GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/dnxhdenc.c Lines: 680 802 84.8 %
Date: 2021-04-20 15:25:36 Branches: 305 415 73.5 %

Line Branch Exec Source
1
/*
2
 * VC3/DNxHD encoder
3
 * Copyright (c) 2007 Baptiste Coudurier <baptiste dot coudurier at smartjog dot com>
4
 * Copyright (c) 2011 MirriAd Ltd
5
 *
6
 * VC-3 encoder funded by the British Broadcasting Corporation
7
 * 10 bit support added by MirriAd Ltd, Joseph Artsimovich <joseph@mirriad.com>
8
 *
9
 * This file is part of FFmpeg.
10
 *
11
 * FFmpeg is free software; you can redistribute it and/or
12
 * modify it under the terms of the GNU Lesser General Public
13
 * License as published by the Free Software Foundation; either
14
 * version 2.1 of the License, or (at your option) any later version.
15
 *
16
 * FFmpeg is distributed in the hope that it will be useful,
17
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
19
 * Lesser General Public License for more details.
20
 *
21
 * You should have received a copy of the GNU Lesser General Public
22
 * License along with FFmpeg; if not, write to the Free Software
23
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24
 */
25
26
#include "libavutil/attributes.h"
27
#include "libavutil/internal.h"
28
#include "libavutil/mem_internal.h"
29
#include "libavutil/opt.h"
30
31
#include "avcodec.h"
32
#include "blockdsp.h"
33
#include "fdctdsp.h"
34
#include "internal.h"
35
#include "mpegvideo.h"
36
#include "pixblockdsp.h"
37
#include "packet_internal.h"
38
#include "profiles.h"
39
#include "dnxhdenc.h"
40
41
// The largest value that will not lead to overflow for 10-bit samples.
42
#define DNX10BIT_QMAT_SHIFT 18
43
#define RC_VARIANCE 1 // use variance or ssd for fast rc
44
#define LAMBDA_FRAC_BITS 10
45
46
#define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
47
static const AVOption options[] = {
48
    { "nitris_compat", "encode with Avid Nitris compatibility",
49
        offsetof(DNXHDEncContext, nitris_compat), AV_OPT_TYPE_BOOL, { .i64 = 0 }, 0, 1, VE },
50
    { "ibias", "intra quant bias",
51
        offsetof(DNXHDEncContext, intra_quant_bias), AV_OPT_TYPE_INT,
52
        { .i64 = 0 }, INT_MIN, INT_MAX, VE },
53
    { "profile",       NULL, offsetof(DNXHDEncContext, profile), AV_OPT_TYPE_INT,
54
        { .i64 = FF_PROFILE_DNXHD },
55
        FF_PROFILE_DNXHD, FF_PROFILE_DNXHR_444, VE, "profile" },
56
    { "dnxhd",     NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHD },
57
        0, 0, VE, "profile" },
58
    { "dnxhr_444", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_444 },
59
        0, 0, VE, "profile" },
60
    { "dnxhr_hqx", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQX },
61
        0, 0, VE, "profile" },
62
    { "dnxhr_hq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_HQ },
63
        0, 0, VE, "profile" },
64
    { "dnxhr_sq",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_SQ },
65
        0, 0, VE, "profile" },
66
    { "dnxhr_lb",  NULL, 0, AV_OPT_TYPE_CONST, { .i64 = FF_PROFILE_DNXHR_LB },
67
        0, 0, VE, "profile" },
68
    { NULL }
69
};
70
71
static const AVClass dnxhd_class = {
72
    .class_name = "dnxhd",
73
    .item_name  = av_default_item_name,
74
    .option     = options,
75
    .version    = LIBAVUTIL_VERSION_INT,
76
};
77
78
97920
static void dnxhd_8bit_get_pixels_8x4_sym(int16_t *av_restrict block,
79
                                          const uint8_t *pixels,
80
                                          ptrdiff_t line_size)
81
{
82
    int i;
83
489600
    for (i = 0; i < 4; i++) {
84
391680
        block[0] = pixels[0];
85
391680
        block[1] = pixels[1];
86
391680
