, 499, 333 };
112
113
static const int cng_bseg[3] = { 2048, 18432, 231233 };
114
115
20
static av_cold int g723_1_decode_init(AVCodecContext *avctx)
116
{
117
20
    G723_1_Context *s = avctx->priv_data;
118
119
20
    avctx->sample_fmt     = AV_SAMPLE_FMT_S16P;
120

20
    if (avctx->channels < 1 || avctx->channels > 2) {
121
        av_log(avctx, AV_LOG_ERROR, "Only mono and stereo are supported (requested channels: %d).\n", avctx->channels);
122
        return AVERROR(EINVAL);
123
    }
124
20
    avctx->channel_layout = avctx->channels == 1 ? AV_CH_LAYOUT_MONO : AV_CH_LAYOUT_STEREO;
125
40
    for (int ch = 0; ch < avctx->channels; ch++) {
126
20
        G723_1_ChannelContext *p = &s->ch[ch];
127
128
20
        p->pf_gain = 1 << 12;
129
130
20
        memcpy(p->prev_lsp, dc_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
131
20
        memcpy(p->sid_lsp,  dc_lsp, LPC_ORDER * sizeof(*p->sid_lsp));
132
133
20
        p->cng_random_seed = CNG_RANDOM_SEED;
134
20
        p->past_frame_type = SID_FRAME;
135
    }
136
137
20
    return 0;
138
}
139
140
/**
141
 * Unpack the frame into parameters.
142
 *
143
 * @param p           the context
144
 * @param buf         pointer to the input buffer
145
 * @param buf_size    size of the input buffer
146
 */
147
626
static int unpack_bitstream(G723_1_ChannelContext *p, const uint8_t *buf,
148
                            int buf_size)
149
{
150
    GetBitContext gb;
151
    int ad_cb_len;
152
    int temp, info_bits, i;
153
    int ret;
154
155
626
    ret = init_get_bits8(&gb, buf, buf_size);
156
626
    if (ret < 0)
157
        return ret;
158
159
    /* Extract frame type and rate info */
160
626
    info_bits = get_bits(&gb, 2);
161
162
626
    if (info_bits == 3) {
163
42
        p->cur_frame_type = UNTRANSMITTED_FRAME;
164
42
        return 0;
165
    }
166
167
    /* Extract 24 bit lsp indices, 8 bit for each band */
168
584
    p->lsp_index[2] = get_bits(&gb, 8);
169
584
    p->lsp_index[1] = get_bits(&gb, 8);
170
584
    p->lsp_index[0] = get_bits(&gb, 8);
171
172
584
    if (info_bits == 2) {
173
7
        p->cur_frame_type = SID_FRAME;
174
7
        p->subframe[0].amp_index = get_bits(&gb, 6);
175
7
        return 0;
176
    }
177
178
    /* Extract the info common to both rates */
179
577
    p->cur_rate       = info_bits ? RATE_5300 : RATE_6300;
180
577
    p->cur_frame_type = ACTIVE_FRAME;
181
182
577
    p->pitch_lag[0] = get_bits(&gb, 7);
183
577
    if (p->pitch_lag[0] > 123)       /* test if forbidden code */
184
1
        return -1;
185
576
    p->pitch_lag[0] += PITCH_MIN;
186
576
    p->subframe[1].ad_cb_lag = get_bits(&gb, 2);
187
188
576
    p->pitch_lag[1] = get_bits(&gb, 7);
189
576
    if (p->pitch_lag[1] > 123)
190
1
        return -1;
191
575
    p->pitch_lag[1] += PITCH_MIN;
192
575
    p->subframe[3].ad_cb_lag = get_bits(&gb, 2);
193
575
    p->subframe[0].ad_cb_lag = 1;
194
575
    p->subframe[2].ad_cb_lag = 1;
195
196
2875
    for (i = 0; i < SUBFRAMES; i++) {
197
        /* Extract combined gain */
198
2300
        temp = get_bits(&gb, 12);
199
2300
        ad_cb_len = 170;
200
2300
        p->subframe[i].dirac_train = 0;
201

2300
        if (p->cur_rate == RATE_6300 && p->pitch_lag[i >> 1] < SUBFRAME_LEN - 2) {
202
1790
            p->subframe[i].dirac_train = temp >> 11;
203
1790
            temp &= 0x7FF;
204
1790
            ad_cb_len = 85;
205
        }
206
2300
        p->subframe[i].ad_cb_gain = FASTDIV(temp, GAIN_LEVELS);
207
2300
        if (p->subframe[i].ad_cb_gain < ad_cb_len) {
208
2300
            p->subframe[i].amp_index = temp - p->subframe[i].ad_cb_gain *
209
                                       GAIN_LEVELS;
210
        } else {
211
            return -1;
212
        }
213
    }
214
215
575
    p->subframe[0].grid_index = get_bits1(&gb);
216
575
    p->subframe[1].grid_index = get_bits1(&gb);
217
575
    p->subframe[2].grid_index = get_bits1(&gb);
218
575
    p->subframe[3].grid_index = get_bits1(&gb);
219
220
575
    if (p->cur_rate == RATE_6300) {
221
543
        skip_bits1(&gb);  /* skip reserved bit */
222
223
        /* Compute pulse_pos index using the 13-bit combined position index */
224
543
        temp = get_bits(&gb, 13);
225
543
        p->subframe[0].pulse_pos = temp / 810;
226
227
543
        temp -= p->subframe[0].pulse_pos * 810;
228
543
        p->subframe[1].pulse_pos = FASTDIV(temp, 90);
229
230
543
        temp -= p->subframe[1].pulse_pos * 90;
231
543
        p->subframe[2].pulse_pos = FASTDIV(temp, 9);
232
543
        p->subframe[3].pulse_pos = temp - p->subframe[2].pulse_pos * 9;
233
234
1086
        p->subframe[0].pulse_pos = (p->subframe[0].pulse_pos << 16) +
235
543
                                   get_bits(&gb, 16);
236
1086
        p->subframe[1].pulse_pos = (p->subframe[1].pulse_pos << 14) +
237
543
                                   get_bits(&gb, 14);
238
1086
        p->subframe[2].pulse_pos = (p->subframe[2].pulse_pos << 16) +
239
543
                                   get_bits(&gb, 16);
240
1086
        p->subframe[3].pulse_pos = (p->subframe[3].pulse_pos << 14) +
241
543
                                   get_bits(&gb, 14);
242
243
543
        p->subframe[0].pulse_sign = get_bits(&gb, 6);
244
543
        p->subframe[1].pulse_sign = get_bits(&gb, 5);
245
543
        p->subframe[2].pulse_sign = get_bits(&gb, 6);
246
543
        p->subframe[3].pulse_sign = get_bits(&gb, 5);
247
    } else { /* 5300 bps */
248
32
        p->subframe[0].pulse_pos  = get_bits(&gb, 12);
249
32
        p->subframe[1].pulse_pos  = get_bits(&gb, 12);
250
32
        p->subframe[2].pulse_pos  = get_bits(&gb, 12);
251
32
        p->subframe[3].pulse_pos  = get_bits(&gb, 12);
252
253
32
        p->subframe[0].pulse_sign = get_bits(&gb, 4);
254
32
        p->subframe[1].pulse_sign = get_bits(&gb, 4);
255
32
        p->subframe[2].pulse_sign = get_bits(&gb, 4);
256
32
        p->subframe[3].pulse_sign = get_bits(&gb, 4);
257
    }
258
259
575
    return 0;
260
}
261
262
/**
263
 * Bitexact implementation of sqrt(val/2).
