GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/exr.c Lines: 759 982 77.3 %
Date: 2019-11-18 18:00:01 Branches: 418 618 67.6 %

Line Branch Exec Source
1
/*
2
 * OpenEXR (.exr) image decoder
3
 * Copyright (c) 2006 Industrial Light & Magic, a division of Lucas Digital Ltd. LLC
4
 * Copyright (c) 2009 Jimmy Christensen
5
 *
6
 * B44/B44A, Tile, UINT32 added by Jokyo Images support by CNC - French National Center for Cinema
7
 *
8
 * This file is part of FFmpeg.
9
 *
10
 * FFmpeg is free software; you can redistribute it and/or
11
 * modify it under the terms of the GNU Lesser General Public
12
 * License as published by the Free Software Foundation; either
13
 * version 2.1 of the License, or (at your option) any later version.
14
 *
15
 * FFmpeg is distributed in the hope that it will be useful,
16
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
18
 * Lesser General Public License for more details.
19
 *
20
 * You should have received a copy of the GNU Lesser General Public
21
 * License along with FFmpeg; if not, write to the Free Software
22
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
23
 */
24
25
/**
26
 * @file
27
 * OpenEXR decoder
28
 * @author Jimmy Christensen
29
 *
30
 * For more information on the OpenEXR format, visit:
31
 *  http://openexr.com/
32
 *
33
 * exr_flt2uint() and exr_halflt2uint() is credited to Reimar Döffinger.
34
 * exr_half2float() is credited to Aaftab Munshi, Dan Ginsburg, Dave Shreiner.
35
 */
36
37
#include <float.h>
38
#include <zlib.h>
39
40
#include "libavutil/avassert.h"
41
#include "libavutil/common.h"
42
#include "libavutil/imgutils.h"
43
#include "libavutil/intfloat.h"
44
#include "libavutil/opt.h"
45
#include "libavutil/color_utils.h"
46
47
#include "avcodec.h"
48
#include "bytestream.h"
49
50
#if HAVE_BIGENDIAN
51
#include "bswapdsp.h"
52
#endif
53
54
#include "exrdsp.h"
55
#include "get_bits.h"
56
#include "internal.h"
57
#include "mathops.h"
58
#include "thread.h"
59
60
enum ExrCompr {
61
    EXR_RAW,
62
    EXR_RLE,
63
    EXR_ZIP1,
64
    EXR_ZIP16,
65
    EXR_PIZ,
66
    EXR_PXR24,
67
    EXR_B44,
68
    EXR_B44A,
69
    EXR_DWA,
70
    EXR_DWB,
71
    EXR_UNKN,
72
};
73
74
enum ExrPixelType {
75
    EXR_UINT,
76
    EXR_HALF,
77
    EXR_FLOAT,
78
    EXR_UNKNOWN,
79
};
80
81
enum ExrTileLevelMode {
82
    EXR_TILE_LEVEL_ONE,
83
    EXR_TILE_LEVEL_MIPMAP,
84
    EXR_TILE_LEVEL_RIPMAP,
85
    EXR_TILE_LEVEL_UNKNOWN,
86
};
87
88
enum ExrTileLevelRound {
89
    EXR_TILE_ROUND_UP,
90
    EXR_TILE_ROUND_DOWN,
91
    EXR_TILE_ROUND_UNKNOWN,
92
};
93
94
typedef struct EXRChannel {
95
    int xsub, ysub;
96
    enum ExrPixelType pixel_type;
97
} EXRChannel;
98
99
typedef struct EXRTileAttribute {
100
    int32_t xSize;
101
    int32_t ySize;
102
    enum ExrTileLevelMode level_mode;
103
    enum ExrTileLevelRound level_round;
104
} EXRTileAttribute;
105
106
typedef struct EXRThreadData {
107
    uint8_t *uncompressed_data;
108
    int uncompressed_size;
109
110
    uint8_t *tmp;
111
    int tmp_size;
112
113
    uint8_t *bitmap;
114
    uint16_t *lut;
115
116
    int ysize, xsize;
117
118
    int channel_line_size;
119
} EXRThreadData;
120
121
typedef struct EXRContext {
122
    AVClass *class;
123
    AVFrame *picture;
124
    AVCodecContext *avctx;
125
    ExrDSPContext dsp;
126
127
#if HAVE_BIGENDIAN
128
    BswapDSPContext bbdsp;
129
#endif
130
131
    enum ExrCompr compression;
132
    enum ExrPixelType pixel_type;
133
    int channel_offsets[4]; // 0 = red, 1 = green, 2 = blue and 3 = alpha
134
    const AVPixFmtDescriptor *desc;
135
136
    int w, h;
137
    uint32_t xmax, xmin;
138
    uint32_t ymax, ymin;
139
    uint32_t xdelta, ydelta;
140
141
    int scan_lines_per_block;
142
143
    EXRTileAttribute tile_attr; /* header data attribute of tile */
144
    int is_tile; /* 0 if scanline, 1 if tile */
145
146
    int is_luma;/* 1 if there is an Y plane */
147
148
    GetByteContext gb;
149
    const uint8_t *buf;
150
    int buf_size;
151
152
    EXRChannel *channels;
153
    int nb_channels;
154
    int current_channel_offset;
155
156
    EXRThreadData *thread_data;
157
158
    const char *layer;
159
160
    enum AVColorTransferCharacteristic apply_trc_type;
161
    float gamma;
162
    uint16_t gamma_table[65536];
163
} EXRContext;
164
165
/* -15 stored using a single precision bias of 127 */
166
#define HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP 0x38000000
167
168
/* max exponent value in single precision that will be converted
169
 * to Inf or Nan when stored as a half-float */
170
#define HALF_FLOAT_MAX_BIASED_EXP_AS_SINGLE_FP_EXP 0x47800000
171
172
/* 255 is the max exponent biased value */
173
#define FLOAT_MAX_BIASED_EXP (0xFF << 23)
174
175
#define HALF_FLOAT_MAX_BIASED_EXP (0x1F << 10)
176
177
/**
178
 * Convert a half float as a uint16_t into a full float.
179
 *
180
 * @param hf half float as uint16_t
181
 *
182
 * @return float value
183
 */
184
static union av_intfloat32 exr_half2float(uint16_t hf)
185
{
186
    unsigned int sign = (unsigned int) (hf >> 15);
187
    unsigned int mantissa = (unsigned int) (hf & ((1 << 10) - 1));
188
    unsigned int exp = (unsigned int) (hf & HALF_FLOAT_MAX_BIASED_EXP);
189
    union av_intfloat32 f;
190
191
    if (exp == HALF_FLOAT_MAX_BIASED_EXP) {
192
        // we have a half-float NaN or Inf
193
        // half-float NaNs will be converted to a single precision NaN
194
        // half-float Infs will be converted to a single precision Inf
195
        exp = FLOAT_MAX_BIASED_EXP;
196
        if (mantissa)
197
            mantissa = (1 << 23) - 1;    // set all bits to indicate a NaN
198
    } else if (exp == 0x0) {
199
        // convert half-float zero/denorm to single precision value
200
        if (mantissa) {
201
            mantissa <<= 1;
202
            exp = HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
203
            // check for leading 1 in denorm mantissa
204
            while ((mantissa & (1 << 10))) {
205
                // for every leading 0, decrement single precision exponent by 1
206
                // and shift half-float mantissa value to the left
207
                mantissa <<= 1;
208
                exp -= (1 << 23);
209
            }
210
            // clamp the mantissa to 10 bits
211
            mantissa &= ((1 << 10) - 1);
212
            // shift left to generate single-precision mantissa of 23 bits
213
            mantissa <<= 13;
214
        }
215
    } else {
216
        // shift left to generate single-precision mantissa of 23 bits
217
        mantissa <<= 13;
218
        // generate single precision biased exponent value
219
        exp = (exp << 13) + HALF_FLOAT_MIN_BIASED_EXP_AS_SINGLE_FP_EXP;
220
    }
221
222
    f.i = (sign << 31) | exp | mantissa;
223
224
    return f;
225
}
226
227
228
/**
229
 * Convert from 32-bit float as uint32_t to uint16_t.
230
 *
231
 * @param v 32-bit float
232
 *
233
 * @return normalized 16-bit unsigned int
234
 */
235
141816
static inline uint16_t exr_flt2uint(int32_t v)
236
{
237
141816
    int32_t exp = v >> 23;
238
    // "HACK": negative values result in exp<  0, so clipping them to 0
239
    // is also handled by this condition, avoids explicit check for sign bit.
240
141816
    if (exp <= 127 + 7 - 24) // we would shift out all bits anyway
241
4830
        return 0;
242
136986
    if (exp >= 127)
243
3156
        return 0xffff;
244
133830
    v &= 0x007fffff;
245
133830
    return (v + (1 << 23)) >> (127 + 7 - exp);
246
}
247
248
/**
249
 * Convert from 16-bit float as uint16_t to uint16_t.
250
 *
251
 * @param v 16-bit float
252
 *
253
 * @return normalized 16-bit unsigned int
254
 */
255
11898966
static inline uint16_t exr_halflt2uint(uint16_t v)
256
{
257
11898966
    unsigned exp = 14 - (v >> 10);
258
11898966
    if (exp >= 14) {
259
10083670
        if (exp == 14)
260
416764
            return (v >> 9) & 1;
261
        else
262
9666906
            return (v & 0x8000) ? 0 : 0xffff;
263
    }
264
1815296
    v <<= 6;
265
1815296
    return (v + (1 << 16)) >> (exp + 1);
266
}
267
268
1504
static int zip_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
269
                          int uncompressed_size, EXRThreadData *td)
270
{
271
1504
    unsigned long dest_len = uncompressed_size;
272
273
1504
    if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK ||
274
1504
        dest_len != uncompressed_size)
275
        return AVERROR_INVALIDDATA;
276
277
    av_assert1(uncompressed_size % 2 == 0);
278
279
1504
    s->dsp.predictor(td->tmp, uncompressed_size);
280
1504
    s->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
281
282
1504
    return 0;
283
}
284
285
1386
static int rle_uncompress(EXRContext *ctx, const uint8_t *src, int compressed_size,
286
                          int uncompressed_size, EXRThreadData *td)
287
{
288
1386
    uint8_t *d      = td->tmp;
289
1386
    const int8_t *s = src;
290
1386
    int ssize       = compressed_size;
291
1386
    int dsize       = uncompressed_size;
292
1386
    uint8_t *dend   = d + dsize;
293
    int count;
294
295
378128
    while (ssize > 0) {
296
376742
        count = *s++;
297
298
376742
        if (count < 0) {
299
186494
            count = -count;
300
301
186494
            if ((dsize -= count) < 0 ||
302
186494
                (ssize -= count + 1) < 0)
303
                return AVERROR_INVALIDDATA;
304
305
3463010
            while (count--)
306
3276516
                *d++ = *s++;
307
        } else {
308
190248
            count++;
309
310
190248
            if ((dsize -= count) < 0 ||
311
190248
                (ssize -= 2) < 0)
312
                return AVERROR_INVALIDDATA;
313
314
3270228
            while (count--)
315
3079980
                *d++ = *s;
316
317
190248
            s++;
318
        }
319
    }
320
321
1386
    if (dend != d)
322
        return AVERROR_INVALIDDATA;
323
324
    av_assert1(uncompressed_size % 2 == 0);
325
326
1386
    ctx->dsp.predictor(td->tmp, uncompressed_size);
327
1386
    ctx->dsp.reorder_pixels(td->uncompressed_data, td->tmp, uncompressed_size);
328
329
1386
    return 0;
330
}
331
332
#define USHORT_RANGE (1 << 16)
333
#define BITMAP_SIZE  (1 << 13)
334
335
48
static uint16_t reverse_lut(const uint8_t *bitmap, uint16_t *lut)
336
{
337
48
    int i, k = 0;
338
339
3145776
    for (i = 0; i < USHORT_RANGE; i++)
340