        block[2] = pixels[2];
87
391680
        block[3] = pixels[3];
88
391680
        block[4] = pixels[4];
89
391680
        block[5] = pixels[5];
90
391680
        block[6] = pixels[6];
91
391680
        block[7] = pixels[7];
92
391680
        pixels  += line_size;
93
391680
        block   += 8;
94
    }
95
97920
    memcpy(block,      block -  8, sizeof(*block) * 8);
96
97920
    memcpy(block +  8, block - 16, sizeof(*block) * 8);
97
97920
    memcpy(block + 16, block - 24, sizeof(*block) * 8);
98
97920
    memcpy(block + 24, block - 32, sizeof(*block) * 8);
99
97920
}
100
101
static av_always_inline
102
43200
void dnxhd_10bit_get_pixels_8x4_sym(int16_t *av_restrict block,
103
                                    const uint8_t *pixels,
104
                                    ptrdiff_t line_size)
105
{
106
43200
    memcpy(block + 0 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
107
43200
    memcpy(block + 7 * 8, pixels + 0 * line_size, 8 * sizeof(*block));
108
43200
    memcpy(block + 1 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
109
43200
    memcpy(block + 6 * 8, pixels + 1 * line_size, 8 * sizeof(*block));
110
43200
    memcpy(block + 2 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
111
43200
    memcpy(block + 5 * 8, pixels + 2 * line_size, 8 * sizeof(*block));
112
43200
    memcpy(block + 3 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
113
43200
    memcpy(block + 4 * 8, pixels + 3 * line_size, 8 * sizeof(*block));
114
43200
}
115
116
static int dnxhd_10bit_dct_quantize_444(MpegEncContext *ctx, int16_t *block,
117
                                        int n, int qscale, int *overflow)
118
{
119
    int i, j, level, last_non_zero, start_i;
120
    const int *qmat;
121
    const uint8_t *scantable= ctx->intra_scantable.scantable;
122
    int bias;
123
    int max = 0;
124
    unsigned int threshold1, threshold2;
125
126
    ctx->fdsp.fdct(block);
127
128
    block[0] = (block[0] + 2) >> 2;
129
    start_i = 1;
130
    last_non_zero = 0;
131
    qmat = n < 4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
132
    bias= ctx->intra_quant_bias * (1 << (16 - 8));
133
    threshold1 = (1 << 16) - bias - 1;
134
    threshold2 = (threshold1 << 1);
135
136
    for (i = 63; i >= start_i; i--) {
137
        j = scantable[i];
138
        level = block[j] * qmat[j];
139
140
        if (((unsigned)(level + threshold1)) > threshold2) {
141
            last_non_zero = i;
142
            break;
143
        } else{
144
            block[j]=0;
145
        }
146
    }
147
148
    for (i = start_i; i <= last_non_zero; i++) {
149
        j = scantable[i];
150
        level = block[j] * qmat[j];
151
152
        if (((unsigned)(level + threshold1)) > threshold2) {
153
            if (level > 0) {
154
                level = (bias + level) >> 16;
155
                block[j] = level;
156
            } else{
157
                level = (bias - level) >> 16;
158
                block[j] = -level;
159
            }
160
            max |= level;
161
        } else {
162
            block[j] = 0;
163
        }
164
    }
165
    *overflow = ctx->max_qcoeff < max; //overflow might have happened
166
167
    /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
168
    if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
169
        ff_block_permute(block, ctx->idsp.idct_permutation,
170
                         scantable, last_non_zero);
171
172
    return last_non_zero;
173
}
174
175
3945600
static int dnxhd_10bit_dct_quantize(MpegEncContext *ctx, int16_t *block,
176
                                    int n, int qscale, int *overflow)
177
{
178
3945600