264
 */
265
4175
static int16_t square_root(unsigned val)
266
{
267
    av_assert2(!(val & 0x80000000));
268
269
4175
    return (ff_sqrt(val << 1) >> 1) & (~1);
270
}
271
272
/**
273
 * Generate fixed codebook excitation vector.
274
 *
275
 * @param vector    decoded excitation vector
276
 * @param subfrm    current subframe
277
 * @param cur_rate  current bitrate
278
 * @param pitch_lag closed loop pitch lag
279
 * @param index     current subframe index
280
 */
281
2300
static void gen_fcb_excitation(int16_t *vector, G723_1_Subframe *subfrm,
282
                               enum Rate cur_rate, int pitch_lag, int index)
283
{
284
    int temp, i, j;
285
286
2300
    memset(vector, 0, SUBFRAME_LEN * sizeof(*vector));
287
288
2300
    if (cur_rate == RATE_6300) {
289
2172
        if (subfrm->pulse_pos >= max_pos[index])
290
3
            return;
291
292
        /* Decode amplitudes and positions */
293
2169
        j = PULSE_MAX - pulses[index];
294
2169
        temp = subfrm->pulse_pos;
295
47580
        for (i = 0; i < SUBFRAME_LEN / GRID_SIZE; i++) {
296
47580
            temp -= ff_g723_1_combinatorial_table[j][i];
297
47580
            if (temp >= 0)
298
35652
                continue;
299
11928
            temp += ff_g723_1_combinatorial_table[j++][i];
300
11928
            if (subfrm->pulse_sign & (1 << (PULSE_MAX - j))) {
301
5889
                vector[subfrm->grid_index + GRID_SIZE * i] =
302
5889
                                        -ff_g723_1_fixed_cb_gain[subfrm->amp_index];
303
            } else {
304
6039
                vector[subfrm->grid_index + GRID_SIZE * i] =
305
6039
                                         ff_g723_1_fixed_cb_gain[subfrm->amp_index];
306
            }
307
11928
            if (j == PULSE_MAX)
308
2169
                break;
309
        }
310
2169
        if (subfrm->dirac_train == 1)
311
1085
            ff_g723_1_gen_dirac_train(vector, pitch_lag);
312
    } else { /* 5300 bps */
313
128
        int cb_gain  = ff_g723_1_fixed_cb_gain[subfrm->amp_index];
314
128
        int cb_shift = subfrm->grid_index;
315
128
        int cb_sign  = subfrm->pulse_sign;
316
128
        int cb_pos   = subfrm->pulse_pos;
317
        int offset, beta, lag;
318
319
640
        for (i = 0; i < 8; i += 2) {
320
512
            offset         = ((cb_pos & 7) << 3) + cb_shift + i;
321
512
            vector[offset] = (cb_sign & 1) ? cb_gain : -cb_gain;
322
512
            cb_pos  >>= 3;
323
512
            cb_sign >>= 1;
324
        }
325
326
        /* Enhance harmonic components */
327
128
        lag  = pitch_contrib[subfrm->ad_cb_gain << 1] + pitch_lag +
328
128
               subfrm->ad_cb_lag - 1;
329
128
        beta = pitch_contrib[(subfrm->ad_cb_gain << 1) + 1];
330
331
128
        if (lag < SUBFRAME_LEN - 2) {
332
4154
            for (i = lag; i < SUBFRAME_LEN; i++)
333
4050
                vector[i] += beta * vector[i - lag] >> 15;
334
        }
335
    }
336
}
337
338
/**
339
 * Estimate maximum auto-correlation around pitch lag.