3145728
        if ((i == 0) || (bitmap[i >> 3] & (1 << (i & 7))))
341
5798
            lut[k++] = i;
342
343
48
    i = k - 1;
344
345
48
    memset(lut + k, 0, (USHORT_RANGE - k) * 2);
346
347
48
    return i;
348
}
349
350
48
static void apply_lut(const uint16_t *lut, uint16_t *dst, int dsize)
351
{
352
    int i;
353
354
1472148
    for (i = 0; i < dsize; ++i)
355
1472100
        dst[i] = lut[dst[i]];
356
48
}
357
358
#define HUF_ENCBITS 16  // literal (value) bit length
359
#define HUF_DECBITS 14  // decoding bit size (>= 8)
360
361
#define HUF_ENCSIZE ((1 << HUF_ENCBITS) + 1)  // encoding table size
362
#define HUF_DECSIZE (1 << HUF_DECBITS)        // decoding table size
363
#define HUF_DECMASK (HUF_DECSIZE - 1)
364
365
typedef struct HufDec {
366
    int len;
367
    int lit;
368
    int *p;
369
} HufDec;
370
371
48
static void huf_canonical_code_table(uint64_t *hcode)
372
{
373
48
    uint64_t c, n[59] = { 0 };
374
    int i;
375
376
3145824
    for (i = 0; i < HUF_ENCSIZE; ++i)
377
3145776
        n[hcode[i]] += 1;
378
379
48
    c = 0;
380
2832
    for (i = 58; i > 0; --i) {
381
2784
        uint64_t nc = ((c + n[i]) >> 1);
382
2784
        n[i] = c;
383
2784
        c    = nc;
384
    }
385
386
3145824
    for (i = 0; i < HUF_ENCSIZE; ++i) {
387
3145776
        int l = hcode[i];
388
389
3145776
        if (l > 0)
390
3404
            hcode[i] = l | (n[l]++ << 6);
391
    }
392
48
}
393
394
#define SHORT_ZEROCODE_RUN  59
395
#define LONG_ZEROCODE_RUN   63
396
#define SHORTEST_LONG_RUN   (2 + LONG_ZEROCODE_RUN - SHORT_ZEROCODE_RUN)
397
#define LONGEST_LONG_RUN    (255 + SHORTEST_LONG_RUN)
398
399
48
static int huf_unpack_enc_table(GetByteContext *gb,
400
                                int32_t im, int32_t iM, uint64_t *hcode)
401
{
402
    GetBitContext gbit;
403
48
    int ret = init_get_bits8(&gbit, gb->buffer, bytestream2_get_bytes_left(gb));
404
48
    if (ret < 0)
405
        return ret;
406
407
16678
    for (; im <= iM; im++) {
408
16630
        uint64_t l = hcode[im] = get_bits(&gbit, 6);
409
410
16630
        if (l == LONG_ZEROCODE_RUN) {
411
12358
            int zerun = get_bits(&gbit, 8) + SHORTEST_LONG_RUN;
412
413
12358
            if (im + zerun > iM + 1)
414
                return AVERROR_INVALIDDATA;
415
416
3152920
            while (zerun--)
417
3140562
                hcode[im++] = 0;
418
419
12358
            im--;
420
4272
        } else if (l >= SHORT_ZEROCODE_RUN) {
421
458
            int zerun = l - SHORT_ZEROCODE_RUN + 2;
422
423
458
            if (im + zerun > iM + 1)
424
                return AVERROR_INVALIDDATA;
425
426
1858
            while (zerun--)
427
1400
                hcode[im++] = 0;
428
429
458
            im--;
430
        }
431
    }
432
433
48
    bytestream2_skip(gb, (get_bits_count(&gbit) + 7) / 8);
434
48
    huf_canonical_code_table(hcode);
435
436
48
    return 0;
437
}
438
439
48
static int huf_build_dec_table(const uint64_t *hcode, int im,
440
                               int iM, HufDec *hdecod)
441
{
442
3145824
    for (; im <= iM; im++) {
443
3145776
        uint64_t c = hcode[im] >> 6;
444
3145776
        int i, l = hcode[im] & 63;
445
446
3145776
        if (c >> l)
447
            return AVERROR_INVALIDDATA;
448
449
3145776
        if (l > HUF_DECBITS) {
450
            HufDec *pl = hdecod + (c >> (l - HUF_DECBITS));
451
            if (pl->len)
452
                return AVERROR_INVALIDDATA;
453
454
            pl->lit++;
455
456
            pl->p = av_realloc(pl->p, pl->lit * sizeof(int));
457
            if (!pl->p)
458
                return AVERROR(ENOMEM);
459
460
            pl->p[pl->lit - 1] = im;
461
3145776
        } else if (l) {
462
3404
            HufDec *pl = hdecod + (c << (HUF_DECBITS - l));
463
464
789836
            for (i = 1 << (HUF_DECBITS - l); i > 0; i--, pl++) {
465

786432
                if (pl->len || pl->p)
466
                    return AVERROR_INVALIDDATA;
467
786432
                pl->len = l;
468
786432
                pl->lit = im;
469
            }
470
        }
471
    }
472
473
48
    return 0;
474
}
475
476
#define get_char(c, lc, gb)                                                   \
477
{                                                                             \
478
        c   = (c << 8) | bytestream2_get_byte(gb);                            \
479
        lc += 8;                                                              \
480
}
481
482
#define get_code(po, rlc, c, lc, gb, out, oe, outb)                           \
483
{                                                                             \
484
        if (po == rlc) {                                                      \
485
            if (lc < 8)                                                       \
486
                get_char(c, lc, gb);                                          \
487
            lc -= 8;                                                          \
488
                                                                              \
489
            cs = c >> lc;                                                     \
490
                                                                              \
491
            if (out + cs > oe || out == outb)                                 \
492
                return AVERROR_INVALIDDATA;                                   \
493
                                                                              \
494
            s = out[-1];                                                      \
495
                                                                              \
496
            while (cs-- > 0)                                                  \
497
                *out++ = s;                                                   \
498
        } else if (out < oe) {                                                \
499
            *out++ = po;                                                      \
500
        } else {                                                              \
501
            return AVERROR_INVALIDDATA;                                       \
502
        }                                                                     \
503
}
504
505
48
static int huf_decode(const uint64_t *hcode, const HufDec *hdecod,
506
                      GetByteContext *gb, int nbits,
507
                      int rlc, int no, uint16_t *out)
508
{
509
48
    uint64_t c        = 0;
510
48
    uint16_t *outb    = out;
511
48
    uint16_t *oe      = out + no;
512
48
    const uint8_t *ie = gb->buffer + (nbits + 7) / 8; // input byte size
513
    uint8_t cs;
514
    uint16_t s;
515
48
    int i, lc = 0;
516
517
76904
    while (gb->buffer < ie) {
518
76856
        get_char(c, lc, gb);
519
520
385156
        while (lc >= HUF_DECBITS) {
521
308300
            const HufDec pl = hdecod[(c >> (lc - HUF_DECBITS)) & HUF_DECMASK];
522
523
308300
            if (pl.len) {
524
308300
                lc -= pl.len;
525



1477504
                get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
526
            } else {
527
                int j;
528
529
                if (!pl.p)
530
                    return AVERROR_INVALIDDATA;
531
532
                for (j = 0; j < pl.lit; j++) {
533
                    int l = hcode[pl.p[j]] & 63;
534
535
                    while (lc < l && bytestream2_get_bytes_left(gb) > 0)
536
                        get_char(c, lc, gb);
537
538
                    if (lc >= l) {
539
                        if ((hcode[pl.p[j]] >> 6) ==
540
                            ((c >> (lc - l)) & ((1LL << l) - 1))) {
541
                            lc -= l;
542
                            get_code(pl.p[j], rlc, c, lc, gb, out, oe, outb);
543
                            break;
544
                        }
545
                    }
546
                }
547
548
                if (j == pl.lit)
549
                    return AVERROR_INVALIDDATA;
550
            }
551
        }
552
    }
553
554
48
    i   = (8 - nbits) & 7;
555
48
    c >>= i;
556
48
    lc -= i;
557
558
124
    while (lc > 0) {
559
76
        const HufDec pl = hdecod[(c << (HUF_DECBITS - lc)) & HUF_DECMASK];
560
561

76
        if (pl.len && lc >= pl.len) {
562
76
            lc -= pl.len;
563



520
            get_code(pl.lit, rlc, c, lc, gb, out, oe, outb);
564
        } else {
565
            return AVERROR_INVALIDDATA;
566
        }
567
    }
568
569
48
    if (out - outb != no)
570
        return AVERROR_INVALIDDATA;
571
48
    return 0;
572
}
573
574
48
static int huf_uncompress(GetByteContext *gb,
575
                          uint16_t *dst, int dst_size)
576
{
577
    int32_t src_size, im, iM;
578
    uint32_t nBits;
579
    uint64_t *freq;
580
    HufDec *hdec;
581
    int ret, i;
582
583
48
    src_size = bytestream2_get_le32(gb);
584
48
    im       = bytestream2_get_le32(gb);
585
48
    iM       = bytestream2_get_le32(gb);
586
48
    bytestream2_skip(gb, 4);
587
48
    nBits = bytestream2_get_le32(gb);
588