    const uint8_t *scantable= ctx->intra_scantable.scantable;
179
3945600
    const int *qmat = n<4 ? ctx->q_intra_matrix[qscale] : ctx->q_chroma_intra_matrix[qscale];
180
3945600
    int last_non_zero = 0;
181
    int i;
182
183
3945600
    ctx->fdsp.fdct(block);
184
185
    // Divide by 4 with rounding, to compensate scaling of DCT coefficients
186
3945600
    block[0] = (block[0] + 2) >> 2;
187
188
252518400
    for (i = 1; i < 64; ++i) {
189
248572800
        int j = scantable[i];
190
248572800
        int sign = FF_SIGNBIT(block[j]);
191
248572800
        int level = (block[j] ^ sign) - sign;
192
248572800
        level = level * qmat[j] >> DNX10BIT_QMAT_SHIFT;
193
248572800
        block[j] = (level ^ sign) - sign;
194
248572800
        if (level)
195
32824223
            last_non_zero = i;
196
    }
197
198
    /* we need this permutation so that we correct the IDCT, we only permute the !=0 elements */
199
3945600
    if (ctx->idsp.perm_type != FF_IDCT_PERM_NONE)
200
        ff_block_permute(block, ctx->idsp.idct_permutation,
201
                         scantable, last_non_zero);
202
203
3945600
    return last_non_zero;
204
}
205
206
73
static av_cold int dnxhd_init_vlc(DNXHDEncContext *ctx)
207
{
208
    int i, j, level, run;
209
73
    int max_level = 1 << (ctx->bit_depth + 2);
210
211
73
    if (!FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_codes, max_level * 4) ||
212
73
        !FF_ALLOCZ_TYPED_ARRAY(ctx->orig_vlc_bits,  max_level * 4) ||
213
73
        !(ctx->run_codes = av_mallocz(63 * 2))                     ||
214
73
        !(ctx->run_bits  = av_mallocz(63)))
215
        return AVERROR(ENOMEM);
216
73
    ctx->vlc_codes = ctx->orig_vlc_codes + max_level * 2;
217
73
    ctx->vlc_bits  = ctx->orig_vlc_bits + max_level * 2;
218
192585
    for (level = -max_level; level < max_level; level++) {
219
577536
        for (run = 0; run < 2; run++) {
220
385024
            int index = level * (1 << 1) | run;
221
385024
            int sign, offset = 0, alevel = level;
222
223
385024
            MASK_ABS(sign, alevel);
224
385024
            if (alevel > 64) {
225
366190
                offset  = (alevel - 1) >> 6;
226
366190
                alevel -= offset << 6;
227
            }
228
65137020
            for (j = 0; j < 257; j++) {
229

65136947
                if (ctx->cid_table->ac_info[2*j+0] >> 1 == alevel &&
230

1197496
                    (!offset || (ctx->cid_table->ac_info[2*j+1] & 1) && offset) &&
231

390917
                    (!run    || (ctx->cid_table->ac_info[2*j+1] & 2) && run)) {
232
                    av_assert1(!ctx->vlc_codes[index]);
233
384951
                    if (alevel) {
234
384878
                        ctx->vlc_codes[index] =
235
384878
                            (ctx->cid_table->ac_codes[j] << 1) | (sign & 1);
236
384878
                        ctx->vlc_bits[index] = ctx->cid_table->ac_bits[j] + 1;
237
                    } else {
238
73
                        ctx->vlc_codes[index] = ctx->cid_table->ac_codes[j];
239
73
                        ctx->vlc_bits[index]  = ctx->cid_table->ac_bits[j];
240
                    }
241
384951
                    break;
242
                }
243
            }
244

385024
            av_assert0(!alevel || j < 257);
245
385024
            if (offset) {
246
366190
                ctx->vlc_codes[index] =
247
366190
                    (ctx->vlc_codes[index] << ctx->cid_table->index_bits) | offset;
248
366190
                ctx->vlc_bits[index] += ctx->cid_table->index_bits;
249
            }
250
        }
251
    }
252
4599
    for (i = 0; i < 62; i++) {
253
4526
        int run = ctx->cid_table->run[i];