340
 *
341
 * @param buf       buffer with offset applied
342
 * @param offset    offset of the excitation vector
343
 * @param ccr_max   pointer to the maximum auto-correlation
344
 * @param pitch_lag decoded pitch lag
345
 * @param length    length of autocorrelation
346
 * @param dir       forward lag(1) / backward lag(-1)
347
 */
348
4919
static int autocorr_max(const int16_t *buf, int offset, int *ccr_max,
349
                        int pitch_lag, int length, int dir)
350
{
351
4919
    int limit, ccr, lag = 0;
352
    int i;
353
354
4919
    pitch_lag = FFMIN(PITCH_MAX - 3, pitch_lag);
355
4919
    if (dir > 0)
356
2172
        limit = FFMIN(FRAME_LEN + PITCH_MAX - offset - length, pitch_lag + 3);
357
    else
358
2747
        limit = pitch_lag + 3;
359
360
34905
    for (i = pitch_lag - 3; i <= limit; i++) {
361
29986
        ccr = ff_g723_1_dot_product(buf, buf + dir * i, length);
362
363
29986
        if (ccr > *ccr_max) {
364
11007
            *ccr_max = ccr;
365
11007
            lag = i;
366
        }
367
    }
368
4919
    return lag;
369
}
370
371
/**
372
 * Calculate pitch postfilter optimal and scaling gains.
373
 *
374
 * @param lag      pitch postfilter forward/backward lag
375
 * @param ppf      pitch postfilter parameters
376
 * @param cur_rate current bitrate
377
 * @param tgt_eng  target energy
378
 * @param ccr      cross-correlation
379
 * @param res_eng  residual energy
380
 */
381
2162
static void comp_ppf_gains(int lag, PPFParam *ppf, enum Rate cur_rate,
382
                           int tgt_eng, int ccr, int res_eng)
383
{
384
    int pf_residual;     /* square of postfiltered residual */
385
    int temp1, temp2;
386
387
2162
    ppf->index = lag;
388
389
2162
    temp1 = tgt_eng * res_eng >> 1;
390
2162
    temp2 = ccr * ccr << 1;
391
392
2162
    if (temp2 > temp1) {
393
1711
        if (ccr >= res_eng) {
394
327
            ppf->opt_gain = ppf_gain_weight[cur_rate];
395
        } else {
396
1384
            ppf->opt_gain = (ccr << 15) / res_eng *
397
1384
                            ppf_gain_weight[cur_rate] >> 15;
398
        }
399
        /* pf_res^2 = tgt_eng + 2*ccr*gain + res_eng*gain^2 */
400
1711
        temp1       = (tgt_eng << 15) + (ccr * ppf->opt_gain << 1);
401
1711
        temp2       = (ppf->opt_gain * ppf->opt_gain >> 15) * res_eng;
402
1711
        pf_residual = av_sat_add32(temp1, temp2 + (1 << 15)) >> 16;
403
404
1711
        if (tgt_eng >= pf_residual << 1) {
405
4
            temp1 = 0x7fff;
406
        } else {
407
1707
            temp1 = (tgt_eng << 14) / pf_residual;
408
        }
409
410
        /* scaling_gain = sqrt(tgt_eng/pf_res^2) */
411
1711
        ppf->sc_gain = square_root(temp1 << 16);
412
    } else {
413
451
        ppf->opt_gain = 0;
414
451
        ppf->sc_gain  = 0x7fff;
415
    }
416
417
2162
    ppf->opt_gain = av_clip_int16(ppf->opt_gain * ppf->sc_gain >> 15);
418
2162
}
419
420
/**
421
 * Calculate pitch postfilter parameters.
422
 *
423
 * @param p         the context
424
 * @param offset    offset of the excitation vector
425
 * @param pitch_lag decoded pitch lag
426
 * @param ppf       pitch postfilter parameters
427
 * @param cur_rate  current bitrate
428
 */
429
2172
static void comp_ppf_coeff(G723_1_ChannelContext *p, int offset, int pitch_lag,
430
                           PPFParam *ppf, enum Rate cur_rate)
431
{
432
433
    int16_t scale;
434
    int i;
435
    int temp1, temp2;
436
437
    /*
438
     * 0 - target energy
439
     * 1 - forward cross-correlation
440
     * 2 - forward residual energy
441
     * 3 - backward cross-correlation
442
     * 4 - backward residual energy
443
     */
444
2172
    int energy[5] = {0, 0, 0, 0, 0};
445
2172
    int16_t *buf  = p->audio + LPC_ORDER + offset;
446
2172
    int fwd_lag   = autocorr_max(buf, offset, &energy[1], pitch_lag,
447
                                 SUBFRAME_LEN, 1);
448
2172
    int back_lag  = autocorr_max(buf, offset, &energy[3], pitch_lag,
449
                                 SUBFRAME_LEN, -1);
450
451
2172
    ppf->index    = 0;
452
2172
    ppf->opt_gain = 0;
453
2172
    ppf->sc_gain  = 0x7fff;
454
455
    /* Case 0, Section 3.6 */
456

2172
    if (!back_lag && !fwd_lag)
457
10
        return;
458
459
    /* Compute target energy */
460
2162
    energy[0] = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN);
461
462
    /* Compute forward residual energy */
463
2162
    if (fwd_lag)
464
1537
        energy[2] = ff_g723_1_dot_product(buf + fwd_lag, buf + fwd_lag,
465
                                          SUBFRAME_LEN);
466
467
    /* Compute backward residual energy */
468
2162
    if (back_lag)
469
2156
        energy[4] = ff_g723_1_dot_product(buf - back_lag, buf - back_lag,
470
                                          SUBFRAME_LEN);
471
472
    /* Normalize and shorten */
473
2162
    temp1 = 0;
474
12972
    for (i = 0; i < 5; i++)
475
10810
        temp1 = FFMAX(energy[i], temp1);
476
477
2162
    scale = ff_g723_1_normalize_bits(temp1, 31);
478
12972
    for (i = 0; i < 5; i++)
479
10810
        energy[i] = (energy[i] << scale) >> 16;
480
481

2162
    if (fwd_lag && !back_lag) {  /* Case 1 */
482
6
        comp_ppf_gains(fwd_lag,  ppf, cur_rate, energy[0], energy[1],
483
                       energy[2]);
484
2156
    } else if (!fwd_lag) {       /* Case 2 */
485
625
        comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
486
                       energy[4]);
487
    } else {                     /* Case 3 */
488
489
        /*
490
         * Select the largest of energy[1]^2/energy[2]
491
         * and energy[3]^2/energy[4]
492
         */
493
1531
        temp1 = energy[4] * ((energy[1] * energy[1] + (1 << 14)) >> 15);
494
1531
        temp2 = energy[2] * ((energy[3] * energy[3] + (1 << 14)) >> 15);
495
1531
        if (temp1 >= temp2) {
496
662
            comp_ppf_gains(fwd_lag, ppf, cur_rate, energy[0], energy[1],
497
                           energy[2]);
498
        } else {
499
869
            comp_ppf_gains(-back_lag, ppf, cur_rate, energy[0], energy[3],
500
                           energy[4]);
501
        }
502
    }
503
}
504
505
/**
506
 * Classify frames as voiced/unvoiced.