48
    if (im < 0 || im >= HUF_ENCSIZE ||
589

48
        iM < 0 || iM >= HUF_ENCSIZE ||
590
        src_size < 0)
591
        return AVERROR_INVALIDDATA;
592
593
48
    bytestream2_skip(gb, 4);
594
595
48
    freq = av_mallocz_array(HUF_ENCSIZE, sizeof(*freq));
596
48
    hdec = av_mallocz_array(HUF_DECSIZE, sizeof(*hdec));
597

48
    if (!freq || !hdec) {
598
        ret = AVERROR(ENOMEM);
599
        goto fail;
600
    }
601
602
48
    if ((ret = huf_unpack_enc_table(gb, im, iM, freq)) < 0)
603
        goto fail;
604
605
48
    if (nBits > 8 * bytestream2_get_bytes_left(gb)) {
606
        ret = AVERROR_INVALIDDATA;
607
        goto fail;
608
    }
609
610
48
    if ((ret = huf_build_dec_table(freq, im, iM, hdec)) < 0)
611
        goto fail;
612
48
    ret = huf_decode(freq, hdec, gb, nBits, iM, dst_size, dst);
613
614
48
fail:
615
786480
    for (i = 0; i < HUF_DECSIZE; i++)
616
786432
        if (hdec)
617
786432
            av_freep(&hdec[i].p);
618
619
48
    av_free(freq);
620
48
    av_free(hdec);
621
622
48
    return ret;
623
}
624
625
1958562
static inline void wdec14(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
626
{
627
1958562
    int16_t ls = l;
628
1958562
    int16_t hs = h;
629
1958562
    int hi     = hs;
630
1958562
    int ai     = ls + (hi & 1) + (hi >> 1);
631
1958562
    int16_t as = ai;
632
1958562
    int16_t bs = ai - hi;
633
634
1958562
    *a = as;
635
1958562
    *b = bs;
636
1958562
}
637
638
#define NBITS      16
639
#define A_OFFSET  (1 << (NBITS - 1))
640
#define MOD_MASK  ((1 << NBITS) - 1)
641
642
static inline void wdec16(uint16_t l, uint16_t h, uint16_t *a, uint16_t *b)
643
{
644
    int m  = l;
645
    int d  = h;
646
    int bb = (m - (d >> 1)) & MOD_MASK;
647
    int aa = (d + bb - A_OFFSET) & MOD_MASK;
648
    *b = bb;
649
    *a = aa;
650
}
651
652
150
static void wav_decode(uint16_t *in, int nx, int ox,
653
                       int ny, int oy, uint16_t mx)
654
{
655
150
    int w14 = (mx < (1 << 14));
656
150
    int n   = (nx > ny) ? ny : nx;
657
150
    int p   = 1;
658
    int p2;
659
660
1008
    while (p <= n)
661
858
        p <<= 1;
662
663
150
    p >>= 1;
664
150
    p2  = p;
665
150
    p >>= 1;
666
667
858
    while (p >= 1) {
668
708
        uint16_t *py = in;
669
708
        uint16_t *ey = in + oy * (ny - p2);
670
        uint16_t i00, i01, i10, i11;
671
708
        int oy1 = oy * p;
672
708
        int oy2 = oy * p2;
673
708
        int ox1 = ox * p;
674
708
        int ox2 = ox * p2;
675
676
4914
        for (; py <= ey; py += oy2) {
677
4206
            uint16_t *px = py;
678
4206
            uint16_t *ex = py + ox * (nx - p2);
679
680
493602
            for (; px <= ex; px += ox2) {
681
489396
                uint16_t *p01 = px + ox1;
682
489396
                uint16_t *p10 = px + oy1;
683
489396
                uint16_t *p11 = p10 + ox1;
684
685
489396
                if (w14) {
686
489396
                    wdec14(*px, *p10, &i00, &i10);
687
489396
                    wdec14(*p01, *p11, &i01, &i11);
688
489396
                    wdec14(i00, i01, px, p01);
689
489396
                    wdec14(i10, i11, p10, p11);
690
                } else {
691
                    wdec16(*px, *p10, &i00, &i10);
692
                    wdec16(*p01, *p11, &i01, &i11);
693
                    wdec16(i00, i01, px, p01);
694
                    wdec16(i10, i11, p10, p11);
695
                }
696
            }
697
698
4206
            if (nx & p) {
699
216
                uint16_t *p10 = px + oy1;
700
701
216
                if (w14)
702
216
                    wdec14(*px, *p10, &i00, p10);
703
                else
704
                    wdec16(*px, *p10, &i00, p10);
705
706
216
                *px = i00;
707
            }
708
        }
709
710
708
        if (ny & p) {
711
30
            uint16_t *px = py;
712
30
            uint16_t *ex = py + ox * (nx - p2);
713
714
792
            for (; px <= ex; px += ox2) {
715
762
                uint16_t *p01 = px + ox1;
716
717
762
                if (w14)
718
762
                    wdec14(*px, *p01, &i00, p01);
719
                else
720
                    wdec16(*px, *p01, &i00, p01);
721
722
762
                *px = i00;
723
            }
724
        }
725
726
708
        p2  = p;
727
708
        p >>= 1;
728
    }
729
150
}
730
731
48
static int piz_uncompress(EXRContext *s, const uint8_t *src, int ssize,
732
                          int dsize, EXRThreadData *td)
733
{
734
    GetByteContext gb;
735
    uint16_t maxval, min_non_zero, max_non_zero;
736
    uint16_t *ptr;
737
48
    uint16_t *tmp = (uint16_t *)td->tmp;
738
    uint16_t *out;
739
    uint16_t *in;
740
    int ret, i, j;
741
    int pixel_half_size;/* 1 for half, 2 for float and uint32 */
742
    EXRChannel *channel;
743
    int tmp_offset;
744
745
48
    if (!td->bitmap)
746
10
        td->bitmap = av_malloc(BITMAP_SIZE);
747
48
    if (!td->lut)
748
10
        td->lut = av_malloc(1 << 17);
749

48
    if (!td->bitmap || !td->lut) {
750
        av_freep(&td->bitmap);
751
        av_freep(&td->lut);
752
        return AVERROR(ENOMEM);
753
    }
754
755
48
    bytestream2_init(&gb, src, ssize);
756
48
    min_non_zero = bytestream2_get_le16(&gb);
757
48
    max_non_zero = bytestream2_get_le16(&gb);
758
759
48
    if (max_non_zero >= BITMAP_SIZE)
760
        return AVERROR_INVALIDDATA;
761
762
48
    memset(td->bitmap, 0, FFMIN(min_non_zero, BITMAP_SIZE));
763
48
    if (min_non_zero <= max_non_zero)
764
48
        bytestream2_get_buffer(&gb, td->bitmap + min_non_zero,
765
48
                               max_non_zero - min_non_zero + 1);
766
48
    memset(td->bitmap + max_non_zero + 1, 0, BITMAP_SIZE - max_non_zero - 1);
767
768
48
    maxval = reverse_lut(td->bitmap, td->lut);
769
770
48
    ret = huf_uncompress(&gb, tmp, dsize / sizeof(uint16_t));
771
48
    if (ret)
772
        return ret;
773
774
48
    ptr = tmp;
775
192
    for (i = 0; i < s->nb_channels; i++) {
776
144
        channel = &s->channels[i];
777
778
144
        if (channel->pixel_type == EXR_HALF)
779
138
            pixel_half_size = 1;
780
        else
781
6
            pixel_half_size = 2;
782
783
294
        for (j = 0; j < pixel_half_size; j++)
784
150
            wav_decode(ptr + j, td->xsize, pixel_half_size, td->ysize,
785
150
                       td->xsize * pixel_half_size, maxval);
786
144
        ptr += td->xsize * td->ysize * pixel_half_size;
787
    }
788
789
48
    apply_lut(td->lut, tmp, dsize / sizeof(uint16_t));
790
791
48
    out = (uint16_t *)td->uncompressed_data;
792
1446
    for (i = 0; i < td->ysize; i++) {
793
1398
        tmp_offset = 0;
794
5592
        for (j = 0; j < s->nb_channels; j++) {
795
4194
            channel = &s->channels[j];
796
4194
            if (channel->pixel_type == EXR_HALF)
797
4002
                pixel_half_size = 1;
798
            else
799
192
                pixel_half_size = 2;
800
801
4194
            in = tmp + tmp_offset * td->xsize * td->ysize + i * td->xsize * pixel_half_size;
802
4194
            tmp_offset += pixel_half_size;
803
804
#if HAVE_BIGENDIAN
805
            s->bbdsp.bswap16_buf(out, in, td->xsize * pixel_half_size);
806
#else
807
4194
            memcpy(out, in, td->xsize * 2 * pixel_half_size);
808
#endif
809
4194
            out += td->xsize * pixel_half_size;
810
        }
811
    }
812
813
48
    return 0;
814
}
815
816
122
static int pxr24_uncompress(EXRContext *s, const uint8_t *src,
817
                            int compressed_size, int uncompressed_size,
818
                            EXRThreadData *td)
819
{
820
122
    unsigned long dest_len, expected_len = 0;
821
122
    const uint8_t *in = td->tmp;
822
    uint8_t *out;
823
    int c, i, j;
824
825
558
    for (i = 0; i < s->nb_channels; i++) {
826
436
        if (s->channels[i].pixel_type == EXR_FLOAT) {
827
62
            expected_len += (td->xsize * td->ysize * 3);/* PRX 24 store float in 24 bit instead of 32 */
828
374
        } else if (s->channels[i].pixel_type == EXR_HALF) {
829
362
            expected_len += (td->xsize * td->ysize * 2);
830
        } else {//UINT 32
831
12
            expected_len += (td->xsize * td->ysize * 4);
832
        }
833
    }
834
835
122
    dest_len = expected_len;
836
837
122
    if (uncompress(td->tmp, &dest_len, src, compressed_size) != Z_OK) {
838
        return AVERROR_INVALIDDATA;
839
122
    } else if (dest_len != expected_len) {
840
        return AVERROR_INVALIDDATA;
841
    }
842
843
122
    out = td->uncompressed_data;
844
1900
    for (i = 0; i < td->ysize; i++)
845
7678
        for (c = 0; c < s->nb_channels; c++) {
846
5900
            EXRChannel *channel = &s->channels[c];
847
            const uint8_t *ptr[4];
848
5900
            uint32_t pixel = 0;
849
850