254
4526
        av_assert0(run < 63);
255
4526
        ctx->run_codes[run] = ctx->cid_table->run_codes[i];
256
4526
        ctx->run_bits[run]  = ctx->cid_table->run_bits[i];
257
    }
258
73
    return 0;
259
}
260
261
73
static av_cold int dnxhd_init_qmat(DNXHDEncContext *ctx, int lbias, int cbias)
262
{
263
    // init first elem to 1 to avoid div by 0 in convert_matrix
264
73
    uint16_t weight_matrix[64] = { 1, }; // convert_matrix needs uint16_t*
265
    int qscale, i;
266
73
    const uint8_t *luma_weight_table   = ctx->cid_table->luma_weight;
267
73
    const uint8_t *chroma_weight_table = ctx->cid_table->chroma_weight;
268
269
73
    if (!FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l,   ctx->m.avctx->qmax + 1) ||
270
73
        !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c,   ctx->m.avctx->qmax + 1) ||
271
73
        !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_l16, ctx->m.avctx->qmax + 1) ||
272
73
        !FF_ALLOCZ_TYPED_ARRAY(ctx->qmatrix_c16, ctx->m.avctx->qmax + 1))
273
        return AVERROR(ENOMEM);
274
275
73
    if (ctx->bit_depth == 8) {
276
4224
        for (i = 1; i < 64; i++) {
277
4158
            int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
278
4158
            weight_matrix[j] = ctx->cid_table->luma_weight[i];
279
        }
280
66
        ff_convert_matrix(&ctx->m, ctx->qmatrix_l, ctx->qmatrix_l16,
281
                          weight_matrix, ctx->intra_quant_bias, 1,
282
66
                          ctx->m.avctx->qmax, 1);
283
4224
        for (i = 1; i < 64; i++) {
284
4158
            int j = ctx->m.idsp.idct_permutation[ff_zigzag_direct[i]];
285
4158
            weight_matrix[j] = ctx->cid_table->chroma_weight[i];
286
        }
287
66
        ff_convert_matrix(&ctx->m, ctx->qmatrix_c, ctx->qmatrix_c16,
288
                          weight_matrix, ctx->intra_quant_bias, 1,
289
66
                          ctx->m.avctx->qmax, 1);
290
291
42250
        for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
292
2741960
            for (i = 0; i < 64; i++) {
293
2699776
                ctx->qmatrix_l[qscale][i]      <<= 2;
294
2699776
                ctx->qmatrix_c[qscale][i]      <<= 2;
295
2699776
                ctx->qmatrix_l16[qscale][0][i] <<= 2;
296
2699776
                ctx->qmatrix_l16[qscale][1][i] <<= 2;
297
2699776
                ctx->qmatrix_c16[qscale][0][i] <<= 2;
298
2699776
                ctx->qmatrix_c16[qscale][1][i] <<= 2;
299
            }
300
        }
301
    } else {
302
        // 10-bit
303
63
        for (qscale = 1; qscale <= ctx->m.avctx->qmax; qscale++) {
304
3584
            for (i = 1; i < 64; i++) {
305
3528
                int j = ff_zigzag_direct[i];
306
307
                /* The quantization formula from the VC-3 standard is:
308
                 * quantized = sign(block[i]) * floor(abs(block[i]/s) * p /
309
                 *             (qscale * weight_table[i]))
310
                 * Where p is 32 for 8-bit samples and 8 for 10-bit ones.
311
                 * The s factor compensates scaling of DCT coefficients done by
312
                 * the DCT routines, and therefore is not present in standard.
313
                 * It's 8 for 8-bit samples and 4 for 10-bit ones.
314
                 * We want values of ctx->qtmatrix_l and ctx->qtmatrix_r to be:
315
                 *     ((1 << DNX10BIT_QMAT_SHIFT) * (p / s)) /
316
                 *     (qscale * weight_table[i])
317
                 * For 10-bit samples, p / s == 2 */
318
3528
                ctx->qmatrix_l[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
319
3528
