GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/exr.c Lines: 833 1262 66.0 %
Date: 2021-03-07 19:55:24 Branches: 439 740 59.3 %

Line Branch Exec Source
1
/*
2
 * OpenEXR (.exr) image decoder
3
 * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4
 * Copyright (c) 2009 Jimmy Christensen
5
 *
6
 * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7
 *
8
 * This file is part of FFmpeg.
9
 *
10
 * FFmpeg is free software; you can redistribute it and/or
11
 * modify it under the terms of the GNU Lesser General Public
12
 * License as published by the Free Software Foundation; either
13
 * version 2.1 of the License, or (at your option) any later version.
14
 *
15
 * FFmpeg is distributed in the hope that it will be useful,
16
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18
 * Lesser General Public License for more details.
19
 *
20
 * You should have received a copy of the GNU Lesser General Public
21
 * License along with FFmpeg; if not, write to the Free Software
22
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23
 */
24
25
/**
26
 * @file
27
 * OpenEXR decoder
28
 * @author Jimmy Christensen
29
 *
30
 * For more information on the OpenEXR format, visit:
31
 *  http://openexr.com/
32
 */
33
34
#include <float.h>
35
#include <zlib.h>
36
37
#include "libavutil/avassert.h"
38
#include "libavutil/common.h"
39
#include "libavutil/imgutils.h"
40
#include "libavutil/intfloat.h"
41
#include "libavutil/avstring.h"
42
#include "libavutil/opt.h"
43
#include "libavutil/color_utils.h"
44
45
#include "avcodec.h"
46
#include "bytestream.h"
47
48
#if HAVE_BIGENDIAN
49
#include "bswapdsp.h"
50
#endif
51
52
#include "exrdsp.h"
53
#include "get_bits.h"
54
#include "internal.h"
55
#include "half2float.h"
56
#include "mathops.h"
57
#include "thread.h"
58
59
enum ExrCompr {
60
    EXR_RAW,
61
    EXR_RLE,
62
    EXR_ZIP1,
63
    EXR_ZIP16,
64
    EXR_PIZ,
65
    EXR_PXR24,
66
    EXR_B44,
67
    EXR_B44A,
68
    EXR_DWAA,
69
    EXR_DWAB,
70
    EXR_UNKN,
71
};
72
73
enum ExrPixelType {
74
    EXR_UINT,
75
    EXR_HALF,
76
    EXR_FLOAT,
77
    EXR_UNKNOWN,
78
};
79
80
enum ExrTileLevelMode {
81
    EXR_TILE_LEVEL_ONE,
82
    EXR_TILE_LEVEL_MIPMAP,
83
    EXR_TILE_LEVEL_RIPMAP,
84
    EXR_TILE_LEVEL_UNKNOWN,
85
};
86
87
enum ExrTileLevelRound {
88
    EXR_TILE_ROUND_UP,
89
    EXR_TILE_ROUND_DOWN,
90
    EXR_TILE_ROUND_UNKNOWN,
91
};
92
93
typedef struct HuffEntry {
94
    uint8_t  len;
95
    uint16_t sym;
96
    uint32_t code;
97
} HuffEntry;
98
99
typedef struct EXRChannel {
100
    int xsub, ysub;
101
    enum ExrPixelType pixel_type;
102
} EXRChannel;
103
104
typedef struct EXRTileAttribute {
105
    int32_t xSize;
106
    int32_t ySize;
107
    enum ExrTileLevelMode level_mode;
108
    enum ExrTileLevelRound level_round;
109
} EXRTileAttribute;
110
111
typedef struct EXRThreadData {
112
    uint8_t *uncompressed_data;
113
    int uncompressed_size;
114
115
    uint8_t *tmp;
116
    int tmp_size;
117
118
    uint8_t *bitmap;
119
    uint16_t *lut;
120
121
    uint8_t *ac_data;
122
    unsigned ac_size;
123
124
    uint8_t *dc_data;
125
    unsigned dc_size;
126
127
    uint8_t *rle_data;
128
    unsigned rle_size;
129
130
    uint8_t *rle_raw_data;
131
    unsigned rle_raw_size;
132
133
    float block[3][64];
134
135
    int ysize, xsize;
136
137
    int channel_line_size;
138
139
    int run_sym;
140
    HuffEntry *he;
141
    uint64_t *freq;
142
    VLC vlc;
143
} EXRThreadData;
144
145
typedef struct EXRContext {
146
    AVClass *class;
147
    AVFrame *picture;
148
    AVCodecContext *avctx;
149
    ExrDSPContext dsp;
150
151
#if HAVE_BIGENDIAN
152
    BswapDSPContext bbdsp;
153
#endif
154
155
    enum ExrCompr compression;
156
    enum ExrPixelType pixel_type;
157
    int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
158
    const AVPixFmtDescriptor *desc;
159
160
    int w, h;
161
    uint32_t sar;
162
    int32_t xmax, xmin;
163
    int32_t ymax, ymin;
164
    uint32_t xdelta, ydelta;
165
166
    int scan_lines_per_block;
167
168
    EXRTileAttribute tile_attr; /* header data attribute of tile */
169
    int is_tile; /* 0 if scanline, 1 if tile */
170
    int is_multipart;
171
    int current_part;
172
173
    int is_luma;/* 1 if there is an Y plane */
174
175
    GetByteContext gb;
176
    const uint8_t *buf;
177
    int buf_size;
178
179
    EXRChannel *channels;
180
    int nb_channels;
181
    int current_channel_offset;
182
    uint32_t chunk_count;
183
184
    EXRThreadData *thread_data;
185
186
    const char *layer;
187
    int selected_part;
188
189
    enum AVColorTransferCharacteristic apply_trc_type;
190
    float gamma;
191
    union av_intfloat32 gamma_table[65536];
192
193
    uint32_t mantissatable[2048];
194
    uint32_t exponenttable[64];
195
    uint16_t offsettable[64];
196
} EXRContext;
197
198
1838
static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
199
                          int uncompressed_size, EXRThreadData *td)
200
{
201
1838
    unsigned long dest_len = uncompressed_size;
202
203
1838
    if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
204
1838
        dest_len != uncompressed_size)
205
        return AVERROR_INVALIDDATA;
206
207
    av_assert1(uncompressed_size % 2 == 0);
208
209
1838
    s->dsp.predictor(td->tmp, uncompressed_size);
210
1838
    s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
211
212
1838
    return 0;
213
}
214
215
1386
static int rle(uint8_t *dst, const uint8_t *src,
216
               int compressed_size, int uncompressed_size)
217
{
218
1386
    uint8_t *d      = dst;
219
1386
    const int8_t *s = src;
220
1386
    int ssize       = compressed_size;
221
1386
    int dsize       = uncompressed_size;
222
1386
    uint8_t *dend   = d + dsize;
223
    int count;
224
225
378128
    while (ssize > 0) {
226
376742
        count = *s++;
227
228
376742
        if (count < 0) {
229
186494
            count = -count;
230
231
186494
            if ((dsize -= count) < 0 ||
232
186494
                (ssize -= count + 1) < 0)
233
                return AVERROR_INVALIDDATA;
234
235
3463010
            while (count--)
236
3276516
                *d++ = *s++;
237
        } else {
238
190248
            count++;
239
240
190248
            if ((dsize -= count) < 0 ||
241
190248
                (ssize -= 2) < 0)
242
                return AVERROR_INVALIDDATA;
243
244
3270228
            while (count--)
245
3079980
                *d++ = *s;
246
247
190248
            s++;
248
        }
249
    }
250
251
1386
    if (dend != d)
252
        return AVERROR_INVALIDDATA;
253
254
1386
    return 0;
255
}
256
257
1386
static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
258
                          int uncompressed_size, EXRThreadData *td)
259
{
260
1386
    rle(td->tmp, src, compressed_size, uncompressed_size);
261
262
    av_assert1(uncompressed_size % 2 == 0);
263
264
1386
    ctx->dsp.predictor(td->tmp, uncompressed_size);
265
1386
    ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
266
267
1386
    return 0;
268
}
269
270
#define USHORT_RANGE (1 << 16)
271
#define BITMAP_SIZE  (1 << 13)
272
273
60
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
274
{
275
60
    int i, k = 0;
276
277
3932220
    for (i = 0; i < USHORT_RANGE; i++)
278

3932160
        if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
279
30770
            lut[k++] = i;
280
281
60
    i = k - 1;
282
283
60
    memset(lut + k, 0, (USHORT_RANGE - k) * 2);
284
285
60
    return i;
286
}
287
288
60
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
289
{
290
    int i;
291
292
1641504
    for (i = 0; i < dsize; ++i)
293
1641444
        dst[i] = lut[dst[i]];
294
60
}
295
296
#define HUF_ENCBITS 16  // literal (value) bit length
297
#define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1)  // encoding table size
298
299
60
static void huf_canonical_code_table(uint64_t *freq)
300
{
301
60
    uint64_t c, n[59] = { 0 };
302
    int i;
303
304
3932280
    for (i = 0; i < HUF_ENCSIZE; i++)
305
3932220
        n[freq[i]] += 1;
306
307
60
    c = 0;
308
3540
    for (i = 58; i > 0; --i) {
309
3480
        uint64_t nc = ((c + n[i]) >> 1);
310
3480
        n[i] = c;
311
3480
        c    = nc;
312
    }
313
314
3932280
    for (i = 0; i < HUF_ENCSIZE; ++i) {
315
3932220
        int l = freq[i];
316
317
3932220
        if (l > 0)
318
12834
            freq[i] = l | (n[l]++ << 6);
319
    }
320
60
}
321
322
#define SHORT_ZEROCODE_RUN  59
323
#define LONG_ZEROCODE_RUN   63
324
#define SHORTEST_LONG_RUN   (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
325
#define LONGEST_LONG_RUN    (255 + SHORTEST_LONG_RUN)
326
327
60
static int huf_unpack_enc_table(GetByteContext *gb,
328
                                int32_t im, int32_t iM, uint64_t *freq)
329
{
330
    GetBitContext gbit;
331
60
    int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
332
60
    if (ret < 0)
333
        return ret;
334
335
33272
    for (; im <= iM; im++) {
336
33212
        uint64_t l = freq[im] = get_bits(&gbit, 6);
337
338
33212
        if (l == LONG_ZEROCODE_RUN) {
339
16678
            int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
340
341
16678
            if (im + zerun > iM + 1)
342
                return AVERROR_INVALIDDATA;
343
344
3927930
            while (zerun--)
345
3911252
                freq[im++] = 0;
346
347
16678
            im--;
348
16534
        } else if (l >= SHORT_ZEROCODE_RUN) {
349
2106
            int zerun = l - SHORT_ZEROCODE_RUN + 2;
350
351
2106
            if (im + zerun > iM + 1)
352
                return AVERROR_INVALIDDATA;
353
354
8646
            while (zerun--)
355
6540
                freq[im++] = 0;
356
357
2106
            im--;
358
        }
359
    }
360
361
60
    bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
362
60
    huf_canonical_code_table(freq);
363
364
60
    return 0;
365
}
366
367
60
static int huf_build_dec_table(EXRContext *s,
368
                               EXRThreadData *td, int im, int iM)
369
{
370
60
    int j = 0;
371
372
60
    td->run_sym = -1;
373
3932220
    for (int i = im; i < iM; i++) {
374
3932160
        td->he[j].sym = i;
375
3932160
        td->he[j].len = td->freq[i] & 63;
376
3932160
        td->he[j].code = td->freq[i] >> 6;
377
3932160
        if (td->he[j].len > 32) {
378
            avpriv_request_sample(s->avctx, "Too big code length");
379
            return AVERROR_PATCHWELCOME;
380
        }
381
3932160
        if (td->he[j].len > 0)
382
12774
            j++;
383
        else
384
3919386
            td->run_sym = i;
385
    }
386
387
60
    if (im > 0)
388
        td->run_sym = 0;
389
60
    else if (iM < 65535)
390
        td->run_sym = 65535;
391
392
60
    if (td->run_sym == -1) {
393
        avpriv_request_sample(s->avctx, "No place for run symbol");
394
        return AVERROR_PATCHWELCOME;
395
    }
396
397
60
    td->he[j].sym = td->run_sym;
398
60
    td->he[j].len = td->freq[iM] & 63;
399
60
    if (td->he[j].len > 32) {
400
        avpriv_request_sample(s->avctx, "Too big code length");
401
        return AVERROR_PATCHWELCOME;
402
    }
403
60
    td->he[j].code = td->freq[iM] >> 6;
404
60
    j++;
405
406
60
    ff_free_vlc(&td->vlc);
407
60
    return ff_init_vlc_sparse(&td->vlc, 12, j,
408
60
                              &td->he[0].len, sizeof(td->he[0]), sizeof(td->he[0].len),
409
60
                              &td->he[0].code, sizeof(td->he[0]), sizeof(td->he[0].code),
410
60
                              &td->he[0].sym, sizeof(td->he[0]), sizeof(td->he[0].sym), 0);
411
}
412
413
60
static int huf_decode(VLC *vlc, GetByteContext *gb, int nbits, int run_sym,
414
                      int no, uint16_t *out)
415
{
416
    GetBitContext gbit;
417
60
    int oe = 0;
418
419
60
    init_get_bits(&gbit, gb->buffer, nbits);
420