5900
            switch (channel->pixel_type) {
851
496
            case EXR_FLOAT:
852
496
                ptr[0] = in;
853
496
                ptr[1] = ptr[0] + td->xsize;
854
496
                ptr[2] = ptr[1] + td->xsize;
855
496
                in     = ptr[2] + td->xsize;
856
857
6448
                for (j = 0; j < td->xsize; ++j) {
858
5952
                    uint32_t diff = ((unsigned)*(ptr[0]++) << 24) |
859
5952
                                    (*(ptr[1]++) << 16) |
860
5952
                                    (*(ptr[2]++) << 8);
861
5952
                    pixel += diff;
862
5952
                    bytestream_put_le32(&out, pixel);
863
                }
864
496
                break;
865
5302
            case EXR_HALF:
866
5302
                ptr[0] = in;
867
5302
                ptr[1] = ptr[0] + td->xsize;
868
5302
                in     = ptr[1] + td->xsize;
869
3851380
                for (j = 0; j < td->xsize; j++) {
870
3846078
                    uint32_t diff = (*(ptr[0]++) << 8) | *(ptr[1]++);
871
872
3846078
                    pixel += diff;
873
3846078
                    bytestream_put_le16(&out, pixel);
874
                }
875
5302
                break;
876
102
            case EXR_UINT:
877
102
                ptr[0] = in;
878
102
                ptr[1] = ptr[0] + s->xdelta;
879
102
                ptr[2] = ptr[1] + s->xdelta;
880
102
                ptr[3] = ptr[2] + s->xdelta;
881
102
                in     = ptr[3] + s->xdelta;
882
883
1380
                for (j = 0; j < s->xdelta; ++j) {
884
1278
                    uint32_t diff = ((uint32_t)*(ptr[0]++) << 24) |
885
1278
                    (*(ptr[1]++) << 16) |
886
1278
                    (*(ptr[2]++) << 8 ) |
887
1278
                    (*(ptr[3]++));
888
1278
                    pixel += diff;
889
1278
                    bytestream_put_le32(&out, pixel);
890
                }
891
102
                break;
892
            default:
893
                return AVERROR_INVALIDDATA;
894
            }
895
        }
896
897
122
    return 0;
898
}
899
900
118558
static void unpack_14(const uint8_t b[14], uint16_t s[16])
901
{
902
118558
    unsigned short shift = (b[ 2] >> 2) & 15;
903
118558
    unsigned short bias = (0x20 << shift);
904
    int i;
905
906
118558
    s[ 0] = (b[0] << 8) | b[1];
907
908
118558
    s[ 4] = s[ 0] + ((((b[ 2] << 4) | (b[ 3] >> 4)) & 0x3f) << shift) - bias;
909
118558
    s[ 8] = s[ 4] + ((((b[ 3] << 2) | (b[ 4] >> 6)) & 0x3f) << shift) - bias;
910
118558
    s[12] = s[ 8] +   ((b[ 4]                       & 0x3f) << shift) - bias;
911
912
118558
    s[ 1] = s[ 0] +   ((b[ 5] >> 2)                         << shift) - bias;
913
118558
    s[ 5] = s[ 4] + ((((b[ 5] << 4) | (b[ 6] >> 4)) & 0x3f) << shift) - bias;
914
118558
    s[ 9] = s[ 8] + ((((b[ 6] << 2) | (b[ 7] >> 6)) & 0x3f) << shift) - bias;
915
118558
    s[13] = s[12] +   ((b[ 7]                       & 0x3f) << shift) - bias;
916
917
118558
    s[ 2] = s[ 1] +   ((b[ 8] >> 2)                         << shift) - bias;
918
118558
    s[ 6] = s[ 5] + ((((b[ 8] << 4) | (b[ 9] >> 4)) & 0x3f) << shift) - bias;
919
118558
    s[10] = s[ 9] + ((((b[ 9] << 2) | (b[10] >> 6)) & 0x3f) << shift) - bias;
920
118558
    s[14] = s[13] +   ((b[10]                       & 0x3f) << shift) - bias;
921
922
118558
    s[ 3] = s[ 2] +   ((b[11] >> 2)                         << shift) - bias;
923
118558
    s[ 7] = s[ 6] + ((((b[11] << 4) | (b[12] >> 4)) & 0x3f) << shift) - bias;
924
118558
    s[11] = s[10] + ((((b[12] << 2) | (b[13] >> 6)) & 0x3f) << shift) - bias;
925
118558
    s[15] = s[14] +   ((b[13]                       & 0x3f) << shift) - bias;
926
927
2015486
    for (i = 0; i < 16; ++i) {
928
1896928
        if (s[i] & 0x8000)
929
1884694
            s[i] &= 0x7fff;
930
        else
931
12234
            s[i] = ~s[i];
932
    }
933
118558
}
934
935
212
static void unpack_3(const uint8_t b[3], uint16_t s[16])
936
{
937
    int i;
938
939
212
    s[0] = (b[0] << 8) | b[1];
940
941
212
    if (s[0] & 0x8000)
942
210
        s[0] &= 0x7fff;
943
    else
944
2
        s[0] = ~s[0];
945
946
3392
    for (i = 1; i < 16; i++)
947
3180
        s[i] = s[0];
948
212
}
949
950
951
46
static int b44_uncompress(EXRContext *s, const uint8_t *src, int compressed_size,
952
                          int uncompressed_size, EXRThreadData *td) {
953
46
    const int8_t *sr = src;
954
46
    int stay_to_uncompress = compressed_size;
955
    int nb_b44_block_w, nb_b44_block_h;
956
    int index_tl_x, index_tl_y, index_out, index_tmp;
957
    uint16_t tmp_buffer[16]; /* B44 use 4x4 half float pixel */
958
    int c, iY, iX, y, x;
959
46
    int target_channel_offset = 0;
960
961
    /* calc B44 block count */
962
46
    nb_b44_block_w = td->xsize / 4;
963
46
    if ((td->xsize % 4) != 0)
964
26
        nb_b44_block_w++;
965
966
46
    nb_b44_block_h = td->ysize / 4;
967
46
    if ((td->ysize % 4) != 0)
968
12
        nb_b44_block_h++;
969
970
312
    for (c = 0; c < s->nb_channels; c++) {
971
266
        if (s->channels[c].pixel_type == EXR_HALF) {/* B44 only compress half float data */
972
918
            for (iY = 0; iY < nb_b44_block_h; iY++) {
973
119518
                for (iX = 0; iX < nb_b44_block_w; iX++) {/* For each B44 block */
974
118770
                    if (stay_to_uncompress < 3) {
975
                        av_log(s, AV_LOG_ERROR, "Not enough data for B44A block: %d", stay_to_uncompress);
976
                        return AVERROR_INVALIDDATA;
977
                    }
978
979
118770
                    if (src[compressed_size - stay_to_uncompress + 2] == 0xfc) { /* B44A block */
980
212
                        unpack_3(sr, tmp_buffer);
981
212
                        sr += 3;
982
212
                        stay_to_uncompress -= 3;
983
                    }  else {/* B44 Block */
984
118558
                        if (stay_to_uncompress < 14) {
985
                            av_log(s, AV_LOG_ERROR, "Not enough data for B44 block: %d", stay_to_uncompress);
986
                            return AVERROR_INVALIDDATA;
987
                        }
988
118558
                        unpack_14(sr, tmp_buffer);
989
118558
                        sr += 14;
990
118558
                        stay_to_uncompress -= 14;
991
                    }
992
993
                    /* copy data to uncompress buffer (B44 block can exceed target resolution)*/
994
118770
                    index_tl_x = iX * 4;
995
118770
                    index_tl_y = iY * 4;
996
997

591522
                    for (y = index_tl_y; y < FFMIN(index_tl_y + 4, td->ysize); y++) {
998

2360726
                        for (x = index_tl_x; x < FFMIN(index_tl_x + 4, td->xsize); x++) {
999
1887974
                            index_out = target_channel_offset * td->xsize + y * td->channel_line_size + 2 * x;
1000
1887974
                            index_tmp = (y-index_tl_y) * 4 + (x-index_tl_x);
1001
1887974
                            td->uncompressed_data[index_out] = tmp_buffer[index_tmp] & 0xff;
1002
1887974
                            td->uncompressed_data[index_out + 1] = tmp_buffer[index_tmp] >> 8;
1003
                        }
1004
                    }
1005
                }
1006
            }
1007
170
            target_channel_offset += 2;
1008
        } else {/* Float or UINT 32 channel */
1009
96
            if (stay_to_uncompress < td->ysize * td->xsize * 4) {
1010
                av_log(s, AV_LOG_ERROR, "Not enough data for uncompress channel: %d", stay_to_uncompress);
1011
                return AVERROR_INVALIDDATA;
1012
            }
1013
1014
896
            for (y = 0; y < td->ysize; y++) {
1015
800
                index_out = target_channel_offset * td->xsize + y * td->channel_line_size;
1016
800
                memcpy(&td->uncompressed_data[index_out], sr, td->xsize * 4);
1017
800
                sr += td->xsize * 4;
1018
            }
1019
96
            target_channel_offset += 4;
1020
1021
96
            stay_to_uncompress -= td->ysize * td->xsize * 4;
1022
        }
1023
    }
1024
1025
46
    return 0;
1026
}
1027
1028
4526
static int decode_block(AVCodecContext *avctx, void *tdata,
1029
                        int jobnr, int threadnr)
1030
{
1031
4526
    EXRContext *s = avctx->priv_data;
1032
4526
    AVFrame *const p = s->picture;
1033
4526
    EXRThreadData *td = &s->thread_data[threadnr];
1034
4526
    const uint8_t *channel_buffer[4] = { 0 };
1035
4526
    const uint8_t *buf = s->buf;
1036
    uint64_t line_offset, uncompressed_size;
1037
    uint16_t *ptr_x;
1038
    uint8_t *ptr;
1039
    uint32_t data_size;
1040
4526
    uint64_t line, col = 0;
1041
    uint64_t tile_x, tile_y, tile_level_x, tile_level_y;
1042
    const uint8_t *src;
1043
4526
    int axmax = (avctx->width - (s->xmax + 1)) * 2 * s->desc->nb_components; /* nb pixel to add at the right of the datawindow */
1044
4526
    int bxmin = s->xmin * 2 * s->desc->nb_components; /* nb pixel to add at the left of the datawindow */
1045
4526
    int i, x, buf_size = s->buf_size;
1046
    int c, rgb_channel_count;
1047
4526
    float one_gamma = 1.0f / s->gamma;
1048
4526
    avpriv_trc_function trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1049
    int ret;
1050
1051
4526
    line_offset = AV_RL64(s->gb.buffer + jobnr * 8);
1052
1053
4526
    if (s->is_tile) {
1054

52
        if (buf_size < 20 || line_offset > buf_size - 20)
1055
            return AVERROR_INVALIDDATA;
1056
1057
52
        src  = buf + line_offset + 20;
1058
1059
52
        tile_x = AV_RL32(src - 20);
1060
52
        tile_y = AV_RL32(src - 16);
1061
52
        tile_level_x = AV_RL32(src - 12);
1062
52
        tile_level_y = AV_RL32(src - 8);
1063
1064
52
        data_size = AV_RL32(src - 4);
1065