                                            (qscale * luma_weight_table[i]);
320
3528
                ctx->qmatrix_c[qscale][j] = (1 << (DNX10BIT_QMAT_SHIFT + 1)) /
321
3528
                                            (qscale * chroma_weight_table[i]);
322
            }
323
        }
324
    }
325
326
73
    ctx->m.q_chroma_intra_matrix16 = ctx->qmatrix_c16;
327
73
    ctx->m.q_chroma_intra_matrix   = ctx->qmatrix_c;
328
73
    ctx->m.q_intra_matrix16        = ctx->qmatrix_l16;
329
73
    ctx->m.q_intra_matrix          = ctx->qmatrix_l;
330
331
73
    return 0;
332
}
333
334
73
static av_cold int dnxhd_init_rc(DNXHDEncContext *ctx)
335
{
336
73
    if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_rc, (ctx->m.avctx->qmax + 1) * ctx->m.mb_num))
337
        return AVERROR(ENOMEM);
338
339
73
    if (ctx->m.avctx->mb_decision != FF_MB_DECISION_RD) {
340
58
        if (!FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp,     ctx->m.mb_num) ||
341
58
            !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_cmp_tmp, ctx->m.mb_num))
342
            return AVERROR(ENOMEM);
343
    }
344
73
    ctx->frame_bits = (ctx->coding_unit_size -
345
73
                       ctx->data_offset - 4 - ctx->min_padding) * 8;
346
73
    ctx->qscale = 1;
347
73
    ctx->lambda = 2 << LAMBDA_FRAC_BITS; // qscale 2
348
73
    return 0;
349
}
350
351
73
static av_cold int dnxhd_encode_init(AVCodecContext *avctx)
352
{
353
73
    DNXHDEncContext *ctx = avctx->priv_data;
354
    int i, ret;
355
356
73
    switch (avctx->pix_fmt) {
357
66
    case AV_PIX_FMT_YUV422P:
358
66
        ctx->bit_depth = 8;
359
66
        break;
360
7
    case AV_PIX_FMT_YUV422P10:
361
    case AV_PIX_FMT_YUV444P10:
362
    case AV_PIX_FMT_GBRP10:
363
7
        ctx->bit_depth = 10;
364
7
        break;
365
    default:
366
        av_log(avctx, AV_LOG_ERROR,
367
               "pixel format is incompatible with DNxHD\n");
368
        return AVERROR(EINVAL);
369
    }
370
371

73
    if ((ctx->profile == FF_PROFILE_DNXHR_444 && (avctx->pix_fmt != AV_PIX_FMT_YUV444P10 &&
372
                                                  avctx->pix_fmt != AV_PIX_FMT_GBRP10)) ||
373

73
        (ctx->profile != FF_PROFILE_DNXHR_444 && (avctx->pix_fmt == AV_PIX_FMT_YUV444P10 ||
374
73
                                                  avctx->pix_fmt == AV_PIX_FMT_GBRP10))) {
375
        av_log(avctx, AV_LOG_ERROR,
376
               "pixel format is incompatible with DNxHD profile\n");
377
        return AVERROR(EINVAL);
378
    }
379
380

73
    if (ctx->profile == FF_PROFILE_DNXHR_HQX && avctx->pix_fmt != AV_PIX_FMT_YUV422P10) {
381
        av_log(avctx, AV_LOG_ERROR,
382
               "pixel format is incompatible with DNxHR HQX profile\n");
383
        return AVERROR(EINVAL);
384
    }
385
386
73
    if ((ctx->profile == FF_PROFILE_DNXHR_LB ||
387
61
         ctx->profile == FF_PROFILE_DNXHR_SQ ||
388

73
         ctx->profile == FF_PROFILE_DNXHR_HQ) && avctx->pix_fmt != AV_PIX_FMT_YUV422P) {
389
        av_log(avctx, AV_LOG_ERROR,
390
               "pixel format is incompatible with DNxHR LB/SQ/HQ profile\n");
391
        return AVERROR(EINVAL);
392
    }
393
394
73
    ctx->is_444 = ctx->profile == FF_PROFILE_DNXHR_444;
395
73
    avctx->profile = ctx->profile;
396
73
    ctx->cid = ff_dnxhd_find_cid(avctx, ctx->bit_depth);
397
73
    if (!ctx->cid) {
398
        av_log(avctx, AV_LOG_ERROR,
399
               "video parameters incompatible with DNxHD. Valid DNxHD profiles:\n");
400
        ff_dnxhd_print_profiles(avctx, AV_LOG_ERROR);
401
        return AVERROR(EINVAL);
402
    }
403
73
    av_log(avctx, AV_LOG_DEBUG, "cid %d\n", ctx->cid);