427022
    while (get_bits_left(&gbit) > 0 && oe < no) {
421
426962
        uint16_t x = get_vlc2(&gbit, vlc->table, 12, 2);
422
423
426962
        if (x == run_sym) {
424
6774
            int run = get_bits(&gbit, 8);
425
6774
            uint16_t fill = out[oe - 1];
426
427
1228030
            while (run-- > 0)
428
1221256
                out[oe++] = fill;
429
        } else {
430
420188
            out[oe++] = x;
431
        }
432
    }
433
434
60
    return 0;
435
}
436
437
60
static int huf_uncompress(EXRContext *s,
438
                          EXRThreadData *td,
439
                          GetByteContext *gb,
440
                          uint16_t *dst, int dst_size)
441
{
442
    int32_t im, iM;
443
    uint32_t nBits;
444
    int ret;
445
446
60
    im       = bytestream2_get_le32(gb);
447
60
    iM       = bytestream2_get_le32(gb);
448
60
    bytestream2_skip(gb, 4);
449
60
    nBits = bytestream2_get_le32(gb);
450

60
    if (im < 0 || im >= HUF_ENCSIZE ||
451
60
        iM < 0 || iM >= HUF_ENCSIZE)
452
        return AVERROR_INVALIDDATA;
453
454
60
    bytestream2_skip(gb, 4);
455
456
60
    if (!td->freq)
457
14
        td->freq = av_malloc_array(HUF_ENCSIZE, sizeof(*td->freq));
458
60
    if (!td->he)
459
14
        td->he = av_calloc(HUF_ENCSIZE, sizeof(*td->he));
460

60
    if (!td->freq || !td->he) {
461
        ret = AVERROR(ENOMEM);
462
        return ret;
463
    }
464
465
60
    memset(td->freq, 0, sizeof(*td->freq) * HUF_ENCSIZE);
466
60
    if ((ret = huf_unpack_enc_table(gb, im, iM, td->freq)) < 0)
467
        return ret;
468
469
60
    if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
470
        ret = AVERROR_INVALIDDATA;
471
        return ret;
472
    }
473
474
60
    if ((ret = huf_build_dec_table(s, td, im, iM)) < 0)
475
        return ret;
476
60
    return huf_decode(&td->vlc, gb, nBits, td->run_sym, dst_size, dst);
477
}
478
479
2183418
static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
480
{
481
2183418
    int16_t ls = l;
482
2183418
    int16_t hs = h;
483
2183418
    int hi     = hs;
484
2183418
    int ai     = ls + (hi & 1) + (hi >> 1);
485
2183418
    int16_t as = ai;
486
2183418
    int16_t bs = ai - hi;
487
488
2183418
    *a = as;
489
2183418
    *b = bs;
490
2183418
}
491
492
#define NBITS      16
493
#define A_OFFSET  (1 << (NBITS - 1))
494
#define MOD_MASK  ((1 << NBITS) - 1)
495
496
static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
497
{
498
    int m  = l;
499
    int d  = h;
500
    int bb = (m - (d >> 1)) & MOD_MASK;
501
    int aa = (d + bb - A_OFFSET) & MOD_MASK;
502
    *b = bb;
503
    *a = aa;
504
}
505
506
204
static void wav_decode(uint16_t *in, int nx, int ox,
507
                       int ny, int oy, uint16_t mx)
508
{
509
204
    int w14 = (mx < (1 << 14));
510
204
    int n   = (nx > ny) ? ny : nx;
511
204
    int p   = 1;
512
    int p2;
513
514
1386
    while (p <= n)
515
1182
        p <<= 1;
516
517
204
    p >>= 1;
518
204
    p2  = p;
519
204
    p >>= 1;
520
521
1182
    while (p >= 1) {
522
978
        uint16_t *py = in;
523
978
        uint16_t *ey = in + oy * (ny - p2);
524
        uint16_t i00, i01, i10, i11;
525
978
        int oy1 = oy * p;
526
978
        int oy2 = oy * p2;
527
978
        int ox1 = ox * p;
528
978
        int ox2 = ox * p2;
529
530
6858
        for (; py <= ey; py += oy2) {
531
5880
            uint16_t *px = py;
532
5880
            uint16_t *ex = py + ox * (nx - p2);
533
534
551382
            for (; px <= ex; px += ox2) {
535
545502
                uint16_t *p01 = px + ox1;
536
545502
                uint16_t *p10 = px + oy1;
537
545502
                uint16_t *p11 = p10 + ox1;
538
539
545502
                if (w14) {
540
545502
                    wdec14(*px, *p10, &i00, &i10);
541
545502
                    wdec14(*p01, *p11, &i01, &i11);
542
545502
                    wdec14(i00, i01, px, p01);
543
545502
                    wdec14(i10, i11, p10, p11);
544
                } else {
545
                    wdec16(*px, *p10, &i00, &i10);
546
                    wdec16(*p01, *p11, &i01, &i11);
547
                    wdec16(i00, i01, px, p01);
548
                    wdec16(i10, i11, p10, p11);
549
                }
550
            }
551
552
5880
            if (nx & p) {
553
648
                uint16_t *p10 = px + oy1;
554
555
648
                if (w14)
556
648
                    wdec14(*px, *p10, &i00, p10);
557
                else
558
                    wdec16(*px, *p10, &i00, p10);
559
560
648
                *px = i00;
561
            }
562
        }
563
564
978
        if (ny & p) {
565
30
            uint16_t *px = py;
566
30
            uint16_t *ex = py + ox * (nx - p2);
567
568
792
            for (; px <= ex; px += ox2) {
569
762
                uint16_t *p01 = px + ox1;
570
571
762
                if (w14)
572
762
                    wdec14(*px, *p01, &i00, p01);
573
                else
574
                    wdec16(*px, *p01, &i00, p01);
575
576
762
                *px = i00;
577
            }
578
        }
579
580
978
        p2  = p;
581
978
        p >>= 1;
582
    }
583
204
}
584
585
60
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
586
                          int dsize, EXRThreadData *td)
587
{
588
    GetByteContext gb;
589
    uint16_t maxval, min_non_zero, max_non_zero;
590
    uint16_t *ptr;
591
60
    uint16_t *tmp = (uint16_t *)td->tmp;
592
    uint16_t *out;
593
    uint16_t *in;
594
    int ret, i, j;
595
    int pixel_half_size;/* 1 for half, 2 for float and uint32 */
596
    EXRChannel *channel;
597
    int tmp_offset;
598
599
60
    if (!td->bitmap)
600
14
        td->bitmap = av_malloc(BITMAP_SIZE);
601
60
    if (!td->lut)
602
14
        td->lut = av_malloc(1 << 17);
603

60
    if (!td->bitmap || !td->lut) {
604
        av_freep(&td->bitmap);
605
        av_freep(&td->lut);
606
        return AVERROR(ENOMEM);
607
    }
608
609
60
    bytestream2_init(&gb, src, ssize);
610
60
    min_non_zero = bytestream2_get_le16(&gb);
611
60
    max_non_zero = bytestream2_get_le16(&gb);
612
613
60
    if (max_non_zero >= BITMAP_SIZE)
614
        return AVERROR_INVALIDDATA;
615
616
60
    memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
617
60
    if (min_non_zero <= max_non_zero)
618
60
        bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
619
60
                               max_non_zero - min_non_zero + 1);
620
60
    memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
621
622
60
    maxval = reverse_lut(td->bitmap, td->lut);
623
624
60
    bytestream2_skip(&gb, 4);
625
60
    ret = huf_uncompress(s, td, &gb, tmp, dsize / sizeof(uint16_t));
626
60
    if (ret)
627
        return ret;
628
629
60
    ptr = tmp;
630
240
    for (i = 0; i < s->nb_channels; i++) {
631
180
        channel = &s->channels[i];
632
633
180
        if (channel->pixel_type == EXR_HALF)
634
156
            pixel_half_size = 1;
635
        else
636
24
            pixel_half_size = 2;
637
638
384
        for (j = 0; j < pixel_half_size; j++)
639
204
            wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
640
204
                       td->xsize * pixel_half_size, maxval);
641
180
        ptr += td->xsize * td->ysize * pixel_half_size;
642
    }
643
644
60
    apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
645
646
60
    out = (uint16_t *)td->uncompressed_data;
647
1842
    for (i = 0; i < td->ysize; i++) {
648
1782
        tmp_offset = 0;
649
7128
        for (j = 0; j < s->nb_channels; j++) {
650
5346
            channel = &s->channels[j];
651
5346
            if (channel->pixel_type == EXR_HALF)
652
4578
                pixel_half_size = 1;
653
            else
654
768
                pixel_half_size = 2;
655
656
5346
            in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
657
5346
            tmp_offset += pixel_half_size;
658
659
#if HAVE_BIGENDIAN
660
            s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
661
#else
662
5346
            memcpy(out, in, td->xsize * 2 * pixel_half_size);
663
#endif
664
5346
            out += td->xsize * pixel_half_size;
665
        }
666
    }
667
668
60
    return 0;
669
}
670
671
122
static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
672
                            int compressed_size, int uncompressed_size,
673
                            EXRThreadData *td)
674
{
675
122
    unsigned long dest_len, expected_len = 0;
676
122
    const uint8_t *in = td->tmp;
677
    uint8_t *out;
678
    int c, i, j;
679
680
558
    for (i = 0; i < s->nb_channels; i++) {
681
436
        if (s->channels[i].pixel_type == EXR_FLOAT) {
682
62
            expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
683
374
        } else if (s->channels[i].pixel_type == EXR_HALF) {
684
362
            expected_len += (td->xsize * td->ysize * 2);
685
        } else {//UINT 32
686
12
            expected_len += (td->xsize * td->ysize * 4);
687
        }
688
    }
689
690
122
    dest_len = expected_len;
691
692
122
    if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
693
        return AVERROR_INVALIDDATA;
694
122
    } else if (dest_len != expected_len) {
695
        return AVERROR_INVALIDDATA;
696
    }
697
698
122
    out = td->uncompressed_data;
699
1900
    for (i = 0; i < td->ysize; i++)
700
7678
        for (c = 0; c < s->nb_channels; c++) {
701
5900
            EXRChannel *channel = &s->channels[c];
702
            const uint8_t *ptr[4];
703
5900
            uint32_t pixel = 0;
704
705