52
        if (data_size <= 0 || data_size > buf_size - line_offset - 20)
1066
            return AVERROR_INVALIDDATA;
1067
1068

52
        if (tile_level_x || tile_level_y) { /* tile level, is not the full res level */
1069
            avpriv_report_missing_feature(s->avctx, "Subres tile before full res tile");
1070
            return AVERROR_PATCHWELCOME;
1071
        }
1072
1073

52
        if (s->xmin || s->ymin) {
1074
            avpriv_report_missing_feature(s->avctx, "Tiles with xmin/ymin");
1075
            return AVERROR_PATCHWELCOME;
1076
        }
1077
1078
52
        line = s->tile_attr.ySize * tile_y;
1079
52
        col = s->tile_attr.xSize * tile_x;
1080
1081

52
        if (line < s->ymin || line > s->ymax ||
1082

52
            col  < s->xmin || col  > s->xmax)
1083
            return AVERROR_INVALIDDATA;
1084
1085
52
        td->ysize = FFMIN(s->tile_attr.ySize, s->ydelta - tile_y * s->tile_attr.ySize);
1086
52
        td->xsize = FFMIN(s->tile_attr.xSize, s->xdelta - tile_x * s->tile_attr.xSize);
1087
1088
52
        if (col) { /* not the first tile of the line */
1089
12
            bxmin = 0; /* doesn't add pixel at the left of the datawindow */
1090
        }
1091
1092
52
        if ((col + td->xsize) != s->xdelta)/* not the last tile of the line */
1093
12
            axmax = 0; /* doesn't add pixel at the right of the datawindow */
1094
1095
52
        td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1096
52
        uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1097
    } else {
1098

4474
        if (buf_size < 8 || line_offset > buf_size - 8)
1099
            return AVERROR_INVALIDDATA;
1100
1101
4474
        src  = buf + line_offset + 8;
1102
4474
        line = AV_RL32(src - 8);
1103
1104

4474
        if (line < s->ymin || line > s->ymax)
1105
            return AVERROR_INVALIDDATA;
1106
1107
4474
        data_size = AV_RL32(src - 4);
1108

4474
        if (data_size <= 0 || data_size > buf_size - line_offset - 8)
1109
            return AVERROR_INVALIDDATA;
1110
1111
4474
        td->ysize          = FFMIN(s->scan_lines_per_block, s->ymax - line + 1); /* s->ydelta - line ?? */
1112
4474
        td->xsize          = s->xdelta;
1113
1114
4474
        td->channel_line_size = td->xsize * s->current_channel_offset;/* uncompress size of one line */
1115
4474
        uncompressed_size = td->channel_line_size * (uint64_t)td->ysize;/* uncompress size of the block */
1116
1117

4474
        if ((s->compression == EXR_RAW && (data_size != uncompressed_size ||
1118
1390
                                           line_offset > buf_size - uncompressed_size)) ||
1119

4474
            (s->compression != EXR_RAW && (data_size > uncompressed_size ||
1120
3084
                                           line_offset > buf_size - data_size))) {
1121
            return AVERROR_INVALIDDATA;
1122
        }
1123
    }
1124
1125

4526
    if (data_size < uncompressed_size || s->is_tile) { /* td->tmp is use for tile reorganization */
1126
3132
        av_fast_padded_malloc(&td->tmp, &td->tmp_size, uncompressed_size);
1127
3132
        if (!td->tmp)
1128
            return AVERROR(ENOMEM);
1129
    }
1130
1131
4526
    if (data_size < uncompressed_size) {
1132
3106
        av_fast_padded_malloc(&td->uncompressed_data,
1133
3106
                              &td->uncompressed_size, uncompressed_size + 64);/* Force 64 padding for AVX2 reorder_pixels dst */
1134
1135
3106
        if (!td->uncompressed_data)
1136
            return AVERROR(ENOMEM);
1137
1138
3106
        ret = AVERROR_INVALIDDATA;
1139

3106
        switch (s->compression) {
1140
1504
        case EXR_ZIP1:
1141
        case EXR_ZIP16:
1142
1504
            ret = zip_uncompress(s, src, data_size, uncompressed_size, td);
1143
1504
            break;
1144
48
        case EXR_PIZ:
1145
48
            ret = piz_uncompress(s, src, data_size, uncompressed_size, td);
1146
48
            break;
1147
122
        case EXR_PXR24:
1148
122
            ret = pxr24_uncompress(s, src, data_size, uncompressed_size, td);
1149
122
            break;
1150
1386
        case EXR_RLE:
1151
1386
            ret = rle_uncompress(s, src, data_size, uncompressed_size, td);
1152
1386
            break;
1153
46
        case EXR_B44:
1154
        case EXR_B44A:
1155
46
            ret = b44_uncompress(s, src, data_size, uncompressed_size, td);
1156
46
            break;
1157
        }
1158
3106
        if (ret < 0) {
1159
            av_log(avctx, AV_LOG_ERROR, "decode_block() failed.\n");
1160
            return ret;
1161
        }
1162
3106
        src = td->uncompressed_data;
1163
    }
1164
1165
4526
    if (!s->is_luma) {
1166
4522
        channel_buffer[0] = src + td->xsize * s->channel_offsets[0];
1167
4522
        channel_buffer[1] = src + td->xsize * s->channel_offsets[1];
1168
4522
        channel_buffer[2] = src + td->xsize * s->channel_offsets[2];
1169
4522
        rgb_channel_count = 3;
1170
    } else { /* put y data in the first channel_buffer */
1171
4
        channel_buffer[0] = src + td->xsize * s->channel_offsets[1];
1172
4
        rgb_channel_count = 1;
1173
    }
1174
4526
    if (s->channel_offsets[3] >= 0)
1175
4242
        channel_buffer[3] = src + td->xsize * s->channel_offsets[3];
1176
1177
4526
    ptr = p->data[0] + line * p->linesize[0] + (col * s->desc->nb_components * 2);
1178
1179
4526
    for (i = 0;
1180
15066
         i < td->ysize; i++, ptr += p->linesize[0]) {
1181
1182
        const uint8_t * a;
1183
        const uint8_t *rgb[3];
1184
1185
42096
        for (c = 0; c < rgb_channel_count; c++){
1186
31556
            rgb[c] = channel_buffer[c];
1187
        }
1188
1189
10540
        if (channel_buffer[3])
1190
6326
            a = channel_buffer[3];
1191
1192
10540
        ptr_x = (uint16_t *) ptr;
1193
1194
        // Zero out the start if xmin is not 0
1195
10540
        memset(ptr_x, 0, bxmin);
1196
10540
        ptr_x += s->xmin * s->desc->nb_components;
1197
1198
10540
        if (s->pixel_type == EXR_FLOAT) {
1199
            // 32-bit
1200
1192
            if (trc_func) {
1201
                for (x = 0; x < td->xsize; x++) {
1202
                    union av_intfloat32 t;
1203
1204
                    for (c = 0; c < rgb_channel_count; c++) {
1205
                        t.i = bytestream_get_le32(&rgb[c]);
1206
                        t.f = trc_func(t.f);
1207
                        *ptr_x++ = exr_flt2uint(t.i);
1208
                    }
1209
                    if (channel_buffer[3])
1210
                        *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
1211
                }
1212
            } else {
1213
47412
                for (x = 0; x < td->xsize; x++) {
1214
                    union av_intfloat32 t;
1215
                    int c;
1216
1217
184880
                    for (c = 0; c < rgb_channel_count; c++) {
1218
138660
                        t.i = bytestream_get_le32(&rgb[c]);
1219
138660
                        if (t.f > 0.0f)  /* avoid negative values */
1220
136236
                            t.f = powf(t.f, one_gamma);
1221
138660
                        *ptr_x++ = exr_flt2uint(t.i);
1222
                    }
1223
1224
46220
                    if (channel_buffer[3])
1225
3156
                        *ptr_x++ = exr_flt2uint(bytestream_get_le32(&a));
1226
                }
1227
            }
1228
9348
        } else if (s->pixel_type == EXR_HALF) {
1229
            // 16-bit
1230
5419066
            for (x = 0; x < td->xsize; x++) {
1231
                int c;
1232
21638232
                for (c = 0; c < rgb_channel_count; c++) {
1233
16228482
                    *ptr_x++ = s->gamma_table[bytestream_get_le16(&rgb[c])];
1234
                }
1235
1236
5409750
                if (channel_buffer[3])
1237
3641430
                    *ptr_x++ = exr_halflt2uint(bytestream_get_le16(&a));
1238
            }
1239
32
        } else if (s->pixel_type == EXR_UINT) {
1240
416
            for (x = 0; x < td->xsize; x++) {
1241
1536
                for (c = 0; c < rgb_channel_count; c++) {
1242
1152
                    *ptr_x++ = bytestream_get_le32(&rgb[c]) >> 16;
1243
                }
1244
1245
384
                if (channel_buffer[3])
1246
                    *ptr_x++ = bytestream_get_le32(&a) >> 16;
1247
            }
1248
        }
1249
1250
        // Zero out the end if xmax+1 is not w
1251
10540
        memset(ptr_x, 0, axmax);
1252
1253
10540
        channel_buffer[0] += td->channel_line_size;
1254
10540
        channel_buffer[1] += td->channel_line_size;
1255
10540
        channel_buffer[2] += td->channel_line_size;
1256
10540
        if (channel_buffer[3])
1257
6326
            channel_buffer[3] += td->channel_line_size;
1258
    }
1259
1260
4526
    return 0;
1261
}
1262
1263
/**
1264
 * Check if the variable name corresponds to its data type.
1265
 *
1266
 * @param s              the EXRContext
1267
 * @param value_name     name of the variable to check
1268
 * @param value_type     type of the variable to check
1269
 * @param minimum_length minimum length of the variable data
1270
 *
1271
 * @return bytes to read containing variable data
1272
 *         -1 if variable is not found
1273
 *         0 if buffer ended prematurely
1274
 */
1275
13522
static int check_header_variable(EXRContext *s,
1276
                                 const char *value_name,
1277
                                 const char *value_type,
1278
                                 unsigned int minimum_length)
1279
{
1280
13522
    int var_size = -1;
1281
1282
13522
    if (bytestream2_get_bytes_left(&s->gb) >= minimum_length &&
1283
13522
        !strcmp(s->gb.buffer, value_name)) {
1284
        // found value_name, jump to value_type (null terminated strings)
1285
808
        s->gb.buffer += strlen(value_name) + 1;
1286
808
        if (!strcmp(s->gb.buffer, value_type)) {
1287
808
            s->gb.buffer += strlen(value_type) + 1;
1288
808
            var_size = bytestream2_get_le32(&s->gb);
1289
            // don't go read past boundaries
1290
808
            if (var_size > bytestream2_get_bytes_left(&s->gb))
1291
                var_size = 0;
1292
        } else {
1293
            // value_type not found, reset the buffer
1294
            s->gb.buffer -= strlen(value_name) + 1;
1295
            av_log(s->avctx, AV_LOG_WARNING,
1296
                   "Unknown data type %s for header variable %s.\n",
1297
                   value_type, value_name);
1298
        }
1299
    }
1300
1301
13522
    return var_size;
1302
}
1303
1304
126
static int decode_header(EXRContext *s, AVFrame *frame)
1305
{
1306
126
    AVDictionary *metadata = NULL;
1307
126
    int magic_number, version, i, flags, sar = 0;
1308
126
    int layer_match = 0;
1309
    int ret;
1310
126
    int dup_channels = 0;
1311
1312
126
    s->current_channel_offset = 0;
1313
126
    s->xmin               = ~0;
1314
126
    s->xmax               = ~0;
1315
126
    s->ymin               = ~0;
1316
126
    s->ymax               = ~0;
1317
126
    s->xdelta             = ~0;
1318
126
    s->ydelta             = ~0;
1319
126
    s->channel_offsets[0] = -1;
1320
126
    s->channel_offsets[1] = -1;
1321
126
    s->channel_offsets[2] = -1;
1322
126
    s->channel_offsets[3] = -1;
1323
126
    s->pixel_type         = EXR_UNKNOWN;
1324
126
    s->compression        = EXR_UNKN;
1325
126
    s->nb_channels        = 0;
1326
126
    s->w                  = 0;
1327
126
    s->h                  = 0;
1328
126
    s->tile_attr.xSize    = -1;
1329
126
    s->tile_attr.ySize    = -1;
1330
126
    s->is_tile            = 0;
1331
126
    s->is_luma            = 0;
1332
1333
126
    if (bytestream2_get_bytes_left(&s->gb) < 10) {
1334
        av_log(s->avctx, AV_LOG_ERROR, "Header too short to parse.\n");
1335
        return AVERROR_INVALIDDATA;
1336
    }
1337
1338
126
    magic_number = bytestream2_get_le32(&s->gb);
1339
126
    if (magic_number != 20000630) {
1340
        /* As per documentation of OpenEXR, it is supposed to be
1341
         * int 20000630 little-endian */
1342
        av_log(s->avctx, AV_LOG_ERROR, "Wrong magic number %d.\n", magic_number);
1343
        return AVERROR_INVALIDDATA;
1344
    }
1345
1346
126
    version = bytestream2_get_byte(&s->gb);
1347
126
    if (version != 2) {
1348
        avpriv_report_missing_feature(s->avctx, "Version %d", version);
1349
        return AVERROR_PATCHWELCOME;
1350
    }
1351
1352
126
    flags = bytestream2_get_le24(&s->gb);
1353
1354
126
    if (flags & 0x02)
1355
36
        s->is_tile = 1;
1356
126
    if (flags & 0x08) {
1357
        avpriv_report_missing_feature(s->avctx, "deep data");
1358
        return AVERROR_PATCHWELCOME;
1359
    }
1360
126
    if (flags & 0x10) {
1361
        avpriv_report_missing_feature(s->avctx, "multipart");
1362
        return AVERROR_PATCHWELCOME;
1363
    }
1364
1365
    // Parse the header
1366