507
 *
508
 * @param p         the context
509
 * @param pitch_lag decoded pitch_lag
510
 * @param exc_eng   excitation energy estimation
511
 * @param scale     scaling factor of exc_eng
512
 *
513
 * @return residual interpolation index if voiced, 0 otherwise
514
 */
515
575
static int comp_interp_index(G723_1_ChannelContext *p, int pitch_lag,
516
                             int *exc_eng, int *scale)
517
{
518
575
    int offset = PITCH_MAX + 2 * SUBFRAME_LEN;
519
575
    int16_t *buf = p->audio + LPC_ORDER;
520
521
    int index, ccr, tgt_eng, best_eng, temp;
522
523
575
    *scale = ff_g723_1_scale_vector(buf, p->excitation, FRAME_LEN + PITCH_MAX);
524
575
    buf   += offset;
525
526
    /* Compute maximum backward cross-correlation */
527
575
    ccr   = 0;
528
575
    index = autocorr_max(buf, offset, &ccr, pitch_lag, SUBFRAME_LEN * 2, -1);
529
575
    ccr   = av_sat_add32(ccr, 1 << 15) >> 16;
530
531
    /* Compute target energy */
532
575
    tgt_eng  = ff_g723_1_dot_product(buf, buf, SUBFRAME_LEN * 2);
533
575
    *exc_eng = av_sat_add32(tgt_eng, 1 << 15) >> 16;
534
535
575
    if (ccr <= 0)
536
1
        return 0;
537
538
    /* Compute best energy */
539
574
    best_eng = ff_g723_1_dot_product(buf - index, buf - index,
540
                                     SUBFRAME_LEN * 2);
541
574
    best_eng = av_sat_add32(best_eng, 1 << 15) >> 16;
542
543
574
    temp = best_eng * *exc_eng >> 3;
544
545
574
    if (temp < ccr * ccr) {
546
489
        return index;
547
    } else
548
85
        return 0;
549
}
550
551
/**
552
 * Perform residual interpolation based on frame classification.
553
 *
554
 * @param buf   decoded excitation vector
555
 * @param out   output vector
556
 * @param lag   decoded pitch lag
557
 * @param gain  interpolated gain
558
 * @param rseed seed for random number generator
559
 */
560
2
static void residual_interp(int16_t *buf, int16_t *out, int lag,
561
                            int gain, int *rseed)
562
{
563
    int i;
564
2
    if (lag) { /* Voiced */
565
2
        int16_t *vector_ptr = buf + PITCH_MAX;
566
        /* Attenuate */
567
80
        for (i = 0; i < lag; i++)
568
78
            out[i] = vector_ptr[i - lag] * 3 >> 2;
569
2
        av_memcpy_backptr((uint8_t*)(out + lag), lag * sizeof(*out),
570
2
                          (FRAME_LEN - lag) * sizeof(*out));
571
    } else {  /* Unvoiced */
572
        for (i = 0; i < FRAME_LEN; i++) {
573
            *rseed = (int16_t)(*rseed * 521 + 259);
574
            out[i] = gain * *rseed >> 15;
575
        }
576
        memset(buf, 0, (FRAME_LEN + PITCH_MAX) * sizeof(*buf));
577
    }
578
2
}
579
580
/**
581
 * Perform IIR filtering.
582
 *
583
 * @param fir_coef FIR coefficients
584
 * @param iir_coef IIR coefficients
585
 * @param src      source vector
586
 * @param dest     destination vector
587
 * @param width    width of the output, 16 bits(0) / 32 bits(1)
588
 */
589
#define iir_filter(fir_coef, iir_coef, src, dest, width)\
590
{\
591
    int m, n;\
592
    int res_shift = 16 & ~-(width);\
593
    int in_shift  = 16 - res_shift;\
594
\
595
    for (m = 0; m < SUBFRAME_LEN; m++) {\
596
        int64_t filter = 0;\
597
        for (n = 1; n <= LPC_ORDER; n++) {\
598
            filter -= (fir_coef)[n - 1] * (src)[m - n] -\
599
                      (iir_coef)[n - 1] * ((dest)[m - n] >> in_shift);\
600
        }\
601
\
602
        (dest)[m] = av_clipl_int32(((src)[m] * 65536) + (filter * 8) +\
603
                                   (1 << 15)) >> res_shift;\
604
    }\
605
}
606
607
/**
608
 * Adjust gain of postfiltered signal.