5900
            switch (channel->pixel_type) {
706
496
            case EXR_FLOAT:
707
496
                ptr[0] = in;
708
496
                ptr[1] = ptr[0] + td->xsize;
709
496
                ptr[2] = ptr[1] + td->xsize;
710
496
                in     = ptr[2] + td->xsize;
711
712
6448
                for (j = 0; j < td->xsize; ++j) {
713
5952
                    uint32_t diff = ((unsigned)*(ptr[0]++) << 24) |
714
5952
                                    (*(ptr[1]++) << 16) |
715
5952
                                    (*(ptr[2]++) << 8);
716
5952
                    pixel += diff;
717
5952
                    bytestream_put_le32(&out, pixel);
718
                }
719
496
                break;
720
5302
            case EXR_HALF:
721
5302
                ptr[0] = in;
722
5302
                ptr[1] = ptr[0] + td->xsize;
723
5302
                in     = ptr[1] + td->xsize;
724
3851380
                for (j = 0; j < td->xsize; j++) {
725
3846078
                    uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
726
727
3846078
                    pixel += diff;
728
3846078
                    bytestream_put_le16(&out, pixel);
729
                }
730
5302
                break;
731
102
            case EXR_UINT:
732
102
                ptr[0] = in;
733
102
                ptr[1] = ptr[0] + s->xdelta;
734
102
                ptr[2] = ptr[1] + s->xdelta;
735
102
                ptr[3] = ptr[2] + s->xdelta;
736
102
                in     = ptr[3] + s->xdelta;
737
738
1380
                for (j = 0; j < s->xdelta; ++j) {
739
1278
                    uint32_t diff = ((uint32_t)*(ptr[0]++) << 24) |
740
1278
                    (*(ptr[1]++) << 16) |
741
1278
                    (*(ptr[2]++) << 8 ) |
742
1278
                    (*(ptr[3]++));
743
1278
                    pixel += diff;
744
1278
                    bytestream_put_le32(&out, pixel);
745
                }
746
102
                break;
747
            default:
748
                return AVERROR_INVALIDDATA;
749
            }
750
        }
751
752
122
    return 0;
753
}
754
755
118558
static void unpack_14(const uint8_t b[14], uint16_t s[16])
756
{
757
118558
    unsigned short shift = (b[ 2] >> 2) & 15;
758
118558
    unsigned short bias = (0x20 << shift);
759
    int i;
760
761
118558
    s[ 0] = (b[0] << 8) | b[1];
762
763
118558
    s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
764
118558
    s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
765
118558
    s[12] = s[ 8] +   ((b[ 4]                       & 0x3f) << shift) - bias;
766
767
118558
    s[ 1] = s[ 0] +   ((b[ 5] >> 2)                         << shift) - bias;
768
118558
    s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
769
118558
    s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
770
118558
    s[13] = s[12] +   ((b[ 7]                       & 0x3f) << shift) - bias;
771
772
118558
    s[ 2] = s[ 1] +   ((b[ 8] >> 2)                         << shift) - bias;
773
118558
    s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
774
118558
    s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
775
118558
    s[14] = s[13] +   ((b[10]                       & 0x3f) << shift) - bias;
776
777
118558
    s[ 3] = s[ 2] +   ((b[11] >> 2)                         << shift) - bias;
778
118558
    s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
779
118558
    s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
780
118558
    s[15] = s[14] +   ((b[13]                       & 0x3f) << shift) - bias;
781
782
2015486
    for (i = 0; i < 16; ++i) {
783
1896928
        if (s[i] & 0x8000)
784
1884694
            s[i] &= 0x7fff;
785
        else
786
12234
            s[i] = ~s[i];
787
    }
788
118558
}
789
790
212
static void unpack_3(const uint8_t b[3], uint16_t s[16])
791
{
792
    int i;
793
794
212
    s[0] = (b[0] << 8) | b[1];
795
796
212
    if (s[0] & 0x8000)
797
210
        s[0] &= 0x7fff;
798
    else
799
2
        s[0] = ~s[0];
800
801
3392
    for (i = 1; i < 16; i++)
802
3180
        s[i] = s[0];
803
212
}
804
805
806
46
static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
807
                          int uncompressed_size, EXRThreadData *td) {
808
46
    const int8_t *sr = src;
809
46
    int stay_to_uncompress = compressed_size;
810
    int nb_b44_block_w, nb_b44_block_h;
811
    int index_tl_x, index_tl_y, index_out, index_tmp;
812
    uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
813
    int c, iY, iX, y, x;
814
46
    int target_channel_offset = 0;
815
816
    /* calc B44 block count */
817
46
    nb_b44_block_w = td->xsize / 4;
818
46
    if ((td->xsize % 4) != 0)
819
26
        nb_b44_block_w++;
820
821
46
    nb_b44_block_h = td->ysize / 4;
822
46
    if ((td->ysize % 4) != 0)
823
12
        nb_b44_block_h++;
824
825
312
    for (c = 0; c < s->nb_channels; c++) {
826
266
        if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
827
918
            for (iY = 0; iY < nb_b44_block_h; iY++) {
828
119518
                for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
829
118770
                    if (stay_to_uncompress < 3) {
830
                        av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
831
                        return AVERROR_INVALIDDATA;
832
                    }
833
834
118770
                    if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
835
212
                        unpack_3(sr, tmp_buffer);
836
212
                        sr += 3;
837
212
                        stay_to_uncompress -= 3;
838
                    }  else {/* B44 Block */
839
118558
                        if (stay_to_uncompress < 14) {
840
                            av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
841
                            return AVERROR_INVALIDDATA;
842
                        }
843
118558
                        unpack_14(sr, tmp_buffer);
844
118558
                        sr += 14;
845
118558
                        stay_to_uncompress -= 14;
846
                    }
847
848
                    /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
849
118770
                    index_tl_x = iX * 4;
850
118770
                    index_tl_y = iY * 4;
851
852

591522
                    for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
853