2246
    while (bytestream2_get_bytes_left(&s->gb) > 0 && *s->gb.buffer) {
1367
        int var_size;
1368
2120
        if ((var_size = check_header_variable(s, "channels",
1369
                                              "chlist", 38)) >= 0) {
1370
            GetByteContext ch_gb;
1371
126
            if (!var_size) {
1372
                ret = AVERROR_INVALIDDATA;
1373
                goto fail;
1374
            }
1375
1376
126
            bytestream2_init(&ch_gb, s->gb.buffer, var_size);
1377
1378
826
            while (bytestream2_get_bytes_left(&ch_gb) >= 19) {
1379
                EXRChannel *channel;
1380
                enum ExrPixelType current_pixel_type;
1381
700
                int channel_index = -1;
1382
                int xsub, ysub;
1383
1384
700
                if (strcmp(s->layer, "") != 0) {
1385
260
                    if (strncmp(ch_gb.buffer, s->layer, strlen(s->layer)) == 0) {
1386
144
                        layer_match = 1;
1387
144
                        av_log(s->avctx, AV_LOG_INFO,
1388
                               "Channel match layer : %s.\n", ch_gb.buffer);
1389
144
                        ch_gb.buffer += strlen(s->layer);
1390
144
                        if (*ch_gb.buffer == '.')
1391
144
                            ch_gb.buffer++;         /* skip dot if not given */
1392
                    } else {
1393
116
                        layer_match = 0;
1394
116
                        av_log(s->avctx, AV_LOG_INFO,
1395
                               "Channel doesn't match layer : %s.\n", ch_gb.buffer);
1396
                    }
1397
                } else {
1398
440
                    layer_match = 1;
1399
                }
1400
1401
700
                if (layer_match) { /* only search channel if the layer match is valid */
1402
584
                    if (!strcmp(ch_gb.buffer, "R") ||
1403
462
                        !strcmp(ch_gb.buffer, "X") ||
1404
462
                        !strcmp(ch_gb.buffer, "U")) {
1405
122
                        channel_index = 0;
1406
122
                        s->is_luma = 0;
1407
462
                    } else if (!strcmp(ch_gb.buffer, "G") ||
1408
340
                               !strcmp(ch_gb.buffer, "V")) {
1409
122
                        channel_index = 1;
1410
122
                        s->is_luma = 0;
1411
340
                    } else if (!strcmp(ch_gb.buffer, "Y")) {
1412
4
                        channel_index = 1;
1413
4
                        s->is_luma = 1;
1414
336
                    } else if (!strcmp(ch_gb.buffer, "B") ||
1415
214
                               !strcmp(ch_gb.buffer, "Z") ||
1416
214
                               !strcmp(ch_gb.buffer, "W")){
1417
122
                               channel_index = 2;
1418
122
                        s->is_luma = 0;
1419
214
                    } else if (!strcmp(ch_gb.buffer, "A")) {
1420
56
                        channel_index = 3;
1421
                    } else {
1422
158
                        av_log(s->avctx, AV_LOG_WARNING,
1423
                               "Unsupported channel %.256s.\n", ch_gb.buffer);
1424
                    }
1425
                }
1426
1427
                /* skip until you get a 0 */
1428

7856
                while (bytestream2_get_bytes_left(&ch_gb) > 0 &&
1429
3928
                       bytestream2_get_byte(&ch_gb))
1430
3228
                    continue;
1431
1432
700
                if (bytestream2_get_bytes_left(&ch_gb) < 4) {
1433
                    av_log(s->avctx, AV_LOG_ERROR, "Incomplete header.\n");
1434
                    ret = AVERROR_INVALIDDATA;
1435
                    goto fail;
1436
                }
1437
1438
700
                current_pixel_type = bytestream2_get_le32(&ch_gb);
1439
700
                if (current_pixel_type >= EXR_UNKNOWN) {
1440
                    avpriv_report_missing_feature(s->avctx, "Pixel type %d",
1441
                                                  current_pixel_type);
1442
                    ret = AVERROR_PATCHWELCOME;
1443
                    goto fail;
1444
                }
1445
1446
700
                bytestream2_skip(&ch_gb, 4);
1447
700
                xsub = bytestream2_get_le32(&ch_gb);
1448
700
                ysub = bytestream2_get_le32(&ch_gb);
1449
1450

700
                if (xsub != 1 || ysub != 1) {
1451
                    avpriv_report_missing_feature(s->avctx,
1452
                                                  "Subsampling %dx%d",
1453
                                                  xsub, ysub);
1454
                    ret = AVERROR_PATCHWELCOME;
1455
                    goto fail;
1456
                }
1457
1458

