GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/flacenc.c Lines: 603 746 80.8 %
Date: 2019-11-22 03:34:36 Branches: 296 435 68.0 %

Line Branch Exec Source
1
/*
2
 * FLAC audio encoder
3
 * Copyright (c) 2006  Justin Ruggles <justin.ruggles@gmail.com>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
#include "libavutil/avassert.h"
23
#include "libavutil/crc.h"
24
#include "libavutil/intmath.h"
25
#include "libavutil/md5.h"
26
#include "libavutil/opt.h"
27
28
#include "avcodec.h"
29
#include "bswapdsp.h"
30
#include "put_bits.h"
31
#include "golomb.h"
32
#include "internal.h"
33
#include "lpc.h"
34
#include "flac.h"
35
#include "flacdata.h"
36
#include "flacdsp.h"
37
38
#define FLAC_SUBFRAME_CONSTANT  0
39
#define FLAC_SUBFRAME_VERBATIM  1
40
#define FLAC_SUBFRAME_FIXED     8
41
#define FLAC_SUBFRAME_LPC      32
42
43
#define MAX_FIXED_ORDER     4
44
#define MAX_PARTITION_ORDER 8
45
#define MAX_PARTITIONS     (1 << MAX_PARTITION_ORDER)
46
#define MAX_LPC_PRECISION  15
47
#define MIN_LPC_SHIFT       0
48
#define MAX_LPC_SHIFT      15
49
50
enum CodingMode {
51
    CODING_MODE_RICE  = 4,
52
    CODING_MODE_RICE2 = 5,
53
};
54
55
typedef struct CompressionOptions {
56
    int compression_level;
57
    int block_time_ms;
58
    enum FFLPCType lpc_type;
59
    int lpc_passes;
60
    int lpc_coeff_precision;
61
    int min_prediction_order;
62
    int max_prediction_order;
63
    int prediction_order_method;
64
    int min_partition_order;
65
    int max_partition_order;
66
    int ch_mode;
67
    int exact_rice_parameters;
68
    int multi_dim_quant;
69
} CompressionOptions;
70
71
typedef struct RiceContext {
72
    enum CodingMode coding_mode;
73
    int porder;
74
    int params[MAX_PARTITIONS];
75
} RiceContext;
76
77
typedef struct FlacSubframe {
78
    int type;
79
    int type_code;
80
    int obits;
81
    int wasted;
82
    int order;
83
    int32_t coefs[MAX_LPC_ORDER];
84
    int shift;
85
86
    RiceContext rc;
87
    uint32_t rc_udata[FLAC_MAX_BLOCKSIZE];
88
    uint64_t rc_sums[32][MAX_PARTITIONS];
89
90
    int32_t samples[FLAC_MAX_BLOCKSIZE];
91
    int32_t residual[FLAC_MAX_BLOCKSIZE+11];
92
} FlacSubframe;
93
94
typedef struct FlacFrame {
95
    FlacSubframe subframes[FLAC_MAX_CHANNELS];
96
    int blocksize;
97
    int bs_code[2];
98
    uint8_t crc8;
99
    int ch_mode;
100
    int verbatim_only;
101
} FlacFrame;
102
103
typedef struct FlacEncodeContext {
104
    AVClass *class;
105
    PutBitContext pb;
106
    int channels;
107
    int samplerate;
108
    int sr_code[2];
109
    int bps_code;
110
    int max_blocksize;
111
    int min_framesize;
112
    int max_framesize;
113
    int max_encoded_framesize;
114
    uint32_t frame_count;
115
    uint64_t sample_count;
116
    uint8_t md5sum[16];
117
    FlacFrame frame;
118
    CompressionOptions options;
119
    AVCodecContext *avctx;
120
    LPCContext lpc_ctx;
121
    struct AVMD5 *md5ctx;
122
    uint8_t *md5_buffer;
123
    unsigned int md5_buffer_size;
124
    BswapDSPContext bdsp;
125
    FLACDSPContext flac_dsp;
126
127
    int flushed;
128
    int64_t next_pts;
129
} FlacEncodeContext;
130
131
132
/**
133
 * Write streaminfo metadata block to byte array.
134
 */
135
52
static void write_streaminfo(FlacEncodeContext *s, uint8_t *header)
136
{
137
    PutBitContext pb;
138
139
52
    memset(header, 0, FLAC_STREAMINFO_SIZE);
140
52
    init_put_bits(&pb, header, FLAC_STREAMINFO_SIZE);
141
142
    /* streaminfo metadata block */
143
52
    put_bits(&pb, 16, s->max_blocksize);
144
52
    put_bits(&pb, 16, s->max_blocksize);
145
52
    put_bits(&pb, 24, s->min_framesize);
146
52
    put_bits(&pb, 24, s->max_framesize);
147
52
    put_bits(&pb, 20, s->samplerate);
148
52
    put_bits(&pb, 3, s->channels-1);
149
52
    put_bits(&pb,  5, s->avctx->bits_per_raw_sample - 1);
150
    /* write 36-bit sample count in 2 put_bits() calls */
151
52
    put_bits(&pb, 24, (s->sample_count & 0xFFFFFF000LL) >> 12);
152
52
    put_bits(&pb, 12,  s->sample_count & 0x000000FFFLL);
153
52
    flush_put_bits(&pb);
154
52
    memcpy(&header[18], s->md5sum, 16);
155
52
}
156
157
158
/**
159
 * Set blocksize based on samplerate.
160
 * Choose the closest predefined blocksize >= BLOCK_TIME_MS milliseconds.
161
 */
162
28
static int select_blocksize(int samplerate, int block_time_ms)
163
{
164
    int i;
165
    int target;
166
    int blocksize;
167
168
28
    av_assert0(samplerate > 0);
169
28
    blocksize = ff_flac_blocksize_table[1];
170
28
    target    = (samplerate * block_time_ms) / 1000;
171
476
    for (i = 0; i < 16; i++) {
172
448
        if (target >= ff_flac_blocksize_table[i] &&
173
342
            ff_flac_blocksize_table[i] > blocksize) {
174
106
            blocksize = ff_flac_blocksize_table[i];
175
        }
176
    }
177
28
    return blocksize;
178
}
179
180
181
28
static av_cold void dprint_compression_options(FlacEncodeContext *s)
182
{
183
28
    AVCodecContext     *avctx = s->avctx;
184
28
    CompressionOptions *opt   = &s->options;
185
186
28
    av_log(avctx, AV_LOG_DEBUG, " compression: %d\n", opt->compression_level);
187
188

28
    switch (opt->lpc_type) {
189
    case FF_LPC_TYPE_NONE:
190
        av_log(avctx, AV_LOG_DEBUG, " lpc type: None\n");
191
        break;
192
3
    case FF_LPC_TYPE_FIXED:
193
3
        av_log(avctx, AV_LOG_DEBUG, " lpc type: Fixed pre-defined coefficients\n");
194
3
        break;
195
24
    case FF_LPC_TYPE_LEVINSON:
196
24
        av_log(avctx, AV_LOG_DEBUG, " lpc type: Levinson-Durbin recursion with Welch window\n");
197
24
        break;
198
1
    case FF_LPC_TYPE_CHOLESKY:
199
1
        av_log(avctx, AV_LOG_DEBUG, " lpc type: Cholesky factorization, %d pass%s\n",
200
1
               opt->lpc_passes, opt->lpc_passes == 1 ? "" : "es");
201
1
        break;
202
    }
203
204
28
    av_log(avctx, AV_LOG_DEBUG, " prediction order: %d, %d\n",
205
           opt->min_prediction_order, opt->max_prediction_order);
206
207