2360726
                        for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
854
1887974
                            index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
855
1887974
                            index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
856
1887974
                            td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
857
1887974
                            td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
858
                        }
859
                    }
860
                }
861
            }
862
170
            target_channel_offset += 2;
863
        } else {/* Float or UINT 32 channel */
864
96
            if (stay_to_uncompress < td->ysize * td->xsize * 4) {
865
                av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
866
                return AVERROR_INVALIDDATA;
867
            }
868
869
896
            for (y = 0; y < td->ysize; y++) {
870
800
                index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
871
800
                memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
872
800
                sr += td->xsize * 4;
873
            }
874
96
            target_channel_offset += 4;
875
876
96
            stay_to_uncompress -= td->ysize * td->xsize * 4;
877
        }
878
    }
879
880
46
    return 0;
881
}
882
883
static int ac_uncompress(EXRContext *s, GetByteContext *gb, float *block)
884
{
885
    int ret = 0, n = 1;
886
887
    while (n < 64) {
888
        uint16_t val = bytestream2_get_ne16(gb);
889
890
        if (val == 0xff00) {
891
            n = 64;
892
        } else if ((val >> 8) == 0xff) {
893
            n += val & 0xff;
894
        } else {
895
            ret = n;
896
            block[ff_zigzag_direct[n]] = av_int2float(half2float(val,
897
                                                      s->mantissatable,
898
                                                      s->exponenttable,
899
                                                      s->offsettable));
900
            n++;
901
        }
902
    }
903
904
    return ret;
905
}
906
907
static void idct_1d(float *blk, int step)
908
{
909
    const float a = .5f * cosf(    M_PI / 4.f);
910
    const float b = .5f * cosf(    M_PI / 16.f);
911
    const float c = .5f * cosf(    M_PI / 8.f);
912
    const float d = .5f * cosf(3.f*M_PI / 16.f);
913
    const float e = .5f * cosf(5.f*M_PI / 16.f);
914
    const float f = .5f * cosf(3.f*M_PI / 8.f);
915
    const float g = .5f * cosf(7.f*M_PI / 16.f);
916
917
    float alpha[4], beta[4], theta[4], gamma[4];
918
919
    alpha[0] = c * blk[2 * step];
920
    alpha[1] = f * blk[2 * step];
921
    alpha[2] = c * blk[6 * step];
922
    alpha[3] = f * blk[6 * step];
923
924
    beta[0] = b * blk[1 * step] + d * blk[3 * step] + e * blk[5 * step] + g * blk[7 * step];
925
    beta[1] = d * blk[1 * step] - g * blk[3 * step] - b * blk[5 * step] - e * blk[7 * step];
926
    beta[2] = e * blk[1 * step] - b * blk[3 * step] + g * blk[5 * step] + d * blk[7 * step];
927
    beta[3] = g * blk[1 * step] - e * blk[3 * step] + d * blk[5 * step] - b * blk[7 * step];
928
929
    theta[0] = a * (blk[0 * step] + blk[4 * step]);
930
    theta[3] = a * (blk[0 * step] - blk[4 * step]);
931
932
    theta[1] = alpha[0] + alpha[3];
933
    theta[2] = alpha[1] - alpha[2];
934
935
    gamma[0] = theta[0] + theta[1];
936
    gamma[1] = theta[3] + theta[2];
937
    gamma[2] = theta[3] - theta[2];
938
    gamma[3] = theta[0] - theta[1];
939
940
    blk[0 * step] = gamma[0] + beta[0];
941
    blk[1 * step] = gamma[1] + beta[1];
942
    blk[2 * step] = gamma[2] + beta[2];
943
    blk[3 * step] = gamma[3] + beta[3];
944
945
    blk[4 * step] = gamma[3] - beta[3];
946
    blk[5 * step] = gamma[2] - beta[2];
947
    blk[6 * step] = gamma[1] - beta[1];
948
    blk[7 * step] = gamma[0] - beta[0];
949
}
950
951
static void dct_inverse(float *block)
952
{
953
    for (int i = 0; i < 8; i++)
954
        idct_1d(block + i, 8);
955
956
    for (int i = 0; i < 8; i++) {
957
        idct_1d(block, 1);
958
        block += 8;
959
    }
960
}
961
962
static void convert(float y, float u, float v,
963
                    float *b, float *g, float *r)
964
{
965
    *r = y               + 1.5747f * v;
966
    *g = y - 0.1873f * u - 0.4682f * v;
967
    *b = y + 1.8556f * u;
968
}
969
970
static float to_linear(float x, float scale)
971
{
972
    float ax = fabsf(x);
973
974
    if (ax <= 1.f) {
975
        return FFSIGN(x) * powf(ax, 2.2f * scale);
976
    } else {
977
        const float log_base = expf(2.2f * scale);
978
979
        return FFSIGN(x) * powf(log_base, ax - 1.f);
980
    }
981
}
982
983
static int dwa_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
984
                          int uncompressed_size, EXRThreadData *td)
985
{
986
    int64_t version, lo_usize, lo_size;
987
    int64_t ac_size, dc_size, rle_usize, rle_csize, rle_raw_size;
988
    int64_t ac_count, dc_count, ac_compression;
989
    const int dc_w = td->xsize >> 3;
990
    const int dc_h = td->ysize >> 3;
991
    GetByteContext gb, agb;
992
    int skip, ret;
993
994
    if (compressed_size <= 88)
995
        return AVERROR_INVALIDDATA;
996
997
    version = AV_RL64(src + 0);
998
    if (version != 2)
999
        return AVERROR_INVALIDDATA;
1000
1001
    lo_usize = AV_RL64(src + 8);
1002
    lo_size = AV_RL64(src + 16);
1003
    ac_size = AV_RL64(src + 24);
1004
    dc_size = AV_RL64(src + 32);
1005
    rle_csize = AV_RL64(src + 40);
1006
    rle_usize = AV_RL64(src + 48);
1007
    rle_raw_size = AV_RL64(src + 56);
1008
    ac_count = AV_RL64(src + 64);
1009
    dc_count = AV_RL64(src + 72);
1010
    ac_compression = AV_RL64(src + 80);
1011
1012
    if (compressed_size < 88LL + lo_size + ac_size + dc_size + rle_csize)
1013
        return AVERROR_INVALIDDATA;
1014
1015
    bytestream2_init(&gb, src + 88, compressed_size - 88);
1016
    skip = bytestream2_get_le16(&gb);
1017
    if (skip < 2)
1018
        return AVERROR_INVALIDDATA;
1019
1020
    bytestream2_skip(&gb, skip - 2);
1021
1022
    if (lo_size > 0) {
1023
        if (lo_usize > uncompressed_size)
1024
            return AVERROR_INVALIDDATA;
1025
        bytestream2_skip(&gb, lo_size);
1026
    }
1027
1028
    if (ac_size > 0) {
1029
        unsigned long dest_len = ac_count * 2LL;
1030
        GetByteContext agb = gb;
1031
1032
        if (ac_count > 3LL * td->xsize * s->scan_lines_per_block)
1033
            return AVERROR_INVALIDDATA;
1034
1035
        av_fast_padded_malloc(&td->ac_data, &td->ac_size, dest_len);
1036
        if (!td->ac_data)
1037
            return AVERROR(ENOMEM);
1038
1039
        switch (ac_compression) {
1040
        case 0:
1041
            ret = huf_uncompress(s, td, &agb, (int16_t *)td->ac_data, ac_count);
1042
            if (ret < 0)
1043
                return ret;
1044
            break;
1045
        case 1:
1046
            if (uncompress(td->ac_data, &dest_len, agb.buffer, ac_size) != Z_OK ||
1047
                dest_len != ac_count * 2LL)
1048
                return AVERROR_INVALIDDATA;
1049
            break;
1050
        default:
1051
            return AVERROR_INVALIDDATA;
1052
        }
1053
1054
        bytestream2_skip(&gb, ac_size);
1055
    }
1056
1057
    if (dc_size > 0) {
1058
        unsigned long dest_len = dc_count * 2LL;
1059
        GetByteContext agb = gb;
1060
1061
        if (dc_count > (6LL * td->xsize * td->ysize + 63) / 64)
1062
            return AVERROR_INVALIDDATA;
1063
1064
        av_fast_padded_malloc(&td->dc_data, &td->dc_size, FFALIGN(dest_len, 64) * 2);
1065
        if (!td->dc_data)
1066
            return AVERROR(ENOMEM);
1067
1068
        if (uncompress(td->dc_data + FFALIGN(dest_len, 64), &dest_len, agb.buffer, dc_size) != Z_OK ||
1069
            (dest_len != dc_count * 2LL))
1070
            return AVERROR_INVALIDDATA;
1071
1072
        s->dsp.predictor(td->dc_data + FFALIGN(dest_len, 64), dest_len);
1073
        s->dsp.reorder_pixels(td->dc_data, td->dc_data + FFALIGN(dest_len, 64), dest_len);
1074
1075
        bytestream2_skip(&gb, dc_size);
1076
    }
1077
1078
    if (rle_raw_size > 0 && rle_csize > 0 && rle_usize > 0) {
1079
        unsigned long dest_len = rle_usize;
1080
1081
        av_fast_padded_malloc(&td->rle_data, &td->rle_size, rle_usize);
1082
        if (!td->rle_data)
1083
            return AVERROR(ENOMEM);
1084
1085
        av_fast_padded_malloc(&td->rle_raw_data, &td->rle_raw_size, rle_raw_size);
1086
        if (!td->rle_raw_data)
1087
            return AVERROR(ENOMEM);
1088
1089
        if (uncompress(td->rle_data, &dest_len, gb.buffer, rle_csize) != Z_OK ||
1090
            (dest_len != rle_usize))
1091
            return AVERROR_INVALIDDATA;
1092
1093
        ret = rle(td->rle_raw_data, td->rle_data, rle_usize, rle_raw_size);
1094
        if (ret < 0)
1095
            return ret;
1096
        bytestream2_skip(&gb, rle_csize);
1097
    }
1098
1099
    bytestream2_init(&agb, td->ac_data, ac_count * 2);
1100
1101
    for (int y = 0; y < td->ysize; y += 8) {
1102
        for (int x = 0; x < td->xsize; x += 8) {
1103
            memset(td->block, 0, sizeof(td->block));
1104
1105
            for (int j = 0; j < 3; j++) {
1106
                float *block = td->block[j];
1107
                const int idx = (x >> 3) + (y >> 3) * dc_w + dc_w * dc_h * j;
1108
                uint16_t *dc = (uint16_t *)td->dc_data;
1109
                union av_intfloat32 dc_val;
1110
1111
                dc_val.i = half2float(dc[idx], s->mantissatable,
1112
                                      s->exponenttable, s->offsettable);
1113
1114
                block[0] = dc_val.f;
1115
                ac_uncompress(s, &agb, block);
1116
                dct_inverse(block);
1117
            }
1118
1119
            {
1120
                const float scale = s->pixel_type == EXR_FLOAT ? 2.f : 1.f;
1121
                const int o = s->nb_channels == 4;
1122
                float *bo = ((float *)td->uncompressed_data) +
1123
                    y * td->xsize * s->nb_channels + td->xsize * (o + 0) + x;
1124
                float *go = ((float *)td->uncompressed_data) +
1125
                    y * td->xsize * s->nb_channels + td->xsize * (o + 1) + x;
1126
                float *ro = ((float *)td->uncompressed_data) +
1127
                    y * td->xsize * s->nb_channels + td->xsize * (o + 2) + x;
1128
                float *yb = td->block[0];
1129
                float *ub = td->block[1];
1130
                float *vb = td->block[2];
1131
1132
                for (int yy = 0; yy < 8; yy++) {
1133
                    for (int xx = 0; xx < 8; xx++) {
1134
                        const int idx = xx + yy * 8;
1135
1136
                        convert(yb[idx], ub[idx], vb[idx], &bo[xx], &go[xx], &ro[xx]);
1137
1138
                        bo[xx] = to_linear(bo[xx], scale);
1139
                        go[xx] = to_linear(go[xx], scale);
1140
                        ro[xx] = to_linear(ro[xx], scale);
1141
                    }
1142
1143
                    bo += td->xsize * s->nb_channels;
1144
                    go += td->xsize * s->nb_channels;
1145
                    ro += td->xsize * s->nb_channels;
1146
                }
1147
            }
1148
        }
1149
    }
1150
1151
    if (s->nb_channels < 4)
1152
        return 0;
1153
1154
    for (int y = 0; y < td->ysize && td->rle_raw_data; y++) {
1155
        uint32_t *ao = ((uint32_t *)td->uncompressed_data) + y * td->xsize * s->nb_channels;
1156
        uint8_t *ai0 = td->rle_raw_data + y * td->xsize;
1157
        uint8_t *ai1 = td->rle_raw_data + y * td->xsize + rle_raw_size / 2;
1158
1159
        for (int x = 0; x < td->xsize; x++) {
1160
            uint16_t ha = ai0[x] | (ai1[x] << 8);
1161
1162
            ao[x] = half2float(ha, s->mantissatable, s->exponenttable, s->offsettable);
1163
        }
1164
    }
1165
1166
    return 0;
1167
}
1168
1169
5738
static int decode_block(AVCodecContext *avctx, void *tdata,
1170
                        int jobnr, int threadnr)
1171
{
1172
5738
    EXRContext *s = avctx->priv_data;
1173
5738
    AVFrame *const p = s->picture;
1174
5738
    EXRThreadData *td = &s->thread_data[threadnr];
1175
5738
    const uint8_t *channel_buffer[4] = { 0 };
1176
5738
    const uint8_t *buf = s->buf;
1177
    uint64_t line_offset, uncompressed_size;
1178
    uint8_t *ptr;
1179
    uint32_t data_size;
1180
5738
    int line, col = 0;
1181
    uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1182
    const uint8_t *src;
1183
5738
    int step = s->desc->flags & AV_PIX_FMT_FLAG_FLOAT ? 4 : 2 * s->desc->nb_components;
1184
5738
    int bxmin = 0, axmax = 0, window_xoffset = 0;
1185
    int window_xmin, window_xmax, window_ymin, window_ymax;
1186
    int data_xoffset, data_yoffset, data_window_offset, xsize, ysize;
1187
5738
    int i, x, buf_size = s->buf_size;
1188
    int c, rgb_channel_count;
1189
5738
    float one_gamma = 1.0f / s->gamma;
1190
5738
    avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1191
    int ret;
1192
1193
5738
    line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1194
1195
5738
    if (s->is_tile) {
1196

208
        if (buf_size < 20 || line_offset > buf_size - 20)
1197
            return AVERROR_INVALIDDATA;
1198
1199
208
        src  = buf + line_offset + 20;
1200
208
        if (s->is_multipart)
1201
            src += 4;
1202
1203
208
        tile_x = AV_RL32(src - 20);
1204
208
        tile_y = AV_RL32(src - 16);
1205
208
        tile_level_x = AV_RL32(src - 12);
1206
208
        tile_level_y = AV_RL32(src - 8);
1207
1208
208
        data_size = AV_RL32(src - 4);
1209

208
        if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1210
            return AVERROR_INVALIDDATA;
1211
1212

208
        if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1213
            avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1214
            return AVERROR_PATCHWELCOME;
1215
        }
1216
1217
208
        line = s->ymin + s->tile_attr.ySize * tile_y;
1218
208
        col = s->tile_attr.xSize * tile_x;
1219
1220

208
        if (line < s->ymin || line > s->ymax ||
1221

208
            s->xmin + col  < s->xmin ||  s->xmin + col  > s->xmax)
1222
            return AVERROR_INVALIDDATA;
1223
1224
208
        td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1225
208
        td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1226
1227
208
        if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX)
1228
            return AVERROR_INVALIDDATA;
1229
1230
208
        td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1231
208
        uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1232
    } else {
1233