700
                if (channel_index >= 0 && s->channel_offsets[channel_index] == -1) { /* channel has not been previously assigned */
1459
426
                    if (s->pixel_type != EXR_UNKNOWN &&
1460
300
                        s->pixel_type != current_pixel_type) {
1461
                        av_log(s->avctx, AV_LOG_ERROR,
1462
                               "RGB channels not of the same depth.\n");
1463
                        ret = AVERROR_INVALIDDATA;
1464
                        goto fail;
1465
                    }
1466
426
                    s->pixel_type                     = current_pixel_type;
1467
426
                    s->channel_offsets[channel_index] = s->current_channel_offset;
1468
274
                } else if (channel_index >= 0) {
1469
                    av_log(s->avctx, AV_LOG_WARNING,
1470
                            "Multiple channels with index %d.\n", channel_index);
1471
                    if (++dup_channels > 10) {
1472
                        ret = AVERROR_INVALIDDATA;
1473
                        goto fail;
1474
                    }
1475
                }
1476
1477
1400
                s->channels = av_realloc(s->channels,
1478
700
                                         ++s->nb_channels * sizeof(EXRChannel));
1479
700
                if (!s->channels) {
1480
                    ret = AVERROR(ENOMEM);
1481
                    goto fail;
1482
                }
1483
700
                channel             = &s->channels[s->nb_channels - 1];
1484
700
                channel->pixel_type = current_pixel_type;
1485
700
                channel->xsub       = xsub;
1486
700
                channel->ysub       = ysub;
1487
1488
700
                if (current_pixel_type == EXR_HALF) {
1489
358
                    s->current_channel_offset += 2;
1490
                } else {/* Float or UINT32 */
1491
342
                    s->current_channel_offset += 4;
1492
                }
1493
            }
1494
1495
            /* Check if all channels are set with an offset or if the channels
1496
             * are causing an overflow  */
1497
126
            if (!s->is_luma){/* if we expected to have at least 3 channels */
1498
122
                if (FFMIN3(s->channel_offsets[0],
1499
                           s->channel_offsets[1],
1500
                           s->channel_offsets[2]) < 0) {
1501
                    if (s->channel_offsets[0] < 0)
1502
                        av_log(s->avctx, AV_LOG_ERROR, "Missing red channel.\n");
1503
                    if (s->channel_offsets[1] < 0)
1504
                        av_log(s->avctx, AV_LOG_ERROR, "Missing green channel.\n");
1505
                    if (s->channel_offsets[2] < 0)
1506
                        av_log(s->avctx, AV_LOG_ERROR, "Missing blue channel.\n");
1507
                    ret = AVERROR_INVALIDDATA;
1508
                    goto fail;
1509
                }
1510
            }
1511
1512
            // skip one last byte and update main gb
1513
126
            s->gb.buffer = ch_gb.buffer + 1;
1514
126
            continue;
1515
1994
        } else if ((var_size = check_header_variable(s, "dataWindow", "box2i",
1516
                                                     31)) >= 0) {
1517
126
            if (!var_size) {
1518
                ret = AVERROR_INVALIDDATA;
1519
                goto fail;
1520
            }
1521
1522
126
            s->xmin   = bytestream2_get_le32(&s->gb);
1523
126
            s->ymin   = bytestream2_get_le32(&s->gb);
1524
126
            s->xmax   = bytestream2_get_le32(&s->gb);
1525
126
            s->ymax   = bytestream2_get_le32(&s->gb);
1526
126
            s->xdelta = (s->xmax - s->xmin) + 1;
1527
126
            s->ydelta = (s->ymax - s->ymin) + 1;
1528
1529
126
            continue;
1530
1868
        } else if ((var_size = check_header_variable(s, "displayWindow",
1531
                                                     "box2i", 34)) >= 0) {
1532
126
            if (!var_size) {
1533
                ret = AVERROR_INVALIDDATA;
1534
                goto fail;
1535
            }
1536
1537
126
            bytestream2_skip(&s->gb, 8);
1538
126
            s->w = bytestream2_get_le32(&s->gb) + 1;
1539
126
            s->h = bytestream2_get_le32(&s->gb) + 1;
1540
1541
126
            continue;
1542
1742
        } else if ((var_size = check_header_variable(s, "lineOrder",
1543
                                                     "lineOrder", 25)) >= 0) {
1544
            int line_order;
1545
126
            if (!var_size) {
1546
                ret = AVERROR_INVALIDDATA;
1547
                goto fail;
1548
            }
1549
1550
126
            line_order = bytestream2_get_byte(&s->gb);
1551
126
            av_log(s->avctx, AV_LOG_DEBUG, "line order: %d.\n", line_order);
1552
126
            if (line_order > 2) {
1553
                av_log(s->avctx, AV_LOG_ERROR, "Unknown line order.\n");
1554
                ret = AVERROR_INVALIDDATA;
1555
                goto fail;
1556
            }
1557
1558
126
            continue;
1559
1616
        } else if ((var_size = check_header_variable(s, "pixelAspectRatio",
1560
                                                     "float", 31)) >= 0) {
1561
126
            if (!var_size) {
1562
                ret = AVERROR_INVALIDDATA;
1563
                goto fail;
1564
            }
1565
1566
126
            sar = bytestream2_get_le32(&s->gb);
1567
1568
126
            continue;
1569
1490
        } else if ((var_size = check_header_variable(s, "compression",
1570
                                                     "compression", 29)) >= 0) {
1571
126
            if (!var_size) {
1572
                ret = AVERROR_INVALIDDATA;
1573
                goto fail;
1574
            }
1575
1576
126
            if (s->compression == EXR_UNKN)
1577
126
                s->compression = bytestream2_get_byte(&s->gb);
1578
            else
1579
                av_log(s->avctx, AV_LOG_WARNING,
1580
                       "Found more than one compression attribute.\n");
1581
1582
126
            continue;
1583
1364
        } else if ((var_size = check_header_variable(s, "tiles",
1584
                                                     "tiledesc", 22)) >= 0) {
1585
            char tileLevel;
1586
1587
36
            if (!s->is_tile)
1588
                av_log(s->avctx, AV_LOG_WARNING,
1589
                       "Found tile attribute and scanline flags. Exr will be interpreted as scanline.\n");
1590
1591
36
            s->tile_attr.xSize = bytestream2_get_le32(&s->gb);
1592
36
            s->tile_attr.ySize = bytestream2_get_le32(&s->gb);
1593
1594
36
            tileLevel = bytestream2_get_byte(&s->gb);
1595
36
            s->tile_attr.level_mode = tileLevel & 0x0f;
1596
36
            s->tile_attr.level_round = (tileLevel >> 4) & 0x0f;
1597
1598
36
            if (s->tile_attr.level_mode >= EXR_TILE_LEVEL_UNKNOWN){
1599
                avpriv_report_missing_feature(s->avctx, "Tile level mode %d",
1600
                                              s->tile_attr.level_mode);
1601
                ret = AVERROR_PATCHWELCOME;
1602
                goto fail;
1603
            }
1604
1605
36
            if (s->tile_attr.level_round >= EXR_TILE_ROUND_UNKNOWN) {
1606
                avpriv_report_missing_feature(s->avctx, "Tile level round %d",
1607
                                              s->tile_attr.level_round);
1608
                ret = AVERROR_PATCHWELCOME;
1609
                goto fail;
1610
            }
1611
1612
36
            continue;
1613
1328
        } else if ((var_size = check_header_variable(s, "writer",
1614
                                                     "string", 1)) >= 0) {
1615
16
            uint8_t key[256] = { 0 };
1616
1617
16
            bytestream2_get_buffer(&s->gb, key, FFMIN(sizeof(key) - 1, var_size));
1618
16
            av_dict_set(&metadata, "writer", key, 0);
1619
1620
16
            continue;
1621
        }
1622
1623
        // Check if there are enough bytes for a header
1624
1312
        if (bytestream2_get_bytes_left(&s->gb) <= 9) {
1625
            av_log(s->avctx, AV_LOG_ERROR, "Incomplete header\n");
1626
            ret = AVERROR_INVALIDDATA;
1627
            goto fail;
1628
        }
1629
1630
        // Process unknown variables
1631
3936
        for (i = 0; i < 2; i++) // value_name and value_type
1632
27594
            while (bytestream2_get_byte(&s->gb) != 0);
1633
1634
        // Skip variable length
1635
1312
        bytestream2_skip(&s->gb, bytestream2_get_le32(&s->gb));
1636
    }
1637
1638
126
    ff_set_sar(s->avctx, av_d2q(av_int2float(sar), 255));
1639
1640
126
    if (s->compression == EXR_UNKN) {
1641
        av_log(s->avctx, AV_LOG_ERROR, "Missing compression attribute.\n");
1642
        ret = AVERROR_INVALIDDATA;
1643
        goto fail;
1644
    }
1645
1646
126
    if (s->is_tile) {
1647

36
        if (s->tile_attr.xSize < 1 || s->tile_attr.ySize < 1) {
1648
            av_log(s->avctx, AV_LOG_ERROR, "Invalid tile attribute.\n");
1649
            ret = AVERROR_INVALIDDATA;
1650
            goto fail;
1651
        }
1652
    }
1653
1654
126
    if (bytestream2_get_bytes_left(&s->gb) <= 0) {
1655
        av_log(s->avctx, AV_LOG_ERROR, "Incomplete frame.\n");
1656
        ret = AVERROR_INVALIDDATA;
1657
        goto fail;
1658
    }
1659
1660
126
    frame->metadata = metadata;
1661
1662
    // aaand we are done
1663
126
    bytestream2_skip(&s->gb, 1);
1664
126
    return 0;
1665
fail:
1666
    av_dict_free(&metadata);
1667
    return ret;
1668
}
1669
1670
126
static int decode_frame(AVCodecContext *avctx, void *data,
1671
                        int *got_frame, AVPacket *avpkt)
1672
{
1673
126
    EXRContext *s = avctx->priv_data;
1674
126
    ThreadFrame frame = { .f = data };
1675
126
    AVFrame *picture = data;
1676
    uint8_t *ptr;
1677
1678
    int y, ret;
1679
    int out_line_size;
1680
    int nb_blocks;   /* nb scanline or nb tile */
1681
    uint64_t start_offset_table;
1682
    uint64_t start_next_scanline;
1683
    PutByteContext offset_table_writer;
1684
1685
126
    bytestream2_init(&s->gb, avpkt->data, avpkt->size);
1686
1687
126
    if ((ret = decode_header(s, picture)) < 0)
1688
        return ret;
1689
1690
126
    switch (s->pixel_type) {
1691
126
    case EXR_FLOAT:
1692
    case EXR_HALF:
1693
    case EXR_UINT:
1694
126
        if (s->channel_offsets[3] >= 0) {
1695
56
            if (!s->is_luma) {
1696
56
                avctx->pix_fmt = AV_PIX_FMT_RGBA64;
1697
            } else {
1698
                avctx->pix_fmt = AV_PIX_FMT_YA16;
1699
            }
1700
        } else {
1701
70
            if (!s->is_luma) {
1702
66
                avctx->pix_fmt = AV_PIX_FMT_RGB48;
1703
            } else {
1704
4
                avctx->pix_fmt = AV_PIX_FMT_GRAY16;
1705
            }
1706
        }
1707
126
        break;
1708
    default:
1709
        av_log(avctx, AV_LOG_ERROR, "Missing channel list.\n");
1710
        return AVERROR_INVALIDDATA;
1711
    }
1712
1713
126
    if (s->apply_trc_type != AVCOL_TRC_UNSPECIFIED)
1714
        avctx->color_trc = s->apply_trc_type;
1715
1716

126
    switch (s->compression) {
1717
40
    case EXR_RAW:
1718
    case EXR_RLE:
1719
    case EXR_ZIP1:
1720
40
        s->scan_lines_per_block = 1;
1721
40
        break;
1722
40
    case EXR_PXR24:
1723
    case EXR_ZIP16:
1724
40
        s->scan_lines_per_block = 16;
1725
40
        break;
1726
46
    case EXR_PIZ:
1727
    case EXR_B44:
1728
    case EXR_B44A:
1729
46
        s->scan_lines_per_block = 32;
1730
46
        break;
1731
    default:
1732
        avpriv_report_missing_feature(avctx, "Compression %d", s->compression);
1733
        return AVERROR_PATCHWELCOME;
1734
    }
1735
1736
    /* Verify the xmin, xmax, ymin, ymax and xdelta before setting
1737
     * the actual image size. */
1738
126
    if (s->xmin > s->xmax                  ||
1739
126
        s->ymin > s->ymax                  ||
1740
126
        s->xdelta != s->xmax - s->xmin + 1 ||
1741
126
        s->xmax >= s->w                    ||
1742
126
        s->ymax >= s->h) {
1743
        av_log(avctx, AV_LOG_ERROR, "Wrong or missing size information.\n");
1744
        return AVERROR_INVALIDDATA;
1745
    }
1746
1747
126
    if ((ret = ff_set_dimensions(avctx, s->w, s->h)) < 0)
1748
        return ret;
1749
1750
126
    s->desc          = av_pix_fmt_desc_get(avctx->pix_fmt);
1751
126
    if (!s->desc)
1752
        return AVERROR_INVALIDDATA;
1753
126
    out_line_size    = avctx->width * 2 * s->desc->nb_components;
1754
1755
126
    if (s->is_tile) {
1756
36
        nb_blocks = ((s->xdelta + s->tile_attr.xSize - 1) / s->tile_attr.xSize) *
1757
36
        ((s->ydelta + s->tile_attr.ySize - 1) / s->tile_attr.ySize);
1758
    } else { /* scanline */
1759
90
        nb_blocks = (s->ydelta + s->scan_lines_per_block - 1) /
1760
90
        s->scan_lines_per_block;
1761
    }
1762
1763
126
    if ((ret = ff_thread_get_buffer(avctx, &frame, 0)) < 0)
1764
        return ret;
1765
1766
126
    if (bytestream2_get_bytes_left(&s->gb) < nb_blocks * 8)
1767
        return AVERROR_INVALIDDATA;
1768
1769
    // check offset table and recreate it if need
1770