404
405

73
    if (ctx->cid >= 1270 && ctx->cid <= 1274)
406
40
        avctx->codec_tag = MKTAG('A','V','d','h');
407
408

73
    if (avctx->width < 256 || avctx->height < 120) {
409
        av_log(avctx, AV_LOG_ERROR,
410
               "Input dimensions too small, input must be at least 256x120\n");
411
        return AVERROR(EINVAL);
412
    }
413
414
73
    ctx->cid_table = ff_dnxhd_get_cid_table(ctx->cid);
415
73
    av_assert0(ctx->cid_table);
416
417
73
    ctx->m.avctx    = avctx;
418
73
    ctx->m.mb_intra = 1;
419
73
    ctx->m.h263_aic = 1;
420
421
73
    avctx->bits_per_raw_sample = ctx->bit_depth;
422
423
73
    ff_blockdsp_init(&ctx->bdsp, avctx);
424
73
    ff_fdctdsp_init(&ctx->m.fdsp, avctx);
425
73
    ff_mpv_idct_init(&ctx->m);
426
73
    ff_mpegvideoencdsp_init(&ctx->m.mpvencdsp, avctx);
427
73
    ff_pixblockdsp_init(&ctx->m.pdsp, avctx);
428
73
    ff_dct_encode_init(&ctx->m);
429
430
73
    if (ctx->profile != FF_PROFILE_DNXHD)
431
40
        ff_videodsp_init(&ctx->m.vdsp, ctx->bit_depth);
432
433
73
    if (!ctx->m.dct_quantize)
434
        ctx->m.dct_quantize = ff_dct_quantize_c;
435
436

73
    if (ctx->is_444 || ctx->profile == FF_PROFILE_DNXHR_HQX) {
437
        ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize_444;
438
        ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
439
        ctx->block_width_l2     = 4;
440
73
    } else if (ctx->bit_depth == 10) {
441
7
        ctx->m.dct_quantize     = dnxhd_10bit_dct_quantize;
442
7
        ctx->get_pixels_8x4_sym = dnxhd_10bit_get_pixels_8x4_sym;
443
7
        ctx->block_width_l2     = 4;
444
    } else {
445
66
        ctx->get_pixels_8x4_sym = dnxhd_8bit_get_pixels_8x4_sym;
446
66
        ctx->block_width_l2     = 3;
447
    }
448
449
    if (ARCH_X86)
450
73
        ff_dnxhdenc_init_x86(ctx);
451
452
73
    ctx->m.mb_height = (avctx->height + 15) / 16;
453
73
    ctx->m.mb_width  = (avctx->width  + 15) / 16;
454
455
73
    if (avctx->flags & AV_CODEC_FLAG_INTERLACED_DCT) {
456
11
        ctx->interlaced   = 1;
457
11
        ctx->m.mb_height /= 2;
458
    }
459
460

73
    if (ctx->interlaced && ctx->profile != FF_PROFILE_DNXHD) {
461
        av_log(avctx, AV_LOG_ERROR,
462
               "Interlaced encoding is not supported for DNxHR profiles.\n");
463
        return AVERROR(EINVAL);
464
    }
465
466
73
    ctx->m.mb_num = ctx->m.mb_height * ctx->m.mb_width;
467
468
73
    if (ctx->cid_table->frame_size == DNXHD_VARIABLE) {
469
40
        ctx->frame_size = avpriv_dnxhd_get_hr_frame_size(ctx->cid,
470
                                                     avctx->width, avctx->height);
471
40
        av_assert0(ctx->frame_size >= 0);
472
40
        ctx->coding_unit_size = ctx->frame_size;
473
    } else {
474
33
        ctx->frame_size = ctx->cid_table->frame_size;
475
33
        ctx->coding_unit_size = ctx->cid_table->coding_unit_size;
476
    }
477
478
73
    if (ctx->m.mb_height > 68)
479
12
        ctx->data_offset = 0x170 + (ctx->m.mb_height << 2);
480
    else
481
61
        ctx->data_offset = 0x280;
482
483
    // XXX tune lbias/cbias
484
73
    if ((ret = dnxhd_init_qmat(ctx, ctx->intra_quant_bias, 0)) < 0)
485
        return ret;
486
487
    /* Avid Nitris hardware decoder requires a minimum amount of padding
488
     * in the coding unit payload */
489
73
    if (ctx->nitris_compat)
490
        ctx->min_padding = 1600;
491
492
73
    if ((ret = dnxhd_init_vlc(ctx)) < 0)
493
        return ret;
494
73
    if ((ret = dnxhd_init_rc(ctx)) < 0)
495
        return ret;
496
497
73
    if (!FF_ALLOCZ_TYPED_ARRAY(ctx->slice_size, ctx->m.mb_height) ||
498
73