5530
        if (buf_size < 8 || line_offset > buf_size - 8)
1234
            return AVERROR_INVALIDDATA;
1235
1236
5530
        src  = buf + line_offset + 8;
1237
5530
        if (s->is_multipart)
1238
            src += 4;
1239
5530
        line = AV_RL32(src - 8);
1240
1241

5530
        if (line < s->ymin || line > s->ymax)
1242
            return AVERROR_INVALIDDATA;
1243
1244
5530
        data_size = AV_RL32(src - 4);
1245

5530
        if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1246
            return AVERROR_INVALIDDATA;
1247
1248
5530
        td->ysize          = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1249
5530
        td->xsize          = s->xdelta;
1250
1251
5530
        if (td->xsize * (uint64_t)s->current_channel_offset > INT_MAX)
1252
            return AVERROR_INVALIDDATA;
1253
1254
5530
        td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1255
5530
        uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1256
1257

5530
        if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1258
1390
                                           line_offset > buf_size - uncompressed_size)) ||
1259

5530
            (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1260
4140
                                           line_offset > buf_size - data_size))) {
1261
            return AVERROR_INVALIDDATA;
1262
        }
1263
    }
1264
1265
5738
    window_xmin = FFMIN(avctx->width, FFMAX(0, s->xmin + col));
1266
5738
    window_xmax = FFMIN(avctx->width, FFMAX(0, s->xmin + col + td->xsize));
1267
5738
    window_ymin = FFMIN(avctx->height, FFMAX(0, line ));
1268
5738
    window_ymax = FFMIN(avctx->height, FFMAX(0, line + td->ysize));
1269
5738
    xsize = window_xmax - window_xmin;
1270
5738
    ysize = window_ymax - window_ymin;
1271
1272
    /* tile or scanline not visible skip decoding */
1273

5738
    if (xsize <= 0 || ysize <= 0)
1274
866
        return 0;
1275
1276
    /* is the first tile or is a scanline */
1277
4872
    if(col == 0) {
1278
4792
        window_xmin = 0;
1279
        /* pixels to add at the left of the display window */
1280
4792
        window_xoffset = FFMAX(0, s->xmin);
1281
        /* bytes to add at the left of the display window */
1282
4792
        bxmin = window_xoffset * step;
1283
    }
1284
1285
    /* is the last tile or is a scanline */
1286
4872
    if(col + td->xsize == s->xdelta) {
1287
4792
        window_xmax = avctx->width;
1288
         /* bytes to add at the right of the display window */
1289
4792
        axmax = FFMAX(0, (avctx->width - (s->xmax + 1))) * step;
1290
    }
1291
1292

4872
    if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1293
3478
        av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1294
3478
        if (!td->tmp)
1295
            return AVERROR(ENOMEM);
1296
    }
1297
1298
4872
    if (data_size < uncompressed_size) {
1299
3452
        av_fast_padded_malloc(&td->uncompressed_data,
1300
3452
                              &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */
1301
1302
3452
        if (!td->uncompressed_data)
1303
            return AVERROR(ENOMEM);
1304
1305
3452
        ret = AVERROR_INVALIDDATA;
1306

3452
        switch (s->compression) {
1307
1838
        case EXR_ZIP1:
1308
        case EXR_ZIP16:
1309
1838
            ret = zip_uncompress(s, src, data_size, uncompressed_size, td);
1310
1838
            break;
1311
60
        case EXR_PIZ:
1312
60
            ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1313
60
            break;
1314
122
        case EXR_PXR24:
1315
122
            ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1316
122
            break;
1317
1386
        case EXR_RLE:
1318
1386
            ret = rle_uncompress(s, src, data_size, uncompressed_size, td);
1319
1386
            break;
1320
46
        case EXR_B44:
1321
        case EXR_B44A:
1322
46
            ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1323
46
            break;
1324
        case EXR_DWAA:
1325
        case EXR_DWAB:
1326
            ret = dwa_uncompress(s, src, data_size, uncompressed_size, td);
1327
            break;
1328
        }
1329
3452
        if (ret < 0) {
1330
            av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1331
            return ret;
1332
        }
1333
3452
        src = td->uncompressed_data;
1334
    }
1335
1336
    /* offsets to crop data outside display window */
1337

4872
    data_xoffset = FFABS(FFMIN(0, s->xmin + col)) * (s->pixel_type == EXR_HALF ? 2 : 4);
1338
4872
    data_yoffset = FFABS(FFMIN(0, line));
1339
4872
    data_window_offset = (data_yoffset * td->channel_line_size) + data_xoffset;
1340
1341
4872
    if (!s->is_luma) {
1342
4852
        channel_buffer[0] = src + (td->xsize * s->channel_offsets[0]) + data_window_offset;
1343
4852
        channel_buffer[1] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset;
1344
4852
        channel_buffer[2] = src + (td->xsize * s->channel_offsets[2]) + data_window_offset;
1345
4852
        rgb_channel_count = 3;
1346
    } else { /* put y data in the first channel_buffer */
1347
20
        channel_buffer[0] = src + (td->xsize * s->channel_offsets[1]) + data_window_offset;
1348
20
        rgb_channel_count = 1;
1349
    }
1350
4872
     if (s->channel_offsets[3] >= 0)
1351
4258
        channel_buffer[3] = src + (td->xsize * s->channel_offsets[3]) + data_window_offset;
1352
1353
4872
    if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
1354
        /* todo: change this when a floating point pixel format with luma with alpha is implemented */
1355
4852
        int channel_count = s->channel_offsets[3] >= 0 ? 4 : rgb_channel_count;
1356
4852
        if (s->is_luma) {
1357
20
            channel_buffer[1] = channel_buffer[0];
1358
20
            channel_buffer[2] = channel_buffer[0];
1359
        }
1360
1361
23658
        for (c = 0; c < channel_count; c++) {
1362
18806
            int plane = s->desc->comp[c].plane;
1363
18806
            ptr = p->data[plane] + window_ymin * p->linesize[plane] + (window_xmin * 4);
1364
1365
72238
            for (i = 0; i < ysize; i++, ptr += p->linesize[plane]) {
1366
                const uint8_t *src;
1367
                union av_intfloat32 *ptr_x;
1368
1369
53432
                src = channel_buffer[c];
1370
53432
                ptr_x = (union av_intfloat32 *)ptr;
1371
1372
                // Zero out the start if xmin is not 0
1373
53432
                memset(ptr_x, 0, bxmin);
1374
53432
                ptr_x += window_xoffset;
1375
1376
53432
                if (s->pixel_type == EXR_FLOAT ||
1377
49296
                    s->compression == EXR_DWAA ||
1378
53432
                    s->compression == EXR_DWAB) {
1379
                    // 32-bit
1380
                    union av_intfloat32 t;
1381

4136
                    if (trc_func && c < 3) {
1382
                        for (x = 0; x < xsize; x++) {
1383
                            t.i = bytestream_get_le32(&src);
1384
                            t.f = trc_func(t.f);
1385
                            *ptr_x++ = t;
1386
                        }
1387
4136
                    } else if (one_gamma != 1.f) {
1388
                        for (x = 0; x < xsize; x++) {
1389
                            t.i = bytestream_get_le32(&src);
1390
                            if (t.f > 0.0f && c < 3)  /* avoid negative values */
1391
                                t.f = powf(t.f, one_gamma);
1392
                            *ptr_x++ = t;
1393
                        }
1394
                    } else {
1395
160952
                        for (x = 0; x < xsize; x++) {
1396
156816
                            t.i = bytestream_get_le32(&src);
1397
156816
                            *ptr_x++ = t;
1398
                        }
1399
                    }
1400
49296
                } else if (s->pixel_type == EXR_HALF) {
1401
                    // 16-bit
1402