126
    if (!s->is_tile && bytestream2_peek_le64(&s->gb) == 0) {
1771
1
        av_log(s->avctx, AV_LOG_DEBUG, "recreating invalid scanline offset table\n");
1772
1773
1
        start_offset_table = bytestream2_tell(&s->gb);
1774
1
        start_next_scanline = start_offset_table + nb_blocks * 8;
1775
1
        bytestream2_init_writer(&offset_table_writer, &avpkt->data[start_offset_table], nb_blocks * 8);
1776
1777
9
        for (y = 0; y < nb_blocks; y++) {
1778
            /* write offset of prev scanline in offset table */
1779
8
            bytestream2_put_le64(&offset_table_writer, start_next_scanline);
1780
1781
            /* get len of next scanline */
1782
8
            bytestream2_seek(&s->gb, start_next_scanline + 4, SEEK_SET);/* skip line number */
1783
8
            start_next_scanline += (bytestream2_get_le32(&s->gb) + 8);
1784
        }
1785
1
        bytestream2_seek(&s->gb, start_offset_table, SEEK_SET);
1786
    }
1787
1788
    // save pointer we are going to use in decode_block
1789
126
    s->buf      = avpkt->data;
1790
126
    s->buf_size = avpkt->size;
1791
126
    ptr         = picture->data[0];
1792
1793
    // Zero out the start if ymin is not 0
1794
206
    for (y = 0; y < s->ymin; y++) {
1795
80
        memset(ptr, 0, out_line_size);
1796
80
        ptr += picture->linesize[0];
1797
    }
1798
1799
126
    s->picture = picture;
1800
1801
126
    avctx->execute2(avctx, decode_block, s->thread_data, NULL, nb_blocks);
1802
1803
    // Zero out the end if ymax+1 is not h
1804
126
    ptr = picture->data[0] + ((s->ymax+1) * picture->linesize[0]);
1805
248
    for (y = s->ymax + 1; y < avctx->height; y++) {
1806
122
        memset(ptr, 0, out_line_size);
1807
122
        ptr += picture->linesize[0];
1808
    }
1809
1810
126
    picture->pict_type = AV_PICTURE_TYPE_I;
1811
126
    *got_frame = 1;
1812
1813
126
    return avpkt->size;
1814
}
1815
1816
126
static av_cold int decode_init(AVCodecContext *avctx)
1817
{
1818
126
    EXRContext *s = avctx->priv_data;
1819
    uint32_t i;
1820
    union av_intfloat32 t;
1821
126
    float one_gamma = 1.0f / s->gamma;
1822
126
    avpriv_trc_function trc_func = NULL;
1823
1824
126
    s->avctx              = avctx;
1825
1826
126
    ff_exrdsp_init(&s->dsp);
1827
1828
#if HAVE_BIGENDIAN
1829
    ff_bswapdsp_init(&s->bbdsp);
1830
#endif
1831
1832
126
    trc_func = avpriv_get_trc_function_from_trc(s->apply_trc_type);
1833
126
    if (trc_func) {
1834
        for (i = 0; i < 65536; ++i) {
1835
            t = exr_half2float(i);
1836
            t.f = trc_func(t.f);
1837
            s->gamma_table[i] = exr_flt2uint(t.i);
1838
        }
1839
    } else {
1840

126
        if (one_gamma > 0.9999f && one_gamma < 1.0001f) {
1841
8257662
            for (i = 0; i < 65536; ++i)
1842
8257536
                s->gamma_table[i] = exr_halflt2uint(i);
1843
        } else {
1844
            for (i = 0; i < 65536; ++i) {
1845
                t = exr_half2float(i);
1846
                /* If negative value we reuse half value */
1847
                if (t.f <= 0.0f) {
1848
                    s->gamma_table[i] = exr_halflt2uint(i);
1849
                } else {
1850
                    t.f = powf(t.f, one_gamma);
1851
                    s->gamma_table[i] = exr_flt2uint(t.i);
1852
                }
1853
            }
1854
        }
1855
    }
1856
1857
    // allocate thread data, used for non EXR_RAW compression types
1858
126
    s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1859
126
    if (!s->thread_data)
1860
        return AVERROR_INVALIDDATA;
1861
1862
126
    return 0;
1863
}
1864
1865
#if HAVE_THREADS
1866
static int decode_init_thread_copy(AVCodecContext *avctx)
1867
{
1868
    EXRContext *s = avctx->priv_data;
1869
1870
    // allocate thread data, used for non EXR_RAW compression types
1871
    s->thread_data = av_mallocz_array(avctx->thread_count, sizeof(EXRThreadData));
1872
    if (!s->thread_data)
1873
        return AVERROR_INVALIDDATA;
1874
1875
    return 0;
1876
}
1877
#endif
1878
1879
126
static av_cold int decode_end(AVCodecContext *avctx)
1880
{
1881
126
    EXRContext *s = avctx->priv_data;
1882
    int i;
1883
252
    for (i = 0; i < avctx->thread_count; i++) {
1884
126
        EXRThreadData *td = &s->thread_data[i];
1885
126
        av_freep(&td->uncompressed_data);
1886
126
        av_freep(&td->tmp);
1887
126
        av_freep(&td->bitmap);
1888
126
        av_freep(&td->lut);
1889
    }
1890
1891
126
    av_freep(&s->thread_data);
1892
126
    av_freep(&s->channels);
1893
1894
126
    return 0;
1895
}
1896
1897
#define OFFSET(x) offsetof(EXRContext, x)
1898
#define VD AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_DECODING_PARAM
1899
static const AVOption options[] = {
1900
    { "layer", "Set the decoding layer", OFFSET(layer),
1901
        AV_OPT_TYPE_STRING, { .str = "" }, 0, 0, VD },
1902
    { "gamma", "Set the float gamma value when decoding", OFFSET(gamma),
1903
        AV_OPT_TYPE_FLOAT, { .dbl = 1.0f }, 0.001, FLT_MAX, VD },
1904
1905
    // XXX: Note the abuse of the enum using AVCOL_TRC_UNSPECIFIED to subsume the existing gamma option
1906
    { "apply_trc", "color transfer characteristics to apply to EXR linear input", OFFSET(apply_trc_type),
1907
        AV_OPT_TYPE_INT, {.i64 = AVCOL_TRC_UNSPECIFIED }, 1, AVCOL_TRC_NB-1, VD, "apply_trc_type"},
1908
    { "bt709",        "BT.709",           0,
1909
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT709 },        INT_MIN, INT_MAX, VD, "apply_trc_type"},
1910
    { "gamma",        "gamma",            0,
1911
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_UNSPECIFIED },  INT_MIN, INT_MAX, VD, "apply_trc_type"},
1912
    { "gamma22",      "BT.470 M",         0,
1913
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA22 },      INT_MIN, INT_MAX, VD, "apply_trc_type"},
1914
    { "gamma28",      "BT.470 BG",        0,
1915
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_GAMMA28 },      INT_MIN, INT_MAX, VD, "apply_trc_type"},
1916
    { "smpte170m",    "SMPTE 170 M",      0,
1917
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE170M },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
1918
    { "smpte240m",    "SMPTE 240 M",      0,
1919
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTE240M },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
1920
    { "linear",       "Linear",           0,
1921
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LINEAR },       INT_MIN, INT_MAX, VD, "apply_trc_type"},
1922
    { "log",          "Log",              0,
1923
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG },          INT_MIN, INT_MAX, VD, "apply_trc_type"},
1924
    { "log_sqrt",     "Log square root",  0,
1925
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_LOG_SQRT },     INT_MIN, INT_MAX, VD, "apply_trc_type"},
1926
    { "iec61966_2_4", "IEC 61966-2-4",    0,
1927
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_4 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1928
    { "bt1361",       "BT.1361",          0,
1929
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT1361_ECG },   INT_MIN, INT_MAX, VD, "apply_trc_type"},
1930
    { "iec61966_2_1", "IEC 61966-2-1",    0,
1931
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_IEC61966_2_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1932
    { "bt2020_10bit", "BT.2020 - 10 bit", 0,
1933
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_10 },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
1934
    { "bt2020_12bit", "BT.2020 - 12 bit", 0,
1935
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_BT2020_12 },    INT_MIN, INT_MAX, VD, "apply_trc_type"},
1936
    { "smpte2084",    "SMPTE ST 2084",    0,
1937
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST2084 },  INT_MIN, INT_MAX, VD, "apply_trc_type"},
1938
    { "smpte428_1",   "SMPTE ST 428-1",   0,
1939
        AV_OPT_TYPE_CONST, {.i64 = AVCOL_TRC_SMPTEST428_1 }, INT_MIN, INT_MAX, VD, "apply_trc_type"},
1940
1941
    { NULL },
1942
};
1943
1944
static const AVClass exr_class = {
1945
    .class_name = "EXR",
1946
    .item_name  = av_default_item_name,
1947
    .option     = options,
1948
    .version    = LIBAVUTIL_VERSION_INT,
1949
};
1950
1951
AVCodec ff_exr_decoder = {
1952
    .name             = "exr",
1953
    .long_name        = NULL_IF_CONFIG_SMALL("OpenEXR image"),
1954
    .type             = AVMEDIA_TYPE_VIDEO,
1955
    .id               = AV_CODEC_ID_EXR,
1956
    .priv_data_size   = sizeof(EXRContext),
1957
    .init             = decode_init,
1958
    .init_thread_copy = ONLY_IF_THREADS_ENABLED(decode_init_thread_copy),
1959
    .close            = decode_end,
1960
    .decode           = decode_frame,
1961
    .capabilities     = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_FRAME_THREADS |
1962
                        AV_CODEC_CAP_SLICE_THREADS,
1963
    .priv_class       = &exr_class,
1964
};