609
 *
610
 * @param p      the context
611
 * @param buf    postfiltered output vector
612
 * @param energy input energy coefficient
613
 */
614
2376
static void gain_scale(G723_1_ChannelContext *p, int16_t * buf, int energy)
615
{
616
    int num, denom, gain, bits1, bits2;
617
    int i;
618
619
2376
    num   = energy;
620
2376
    denom = 0;
621
144936
    for (i = 0; i < SUBFRAME_LEN; i++) {
622
142560
        int temp = buf[i] >> 2;
623
142560
        temp *= temp;
624
142560
        denom = av_sat_dadd32(denom, temp);
625
    }
626
627

2376
    if (num && denom) {
628
2368
        bits1   = ff_g723_1_normalize_bits(num,   31);
629
2368
        bits2   = ff_g723_1_normalize_bits(denom, 31);
630
2368
        num     = num << bits1 >> 1;
631
2368
        denom <<= bits2;
632
633
2368
        bits2 = 5 + bits1 - bits2;
634
2368
        bits2 = av_clip_uintp2(bits2, 5);
635
636
2368
        gain = (num >> 1) / (denom >> 16);
637
2368
        gain = square_root(gain << 16 >> bits2);
638
    } else {
639
8
        gain = 1 << 12;
640
    }
641
642
144936
    for (i = 0; i < SUBFRAME_LEN; i++) {
643
142560
        p->pf_gain = (15 * p->pf_gain + gain + (1 << 3)) >> 4;
644
142560
        buf[i]     = av_clip_int16((buf[i] * (p->pf_gain + (p->pf_gain >> 4)) +
645
                                   (1 << 10)) >> 11);
646
    }
647
2376
}
648
649
/**
650
 * Perform formant filtering.
651
 *
652
 * @param p   the context
653
 * @param lpc quantized lpc coefficients
654
 * @param buf input buffer
655
 * @param dst output buffer
656
 */
657
594
static void formant_postfilter(G723_1_ChannelContext *p, int16_t *lpc,
658
                               int16_t *buf, int16_t *dst)
659
{
660
    int16_t filter_coef[2][LPC_ORDER];
661
    int filter_signal[LPC_ORDER + FRAME_LEN], *signal_ptr;
662
    int i, j, k;
663
664
594
    memcpy(buf, p->fir_mem, LPC_ORDER * sizeof(*buf));
665
594
    memcpy(filter_signal, p->iir_mem, LPC_ORDER * sizeof(*filter_signal));
666
667
2970
    for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++) {
668
26136
        for (k = 0; k < LPC_ORDER; k++) {
669
23760
            filter_coef[0][k] = (-lpc[k] * postfilter_tbl[0][k] +
670
23760
                                 (1 << 14)) >> 15;
671
23760
            filter_coef[1][k] = (-lpc[k] * postfilter_tbl[1][k] +
672
23760
                                 (1 << 14)) >> 15;
673
        }
674

1570536
        iir_filter(filter_coef[0], filter_coef[1], buf + i, filter_signal + i, 1);
675
2376
        lpc += LPC_ORDER;
676
    }
677
678
594
    memcpy(p->fir_mem, buf + FRAME_LEN, LPC_ORDER * sizeof(int16_t));
679
594
    memcpy(p->iir_mem, filter_signal + FRAME_LEN, LPC_ORDER * sizeof(int));
680
681
594
    buf += LPC_ORDER;
682
594
    signal_ptr = filter_signal + LPC_ORDER;
683
2970
    for (i = 0; i < SUBFRAMES; i++) {
684
        int temp;
685
        int auto_corr[2];
686
        int scale, energy;
687
688
        /* Normalize */
689
2376
        scale = ff_g723_1_scale_vector(dst, buf, SUBFRAME_LEN);
690
691
        /* Compute auto correlation coefficients */
692
2376
        auto_corr[0] = ff_g723_1_dot_product(dst, dst + 1, SUBFRAME_LEN - 1);
693
2376
        auto_corr[1] = ff_g723_1_dot_product(dst, dst,     SUBFRAME_LEN);
694
695
        /* Compute reflection coefficient */
696
2376
        temp = auto_corr[1] >> 16;
697
2376
        if (temp) {
698
2376
            temp = (auto_corr[0] >> 2) / temp;
699
        }
700
2376
        p->reflection_coef = (3 * p->reflection_coef + temp + 2) >> 2;
701
2376
        temp = -p->reflection_coef >> 1 & ~3;
702
703
        /* Compensation filter */
704
144936
        for (j = 0; j < SUBFRAME_LEN; j++) {
705
285120
            dst[j] = av_sat_dadd32(signal_ptr[j],
706
142560
                                   (signal_ptr[j - 1] >> 16) * temp) >> 16;
707
        }
708
709
        /* Compute normalized signal energy */
710
2376
        temp = 2 * scale + 4;
711
2376
        if (temp < 0) {
712
218
            energy = av_clipl_int32((int64_t)auto_corr[1] << -temp);
713
        } else
714
2158
            energy = auto_corr[1] >> temp;
715
716
2376
        gain_scale(p, dst, energy);
717
718
2376
        buf        += SUBFRAME_LEN;
719
2376
        signal_ptr += SUBFRAME_LEN;
720
2376
        dst        += SUBFRAME_LEN;
721
    }
722
594
}
723
724
7
static int sid_gain_to_lsp_index(int gain)
725
{
726
7
    if (gain < 0x10)
727
7
        return gain << 6;
728
    else if (gain < 0x20)
729
        return gain - 8 << 7;
730
    else
731
        return gain - 20 << 8;
732
}
733
734
1470
static inline int cng_rand(int *state, int base)
735
{
736
1470
    *state = (*state * 521 + 259) & 0xFFFF;
737
1470
    return (*state & 0x7FFF) * base >> 15;
738
}
739
740
static int estimate_sid_gain(G723_1_ChannelContext *p)
741
{
742
    int i, shift, seg, seg2, t, val, val_add, x, y;
743
744
    shift = 16 - p->cur_gain * 2;
745
    if (shift > 0) {
746
        if (p->sid_gain == 0) {
747
            t = 0;
748
        } else if (shift >= 31 || (int32_t)((uint32_t)p->sid_gain << shift) >> shift != p->sid_gain) {
749
            if (p->sid_gain < 0) t = INT32_MIN;
750
            else                 t = INT32_MAX;
751