49296
                    if (c < 3 || !trc_func) {
1403
21077490
                        for (x = 0; x < xsize; x++) {
1404
21028194
                            *ptr_x++ = s->gamma_table[bytestream_get_le16(&src)];
1405
                        }
1406
                    } else {
1407
                        for (x = 0; x < xsize; x++) {
1408
                            ptr_x[0].i = half2float(bytestream_get_le16(&src),
1409
                                                    s->mantissatable,
1410
                                                    s->exponenttable,
1411
                                                    s->offsettable);
1412
                            ptr_x++;
1413
                        }
1414
                    }
1415
                }
1416
1417
                // Zero out the end if xmax+1 is not w
1418
53432
                memset(ptr_x, 0, axmax);
1419
53432
                channel_buffer[c] += td->channel_line_size;
1420
            }
1421
        }
1422
    } else {
1423
1424
        av_assert1(s->pixel_type == EXR_UINT);
1425
20
        ptr = p->data[0] + window_ymin * p->linesize[0] + (window_xmin * s->desc->nb_components * 2);
1426
1427
370
        for (i = 0; i < ysize; i++, ptr += p->linesize[0]) {
1428
1429
            const uint8_t * a;
1430
            const uint8_t *rgb[3];
1431
            uint16_t *ptr_x;
1432
1433
1400
            for (c = 0; c < rgb_channel_count; c++) {
1434
1050
                rgb[c] = channel_buffer[c];
1435
            }
1436
1437
350
            if (channel_buffer[3])
1438
                a = channel_buffer[3];
1439
1440
350
            ptr_x = (uint16_t *) ptr;
1441
1442
            // Zero out the start if xmin is not 0
1443
350
            memset(ptr_x, 0, bxmin);
1444
350
            ptr_x += window_xoffset * s->desc->nb_components;
1445
1446
10968
            for (x = 0; x < xsize; x++) {
1447
42472
                for (c = 0; c < rgb_channel_count; c++) {
1448
31854
                    *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1449
                }
1450
1451
10618
                if (channel_buffer[3])
1452
                    *ptr_x++ = bytestream_get_le32(&a) >> 16;
1453
            }
1454
1455
            // Zero out the end if xmax+1 is not w
1456
350
            memset(ptr_x, 0, axmax);
1457
1458
350
            channel_buffer[0] += td->channel_line_size;
1459
350
            channel_buffer[1] += td->channel_line_size;
1460
350
            channel_buffer[2] += td->channel_line_size;
1461
350
            if (channel_buffer[3])
1462
                channel_buffer[3] += td->channel_line_size;
1463
        }
1464
    }
1465
1466
4872
    return 0;
1467
}
1468
1469
static void skip_header_chunk(EXRContext *s)
1470
{
1471
    GetByteContext *gb = &s->gb;
1472
1473
    while (bytestream2_get_bytes_left(gb) > 0) {
1474
        if (!bytestream2_peek_byte(gb))
1475
            break;
1476
1477
        // Process unknown variables
1478
        for (int i = 0; i < 2; i++) // value_name and value_type
1479
            while (bytestream2_get_byte(gb) != 0);
1480
1481
        // Skip variable length
1482
        bytestream2_skip(gb, bytestream2_get_le32(gb));
1483
    }
1484
}
1485
1486
/**
1487
 * Check if the variable name corresponds to its data type.
1488
 *
1489
 * @param s              the EXRContext
1490
 * @param value_name     name of the variable to check
1491
 * @param value_type     type of the variable to check
1492
 * @param minimum_length minimum length of the variable data
1493
 *
1494
 * @return bytes to read containing variable data
1495
 *         -1 if variable is not found
1496
 *         0 if buffer ended prematurely
1497
 */
1498
20886
static int check_header_variable(EXRContext *s,
1499
                                 const char *value_name,
1500
                                 const char *value_type,
1501
                                 unsigned int minimum_length)
1502
{
1503
20886
    GetByteContext *gb = &s->gb;
1504
20886
    int var_size = -1;
1505
1506
20886
    if (bytestream2_get_bytes_left(gb) >= minimum_length &&
1507
20886
        !strcmp(gb->buffer, value_name)) {
1508
        // found value_name, jump to value_type (null terminated strings)
1509
990
        gb->buffer += strlen(value_name) + 1;
1510
990
        if (!strcmp(gb->buffer, value_type)) {
1511
990
            gb->buffer += strlen(value_type) + 1;
1512
990
            var_size = bytestream2_get_le32(gb);
1513
            // don't go read past boundaries
1514
990
            if (var_size > bytestream2_get_bytes_left(gb))
1515
                var_size = 0;
1516
        } else {
1517
            // value_type not found, reset the buffer
1518
            gb->buffer -= strlen(value_name) + 1;
1519
            av_log(s->avctx, AV_LOG_WARNING,
1520
                   "Unknown data type %s for header variable %s.\n",
1521
                   value_type, value_name);
1522
        }
1523
    }
1524
1525
20886
    return var_size;
1526
}
1527
1528
148
static int decode_header(EXRContext *s, AVFrame *frame)
1529
{
1530
148
    AVDictionary *metadata = NULL;
1531
148
    GetByteContext *gb = &s->gb;
1532
    int magic_number, version, flags;
1533
148
    int layer_match = 0;
1534
    int ret;
1535
148
    int dup_channels = 0;
1536
1537
148
    s->current_channel_offset = 0;
1538
148
    s->xmin               = ~0;
1539
148
    s->xmax               = ~0;
1540
148
    s->ymin               = ~0;
1541
148
    s->ymax               = ~0;
1542
148
    s->xdelta             = ~0;
1543
148
    s->ydelta             = ~0;
1544
148
    s->channel_offsets[0] = -1;
1545
148
    s->channel_offsets[1] = -1;
1546
148
    s->channel_offsets[2] = -1;
1547
148
    s->channel_offsets[3] = -1;
1548
148
    s->pixel_type         = EXR_UNKNOWN;
1549
148
    s->compression        = EXR_UNKN;
1550
148
    s->nb_channels        = 0;
1551
148
    s->w                  = 0;
1552
148
    s->h                  = 0;
1553
148
    s->tile_attr.xSize    = -1;
1554
148
    s->tile_attr.ySize    = -1;
1555
148
    s->is_tile            = 0;
1556
148
    s->is_multipart       = 0;
1557
148
    s->is_luma            = 0;
1558
148
    s->current_part       = 0;
1559
1560
148
    if (bytestream2_get_bytes_left(gb) < 10) {
1561
        av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1562
        return AVERROR_INVALIDDATA;
1563
    }
1564
1565
148
    magic_number = bytestream2_get_le32(gb);
1566
148
    if (magic_number != 20000630) {
1567
        /* As per documentation of OpenEXR, it is supposed to be
1568
         * int 20000630 little-endian */
1569
        av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1570
        return AVERROR_INVALIDDATA;
1571
    }
1572
1573
148
    version = bytestream2_get_byte(gb);
1574
148
    if (version != 2) {
1575
        avpriv_report_missing_feature(s->avctx, "Version %d", version);
1576
        return AVERROR_PATCHWELCOME;
1577
    }
1578
1579
148
    flags = bytestream2_get_le24(gb);
1580
1581
148
    if (flags & 0x02)
1582
44
        s->is_tile = 1;
1583
148
    if (flags & 0x10)
1584
        s->is_multipart = 1;
1585
148
    if (flags & 0x08) {
1586
        avpriv_report_missing_feature(s->avctx, "deep data");
1587
        return AVERROR_PATCHWELCOME;
1588
    }
1589
1590
    // Parse the header
1591
2548
    while (bytestream2_get_bytes_left(gb) > 0) {
1592
        int var_size;
1593
1594

2548
        while (s->is_multipart && s->current_part < s->selected_part &&
1595
               bytestream2_get_bytes_left(gb) > 0) {
1596
            if (bytestream2_peek_byte(gb)) {
1597
                skip_header_chunk(s);
1598
            } else {
1599
                bytestream2_skip(gb, 1);
1600
                if (!bytestream2_peek_byte(gb))
1601
                    break;
1602
            }
1603
            bytestream2_skip(gb, 1);
1604
            s->current_part++;
1605
        }
1606
1607
2548
        if (!bytestream2_peek_byte(gb)) {
1608
148
            if (!s->is_multipart)
1609
148
                break;
1610
            bytestream2_skip(gb, 1);
1611
            if (s->current_part == s->selected_part) {
1612
                while (bytestream2_get_bytes_left(gb) > 0) {
1613
                    if (bytestream2_peek_byte(gb)) {
1614
                        skip_header_chunk(s);
1615
                    } else {
1616
                        bytestream2_skip(gb, 1);
1617
                        if (!bytestream2_peek_byte(gb))
1618
                            break;
1619
                    }
1620
                }
1621
            }
1622
            if (!bytestream2_peek_byte(gb))
1623
                break;
1624
            s->current_part++;
1625
        }
1626
1627
2400
        if ((var_size = check_header_variable(s, "channels",
1628
                                              "chlist", 38)) >= 0) {
1629
            GetByteContext ch_gb;
1630
148
            if (!var_size) {
1631
                ret = AVERROR_INVALIDDATA;
1632
                goto fail;
1633
            }
1634
1635
148
            bytestream2_init(&ch_gb, gb->buffer, var_size);
1636
1637
912
            while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1638
                EXRChannel *channel;
1639
                enum ExrPixelType current_pixel_type;
1640
764
                int channel_index = -1;
1641
                int xsub, ysub;
1642
1643
764
                if (strcmp(s->layer, "") != 0) {
1644
272
                    if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1645
150
                        layer_match = 1;
1646
150
                        av_log(s->avctx, AV_LOG_INFO,
1647
                               "Channel match layer : %s.\n", ch_gb.buffer);
1648
150
                        ch_gb.buffer += strlen(s->layer);
1649
150
                        if (*ch_gb.buffer == '.')
1650
150
                            ch_gb.buffer++;         /* skip dot if not given */
1651
                    } else {
1652
122
                        layer_match = 0;
1653
122
                        av_log(s->avctx, AV_LOG_INFO,
1654
                               "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1655
                    }
1656
                } else {
1657
492
                    layer_match = 1;
1658
                }
1659
1660
764
                if (layer_match) { /* only search channel if the layer match is valid */
1661

1142
                    if (!av_strcasecmp(ch_gb.buffer, "R") ||
1662
1000
                        !av_strcasecmp(ch_gb.buffer, "X") ||
1663
500
                        !av_strcasecmp(ch_gb.buffer, "U")) {
1664
142
                        channel_index = 0;
1665
142
                        s->is_luma = 0;
1666

858
                    } else if (!av_strcasecmp(ch_gb.buffer, "G") ||
1667
358
                               !av_strcasecmp(ch_gb.buffer, "V")) {
1668
142
                        channel_index = 1;
1669
142
                        s->is_luma = 0;
1670
358
                    } else if (!av_strcasecmp(ch_gb.buffer, "Y")) {
1671
6
                        channel_index = 1;
1672
6
                        s->is_luma = 1;
1673

562
                    } else if (!av_strcasecmp(ch_gb.buffer, "B") ||
1674
420
                               !av_strcasecmp(ch_gb.buffer, "Z") ||
1675
210
                               !av_strcasecmp(ch_gb.buffer, "W")) {
1676
142
                        channel_index = 2;
1677
142
                        s->is_luma = 0;
1678
210
                    } else if (!av_strcasecmp(ch_gb.buffer, "A")) {
1679
58
                        channel_index = 3;
1680
                    } else {
1681
152
                        av_log(s->avctx, AV_LOG_WARNING,
1682
                               "Unsupported channel %.256s.\n", ch_gb.buffer);
1683
                    }
1684
                }
1685
1686
                /* skip until you get a 0 */
1687

7920
                while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1688
3960
                       bytestream2_get_byte(&ch_gb))
1689
3196
                    continue;
1690
1691
764
                if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1692
                    av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1693
                    ret = AVERROR_INVALIDDATA;
1694
                    goto fail;
1695
                }
1696
1697
764
                current_pixel_type = bytestream2_get_le32(&ch_gb);
1698
764
                if (current_pixel_type >= EXR_UNKNOWN) {
1699
                    avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1700
                                                  current_pixel_type);
1701
                    ret = AVERROR_PATCHWELCOME;
1702
                    goto fail;
1703
                }
1704
1705
764
                bytestream2_skip(&ch_gb, 4);
1706
764
                xsub = bytestream2_get_le32(&ch_gb);
1707
764
                ysub = bytestream2_get_le32(&ch_gb);
1708
1709

764
                if (xsub != 1 || ysub != 1) {
1710
                    avpriv_report_missing_feature(s->avctx,
1711
                                                  "Subsampling %dx%d",
1712
                                                  xsub, ysub);
1713
                    ret = AVERROR_PATCHWELCOME;
1714
                    goto fail;
1715
                }
1716
1717

764
                if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1718
490
                    if (s->pixel_type != EXR_UNKNOWN &&
1719
342
                        s->pixel_type != current_pixel_type) {
1720
                        av_log(s->avctx, AV_LOG_ERROR,
1721
                               "RGB channels not of the same depth.\n");
1722
                        ret = AVERROR_INVALIDDATA;
1723
                        goto fail;
1724
                    }
1725
490
                    s->pixel_type                     = current_pixel_type;
1726
490
                    s->channel_offsets[channel_index] = s->current_channel_offset;
1727
274
                } else if (channel_index >= 0) {
1728
                    av_log(s->avctx, AV_LOG_WARNING,
1729
                            "Multiple channels with index %d.\n", channel_index);
1730
                    if (++dup_channels > 10) {
1731
                        ret = AVERROR_INVALIDDATA;
1732
                        goto fail;
1733
                    }
1734
                }
1735
1736
1528
                s->channels = av_realloc(s->channels,
1737
764
                                         ++s->nb_channels * sizeof(EXRChannel));
1738
764
                if (!s->channels) {
1739
                    ret = AVERROR(ENOMEM);
1740
                    goto fail;
1741
                }
1742
764
                channel             = &s->channels[s->nb_channels - 1];
1743
764
                channel->pixel_type = current_pixel_type;
1744
764
                channel->xsub       = xsub;
1745
764
                channel->ysub       = ysub;
1746
1747
764
                if (current_pixel_type == EXR_HALF) {
1748
404
                    s->current_channel_offset += 2;
1749
                } else {/* Float or UINT32 */
1750
360
                    s->current_channel_offset += 4;
1751
                }
1752
            }
1753
1754
            /* Check if all channels are set with an offset or if the channels
1755
             * are causing an overflow  */
1756
148
            if (!s->is_luma) {/* if we expected to have at least 3 channels */
1757
142
                if (FFMIN3(s->channel_offsets[0],
1758
                           s->channel_offsets[1],
1759
                           s->channel_offsets[2]) < 0) {
1760
                    if (s->channel_offsets[0] < 0)
1761
                        av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1762
                    if (s->channel_offsets[1] < 0)
1763
                        av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1764
                    if (s->channel_offsets[2] < 0)
1765
                        av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1766
                    ret = AVERROR_INVALIDDATA;
1767
                    goto fail;
1768
                }
1769
            }
1770
1771
            // skip one last byte and update main gb
1772
148
            gb->buffer = ch_gb.buffer + 1;
1773
148
            continue;
1774
2252
        } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1775
                                                     31)) >= 0) {
1776
            int xmin, ymin, xmax, ymax;
1777
148
            if (!var_size) {
1778
                ret = AVERROR_INVALIDDATA;
1779
                goto fail;
1780
            }
1781
1782
148
            xmin   = bytestream2_get_le32(gb);
1783
148
            ymin   = bytestream2_get_le32(gb);
1784
148
            xmax   = bytestream2_get_le32(gb);
1785
148
            ymax   = bytestream2_get_le32(gb);
1786
1787