28
    switch (opt->prediction_order_method) {
208
27
    case ORDER_METHOD_EST:
209
27
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "estimate");
210
27
        break;
211
    case ORDER_METHOD_2LEVEL:
212
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "2-level");
213
        break;
214
1
    case ORDER_METHOD_4LEVEL:
215
1
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "4-level");
216
1
        break;
217
    case ORDER_METHOD_8LEVEL:
218
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "8-level");
219
        break;
220
    case ORDER_METHOD_SEARCH:
221
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "full search");
222
        break;
223
    case ORDER_METHOD_LOG:
224
        av_log(avctx, AV_LOG_DEBUG, " order method: %s\n", "log search");
225
        break;
226
    }
227
228
229
28
    av_log(avctx, AV_LOG_DEBUG, " partition order: %d, %d\n",
230
           opt->min_partition_order, opt->max_partition_order);
231
232
28
    av_log(avctx, AV_LOG_DEBUG, " block size: %d\n", avctx->frame_size);
233
234
28
    av_log(avctx, AV_LOG_DEBUG, " lpc precision: %d\n",
235
           opt->lpc_coeff_precision);
236
28
}
237
238
239
28
static av_cold int flac_encode_init(AVCodecContext *avctx)
240
{
241
28
    int freq = avctx->sample_rate;
242
28
    int channels = avctx->channels;
243
28
    FlacEncodeContext *s = avctx->priv_data;
244
    int i, level, ret;
245
    uint8_t *streaminfo;
246
247
28
    s->avctx = avctx;
248
249
28
    switch (avctx->sample_fmt) {
250
27
    case AV_SAMPLE_FMT_S16:
251
27
        avctx->bits_per_raw_sample = 16;
252
27
        s->bps_code                = 4;
253
27
        break;
254
1
    case AV_SAMPLE_FMT_S32:
255
1
        if (avctx->bits_per_raw_sample != 24)
256
            av_log(avctx, AV_LOG_WARNING, "encoding as 24 bits-per-sample\n");
257
1
        avctx->bits_per_raw_sample = 24;
258
1
        s->bps_code                = 6;
259
1
        break;
260
    }
261
262

28
    if (channels < 1 || channels > FLAC_MAX_CHANNELS) {
263
        av_log(avctx, AV_LOG_ERROR, "%d channels not supported (max %d)\n",
264
               channels, FLAC_MAX_CHANNELS);
265
        return AVERROR(EINVAL);
266
    }
267
28
    s->channels = channels;
268
269
    /* find samplerate in table */
270
28
    if (freq < 1)
271
        return AVERROR(EINVAL);
272
167
    for (i = 4; i < 12; i++) {
273
162
        if (freq == ff_flac_sample_rate_table[i]) {
274
23
            s->samplerate = ff_flac_sample_rate_table[i];
275
23
            s->sr_code[0] = i;
276
23
            s->sr_code[1] = 0;
277
23
            break;
278
        }
279
    }
280
    /* if not in table, samplerate is non-standard */
281
28
    if (i == 12) {
282

5
        if (freq % 1000 == 0 && freq < 255000) {
283
5
            s->sr_code[0] = 12;
284
5
            s->sr_code[1] = freq / 1000;
285
        } else if (freq % 10 == 0 && freq < 655350) {
286
            s->sr_code[0] = 14;
287
            s->sr_code[1] = freq / 10;
288
        } else if (freq < 65535) {
289
            s->sr_code[0] = 13;
290
            s->sr_code[1] = freq;
291
        } else {
292
            av_log(avctx, AV_LOG_ERROR, "%d Hz not supported\n", freq);
293
            return AVERROR(EINVAL);
294
        }
295
5
        s->samplerate = freq;
296
    }
297
298
    /* set compression option defaults based on avctx->compression_level */
299
28
    if (avctx->compression_level < 0)
300
25
        s->options.compression_level = 5;
301
    else
302
3
        s->options.compression_level = avctx->compression_level;
303
304
28
    level = s->options.compression_level;
305
28
    if (level > 12) {
306
        av_log(avctx, AV_LOG_ERROR, "invalid compression level: %d\n",
307
               s->options.compression_level);
308
        return AVERROR(EINVAL);
309
    }
310
311
28
    s->options.block_time_ms = ((int[]){ 27, 27, 27,105,105,105,105,105,105,105,105,105,105})[level];
312
313
28
    if (s->options.lpc_type == FF_LPC_TYPE_DEFAULT)
314
25
        s->options.lpc_type  = ((int[]){ FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,    FF_LPC_TYPE_FIXED,
315
                                         FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
316
                                         FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
317
                                         FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON, FF_LPC_TYPE_LEVINSON,
318
25
                                         FF_LPC_TYPE_LEVINSON})[level];
319
320
28
    if (s->options.min_prediction_order < 0)
321
28
        s->options.min_prediction_order = ((int[]){  2,  0,  0,  1,  1,  1,  1,  1,  1,  1,  1,  1,  1})[level];
322
28
    if (s->options.max_prediction_order < 0)
323
28
        s->options.max_prediction_order = ((int[]){  3,  4,  4,  6,  8,  8,  8,  8, 12, 12, 12, 32, 32})[level];
324
325
28
    if (s->options.prediction_order_method < 0)
326
28
        s->options.prediction_order_method = ((int[]){ ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
327
                                                       ORDER_METHOD_EST,    ORDER_METHOD_EST,    ORDER_METHOD_EST,
328
                                                       ORDER_METHOD_4LEVEL, ORDER_METHOD_LOG,    ORDER_METHOD_4LEVEL,
329
                                                       ORDER_METHOD_LOG,    ORDER_METHOD_SEARCH, ORDER_METHOD_LOG,
330
28
                                                       ORDER_METHOD_SEARCH})[level];
331
332
28
    if (s->options.min_partition_order > s->options.max_partition_order) {
333
        av_log(avctx, AV_LOG_ERROR, "invalid partition orders: min=%d max=%d\n",
334
               s->options.min_partition_order, s->options.max_partition_order);
335
        return AVERROR(EINVAL);
336
    }
337
28
    if (s->options.min_partition_order < 0)
338
28
        s->options.min_partition_order = ((int[]){  2,  2,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0,  0})[level];
339
28
    if (s->options.max_partition_order < 0)
340
28
        s->options.max_partition_order = ((int[]){  2,  2,  3,  3,  3,  8,  8,  8,  8,  8,  8,  8,  8})[level];
341
342
#if FF_API_PRIVATE_OPT
343
FF_DISABLE_DEPRECATION_WARNINGS
344
28
    if (avctx->min_prediction_order >= 0) {
345
        if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
346
            if (avctx->min_prediction_order > MAX_FIXED_ORDER) {
347
                av_log(avctx, AV_LOG_WARNING,
348
                       "invalid min prediction order %d, clamped to %d\n",
349
                       avctx->min_prediction_order, MAX_FIXED_ORDER);
350
                avctx->min_prediction_order = MAX_FIXED_ORDER;
351
            }
352
        } else if (avctx->min_prediction_order < MIN_LPC_ORDER ||
353
                   avctx->min_prediction_order > MAX_LPC_ORDER) {
354
            av_log(avctx, AV_LOG_ERROR, "invalid min prediction order: %d\n",
355
                   avctx->min_prediction_order);
356
            return AVERROR(EINVAL);
357
        }
358
        s->options.min_prediction_order = avctx->min_prediction_order;
359
    }
360
28
    if (avctx->max_prediction_order >= 0) {
361
        if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
362
            if (avctx->max_prediction_order > MAX_FIXED_ORDER) {
363
                av_log(avctx, AV_LOG_WARNING,
364
                       "invalid max prediction order %d, clamped to %d\n",
365
                       avctx->max_prediction_order, MAX_FIXED_ORDER);
366
                avctx->max_prediction_order = MAX_FIXED_ORDER;
367
            }
368
        } else if (avctx->max_prediction_order < MIN_LPC_ORDER ||
369
                   avctx->max_prediction_order > MAX_LPC_ORDER) {
370
            av_log(avctx, AV_LOG_ERROR, "invalid max prediction order: %d\n",
371
                   avctx->max_prediction_order);
372
            return AVERROR(EINVAL);
373
        }
374
        s->options.max_prediction_order = avctx->max_prediction_order;
375
    }
376
FF_ENABLE_DEPRECATION_WARNINGS
377
#endif
378
28
    if (s->options.lpc_type == FF_LPC_TYPE_NONE) {
379
        s->options.min_prediction_order = 0;
380
        s->options.max_prediction_order = 0;
381
28
    } else if (s->options.lpc_type == FF_LPC_TYPE_FIXED) {
382
3
        if (s->options.min_prediction_order > MAX_FIXED_ORDER) {
383
            av_log(avctx, AV_LOG_WARNING,
384
                   "invalid min prediction order %d, clamped to %d\n",
385
                   s->options.min_prediction_order, MAX_FIXED_ORDER);
386
            s->options.min_prediction_order = MAX_FIXED_ORDER;
387
        }
388
3
        if (s->options.max_prediction_order > MAX_FIXED_ORDER) {
389
1
            av_log(avctx, AV_LOG_WARNING,
390
                   "invalid max prediction order %d, clamped to %d\n",
391
                   s->options.max_prediction_order, MAX_FIXED_ORDER);
392
1
            s->options.max_prediction_order = MAX_FIXED_ORDER;
393
        }
394
    }
395
396
28
    if (s->options.max_prediction_order < s->options.min_prediction_order) {
397
        av_log(avctx, AV_LOG_ERROR, "invalid prediction orders: min=%d max=%d\n",
398
               s->options.min_prediction_order, s->options.max_prediction_order);
399
        return AVERROR(EINVAL);
400
    }
401
402
28
    if (avctx->frame_size > 0) {
403
        if (avctx->frame_size < FLAC_MIN_BLOCKSIZE ||
404
                avctx->frame_size > FLAC_MAX_BLOCKSIZE) {
405
            av_log(avctx, AV_LOG_ERROR, "invalid block size: %d\n",
406
                   avctx->frame_size);
407
            return AVERROR(EINVAL);
408
        }
409
    } else {
410
28
        s->avctx->frame_size = select_blocksize(s->samplerate, s->options.block_time_ms);
411
    }
412
28
    s->max_blocksize = s->avctx->frame_size;
413
414
    /* set maximum encoded frame size in verbatim mode */
415
56
    s->max_framesize = ff_flac_get_max_frame_size(s->avctx->frame_size,
416
                                                  s->channels,
417
28
                                                  s->avctx->bits_per_raw_sample);
418
419
    /* initialize MD5 context */
420
28
    s->md5ctx = av_md5_alloc();
421
28
    if (!s->md5ctx)
422
        return AVERROR(ENOMEM);
423
28
    av_md5_init(s->md5ctx);
424
425
28
    streaminfo = av_malloc(FLAC_STREAMINFO_SIZE);
426
28
    if (!streaminfo)
427
        return AVERROR(ENOMEM);
428
28
    write_streaminfo(s, streaminfo);
429
28
    avctx->extradata = streaminfo;
430
28
    avctx->extradata_size = FLAC_STREAMINFO_SIZE;
431
432
28
    s->frame_count   = 0;
433
28
    s->min_framesize = s->max_framesize;
434
435
28
    if (channels == 3 &&
436