        } else
752
            t = p->sid_gain * (1 << shift);
753
    } else if(shift < -31) {
754
        t = (p->sid_gain < 0) ? -1 : 0;
755
    }else
756
        t = p->sid_gain >> -shift;
757
    x = av_clipl_int32(t * (int64_t)cng_filt[0] >> 16);
758
759
    if (x >= cng_bseg[2])
760
        return 0x3F;
761
762
    if (x >= cng_bseg[1]) {
763
        shift = 4;
764
        seg   = 3;
765
    } else {
766
        shift = 3;
767
        seg   = (x >= cng_bseg[0]);
768
    }
769
    seg2 = FFMIN(seg, 3);
770
771
    val     = 1 << shift;
772
    val_add = val >> 1;
773
    for (i = 0; i < shift; i++) {
774
        t = seg * 32 + (val << seg2);
775
        t *= t;
776
        if (x >= t)
777
            val += val_add;
778
        else
779
            val -= val_add;
780
        val_add >>= 1;
781
    }
782
783
    t = seg * 32 + (val << seg2);
784
    y = t * t - x;
785
    if (y <= 0) {
786
        t = seg * 32 + (val + 1 << seg2);
787
        t = t * t - x;
788
        val = (seg2 - 1) * 16 + val;
789
        if (t >= y)
790
            val++;
791
    } else {
792
        t = seg * 32 + (val - 1 << seg2);
793
        t = t * t - x;
794
        val = (seg2 - 1) * 16 + val;
795
        if (t >= y)
796
            val--;
797
    }
798
799
    return val;
800
}
801
802
49
static void generate_noise(G723_1_ChannelContext *p)
803
{
804
    int i, j, idx, t;
805
    int off[SUBFRAMES];
806
    int signs[SUBFRAMES / 2 * 11], pos[SUBFRAMES / 2 * 11];
807
    int tmp[SUBFRAME_LEN * 2];
808
    int16_t *vector_ptr;
809
    int64_t sum;
810
    int b0, c, delta, x, shift;
811
812
49
    p->pitch_lag[0] = cng_rand(&p->cng_random_seed, 21) + 123;
813
49
    p->pitch_lag[1] = cng_rand(&p->cng_random_seed, 19) + 123;
814
815
245
    for (i = 0; i < SUBFRAMES; i++) {
816
196
        p->subframe[i].ad_cb_gain = cng_rand(&p->cng_random_seed, 50) + 1;
817
196
        p->subframe[i].ad_cb_lag  = cng_adaptive_cb_lag[i];
818
    }
819
820
147
    for (i = 0; i < SUBFRAMES / 2; i++) {
821
98
        t = cng_rand(&p->cng_random_seed, 1 << 13);
822
98
        off[i * 2]     =   t       & 1;
823
98
        off[i * 2 + 1] = ((t >> 1) & 1) + SUBFRAME_LEN;
824
98
        t >>= 2;
825
1176
        for (j = 0; j < 11; j++) {
826
1078
            signs[i * 11 + j] = ((t & 1) * 2 - 1)  * (1 << 14);
827
1078
            t >>= 1;
828
        }
829
    }
830
831
49
    idx = 0;
832
245
    for (i = 0; i < SUBFRAMES; i++) {
833
6076
        for (j = 0; j < SUBFRAME_LEN / 2; j++)
834
5880
            tmp[j] = j;
835
196
        t = SUBFRAME_LEN / 2;
836
1274
        for (j = 0; j < pulses[i]; j++, idx++) {
837
1078
            int idx2 = cng_rand(&p->cng_random_seed, t);
838
839
1078
            pos[idx]  = tmp[idx2] * 2 + off[i];
840
1078
            tmp[idx2] = tmp[--t];
841
        }
842
    }
843
844
49
    vector_ptr = p->audio + LPC_ORDER;
845
49
    memcpy(vector_ptr, p->prev_excitation,
846
           PITCH_MAX * sizeof(*p->excitation));
847
147
    for (i = 0; i < SUBFRAMES; i += 2) {
848
98
        ff_g723_1_gen_acb_excitation(vector_ptr, vector_ptr,
849
98
                                     p->pitch_lag[i >> 1], &p->subframe[i],
850
                                     p->cur_rate);
851
98
        ff_g723_1_gen_acb_excitation(vector_ptr + SUBFRAME_LEN,
852
                                     vector_ptr + SUBFRAME_LEN,
853
98
                                     p->pitch_lag[i >> 1], &p->subframe[i + 1],
854
                                     p->cur_rate);
855
856
98
        t = 0;
857
11858
        for (j = 0; j < SUBFRAME_LEN * 2; j++)
858
11760
            t |= FFABS(vector_ptr[j]);
859
98
        t = FFMIN(t, 0x7FFF);
860
98
        if (!t) {
861
            shift = 0;
862
        } else {
863
98
            shift = -10 + av_log2(t);
864
98
            if (shift < -2)
865
96
                shift = -2;
866
        }
867
98
        sum = 0;
868
98
        if (shift < 0) {
869
11616
           for (j = 0; j < SUBFRAME_LEN * 2; j++) {
870
11520
               t      = vector_ptr[j] * (1 << -shift);
871
11520
               sum   += t * t;
872
11520
               tmp[j] = t;
873
           }
874
        } else {
875
242
           for (j = 0; j < SUBFRAME_LEN * 2; j++) {
876
240
               t      = vector_ptr[j] >> shift;
877
240
               sum   += t * t;
878
240
               tmp[j] = t;
879
           }
880
        }
881
882
98
        b0 = 0;
883
1176
        for (j = 0; j < 11; j++)
884
1078
            b0 += tmp[pos[(i / 2) * 11 + j]] * signs[(i / 2) * 11 + j];
885
98
        b0 = b0 * 2 * 2979LL + (1 << 29) >> 30; // approximated division by 11
886
887
98
        c = p->cur_gain * (p->cur_gain * SUBFRAME_LEN >> 5);
888
98
        if (shift * 2 + 3 >= 0)
889
2
            c >>= shift * 2 + 3;
890
        else
891
96
            c <<= -(shift * 2 + 3);
892
98
        c = (av_clipl_int32(sum << 1) - c) * 2979LL >> 15;
893
894
98
        delta = b0 * b0 * 2 - c;
895
98
        if (delta <= 0) {
896
2
            x = -b0;
897
        } else {
898
96
            delta = square_root(delta);
899
96
            x     = delta - b0;
900
96
            t     = delta + b0;
901
96
            if (FFABS(t) < FFABS(x))
902
44