        !FF_ALLOCZ_TYPED_ARRAY(ctx->slice_offs, ctx->m.mb_height) ||
499
73
        !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_bits,    ctx->m.mb_num)    ||
500
73
        !FF_ALLOCZ_TYPED_ARRAY(ctx->mb_qscale,  ctx->m.mb_num))
501
        return AVERROR(ENOMEM);
502
#if FF_API_CODED_FRAME
503
FF_DISABLE_DEPRECATION_WARNINGS
504
73
    avctx->coded_frame->key_frame = 1;
505
73
    avctx->coded_frame->pict_type = AV_PICTURE_TYPE_I;
506
FF_ENABLE_DEPRECATION_WARNINGS
507
#endif
508
509
73
    if (avctx->active_thread_type == FF_THREAD_SLICE) {
510
        if (avctx->thread_count > MAX_THREADS) {
511
            av_log(avctx, AV_LOG_ERROR, "too many threads\n");
512
            return AVERROR(EINVAL);
513
        }
514
    }
515
516
73
    if (avctx->qmax <= 1) {
517
        av_log(avctx, AV_LOG_ERROR, "qmax must be at least 2\n");
518
        return AVERROR(EINVAL);
519
    }
520
521
73
    ctx->thread[0] = ctx;
522
73
    if (avctx->active_thread_type == FF_THREAD_SLICE) {
523
        for (i = 1; i < avctx->thread_count; i++) {
524
            ctx->thread[i] = av_malloc(sizeof(DNXHDEncContext));
525
            if (!ctx->thread[i])
526
                return AVERROR(ENOMEM);
527
            memcpy(ctx->thread[i], ctx, sizeof(DNXHDEncContext));
528
        }
529
    }
530
531
73
    return 0;
532
}
533
534
380
static int dnxhd_write_header(AVCodecContext *avctx, uint8_t *buf)
535
{
536
380
    DNXHDEncContext *ctx = avctx->priv_data;
537
538
380
    memset(buf, 0, ctx->data_offset);
539
540
    // * write prefix */
541
380
    AV_WB16(buf + 0x02, ctx->data_offset);
542

380
    if (ctx->cid >= 1270 && ctx->cid <= 1274)
543
200
        buf[4] = 0x03;
544
    else
545
180
        buf[4] = 0x01;
546
547
380
    buf[5] = ctx->interlaced ? ctx->cur_field + 2 : 0x01;
548
380
    buf[6] = 0x80; // crc flag off
549
380
    buf[7] = 0xa0; // reserved
550
380
    AV_WB16(buf + 0x18, avctx->height >> ctx->interlaced); // ALPF
551
380
    AV_WB16(buf + 0x1a, avctx->width);  // SPL
552
380
    AV_WB16(buf + 0x1d, avctx->height >> ctx->interlaced); // NAL
553
554
380
    buf[0x21] = ctx->bit_depth == 10 ? 0x58 : 0x38;
555
380
    buf[0x22] = 0x88 + (ctx->interlaced << 2);
556
380
    AV_WB32(buf + 0x28, ctx->cid); // CID
557
380
    buf[0x2c] = (!ctx->interlaced << 7) | (ctx->is_444 << 6) | (avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
558
559
380
    buf[0x5f] = 0x01; // UDL
560
561
380
    buf[0x167] = 0x02; // reserved
562
380
    AV_WB16(buf + 0x16a, ctx->m.mb_height * 4 + 4); // MSIPS
563
380
    AV_WB16(buf + 0x16c, ctx->m.mb_height); // Ns
564
380
    buf[0x16f] = 0x10; // reserved
565
566
380
    ctx->msip = buf + 0x170;
567
380
    return 0;
568
}
569
570
26918560
static av_always_inline void dnxhd_encode_dc(DNXHDEncContext *ctx, int diff)
571
{
572
    int nbits;
573
26918560
    if (diff < 0) {
574
12317800
        nbits = av_log2_16bit(-2 * diff);
575
12317800
        diff--;
576
    } else {
577
14600760
        nbits = av_log2_16bit(2 * diff);
578
    }
579
26918560
    put_bits(&ctx->m.pb, ctx->cid_table->dc_bits[nbits] + nbits,
580
26918560
             (ctx->cid_table->dc_codes[nbits] << nbits) +
581
26918560
             av_mod_uintp2(diff, nbits));
582
26918560
}
583
584
static av_always_inline
585
26918560
void dnxhd_encode_block(DNXHDEncContext *ctx, int16_t *block,
586
                        int last_index, int n)
587
{
588
26918560
    int last_non_zero = 0;
589
    int slevel, i, j;
590
591
26918560
    dnxhd_encode_dc(ctx, block[0] - ctx->m.last_dc[n]);
592
26918560
    ctx->m.last_dc[n] = block[0];
593
594
323734349
    for (i = 1; i <= last_index; i++) {
595
296815789