28
            avctx->channel_layout != (AV_CH_LAYOUT_STEREO|AV_CH_FRONT_CENTER) ||
437
        channels == 4 &&
438
            avctx->channel_layout != AV_CH_LAYOUT_2_2 &&
439

28
            avctx->channel_layout != AV_CH_LAYOUT_QUAD ||
440
        channels == 5 &&
441
            avctx->channel_layout != AV_CH_LAYOUT_5POINT0 &&
442

28
            avctx->channel_layout != AV_CH_LAYOUT_5POINT0_BACK ||
443
4
        channels == 6 &&
444
4
            avctx->channel_layout != AV_CH_LAYOUT_5POINT1 &&
445
4
            avctx->channel_layout != AV_CH_LAYOUT_5POINT1_BACK) {
446
        if (avctx->channel_layout) {
447
            av_log(avctx, AV_LOG_ERROR, "Channel layout not supported by Flac, "
448
                                             "output stream will have incorrect "
449
                                             "channel layout.\n");
450
        } else {
451
            av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The encoder "
452
                                               "will use Flac channel layout for "
453
                                               "%d channels.\n", channels);
454
        }
455
    }
456
457
28
    ret = ff_lpc_init(&s->lpc_ctx, avctx->frame_size,
458
                      s->options.max_prediction_order, FF_LPC_TYPE_LEVINSON);
459
460
28
    ff_bswapdsp_init(&s->bdsp);
461
28
    ff_flacdsp_init(&s->flac_dsp, avctx->sample_fmt, channels,
462
                    avctx->bits_per_raw_sample);
463
464
28
    dprint_compression_options(s);
465
466
28
    return ret;
467
}
468
469
470
4446
static void init_frame(FlacEncodeContext *s, int nb_samples)
471
{
472
    int i, ch;
473
    FlacFrame *frame;
474
475
4446
    frame = &s->frame;
476
477
31745
    for (i = 0; i < 16; i++) {
478
31733
        if (nb_samples == ff_flac_blocksize_table[i]) {
479
4434
            frame->blocksize  = ff_flac_blocksize_table[i];
480
4434
            frame->bs_code[0] = i;
481
4434
            frame->bs_code[1] = 0;
482
4434
            break;
483
        }
484
    }
485
4446
    if (i == 16) {
486
12
        frame->blocksize = nb_samples;
487
12
        if (frame->blocksize <= 256) {
488
            frame->bs_code[0] = 6;
489
            frame->bs_code[1] = frame->blocksize-1;
490
        } else {
491
12
            frame->bs_code[0] = 7;
492
12
            frame->bs_code[1] = frame->blocksize-1;
493
        }
494
    }
495
496
17328
    for (ch = 0; ch < s->channels; ch++) {
497
12882
        FlacSubframe *sub = &frame->subframes[ch];
498
499
12882
        sub->wasted = 0;
500
12882
        sub->obits  = s->avctx->bits_per_raw_sample;
501
502
12882
        if (sub->obits > 16)
503
236
            sub->rc.coding_mode = CODING_MODE_RICE2;
504
        else
505
12646
            sub->rc.coding_mode = CODING_MODE_RICE;
506
    }
507
508
4446
    frame->verbatim_only = 0;
509
4446
}
510
511
512
/**
513
 * Copy channel-interleaved input samples into separate subframes.
514
 */
515
4446
static void copy_samples(FlacEncodeContext *s, const void *samples)
516
{
517
    int i, j, ch;
518
    FlacFrame *frame;
519
4446
    int shift = av_get_bytes_per_sample(s->avctx->sample_fmt) * 8 -
520
4446
                s->avctx->bits_per_raw_sample;
521
522
#define COPY_SAMPLES(bits) do {                                     \
523
    const int ## bits ## _t *samples0 = samples;                    \
524
    frame = &s->frame;                                              \
525
    for (i = 0, j = 0; i < frame->blocksize; i++)                   \
526
        for (ch = 0; ch < s->channels; ch++, j++)                   \
527
            frame->subframes[ch].samples[i] = samples0[j] >> shift; \
528
} while (0)
529
530
4446
    if (s->avctx->sample_fmt == AV_SAMPLE_FMT_S16)
531