                x = -t;
903
        }
904
98
        shift++;
905
98
        if (shift < 0)
906
96
           x >>= -shift;
907
        else
908
2
           x *= 1 << shift;
909
98
        x = av_clip(x, -10000, 10000);
910
911
1176
        for (j = 0; j < 11; j++) {
912
1078
            idx = (i / 2) * 11 + j;
913
1078
            vector_ptr[pos[idx]] = av_clip_int16(vector_ptr[pos[idx]] +
914
1078
                                                 (x * signs[idx] >> 15));
915
        }
916
917
        /* copy decoded data to serve as a history for the next decoded subframes */
918
98
        memcpy(vector_ptr + PITCH_MAX, vector_ptr,
919
               sizeof(*vector_ptr) * SUBFRAME_LEN * 2);
920
98
        vector_ptr += SUBFRAME_LEN * 2;
921
    }
922
    /* Save the excitation for the next frame */
923
49
    memcpy(p->prev_excitation, p->audio + LPC_ORDER + FRAME_LEN,
924
           PITCH_MAX * sizeof(*p->excitation));
925
49
}
926
927
626
static int g723_1_decode_frame(AVCodecContext *avctx, void *data,
928
                               int *got_frame_ptr, AVPacket *avpkt)
929
{
930
626
    G723_1_Context *s  = avctx->priv_data;
931
626
    AVFrame *frame     = data;
932
626
    const uint8_t *buf = avpkt->data;
933
626
    int buf_size       = avpkt->size;
934
626
    int dec_mode       = buf[0] & 3;
935
936
    PPFParam ppf[SUBFRAMES];
937
    int16_t cur_lsp[LPC_ORDER];
938
    int16_t lpc[SUBFRAMES * LPC_ORDER];
939
    int16_t acb_vector[SUBFRAME_LEN];
940
    int16_t *out;
941
626
    int bad_frame = 0, i, j, ret;
942
943
626
    if (buf_size < frame_size[dec_mode] * avctx->channels) {
944
        if (buf_size)
945
            av_log(avctx, AV_LOG_WARNING,
946
                   "Expected %d bytes, got %d - skipping packet\n",
947
                   frame_size[dec_mode], buf_size);
948
        *got_frame_ptr = 0;
949
        return buf_size;
950
    }
951
952
626
    frame->nb_samples = FRAME_LEN;
953
626
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
954
        return ret;
955
956
1252
    for (int ch = 0; ch < avctx->channels; ch++) {
957
626
        G723_1_ChannelContext *p = &s->ch[ch];
958
626
        int16_t *audio = p->audio;
959
960
626
        if (unpack_bitstream(p, buf + ch * (buf_size / avctx->channels),
961
626
                             buf_size / avctx->channels) < 0) {
962
2
            bad_frame = 1;
963
2
            if (p->past_frame_type == ACTIVE_FRAME)
964
2
                p->cur_frame_type = ACTIVE_FRAME;
965
            else
966
                p->cur_frame_type = UNTRANSMITTED_FRAME;
967
        }
968
969
626
        out = (int16_t *)frame->extended_data[ch];
970
971
626
        if (p->cur_frame_type == ACTIVE_FRAME) {
972
577
            if (!bad_frame)
973
575
                p->erased_frames = 0;
974
2
            else if (p->erased_frames != 3)
975
2
                p->erased_frames++;
976
977
577
            ff_g723_1_inverse_quant(cur_lsp, p->prev_lsp, p->lsp_index, bad_frame);
978
577
            ff_g723_1_lsp_interpolate(lpc, cur_lsp, p->prev_lsp);
979
980
            /* Save the lsp_vector for the next frame */
981
577
            memcpy(p->prev_lsp, cur_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
982
983
            /* Generate the excitation for the frame */
984
577
            memcpy(p->excitation, p->prev_excitation,
985
                   PITCH_MAX * sizeof(*p->excitation));
986
577
            if (!p->erased_frames) {
987
575
                int16_t *vector_ptr = p->excitation + PITCH_MAX;
988
989
                /* Update interpolation gain memory */
990
575
                p->interp_gain = ff_g723_1_fixed_cb_gain[(p->subframe[2].amp_index +
991
575
                                                p->subframe[3].amp_index) >> 1];
992
2875
                for (i = 0; i < SUBFRAMES; i++) {
993
2300
                    gen_fcb_excitation(vector_ptr, &p->subframe[i], p->cur_rate,
994
2300
                                       p->pitch_lag[i >> 1], i);
995
2300
                    ff_g723_1_gen_acb_excitation(acb_vector,
996
2300
                                                 &p->excitation[SUBFRAME_LEN * i],
997
2300
                                                 p->pitch_lag[i >> 1],
998
                                                 &p->subframe[i], p->cur_rate);
999
                    /* Get the total excitation */
1000
140300
                    for (j = 0; j < SUBFRAME_LEN; j++) {
1001
138000
                        int v = av_clip_int16(vector_ptr[j] * 2);
1002
138000
                        vector_ptr[j] = av_clip_int16(v + acb_vector[j]);
1003
                    }
1004
2300
                    vector_ptr += SUBFRAME_LEN;
1005
                }
1006
1007
575
                vector_ptr = p->excitation + PITCH_MAX;
1008
1009
575
                p->interp_index = comp_interp_index(p, p->pitch_lag[1],
1010
                                                    &p->sid_gain, &p->cur_gain);
1011
1012
                /* Perform pitch postfiltering */
1013
575
                if (s->postfilter) {
1014
543
                    i = PITCH_MAX;
1015
2715
                    for (j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1016
2172