148
            if (xmin > xmax || ymin > ymax ||
1788
148
                (unsigned)xmax - xmin >= INT_MAX ||
1789
148
                (unsigned)ymax - ymin >= INT_MAX) {
1790
                ret = AVERROR_INVALIDDATA;
1791
                goto fail;
1792
            }
1793
148
            s->xmin = xmin;
1794
148
            s->xmax = xmax;
1795
148
            s->ymin = ymin;
1796
148
            s->ymax = ymax;
1797
148
            s->xdelta = (s->xmax - s->xmin) + 1;
1798
148
            s->ydelta = (s->ymax - s->ymin) + 1;
1799
1800
148
            continue;
1801
2104
        } else if ((var_size = check_header_variable(s, "displayWindow",
1802
                                                     "box2i", 34)) >= 0) {
1803
            int32_t sx, sy, dx, dy;
1804
1805
148
            if (!var_size) {
1806
                ret = AVERROR_INVALIDDATA;
1807
                goto fail;
1808
            }
1809
1810
148
            sx = bytestream2_get_le32(gb);
1811
148
            sy = bytestream2_get_le32(gb);
1812
148
            dx = bytestream2_get_le32(gb);
1813
148
            dy = bytestream2_get_le32(gb);
1814
1815
148
            s->w = dx - sx + 1;
1816
148
            s->h = dy - sy + 1;
1817
1818
148
            continue;
1819
1956
        } else if ((var_size = check_header_variable(s, "lineOrder",
1820
                                                     "lineOrder", 25)) >= 0) {
1821
            int line_order;
1822
148
            if (!var_size) {
1823
                ret = AVERROR_INVALIDDATA;
1824
                goto fail;
1825
            }
1826
1827
148
            line_order = bytestream2_get_byte(gb);
1828
148
            av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1829
148
            if (line_order > 2) {
1830
                av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1831
                ret = AVERROR_INVALIDDATA;
1832
                goto fail;
1833
            }
1834
1835
148
            continue;
1836
1808
        } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1837
                                                     "float", 31)) >= 0) {
1838
148
            if (!var_size) {
1839
                ret = AVERROR_INVALIDDATA;
1840
                goto fail;
1841
            }
1842
1843
148
            s->sar = bytestream2_get_le32(gb);
1844
1845
148
            continue;
1846
1660
        } else if ((var_size = check_header_variable(s, "compression",
1847
                                                     "compression", 29)) >= 0) {
1848
148
            if (!var_size) {
1849
                ret = AVERROR_INVALIDDATA;
1850
                goto fail;
1851
            }
1852
1853
148
            if (s->compression == EXR_UNKN)
1854
148
                s->compression = bytestream2_get_byte(gb);
1855
            else {
1856
                bytestream2_skip(gb, 1);
1857
                av_log(s->avctx, AV_LOG_WARNING,
1858
                       "Found more than one compression attribute.\n");
1859
            }
1860
1861
148
            continue;
1862
1512
        } else if ((var_size = check_header_variable(s, "tiles",
1863
                                                     "tiledesc", 22)) >= 0) {
1864
            char tileLevel;
1865
1866
44
            if (!s->is_tile)
1867
                av_log(s->avctx, AV_LOG_WARNING,
1868
                       "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1869
1870
44
            s->tile_attr.xSize = bytestream2_get_le32(gb);
1871
44
            s->tile_attr.ySize = bytestream2_get_le32(gb);
1872
1873
44
            tileLevel = bytestream2_get_byte(gb);
1874
44
            s->tile_attr.level_mode = tileLevel & 0x0f;
1875
44
            s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1876
1877
44
            if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN) {
1878
                avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1879
                                              s->tile_attr.level_mode);
1880
                ret = AVERROR_PATCHWELCOME;
1881
                goto fail;
1882
            }
1883
1884
44
            if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
1885
                avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1886
                                              s->tile_attr.level_round);
1887
                ret = AVERROR_PATCHWELCOME;
1888
                goto fail;
1889
            }
1890
1891
44
            continue;
1892
1468
        } else if ((var_size = check_header_variable(s, "writer",
1893
                                                     "string", 1)) >= 0) {
1894
16
            uint8_t key[256] = { 0 };
1895
1896
16
            bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size));
1897
16
            av_dict_set(&metadata, "writer", key, 0);
1898
1899
16
            continue;
1900
1452
        } else if ((var_size = check_header_variable(s, "framesPerSecond",
1901
                                                     "rational", 33)) >= 0) {
1902
16
            if (!var_size) {
1903
                ret = AVERROR_INVALIDDATA;
1904
                goto fail;
1905
            }
1906
1907
16
            s->avctx->framerate.num = bytestream2_get_le32(gb);
1908
16
            s->avctx->framerate.den = bytestream2_get_le32(gb);
1909
1910
16
            continue;
1911
1436
        } else if ((var_size = check_header_variable(s, "chunkCount",
1912
                                                     "int", 23)) >= 0) {
1913
1914
8
            s->chunk_count = bytestream2_get_le32(gb);
1915
1916
8
            continue;
1917
1428
        } else if ((var_size = check_header_variable(s, "type",
1918
                                                     "string", 16)) >= 0) {
1919
18
            uint8_t key[256] = { 0 };
1920
1921
18
            bytestream2_get_buffer(gb, key, FFMIN(sizeof(key) - 1, var_size));
1922
18
            if (strncmp("scanlineimage", key, var_size) &&
1923
8
                strncmp("tiledimage", key, var_size))
1924
                return AVERROR_PATCHWELCOME;
1925
1926
18
            continue;
1927
1410
        } else if ((var_size = check_header_variable(s, "preview",
1928
                                                     "preview", 16)) >= 0) {
1929
            uint32_t pw = bytestream2_get_le32(gb);
1930
            uint32_t ph = bytestream2_get_le32(gb);
1931
            int64_t psize = 4LL * pw * ph;
1932
1933
            if (psize >= bytestream2_get_bytes_left(gb))
1934
                return AVERROR_INVALIDDATA;
1935
1936
            bytestream2_skip(gb, psize);
1937
1938
            continue;
1939
        }
1940
1941
        // Check if there are enough bytes for a header
1942
1410
        if (bytestream2_get_bytes_left(gb) <= 9) {
1943
            av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1944
            ret = AVERROR_INVALIDDATA;
1945
            goto fail;
1946
        }
1947
1948
        // Process unknown variables
1949
        {
1950
1410
            uint8_t name[256] = { 0 };
1951
1410
            uint8_t type[256] = { 0 };
1952
1410
            uint8_t value[256] = { 0 };
1953
1410
            int i = 0, size;
1954
1955

43232
            while (bytestream2_get_bytes_left(gb) > 0 &&
1956
41822
                   bytestream2_peek_byte(gb) && i < 255) {
1957
20206
                name[i++] = bytestream2_get_byte(gb);
1958
            }
1959
1960
1410
            bytestream2_skip(gb, 1);
1961
1410
            i = 0;
1962

16000
            while (bytestream2_get_bytes_left(gb) > 0 &&
1963
14590
                   bytestream2_peek_byte(gb) && i < 255) {
1964
6590
                type[i++] = bytestream2_get_byte(gb);
1965
            }
1966
1410
            bytestream2_skip(gb, 1);
1967
1410
            size = bytestream2_get_le32(gb);
1968
1969
1410
            bytestream2_get_buffer(gb, value, FFMIN(sizeof(value) - 1, size));
1970
1410
            if (!strcmp(type, "string"))
1971
160
                av_dict_set(&metadata, name, value, 0);
1972
        }
1973
    }
1974
1975
148
    if (s->compression == EXR_UNKN) {
1976
        av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1977
        ret = AVERROR_INVALIDDATA;
1978
        goto fail;
1979
    }
1980
1981
148
    if (s->is_tile) {
1982

44
        if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
1983
            av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
1984
            ret = AVERROR_INVALIDDATA;
1985
            goto fail;
1986
        }
1987
    }
1988
1989
148
    if (bytestream2_get_bytes_left(gb) <= 0) {
1990
        av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1991
        ret = AVERROR_INVALIDDATA;
1992
        goto fail;
1993
    }
1994
1995
148
    frame->metadata = metadata;
1996
1997
    // aaand we are done
1998
148
    bytestream2_skip(gb, 1);
1999
148
    return 0;
2000
fail:
2001
    av_dict_free(&metadata);
2002
    return ret;
2003
}
2004
2005
148
static int decode_frame(AVCodecContext *avctx, void *data,
2006
                        int *got_frame, AVPacket *avpkt)
2007
{
2008
148
    EXRContext *s = avctx->priv_data;
2009
148
    GetByteContext *gb = &s->gb;
2010
148
    ThreadFrame frame = { .f = data };
2011
148
    AVFrame *picture = data;
2012
    uint8_t *ptr;
2013
2014
    int i, y, ret, ymax;
2015
    int planes;
2016
    int out_line_size;
2017
    int nb_blocks;   /* nb scanline or nb tile */
2018
    uint64_t start_offset_table;
2019
    uint64_t start_next_scanline;
2020
    PutByteContext offset_table_writer;
2021
2022
148
    bytestream2_init(gb, avpkt->data, avpkt->size);
2023
2024
148
    if ((ret = decode_header(s, picture)) < 0)
2025
        return ret;
2026
2027

148
    if ((s->compression == EXR_DWAA || s->compression == EXR_DWAB) &&
2028
        s->pixel_type == EXR_HALF) {
2029
        s->current_channel_offset *= 2;
2030
        for (int i = 0; i < 4; i++)
2031
            s->channel_offsets[i] *= 2;
2032
    }
2033
2034
148
    switch (s->pixel_type) {
2035
138
    case EXR_FLOAT:
2036
    case EXR_HALF:
2037
138
        if (s->channel_offsets[3] >= 0) {
2038
58
            if (!s->is_luma) {
2039
56
                avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
2040
            } else {
2041
                /* todo: change this when a floating point pixel format with luma with alpha is implemented */
2042
2
                avctx->pix_fmt = AV_PIX_FMT_GBRAPF32;
2043
            }
2044
        } else {
2045
80
            if (!s->is_luma) {
2046
76
                avctx->pix_fmt = AV_PIX_FMT_GBRPF32;
2047
            } else {
2048
4
                avctx->pix_fmt = AV_PIX_FMT_GRAYF32;
2049
            }
2050
        }
2051
138
        break;
2052
10
    case EXR_UINT:
2053
10
        if (s->channel_offsets[3] >= 0) {
2054
            if (!s->is_luma) {
2055
                avctx->pix_fmt = AV_PIX_FMT_RGBA64;
2056
            } else {
2057
                avctx->pix_fmt = AV_PIX_FMT_YA16;
2058
            }
2059
        } else {
2060
10
            if (!s->is_luma) {
2061
10
                avctx->pix_fmt = AV_PIX_FMT_RGB48;
2062
            } else {
2063
                avctx->pix_fmt = AV_PIX_FMT_GRAY16;
2064
            }
2065
        }
2066
10
        break;
2067
    default:
2068
        av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
2069
        return AVERROR_INVALIDDATA;
2070
    }
2071
2072
148
    if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
2073
        avctx->color_trc = s->apply_trc_type;
2074
2075