99756105
        COPY_SAMPLES(16);
532
    else
533

5760118
        COPY_SAMPLES(32);
534
4446
}
535
536
537
98573
static uint64_t rice_count_exact(const int32_t *res, int n, int k)
538
{
539
    int i;
540
98573
    uint64_t count = 0;
541
542
44840737
    for (i = 0; i < n; i++) {
543
44742164
        int32_t v = -2 * res[i] - 1;
544
44742164
        v ^= v >> 31;
545
44742164
        count += (v >> k) + 1 + k;
546
    }
547
98573
    return count;
548
}
549
550
551
12882
static uint64_t subframe_count_exact(FlacEncodeContext *s, FlacSubframe *sub,
552
                                     int pred_order)
553
{
554
    int p, porder, psize;
555
    int i, part_end;
556
12882
    uint64_t count = 0;
557
558
    /* subframe header */
559
12882
    count += 8;
560
561
12882
    if (sub->wasted)
562
5200
        count += sub->wasted;
563
564
    /* subframe */
565
12882
    if (sub->type == FLAC_SUBFRAME_CONSTANT) {
566
5428
        count += sub->obits;
567
7454
    } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
568
        count += s->frame.blocksize * sub->obits;
569
    } else {
570
        /* warm-up samples */
571
7454
        count += pred_order * sub->obits;
572
573
        /* LPC coefficients */
574
7454
        if (sub->type == FLAC_SUBFRAME_LPC)
575
6580
            count += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
576
577
        /* rice-encoded block */
578
7454
        count += 2;
579
580
        /* partition order */
581
7454
        porder = sub->rc.porder;
582
7454
        psize  = s->frame.blocksize >> porder;
583
7454
        count += 4;
584
585
        /* residual */
586
7454
        i        = pred_order;
587
7454
        part_end = psize;
588
106027
        for (p = 0; p < 1 << porder; p++) {
589
98573
            int k = sub->rc.params[p];
590
98573
            count += sub->rc.coding_mode;
591
98573
            count += rice_count_exact(&sub->residual[i], part_end - i, k);
592
98573
            i = part_end;
593
98573
            part_end = FFMIN(s->frame.blocksize, part_end + psize);
594
        }
595
    }
596
597
12882
    return count;
598
}
599
600
601
#define rice_encode_count(sum, n, k) (((n)*((k)+1))+((sum-(n>>1))>>(k)))
602
603
/**
604
 * Solve for d/dk(rice_encode_count) = n-((sum-(n>>1))>>(k+1)) = 0.
605
 */
606
3835107
static int find_optimal_param(uint64_t sum, int n, int max_param)
607
{
608
    int k;
609
    uint64_t sum2;
610
611
3835107
    if (sum <= n >> 1)
612
8900
        return 0;
613
3826207
    sum2 = sum - (n >> 1);
614
3826207
    k    = av_log2(av_clipl_int32(sum2 / n));
615
3826207
    return FFMIN(k, max_param);
616
}
617
618
27285
static int find_optimal_param_exact(uint64_t sums[32][MAX_PARTITIONS], int i, int max_param)
619
{
620
27285
    int bestk = 0;
621
27285
    int64_t bestbits = INT64_MAX;
622
    int k;
623
624
436560
    for (k = 0; k <= max_param; k++) {
625
409275
        int64_t bits = sums[k][i];
626
409275
        if (bits < bestbits) {
627
253571
            bestbits = bits;
628
253571
            bestk = k;
629
        }
630
    }
631
632
27285
    return bestk;
633
}
634
635
87698
static uint64_t calc_optimal_rice_params(RiceContext *rc, int porder,
636
                                         uint64_t sums[32][MAX_PARTITIONS],
637
                                         int n, int pred_order, int max_param, int exact)
638
{
639
    int i;
640
    int k, cnt, part;
641
    uint64_t all_bits;
642
643
87698
    part     = (1 << porder);
644
87698
    all_bits = 4 * part;
645
646
87698
    cnt = (n >> porder) - pred_order;
647
3940202
    for (i = 0; i < part; i++) {
648
3852504
        if (exact) {
649
27285
            k = find_optimal_param_exact(sums, i, max_param);
650
27285
            all_bits += sums[k][i];
651
        } else {
652
3825219
            k = find_optimal_param(sums[0][i], cnt, max_param);
653
3825219
            all_bits += rice_encode_count(sums[0][i], cnt, k);
654
        }
655
3852504
        rc->params[i] = k;
656
3852504
        cnt = n >> porder;
657
    }
658
659
87698
    rc->porder = porder;
660
661
87698
    return all_bits;
662
}
663
664
665
12076
static void calc_sum_top(int pmax, int kmax, const uint32_t *data, int n, int pred_order,
666
                         uint64_t sums[32][MAX_PARTITIONS])
667
{
668
    int i, k;
669
    int parts;
670
    const uint32_t *res, *res_end;
671
672
    /* sums for highest level */
673
12076
    parts   = (1 << pmax);
674
675
49618
    for (k = 0; k <= kmax; k++) {
676
37542
        res     = &data[pred_order];
677
37542
        res_end = &data[n >> pmax];
678
2173560
        for (i = 0; i < parts; i++) {
679
2136018
            if (kmax) {
680
218280
                uint64_t sum = (1LL + k) * (res_end - res);
681
31543005
                while (res < res_end)
682
31324725
                    sum += *(res++) >> k;
683
218280
                sums[k][i] = sum;
684
            } else {
685
1917738
                uint64_t sum = 0;
686
66661339
                while (res < res_end)
687
64743601
                    sum += *(res++);
688
1917738
                sums[k][i] = sum;
689
            }
690
2136018
            res_end += n >> pmax;
691
        }
692
    }
693
12076
}
694
695
75622
static void calc_sum_next(int level, uint64_t sums[32][MAX_PARTITIONS], int kmax)
696
{
697
    int i, k;
698
75622
    int parts = (1 << level);
699
1995836
    for (i = 0; i < parts; i++) {
700
4018690
        for (k=0; k<=kmax; k++)
701
2098476
            sums[k][i] = sums[k][2*i] + sums[k][2*i+1];
702
    }
703
75622
}
704
705
12076
static uint64_t calc_rice_params(RiceContext *rc,
706
                                 uint32_t udata[FLAC_MAX_BLOCKSIZE],
707
                                 uint64_t sums[32][MAX_PARTITIONS],
708
                                 int pmin, int pmax,
709
                                 const int32_t *data, int n, int pred_order, int exact)
710
{
711
    int i;
712
    uint64_t bits[MAX_PARTITION_ORDER+1];
713
    int opt_porder;
714
    RiceContext tmp_rc;
715
12076
    int kmax = (1 << rc->coding_mode) - 2;
716
717
    av_assert1(pmin >= 0 && pmin <= MAX_PARTITION_ORDER);
718
    av_assert1(pmax >= 0 && pmax <= MAX_PARTITION_ORDER);
719
    av_assert1(pmin <= pmax);
720
721
12076
    tmp_rc.coding_mode = rc->coding_mode;
722
723
66876678
    for (i = 0; i < n; i++)
724
66864602
        udata[i] = (2 * data[i]) ^ (data[i] >> 31);
725
726
12076
    calc_sum_top(pmax, exact ? kmax : 0, udata, n, pred_order, sums);
727
728
12076
    opt_porder = pmin;
729
12076
    bits[pmin] = UINT32_MAX;
730
12076
    for (i = pmax; ; ) {
731
87698
        bits[i] = calc_optimal_rice_params(&tmp_rc, i, sums, n, pred_order, kmax, exact);
732

87698
        if (bits[i] < bits[opt_porder] || pmax == pmin) {
733
70006
            opt_porder = i;
734
70006
            *rc = tmp_rc;
735
        }
736
87698
        if (i == pmin)
737
12076
            break;
738
75622
        calc_sum_next(--i, sums, exact ? kmax : 0);
739
    }
740
741
12076
    return bits[opt_porder];
742
}
743
744
745
24152
static int get_max_p_order(int max_porder, int n, int order)
746
{
747
24152
    int porder = FFMIN(max_porder, av_log2(n^(n-1)));
748
24152
    if (order > 0)
749
22572
        porder = FFMIN(porder, av_log2(n/order));
750
24152
    return porder;
751
}
752
753
754
12076
static uint64_t find_subframe_rice_params(FlacEncodeContext *s,
755
                                          FlacSubframe *sub, int pred_order)
756
{
757
12076
    int pmin = get_max_p_order(s->options.min_partition_order,
758
                               s->frame.blocksize, pred_order);
759
12076
    int pmax = get_max_p_order(s->options.max_partition_order,
760
                               s->frame.blocksize, pred_order);
761
762
12076
    uint64_t bits = 8 + pred_order * sub->obits + 2 + sub->rc.coding_mode;
763
12076
    if (sub->type == FLAC_SUBFRAME_LPC)
764
7524
        bits += 4 + 5 + pred_order * s->options.lpc_coeff_precision;
765
12076
    bits += calc_rice_params(&sub->rc, sub->rc_udata, sub->rc_sums, pmin, pmax, sub->residual,
766
                             s->frame.blocksize, pred_order, s->options.exact_rice_parameters);
767
12076
    return bits;
768
}
769
770
771
4552
static void encode_residual_fixed(int32_t *res, const int32_t *smp, int n,
772
                                  int order)
773
{
774
    int i;
775
776
13844
    for (i = 0; i < order; i++)
777
9292
        res[i] = smp[i];
778
779
4552
    if (order == 0) {
780
909430
        for (i = order; i < n; i++)
781
908640
            res[i] = smp[i];
782
3762
    } else if (order == 1) {
783
1900908
        for (i = order; i < n; i++)
784
1899976
            res[i] = smp[i] - smp[i-1];
785
2830
    } else if (order == 2) {
786
1004
        int a = smp[order-1] - smp[order-2];
787
1091772
        for (i = order; i < n; i += 2) {
788
1090768
            int b    = smp[i  ] - smp[i-1];
789
1090768
            res[i]   = b - a;
790
1090768
            a        = smp[i+1] - smp[i  ];
791
1090768
            res[i+1] = a - b;
792
        }
793
1826
    } else if (order == 3) {
794
952
        int a = smp[order-1] -   smp[order-2];
795
952
        int c = smp[order-1] - 2*smp[order-2] + smp[order-3];
796
875574
        for (i = order; i < n; i += 2) {
797
874622
            int b    = smp[i  ] - smp[i-1];
798
874622
            int d    = b - a;
799
874622
            res[i]   = d - c;
800
874622
            a        = smp[i+1] - smp[i  ];
801
874622
            c        = a - b;
802
874622
            res[i+1] = c - d;
803
        }
804
    } else {
805
874
        int a = smp[order-1] -   smp[order-2];
806
874
        int c = smp[order-1] - 2*smp[order-2] +   smp[order-3];
807
874
        int e = smp[order-1] - 3*smp[order-2] + 3*smp[order-3] - smp[order-4];
808
815948
        for (i = order; i < n; i += 2) {
809
815074
            int b    = smp[i  ] - smp[i-1];
810
815074
            int d    = b - a;
811
815074
            int f    = d - c;
812
815074
            res[i  ] = f - e;
813
815074
            a        = smp[i+1] - smp[i  ];
814
815074
            c        = a - b;
815
815074
            e        = c - d;
816
815074
            res[i+1] = e - f;
817
        }
818
    }
819
4552
}
820
821
822
12882
static int encode_residual_ch(FlacEncodeContext *s, int ch)
823
{
824
    int i, n;
825
    int min_order, max_order, opt_order, omethod;
826
    FlacFrame *frame;
827
    FlacSubframe *sub;
828
    int32_t coefs[MAX_LPC_ORDER][MAX_LPC_ORDER];
829
    int shift[MAX_LPC_ORDER];
830
    int32_t *res, *smp;
831
832
12882
    frame = &s->frame;
833
12882
    sub   = &frame->subframes[ch];
834
12882
    res   = sub->residual;
835
12882
    smp   = sub->samples;
836
12882
    n     = frame->blocksize;
837
838
    /* CONSTANT */
839
34347726
    for (i = 1; i < n; i++)
840
34342298
        if(smp[i] != smp[0])
841
7454
            break;
842
12882
    if (i == n) {
843
5428
        sub->type = sub->type_code = FLAC_SUBFRAME_CONSTANT;
844
5428
        res[0] = smp[0];
845
5428
        return subframe_count_exact(s, sub, 0);
846
    }
847
848
    /* VERBATIM */
849