                        comp_ppf_coeff(p, i, p->pitch_lag[j >> 1],
1017
2172
                                       ppf + j, p->cur_rate);
1018
1019
2715
                    for (i = 0, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1020
2172
                        ff_acelp_weighted_vector_sum(p->audio + LPC_ORDER + i,
1021
2172
                                                     vector_ptr + i,
1022
2172
                                                     vector_ptr + i + ppf[j].index,
1023
2172
                                                     ppf[j].sc_gain,
1024
2172
                                                     ppf[j].opt_gain,
1025
                                                     1 << 14, 15, SUBFRAME_LEN);
1026
                } else {
1027
32
                    audio = vector_ptr - LPC_ORDER;
1028
                }
1029
1030
                /* Save the excitation for the next frame */
1031
575
                memcpy(p->prev_excitation, p->excitation + FRAME_LEN,
1032
                       PITCH_MAX * sizeof(*p->excitation));
1033
            } else {
1034
2
                p->interp_gain = (p->interp_gain * 3 + 2) >> 2;
1035
2
                if (p->erased_frames == 3) {
1036
                    /* Mute output */
1037
                    memset(p->excitation, 0,
1038
                           (FRAME_LEN + PITCH_MAX) * sizeof(*p->excitation));
1039
                    memset(p->prev_excitation, 0,
1040
                           PITCH_MAX * sizeof(*p->excitation));
1041
                    memset(frame->data[0], 0,
1042
                           (FRAME_LEN + LPC_ORDER) * sizeof(int16_t));
1043
                } else {
1044
2
                    int16_t *buf = p->audio + LPC_ORDER;
1045
1046
                    /* Regenerate frame */
1047
2
                    residual_interp(p->excitation, buf, p->interp_index,
1048
                                    p->interp_gain, &p->random_seed);
1049
1050
                    /* Save the excitation for the next frame */
1051
2
                    memcpy(p->prev_excitation, buf + (FRAME_LEN - PITCH_MAX),
1052
                           PITCH_MAX * sizeof(*p->excitation));
1053
                }
1054
            }
1055
577
            p->cng_random_seed = CNG_RANDOM_SEED;
1056
        } else {
1057
49
            if (p->cur_frame_type == SID_FRAME) {
1058
7
                p->sid_gain = sid_gain_to_lsp_index(p->subframe[0].amp_index);
1059
7
                ff_g723_1_inverse_quant(p->sid_lsp, p->prev_lsp, p->lsp_index, 0);
1060
42
            } else if (p->past_frame_type == ACTIVE_FRAME) {
1061
                p->sid_gain = estimate_sid_gain(p);
1062
            }
1063
1064
49
            if (p->past_frame_type == ACTIVE_FRAME)
1065
3
                p->cur_gain = p->sid_gain;
1066
            else
1067
46
                p->cur_gain = (p->cur_gain * 7 + p->sid_gain) >> 3;
1068
49
            generate_noise(p);
1069
49
            ff_g723_1_lsp_interpolate(lpc, p->sid_lsp, p->prev_lsp);
1070
            /* Save the lsp_vector for the next frame */
1071
49
            memcpy(p->prev_lsp, p->sid_lsp, LPC_ORDER * sizeof(*p->prev_lsp));
1072
        }
1073
1074
626
        p->past_frame_type = p->cur_frame_type;
1075
1076
626
        memcpy(p->audio, p->synth_mem, LPC_ORDER * sizeof(*p->audio));
1077
3130
        for (i = LPC_ORDER, j = 0; j < SUBFRAMES; i += SUBFRAME_LEN, j++)
1078
2504
            ff_celp_lp_synthesis_filter(p->audio + i, &lpc[j * LPC_ORDER],
1079
2504
                                        audio + i, SUBFRAME_LEN, LPC_ORDER,
1080
                                        0, 1, 1 << 12);
1081
626
        memcpy(p->synth_mem, p->audio + FRAME_LEN, LPC_ORDER * sizeof(*p->audio));
1082
1083
626
        if (s->postfilter) {
1084
594
            formant_postfilter(p, lpc, p->audio, out);
1085
        } else { // if output is not postfiltered it should be scaled by 2
1086
7712
            for (i = 0; i < FRAME_LEN; i++)
1087
7680
                out[i] = av_clip_int16(2 * p->audio[LPC_ORDER + i]);
1088
        }
1089
    }
1090
1091
626
    *got_frame_ptr = 1;
1092
1093
626
    return frame_size[dec_mode] * avctx->channels;
1094
}
1095
1096
#define OFFSET(x) offsetof(G723_1_Context, x)
1097
#define AD     AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1098
1099
static const AVOption options[] = {
1100
    { "postfilter", "enable postfilter", OFFSET(postfilter), AV_OPT_TYPE_BOOL,
1101
      { .i64 = 1 }, 0, 1, AD },
1102
    { NULL }
1103
};
1104
1105
1106
static const AVClass g723_1dec_class = {
1107
    .class_name = "G.723.1 decoder",
1108
    .item_name  = av_default_item_name,
1109
    .option     = options,
1110
    .version    = LIBAVUTIL_VERSION_INT,
1111
};
1112
1113
AVCodec ff_g723_1_decoder = {
1114
    .name           = "g723_1",
1115
    .long_name      = NULL_IF_CONFIG_SMALL("G.723.1"),
1116
    .type           = AVMEDIA_TYPE_AUDIO,
1117
    .id             = AV_CODEC_ID_G723_1,
1118
    .priv_data_size = sizeof(G723_1_Context),
1119
    .init           = g723_1_decode_init,
1120
    .decode         = g723_1_decode_frame,
1121
    .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
1122
    .priv_class     = &g723_1dec_class,
1123
};