148
    switch (s->compression) {
2076
48
    case EXR_RAW:
2077
    case EXR_RLE:
2078
    case EXR_ZIP1:
2079
48
        s->scan_lines_per_block = 1;
2080
48
        break;
2081
50
    case EXR_PXR24:
2082
    case EXR_ZIP16:
2083
50
        s->scan_lines_per_block = 16;
2084
50
        break;
2085
50
    case EXR_PIZ:
2086
    case EXR_B44:
2087
    case EXR_B44A:
2088
    case EXR_DWAA:
2089
50
        s->scan_lines_per_block = 32;
2090
50
        break;
2091
    case EXR_DWAB:
2092
        s->scan_lines_per_block = 256;
2093
        break;
2094
    default:
2095
        avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
2096
        return AVERROR_PATCHWELCOME;
2097
    }
2098
2099
    /* Verify the xmin, xmax, ymin and ymax before setting the actual image size.
2100
     * It's possible for the data window can larger or outside the display window */
2101

148
    if (s->xmin > s->xmax  || s->ymin > s->ymax ||
2102

148
        s->ydelta == 0xFFFFFFFF || s->xdelta == 0xFFFFFFFF) {
2103
        av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
2104
        return AVERROR_INVALIDDATA;
2105
    }
2106
2107
148
    if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
2108
        return ret;
2109
2110
148
    ff_set_sar(s->avctx, av_d2q(av_int2float(s->sar), 255));
2111
2112
148
    s->desc          = av_pix_fmt_desc_get(avctx->pix_fmt);
2113
148
    if (!s->desc)
2114
        return AVERROR_INVALIDDATA;
2115
2116
148
    if (s->desc->flags & AV_PIX_FMT_FLAG_FLOAT) {
2117
138
        planes           = s->desc->nb_components;
2118
138
        out_line_size    = avctx->width * 4;
2119
    } else {
2120
10
        planes           = 1;
2121
10
        out_line_size    = avctx->width * 2 * s->desc->nb_components;
2122
    }
2123
2124
148
    if (s->is_tile) {
2125
44
        nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
2126
44
        ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
2127
    } else { /* scanline */
2128
104
        nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
2129
104
        s->scan_lines_per_block;
2130
    }
2131
2132
148
    if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
2133
        return ret;
2134
2135
148
    if (bytestream2_get_bytes_left(gb)/8 < nb_blocks)
2136
        return AVERROR_INVALIDDATA;
2137
2138
    // check offset table and recreate it if need
2139

148
    if (!s->is_tile && bytestream2_peek_le64(gb) == 0) {
2140
1
        av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
2141
2142
1
        start_offset_table = bytestream2_tell(gb);
2143
1
        start_next_scanline = start_offset_table + nb_blocks * 8;
2144
1
        bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
2145
2146
9
        for (y = 0; y < nb_blocks; y++) {
2147
            /* write offset of prev scanline in offset table */
2148
8
            bytestream2_put_le64(&offset_table_writer, start_next_scanline);
2149
2150
            /* get len of next scanline */
2151
8
            bytestream2_seek(gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
2152
8
            start_next_scanline += (bytestream2_get_le32(gb) + 8);
2153
        }
2154
1
        bytestream2_seek(gb, start_offset_table, SEEK_SET);
2155
    }
2156
2157
    // save pointer we are going to use in decode_block
2158
148
    s->buf      = avpkt->data;
2159
148
    s->buf_size = avpkt->size;
2160
2161
    // Zero out the start if ymin is not 0
2162
622
    for (i = 0; i < planes; i++) {
2163
474
        ptr = picture->data[i];
2164
954
        for (y = 0; y < FFMIN(s->ymin, s->h); y++) {
2165
480
            memset(ptr, 0, out_line_size);
2166
480
            ptr += picture->linesize[i];
2167
        }
2168
    }
2169
2170
148
    s->picture = picture;
2171
2172
148
    avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
2173
2174
148
    ymax = FFMAX(0, s->ymax + 1);
2175
    // Zero out the end if ymax+1 is not h
2176
148
    if (ymax < avctx->height)
2177
32
        for (i = 0; i < planes; i++) {
2178
24
            ptr = picture->data[i] + (ymax * picture->linesize[i]);
2179
5568
            for (y = ymax; y < avctx->height; y++) {
2180
5544
                memset(ptr, 0, out_line_size);
2181
5544
                ptr += picture->linesize[i];
2182
            }
2183
        }
2184
2185
148
    picture->pict_type = AV_PICTURE_TYPE_I;
2186
148
    *got_frame = 1;
2187
2188
148
    return avpkt->size;
2189
}
2190
2191
148
static av_cold int decode_init(AVCodecContext *avctx)
2192
{
2193
148
    EXRContext *s = avctx->priv_data;
2194
    uint32_t i;
2195
    union av_intfloat32 t;
2196
148
    float one_gamma = 1.0f / s->gamma;
2197
148
    avpriv_trc_function trc_func = NULL;
2198
2199
148
    half2float_table(s->mantissatable, s->exponenttable, s->offsettable);
2200
2201
148
    s->avctx              = avctx;
2202
2203
148
    ff_exrdsp_init(&s->dsp);
2204
2205
#if HAVE_BIGENDIAN
2206
    ff_bswapdsp_init(&s->bbdsp);
2207
#endif
2208
2209
148
    trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
2210
148
    if (trc_func) {
2211
        for (i = 0; i < 65536; ++i) {
2212
            t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2213
            t.f = trc_func(t.f);
2214
            s->gamma_table[i] = t;
2215
        }
2216
    } else {
2217

148
        if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
2218
9699476
            for (i = 0; i < 65536; ++i) {
2219
9699328
                s->gamma_table[i].i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2220
            }
2221
        } else {
2222
            for (i = 0; i < 65536; ++i) {
2223
                t.i = half2float(i, s->mantissatable, s->exponenttable, s->offsettable);
2224
                /* If negative value we reuse half value */
2225
                if (t.f <= 0.0f) {
2226
                    s->gamma_table[i] = t;
2227
                } else {
2228
                    t.f = powf(t.f, one_gamma);
2229
                    s->gamma_table[i] = t;
2230
                }
2231
            }
2232
        }
2233
    }
2234
2235
    // allocate thread data, used for non EXR_RAW compression types
2236
148
    s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
2237
148
    if (!s->thread_data)
2238
        return AVERROR_INVALIDDATA;
2239
2240
148
    return 0;
2241
}
2242
2243
148
static av_cold int decode_end(AVCodecContext *avctx)
2244
{
2245
148
    EXRContext *s = avctx->priv_data;
2246
    int i;
2247
296
    for (i = 0; i < avctx->thread_count; i++) {
2248
148
        EXRThreadData *td = &s->thread_data[i];
2249
148
        av_freep(&td->uncompressed_data);
2250
148
        av_freep(&td->tmp);
2251
148
        av_freep(&td->bitmap);
2252
148
        av_freep(&td->lut);
2253
148
        av_freep(&td->he);
2254
148
        av_freep(&td->freq);
2255
148
        av_freep(&td->ac_data);
2256
148
        av_freep(&td->dc_data);
2257
148
        av_freep(&td->rle_data);
2258
148
        av_freep(&td->rle_raw_data);
2259
148
        ff_free_vlc(&td->vlc);
2260
    }
2261
2262
148
    av_freep(&s->thread_data);
2263
148
    av_freep(&s->channels);
2264
2265
148
    return 0;
2266
}
2267
2268
#define OFFSET(x) offsetof(EXRContext, x)
2269
#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
2270
static const AVOption options[] = {
2271
    { "layer", "Set the decoding layer", OFFSET(layer),
2272
        AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
2273
    { "part",  "Set the decoding part", OFFSET(selected_part),
2274
        AV_OPT_TYPE_INT, { .i64 = 0 }, 0, INT_MAX, VD },
2275
    { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
2276
        AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
2277
2278
    // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
2279
    { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
2280
        AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
2281
    { "bt709",        "BT.709",           0,
2282
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 },        INT_MIN, INT_MAX, VD, "apply_trc_type"},
2283
    { "gamma",        "gamma",            0,
2284
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED },  INT_MIN, INT_MAX, VD, "apply_trc_type"},
2285
    { "gamma22",      "BT.470 M",         0,
2286
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 },      INT_MIN, INT_MAX, VD, "apply_trc_type"},
2287
    { "gamma28",      "BT.470 BG",        0,
2288
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 },      INT_MIN, INT_MAX, VD, "apply_trc_type"},
2289
    { "smpte170m",    "SMPTE 170 M",      0,
2290
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2291
    { "smpte240m",    "SMPTE 240 M",      0,
2292
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2293
    { "linear",       "Linear",           0,
2294
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR },       INT_MIN, INT_MAX, VD, "apply_trc_type"},
2295
    { "log",          "Log",              0,
2296
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG },          INT_MIN, INT_MAX, VD, "apply_trc_type"},
2297
    { "log_sqrt",     "Log square root",  0,
2298
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT },     INT_MIN, INT_MAX, VD, "apply_trc_type"},
2299
    { "iec61966_2_4", "IEC 61966-2-4",    0,
2300
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2301
    { "bt1361",       "BT.1361",          0,
2302
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG },   INT_MIN, INT_MAX, VD, "apply_trc_type"},
2303
    { "iec61966_2_1", "IEC 61966-2-1",    0,
2304
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2305
    { "bt2020_10bit", "BT.2020 - 10 bit", 0,
2306
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2307
    { "bt2020_12bit", "BT.2020 - 12 bit", 0,
2308
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
2309
    { "smpte2084",    "SMPTE ST 2084",    0,
2310
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 },  INT_MIN, INT_MAX, VD, "apply_trc_type"},
2311
    { "smpte428_1",   "SMPTE ST 428-1",   0,
2312
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
2313
2314
    { NULL },
2315
};
2316
2317
static const AVClass exr_class = {
2318
    .class_name = "EXR",
2319
    .item_name  = av_default_item_name,
2320
    .option     = options,
2321
    .version    = LIBAVUTIL_VERSION_INT,
2322
};
2323
2324
AVCodec ff_exr_decoder = {
2325
    .name             = "exr",
2326
    .long_name        = NULL_IF_CONFIG_SMALL("OpenEXR image"),
2327
    .type             = AVMEDIA_TYPE_VIDEO,
2328
    .id               = AV_CODEC_ID_EXR,
2329
    .priv_data_size   = sizeof(EXRContext),
2330
    .init             = decode_init,
2331
    .close            = decode_end,
2332
    .decode           = decode_frame,
2333
    .capabilities     = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
2334
                        AV_CODEC_CAP_SLICE_THREADS,
2335
    .priv_class       = &exr_class,
2336
};