7454
    if (frame->verbatim_only || n < 5) {
850
        sub->type = sub->type_code = FLAC_SUBFRAME_VERBATIM;
851
        memcpy(res, smp, n * sizeof(int32_t));
852
        return subframe_count_exact(s, sub, 0);
853
    }
854
855
7454
    min_order  = s->options.min_prediction_order;
856
7454
    max_order  = s->options.max_prediction_order;
857
7454
    omethod    = s->options.prediction_order_method;
858
859
    /* FIXED */
860
7454
    sub->type = FLAC_SUBFRAME_FIXED;
861
7454
    if (s->options.lpc_type == FF_LPC_TYPE_NONE  ||
862

7454
        s->options.lpc_type == FF_LPC_TYPE_FIXED || n <= max_order) {
863
        uint64_t bits[MAX_FIXED_ORDER+1];
864
874
        if (max_order > MAX_FIXED_ORDER)
865
            max_order = MAX_FIXED_ORDER;
866
874
        opt_order = 0;
867
874
        bits[0]   = UINT32_MAX;
868
5062
        for (i = min_order; i <= max_order; i++) {
869
4188
            encode_residual_fixed(res, smp, n, i);
870
4188
            bits[i] = find_subframe_rice_params(s, sub, i);
871
4188
            if (bits[i] < bits[opt_order])
872
2592
                opt_order = i;
873
        }
874
874
        sub->order     = opt_order;
875
874
        sub->type_code = sub->type | sub->order;
876
874
        if (sub->order != max_order) {
877
364
            encode_residual_fixed(res, smp, n, sub->order);
878
364
            find_subframe_rice_params(s, sub, sub->order);
879
        }
880
874
        return subframe_count_exact(s, sub, sub->order);
881
    }
882
883
    /* LPC */
884
6580
    sub->type = FLAC_SUBFRAME_LPC;
885
6580
    opt_order = ff_lpc_calc_coefs(&s->lpc_ctx, smp, n, min_order, max_order,
886
                                  s->options.lpc_coeff_precision, coefs, shift, s->options.lpc_type,
887
                                  s->options.lpc_passes, omethod,
888
                                  MIN_LPC_SHIFT, MAX_LPC_SHIFT, 0);
889
890

6580
    if (omethod == ORDER_METHOD_2LEVEL ||
891
6344
        omethod == ORDER_METHOD_4LEVEL ||
892
236
        omethod == ORDER_METHOD_8LEVEL) {
893
236
        int levels = 1 << omethod;
894
        uint64_t bits[1 << ORDER_METHOD_8LEVEL];
895
236
        int order       = -1;
896
236
        int opt_index   = levels-1;
897
236
        opt_order       = max_order-1;
898
236
        bits[opt_index] = UINT32_MAX;
899
1180
        for (i = levels-1; i >= 0; i--) {
900
944
            int last_order = order;
901
944
            order = min_order + (((max_order-min_order+1) * (i+1)) / levels)-1;
902
944
            order = av_clip(order, min_order - 1, max_order - 1);
903
944
            if (order == last_order)
904
                continue;
905
944
            if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(order) <= 32) {
906
                s->flac_dsp.lpc16_encode(res, smp, n, order+1, coefs[order],
907
                                         shift[order]);
908
            } else {
909
944
                s->flac_dsp.lpc32_encode(res, smp, n, order+1, coefs[order],
910
                                         shift[order]);
911
            }
912
944
            bits[i] = find_subframe_rice_params(s, sub, order+1);
913
944
            if (bits[i] < bits[opt_index]) {
914
58
                opt_index = i;
915
58
                opt_order = order;
916
            }
917
        }
918
236
        opt_order++;
919
6344
    } else if (omethod == ORDER_METHOD_SEARCH) {
920
        // brute-force optimal order search
921
        uint64_t bits[MAX_LPC_ORDER];
922
        opt_order = 0;
923
        bits[0]   = UINT32_MAX;
924
        for (i = min_order-1; i < max_order; i++) {
925
            if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(i) <= 32) {
926
                s->flac_dsp.lpc16_encode(res, smp, n, i+1, coefs[i], shift[i]);
927
            } else {
928
                s->flac_dsp.lpc32_encode(res, smp, n, i+1, coefs[i], shift[i]);
929
            }
930
            bits[i] = find_subframe_rice_params(s, sub, i+1);
931
            if (bits[i] < bits[opt_order])
932
                opt_order = i;
933
        }
934
        opt_order++;
935
6344
    } else if (omethod == ORDER_METHOD_LOG) {
936
        uint64_t bits[MAX_LPC_ORDER];
937
        int step;
938
939
        opt_order = min_order - 1 + (max_order-min_order)/3;
940
        memset(bits, -1, sizeof(bits));
941
942
        for (step = 16; step; step >>= 1) {
943
            int last = opt_order;
944
            for (i = last-step; i <= last+step; i += step) {
945
                if (i < min_order-1 || i >= max_order || bits[i] < UINT32_MAX)
946
                    continue;
947
                if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(i) <= 32) {
948
                    s->flac_dsp.lpc32_encode(res, smp, n, i+1, coefs[i], shift[i]);
949
                } else {
950
                    s->flac_dsp.lpc16_encode(res, smp, n, i+1, coefs[i], shift[i]);
951
                }
952
                bits[i] = find_subframe_rice_params(s, sub, i+1);
953
                if (bits[i] < bits[opt_order])
954
                    opt_order = i;
955
            }
956
        }
957
        opt_order++;
958
    }
959
960
6580
    if (s->options.multi_dim_quant) {
961
        int allsteps = 1;
962
        int i, step, improved;
963
        int64_t best_score = INT64_MAX;
964
        int32_t qmax;
965
966
        qmax = (1 << (s->options.lpc_coeff_precision - 1)) - 1;
967
968
        for (i=0; i<opt_order; i++)
969
            allsteps *= 3;
970
971
        do {
972
            improved = 0;
973
            for (step = 0; step < allsteps; step++) {
974
                int tmp = step;
975
                int32_t lpc_try[MAX_LPC_ORDER];
976
                int64_t score = 0;
977
                int diffsum = 0;
978
979
                for (i=0; i<opt_order; i++) {
980
                    int diff = ((tmp + 1) % 3) - 1;
981
                    lpc_try[i] = av_clip(coefs[opt_order - 1][i] + diff, -qmax, qmax);
982
                    tmp /= 3;
983
                    diffsum += !!diff;
984
                }
985
                if (diffsum >8)
986
                    continue;
987
988
                if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(opt_order - 1) <= 32) {
989
                    s->flac_dsp.lpc16_encode(res, smp, n, opt_order, lpc_try, shift[opt_order-1]);
990
                } else {
991
                    s->flac_dsp.lpc32_encode(res, smp, n, opt_order, lpc_try, shift[opt_order-1]);
992
                }
993
                score = find_subframe_rice_params(s, sub, opt_order);
994
                if (score < best_score) {
995
                    best_score = score;
996
                    memcpy(coefs[opt_order-1], lpc_try, sizeof(*coefs));
997
                    improved=1;
998
                }
999
            }
1000
        } while(improved);
1001
    }
1002
1003
6580
    sub->order     = opt_order;
1004
6580
    sub->type_code = sub->type | (sub->order-1);
1005
6580
    sub->shift     = shift[sub->order-1];
1006
22186
    for (i = 0; i < sub->order; i++)
1007
15606
        sub->coefs[i] = coefs[sub->order-1][i];
1008
1009
6580
    if (s->bps_code * 4 + s->options.lpc_coeff_precision + av_log2(opt_order) <= 32) {
1010
5233
        s->flac_dsp.lpc16_encode(res, smp, n, sub->order, sub->coefs, sub->shift);
1011
    } else {
1012
1347
        s->flac_dsp.lpc32_encode(res, smp, n, sub->order, sub->coefs, sub->shift);
1013
    }
1014
1015
6580
    find_subframe_rice_params(s, sub, sub->order);
1016
1017
6580
    return subframe_count_exact(s, sub, sub->order);
1018
}
1019
1020
1021
4446
static int count_frame_header(FlacEncodeContext *s)
1022
{
1023
    uint8_t av_unused tmp;
1024
    int count;
1025
1026
    /*
1027
    <14> Sync code
1028
    <1>  Reserved
1029
    <1>  Blocking strategy
1030
    <4>  Block size in inter-channel samples
1031
    <4>  Sample rate
1032
    <4>  Channel assignment
1033
    <3>  Sample size in bits
1034
    <1>  Reserved
1035
    */
1036
4446
    count = 32;
1037
1038
    /* coded frame number */
1039

5802
    PUT_UTF8(s->frame_count, tmp, count += 8;)
1040
1041
    /* explicit block size */
1042
4446
    if (s->frame.bs_code[0] == 6)
1043
        count += 8;
1044
4446
    else if (s->frame.bs_code[0] == 7)
1045
12
        count += 16;
1046
1047
    /* explicit sample rate */
1048
4446
    count += ((s->sr_code[0] == 12) + (s->sr_code[0] > 12) * 2) * 8;
1049
1050
    /* frame header CRC-8 */
1051
4446
    count += 8;
1052
1053
4446
    return count;
1054
}
1055
1056
1057
4446
static int encode_frame(FlacEncodeContext *s)
1058
{
1059
    int ch;
1060
    uint64_t count;
1061
1062
4446
    count = count_frame_header(s);
1063
1064
17328
    for (ch = 0; ch < s->channels; ch++)
1065
12882
        count += encode_residual_ch(s, ch);
1066
1067
4446
    count += (8 - (count & 7)) & 7; // byte alignment
1068
4446
    count += 16;                    // CRC-16
1069
1070
4446
    count >>= 3;
1071
4446
    if (count > INT_MAX)
1072
        return AVERROR_BUG;
1073
4446
    return count;
1074
}
1075
1076
1077
4446
static void remove_wasted_bits(FlacEncodeContext *s)
1078
{
1079
    int ch, i;
1080
1081
17328
    for (ch = 0; ch < s->channels; ch++) {
1082
12882
        FlacSubframe *sub = &s->frame.subframes[ch];
1083
12882
        int32_t v         = 0;
1084
1085
68337366
        for (i = 0; i < s->frame.blocksize; i++) {
1086
68326738
            v |= sub->samples[i];
1087
68326738
            if (v & 1)
1088
2254
                break;
1089
        }
1090
1091

12882
        if (v && !(v & 1)) {
1092
5200
            v = ff_ctz(v);
1093
1094
34034000
            for (i = 0; i < s->frame.blocksize; i++)
1095
34028800
                sub->samples[i] >>= v;
1096
1097
5200
            sub->wasted = v;
1098
5200
            sub->obits -= v;
1099
1100
            /* for 24-bit, check if removing wasted bits makes the range better
1101
               suited for using RICE instead of RICE2 for entropy coding */
1102
5200
            if (sub->obits <= 17)
1103
5200
                sub->rc.coding_mode = CODING_MODE_RICE;
1104
        }
1105
    }
1106
4446
}
1107
1108
1109
2472
static int estimate_stereo_mode(const int32_t *left_ch, const int32_t *right_ch, int n,
1110
                                int max_rice_param)
1111
{
1112
    int i, best;
1113
    int32_t lt, rt;
1114
    uint64_t sum[4];
1115
    uint64_t score[4];
1116
    int k;
1117
1118
    /* calculate sum of 2nd order residual for each channel */
1119
2472
    sum[0] = sum[1] = sum[2] = sum[3] = 0;
1120
14267187
    for (i = 2; i < n; i++) {
1121
14264715
        lt = left_ch[i]  - 2*left_ch[i-1]  + left_ch[i-2];
1122
14264715
        rt = right_ch[i] - 2*right_ch[i-1] + right_ch[i-2];
1123
14264715
        sum[2] += FFABS((lt + rt) >> 1);
1124
14264715
        sum[3] += FFABS(lt - rt);
1125
14264715
        sum[0] += FFABS(lt);
1126
14264715
        sum[1] += FFABS(rt);
1127
    }
1128
    /* estimate bit counts */
1129
12360
    for (i = 0; i < 4; i++) {
1130
9888
        k      = find_optimal_param(2 * sum[i], n, max_rice_param);
1131
9888
        sum[i] = rice_encode_count( 2 * sum[i], n, k);
1132
    }
1133
1134
    /* calculate score for each mode */
1135
2472
    score[0] = sum[0] + sum[1];
1136
2472
    score[1] = sum[0] + sum[3];
1137
2472
    score[2] = sum[1] + sum[3];
1138
2472
    score[3] = sum[2] + sum[3];
1139
1140
    /* return mode with lowest score */
1141
2472
    best = 0;
1142
9888
    for (i = 1; i < 4; i++)
1143
7416
        if (score[i] < score[best])
1144
1740
            best = i;
1145
1146
2472
    return best;
1147
}
1148
1149
1150
/**
1151
 * Perform stereo channel decorrelation.
1152
 */
1153
4446
static void channel_decorrelation(FlacEncodeContext *s)
1154
{
1155
    FlacFrame *frame;
1156
    int32_t *left, *right;
1157
    int i, n;
1158
1159
4446
    frame = &s->frame;
1160
4446
    n     = frame->blocksize;
1161
4446
    left  = frame->subframes[0].samples;
1162
4446
    right = frame->subframes[1].samples;
1163
1164
4446
    if (s->channels != 2) {
1165
1610
        frame->ch_mode = FLAC_CHMODE_INDEPENDENT;
1166
1610
        return;
1167
    }
1168
1169
2836
    if (s->options.ch_mode < 0) {
1170
2472
        int max_rice_param = (1 << frame->subframes[0].rc.coding_mode) - 2;
1171
2472
        frame->ch_mode = estimate_stereo_mode(left, right, n, max_rice_param);
1172
    } else
1173
364
        frame->ch_mode = s->options.ch_mode;
1174
1175
    /* perform decorrelation and adjust bits-per-sample */
1176
2836
    if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
1177
1050
        return;
1178
1786
    if (frame->ch_mode == FLAC_CHMODE_MID_SIDE) {
1179
        int32_t tmp;
1180
1065516
        for (i = 0; i < n; i++) {
1181
1065265
            tmp      = left[i];
1182
1065265
            left[i]  = (tmp + right[i]) >> 1;
1183
1065265
            right[i] =  tmp - right[i];
1184
        }
1185
251
        frame->subframes[1].obits++;
1186
1535
    } else if (frame->ch_mode == FLAC_CHMODE_LEFT_SIDE) {
1187
6514126
        for (i = 0; i < n; i++)
1188
6512822
            right[i] = left[i] - right[i];
1189
1304
        frame->subframes[1].obits++;
1190
    } else {
1191
787821
        for (i = 0; i < n; i++)
1192
787590
            left[i] -= right[i];
1193
231
        frame->subframes[0].obits++;
1194
    }
1195
}
1196
1197
1198
4446
static void write_utf8(PutBitContext *pb, uint32_t val)
1199
{
1200
    uint8_t tmp;
1201

5802
    PUT_UTF8(val, tmp, put_bits(pb, 8, tmp);)
1202
4446
}
1203
1204
1205
4446
static void write_frame_header(FlacEncodeContext *s)
1206
{
1207
    FlacFrame *frame;
1208
    int crc;
1209
1210
4446
    frame = &s->frame;
1211
1212
4446
    put_bits(&s->pb, 16, 0xFFF8);
1213
4446
    put_bits(&s->pb, 4, frame->bs_code[0]);
1214
4446
    put_bits(&s->pb, 4, s->sr_code[0]);
1215
1216
4446
    if (frame->ch_mode == FLAC_CHMODE_INDEPENDENT)
1217
2660
        put_bits(&s->pb, 4, s->channels-1);
1218
    else
1219
1786
        put_bits(&s->pb, 4, frame->ch_mode + FLAC_MAX_CHANNELS - 1);
1220
1221
4446
    put_bits(&s->pb, 3, s->bps_code);
1222
4446
    put_bits(&s->pb, 1, 0);
1223
4446
    write_utf8(&s->pb, s->frame_count);
1224
1225
4446
    if (frame->bs_code[0] == 6)
1226
        put_bits(&s->pb, 8, frame->bs_code[1]);
1227
4446
    else if (frame->bs_code[0] == 7)
1228
12
        put_bits(&s->pb, 16, frame->bs_code[1]);
1229
1230
4446
    if (s->sr_code[0] == 12)
1231
918
        put_bits(&s->pb, 8, s->sr_code[1]);
1232
3528
    else if (s->sr_code[0] > 12)
1233
        put_bits(&s->pb, 16, s->sr_code[1]);
1234
1235
4446
    flush_put_bits(&s->pb);
1236
8892
    crc = av_crc(av_crc_get_table(AV_CRC_8_ATM), 0, s->pb.buf,
1237
4446
                 put_bits_count(&s->pb) >> 3);
1238
4446
    put_bits(&s->pb, 8, crc);
1239
4446
}
1240
1241
1242
4446
static void write_subframes(FlacEncodeContext *s)
1243
{
1244
    int ch;
1245
1246
17328
    for (ch = 0; ch < s->channels; ch++) {
1247
12882
        FlacSubframe *sub = &s->frame.subframes[ch];
1248
        int i, p, porder, psize;
1249
        int32_t *part_end;
1250
12882
        int32_t *res       =  sub->residual;
1251
12882
        int32_t *frame_end = &sub->residual[s->frame.blocksize];
1252
1253
        /* subframe header */
1254
12882
        put_bits(&s->pb, 1, 0);
1255
12882
        put_bits(&s->pb, 6, sub->type_code);
1256
12882
        put_bits(&s->pb, 1, !!sub->wasted);
1257
12882
        if (sub->wasted)
1258
5200
            put_bits(&s->pb, sub->wasted, 1);
1259
1260
        /* subframe */
1261
12882
        if (sub->type == FLAC_SUBFRAME_CONSTANT) {
1262
5428
            put_sbits(&s->pb, sub->obits, res[0]);
1263
7454
        } else if (sub->type == FLAC_SUBFRAME_VERBATIM) {
1264
            while (res < frame_end)
1265
                put_sbits(&s->pb, sub->obits, *res++);
1266
        } else {
1267
            /* warm-up samples */
1268
25652
            for (i = 0; i < sub->order; i++)
1269
18198
                put_sbits(&s->pb, sub->obits, *res++);
1270
1271
            /* LPC coefficients */
1272
7454
            if (sub->type == FLAC_SUBFRAME_LPC) {
1273
6580
                int cbits = s->options.lpc_coeff_precision;
1274
6580
                put_bits( &s->pb, 4, cbits-1);
1275
6580
                put_sbits(&s->pb, 5, sub->shift);
1276
22186
                for (i = 0; i < sub->order; i++)
1277
15606
                    put_sbits(&s->pb, cbits, sub->coefs[i]);
1278
            }
1279
1280
            /* rice-encoded block */
1281
7454
            put_bits(&s->pb, 2, sub->rc.coding_mode - 4);
1282
1283
            /* partition order */
1284
7454
            porder  = sub->rc.porder;
1285
7454
            psize   = s->frame.blocksize >> porder;
1286
7454
            put_bits(&s->pb, 4, porder);
1287
1288
            /* residual */
1289
7454
            part_end  = &sub->residual[psize];
1290
106027
            for (p = 0; p < 1 << porder; p++) {
1291
98573
                int k = sub->rc.params[p];
1292
98573
                put_bits(&s->pb, sub->rc.coding_mode, k);
1293
44840737
                while (res < part_end)
1294
44742164
                    set_sr_golomb_flac(&s->pb, *res++, k, INT32_MAX, 0);
1295
98573
                part_end = FFMIN(frame_end, part_end + psize);
1296
            }
1297
        }
1298
    }
1299
4446
}
1300
1301
1302
4446
static void write_frame_footer(FlacEncodeContext *s)
1303
{
1304
    int crc;
1305
4446
    flush_put_bits(&s->pb);
1306
8892
    crc = av_bswap16(av_crc(av_crc_get_table(AV_CRC_16_ANSI), 0, s->pb.buf,
1307
4446
                            put_bits_count(&s->pb)>>3));
1308
4446
    put_bits(&s->pb, 16, crc);
1309
4446
    flush_put_bits(&s->pb);
1310
4446
}
1311
1312
1313
4446
static int write_frame(FlacEncodeContext *s, AVPacket *avpkt)
1314
{
1315
4446
    init_put_bits(&s->pb, avpkt->data, avpkt->size);
1316
4446
    write_frame_header(s);
1317
4446
    write_subframes(s);
1318
4446
    write_frame_footer(s);
1319
4446
    return put_bits_count(&s->pb) >> 3;
1320
}
1321
1322
1323
4446
static int update_md5_sum(FlacEncodeContext *s, const void *samples)
1324
{
1325
    const uint8_t *buf;
1326
4446
    int buf_size = s->frame.blocksize * s->channels *
1327
4446
                   ((s->avctx->bits_per_raw_sample + 7) / 8);
1328
1329
4446
    if (s->avctx->bits_per_raw_sample > 16 || HAVE_BIGENDIAN) {
1330
118
        av_fast_malloc(&s->md5_buffer, &s->md5_buffer_size, buf_size);
1331
118
        if (!s->md5_buffer)
1332
            return AVERROR(ENOMEM);
1333
    }
1334
1335
4446
    if (s->avctx->bits_per_raw_sample <= 16) {
1336
4328
        buf = (const uint8_t *)samples;
1337
#if HAVE_BIGENDIAN
1338
        s->bdsp.bswap16_buf((uint16_t *) s->md5_buffer,
1339
                            (const uint16_t *) samples, buf_size / 2);
1340
        buf = s->md5_buffer;
1341
#endif
1342
    } else {
1343
        int i;
1344
118
        const int32_t *samples0 = samples;
1345
118
        uint8_t *tmp            = s->md5_buffer;
1346
1347
3840118
        for (i = 0; i < s->frame.blocksize * s->channels; i++) {
1348
3840000
            int32_t v = samples0[i] >> 8;
1349
3840000
            AV_WL24(tmp + 3*i, v);
1350
        }
1351
118
        buf = s->md5_buffer;
1352
    }
1353
4446
    av_md5_update(s->md5ctx, buf, buf_size);
1354
1355
4446
    return 0;
1356
}
1357
1358
1359
4470
static int flac_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
1360
                             const AVFrame *frame, int *got_packet_ptr)
1361
{
1362
    FlacEncodeContext *s;
1363
    int frame_bytes, out_bytes, ret;
1364
1365
4470
    s = avctx->priv_data;
1366
1367
    /* when the last block is reached, update the header in extradata */
1368
4470
    if (!frame) {
1369
24
        s->max_framesize = s->max_encoded_framesize;
1370
24
        av_md5_final(s->md5ctx, s->md5sum);
1371
24
        write_streaminfo(s, avctx->extradata);
1372
1373
#if FF_API_SIDEDATA_ONLY_PKT
1374
FF_DISABLE_DEPRECATION_WARNINGS
1375

24
        if (avctx->side_data_only_packets && !s->flushed) {
1376
FF_ENABLE_DEPRECATION_WARNINGS
1377
#else
1378
        if (!s->flushed) {
1379
#endif
1380
12
            uint8_t *side_data = av_packet_new_side_data(avpkt, AV_PKT_DATA_NEW_EXTRADATA,
1381
                                                         avctx->extradata_size);
1382
12
            if (!side_data)
1383
                return AVERROR(ENOMEM);
1384
12
            memcpy(side_data, avctx->extradata, avctx->extradata_size);
1385
1386
12
            avpkt->pts = s->next_pts;
1387
1388
12
            *got_packet_ptr = 1;
1389
12
            s->flushed = 1;
1390
        }
1391
1392
24
        return 0;
1393
    }
1394
1395
    /* change max_framesize for small final frame */
1396
4446
    if (frame->nb_samples < s->frame.blocksize) {
1397
12
        s->max_framesize = ff_flac_get_max_frame_size(frame->nb_samples,
1398
                                                      s->channels,
1399
                                                      avctx->bits_per_raw_sample);
1400
    }
1401
1402
4446
    init_frame(s, frame->nb_samples);
1403
1404
4446
    copy_samples(s, frame->data[0]);
1405
1406
4446
    channel_decorrelation(s);
1407
1408
4446
    remove_wasted_bits(s);
1409
1410
4446
    frame_bytes = encode_frame(s);
1411
1412
    /* Fall back on verbatim mode if the compressed frame is larger than it
1413
       would be if encoded uncompressed. */
1414

4446
    if (frame_bytes < 0 || frame_bytes > s->max_framesize) {
1415
        s->frame.verbatim_only = 1;
1416
        frame_bytes = encode_frame(s);
1417
        if (frame_bytes < 0) {
1418
            av_log(avctx, AV_LOG_ERROR, "Bad frame count\n");
1419
            return frame_bytes;
1420
        }
1421
    }
1422
1423
4446
    if ((ret = ff_alloc_packet2(avctx, avpkt, frame_bytes, 0)) < 0)
1424
        return ret;
1425
1426
4446
    out_bytes = write_frame(s, avpkt);
1427
1428
4446
    s->frame_count++;
1429
4446
    s->sample_count += frame->nb_samples;
1430
4446
    if ((ret = update_md5_sum(s, frame->data[0])) < 0) {
1431
        av_log(avctx, AV_LOG_ERROR, "Error updating MD5 checksum\n");
1432
        return ret;
1433
    }
1434
4446
    if (out_bytes > s->max_encoded_framesize)
1435
207
        s->max_encoded_framesize = out_bytes;
1436
4446
    if (out_bytes < s->min_framesize)
1437
43
        s->min_framesize = out_bytes;
1438
1439
4446
    avpkt->pts      = frame->pts;
1440
4446
    avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
1441
4446
    avpkt->size     = out_bytes;
1442
1443
4446
    s->next_pts = avpkt->pts + avpkt->duration;
1444
1445
4446
    *got_packet_ptr = 1;
1446
4446
    return 0;
1447
}
1448
1449
1450
28
static av_cold int flac_encode_close(AVCodecContext *avctx)
1451
{
1452
28
    if (avctx->priv_data) {
1453
28
        FlacEncodeContext *s = avctx->priv_data;
1454
28
        av_freep(&s->md5ctx);
1455
28
        av_freep(&s->md5_buffer);
1456
28
        ff_lpc_end(&s->lpc_ctx);
1457
    }
1458
28
    av_freep(&avctx->extradata);
1459
28
    avctx->extradata_size = 0;
1460
28
    return 0;
1461
}
1462
1463
#define FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
1464
static const AVOption options[] = {
1465
{ "lpc_coeff_precision", "LPC coefficient precision", offsetof(FlacEncodeContext, options.lpc_coeff_precision), AV_OPT_TYPE_INT, {.i64 = 15 }, 0, MAX_LPC_PRECISION, FLAGS },
1466
{ "lpc_type", "LPC algorithm", offsetof(FlacEncodeContext, options.lpc_type), AV_OPT_TYPE_INT, {.i64 = FF_LPC_TYPE_DEFAULT }, FF_LPC_TYPE_DEFAULT, FF_LPC_TYPE_NB-1, FLAGS, "lpc_type" },
1467
{ "none",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_NONE },     INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1468
{ "fixed",    NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_FIXED },    INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1469
{ "levinson", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_LEVINSON }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1470
{ "cholesky", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = FF_LPC_TYPE_CHOLESKY }, INT_MIN, INT_MAX, FLAGS, "lpc_type" },
1471
{ "lpc_passes", "Number of passes to use for Cholesky factorization during LPC analysis", offsetof(FlacEncodeContext, options.lpc_passes),  AV_OPT_TYPE_INT, {.i64 = 2 }, 1, INT_MAX, FLAGS },
1472
{ "min_partition_order",  NULL, offsetof(FlacEncodeContext, options.min_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
1473
{ "max_partition_order",  NULL, offsetof(FlacEncodeContext, options.max_partition_order),  AV_OPT_TYPE_INT, {.i64 = -1 },      -1, MAX_PARTITION_ORDER, FLAGS },
1474
{ "prediction_order_method", "Search method for selecting prediction order", offsetof(FlacEncodeContext, options.prediction_order_method), AV_OPT_TYPE_INT, {.i64 = -1 }, -1, ORDER_METHOD_LOG, FLAGS, "predm" },
1475
{ "estimation", NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_EST },    INT_MIN, INT_MAX, FLAGS, "predm" },
1476
{ "2level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_2LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1477
{ "4level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_4LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1478
{ "8level",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_8LEVEL }, INT_MIN, INT_MAX, FLAGS, "predm" },
1479
{ "search",     NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_SEARCH }, INT_MIN, INT_MAX, FLAGS, "predm" },
1480
{ "log",        NULL, 0, AV_OPT_TYPE_CONST, {.i64 = ORDER_METHOD_LOG },    INT_MIN, INT_MAX, FLAGS, "predm" },
1481
{ "ch_mode", "Stereo decorrelation mode", offsetof(FlacEncodeContext, options.ch_mode), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, FLAC_CHMODE_MID_SIDE, FLAGS, "ch_mode" },
1482
{ "auto",       NULL, 0, AV_OPT_TYPE_CONST, { .i64 = -1                      }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1483
{ "indep",      NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_INDEPENDENT }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1484
{ "left_side",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_LEFT_SIDE   }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1485
{ "right_side", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_RIGHT_SIDE  }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1486
{ "mid_side",   NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FLAC_CHMODE_MID_SIDE    }, INT_MIN, INT_MAX, FLAGS, "ch_mode" },
1487
{ "exact_rice_parameters", "Calculate rice parameters exactly", offsetof(FlacEncodeContext, options.exact_rice_parameters), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
1488
{ "multi_dim_quant",       "Multi-dimensional quantization",    offsetof(FlacEncodeContext, options.multi_dim_quant),       AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, FLAGS },
1489
{ "min_prediction_order", NULL, offsetof(FlacEncodeContext, options.min_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS },
1490
{ "max_prediction_order", NULL, offsetof(FlacEncodeContext, options.max_prediction_order), AV_OPT_TYPE_INT, { .i64 = -1 }, -1, MAX_LPC_ORDER, FLAGS },
1491
1492
{ NULL },
1493
};
1494
1495
static const AVClass flac_encoder_class = {
1496
    .class_name = "FLAC encoder",
1497
    .item_name  = av_default_item_name,
1498
    .option     = options,
1499
    .version    = LIBAVUTIL_VERSION_INT,
1500
};
1501
1502
AVCodec ff_flac_encoder = {
1503
    .name           = "flac",
1504
    .long_name      = NULL_IF_CONFIG_SMALL("FLAC (Free Lossless Audio Codec)"),
1505
    .type           = AVMEDIA_TYPE_AUDIO,
1506
    .id             = AV_CODEC_ID_FLAC,
1507
    .priv_data_size = sizeof(FlacEncodeContext),
1508
    .init           = flac_encode_init,
1509
    .encode2        = flac_encode_frame,
1510
    .close          = flac_encode_close,
1511
    .capabilities   = AV_CODEC_CAP_SMALL_LAST_FRAME | AV_CODEC_CAP_DELAY | AV_CODEC_CAP_LOSSLESS,
1512
    .sample_fmts    = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
1513
                                                     AV_SAMPLE_FMT_S32,
1514
                                                     AV_SAMPLE_FMT_NONE },
1515
    .priv_class     = &flac_encoder_class,
1516
};