        j = ctx->m.intra_scantable.permutated[i];
596
296815789
        slevel = block[j];
597
296815789
        if (slevel) {
598
111021078
            int run_level = i - last_non_zero - 1;
599
111021078
            int rlevel = slevel * (1 << 1) | !!run_level;
600
111021078
            put_bits(&ctx->m.pb, ctx->vlc_bits[rlevel], ctx->vlc_codes[rlevel]);
601
111021078
            if (run_level)
602
36001894
                put_bits(&ctx->m.pb, ctx->run_bits[run_level],
603
36001894
                         ctx->run_codes[run_level]);
604
111021078
            last_non_zero = i;
605
        }
606
    }
607
26918560
    put_bits(&ctx->m.pb, ctx->vlc_bits[0], ctx->vlc_codes[0]); // EOB
608
26918560
}
609
610
static av_always_inline
611
3024000
void dnxhd_unquantize_c(DNXHDEncContext *ctx, int16_t *block, int n,
612
                        int qscale, int last_index)
613
{
614
    const uint8_t *weight_matrix;
615
    int level;
616
    int i;
617
618
3024000
    if (ctx->is_444) {
619
        weight_matrix = ((n % 6) < 2) ? ctx->cid_table->luma_weight
620
                                      : ctx->cid_table->chroma_weight;
621
    } else {
622
3024000
        weight_matrix = (n & 2) ? ctx->cid_table->chroma_weight
623
3024000
                                : ctx->cid_table->luma_weight;
624
    }
625
626
35797315
    for (i = 1; i <= last_index; i++) {
627
32773315
        int j = ctx->m.intra_scantable.permutated[i];
628
32773315
        level = block[j];
629
32773315
        if (level) {
630
16774641
            if (level < 0) {
631
8458215
                level = (1 - 2 * level) * qscale * weight_matrix[i];
632
8458215
                if (ctx->bit_depth == 10) {
633
                    if (weight_matrix[i] != 8)
634
                        level += 8;
635
                    level >>= 4;
636
                } else {
637
8458215
                    if (weight_matrix[i] != 32)
638
6479585
                        level += 32;
639
8458215
                    level >>= 6;
640
                }
641
8458215
                level = -level;
642
            } else {
643
8316426
                level = (2 * level + 1) * qscale * weight_matrix[i];
644
8316426
                if (ctx->bit_depth == 10) {
645
                    if (weight_matrix[i] != 8)
646
                        level += 8;
647
                    level >>= 4;
648
                } else {
649
8316426
                    if (weight_matrix[i] != 32)
650
6813970
                        level += 32;
651
8316426
                    level >>= 6;
652
                }
653
            }
654
16774641
            block[j] = level;
655
        }
656
    }
657
3024000
}
658
659
3024000
static av_always_inline int dnxhd_ssd_block(int16_t *qblock, int16_t *block)
660
{
661
3024000
    int score = 0;
662
    int i;
663
196560000
    for (i = 0; i < 64; i++)
664
193536000
        score += (block[i] - qblock[i]) * (block[i] - qblock[i]);
665
3024000
    return score;
666
}
667
668
static av_always_inline
669
51881432
int dnxhd_calc_ac_bits(DNXHDEncContext *ctx, int16_t *block, int last_index)
670
{
671
51881432
    int last_non_zero = 0;
672
51881432
    int bits = 0;
673
    int i, j, level;
674
515019637
    for (i = 1; i <= last_index; i++) {
675
463138205
        j = ctx->m.intra_scantable.permutated[i];
676
463138205
        level = block[j];
677
463138205
        if (level) {
678
191817206
            int run_level = i - last_non_zero - 1;
679
191817206
            bits += ctx->vlc_bits[level * (1 << 1) |
680
191817206
                    !!run_level] + ctx->run_bits[run_level];
681
191817206
            last_non_zero = i;
682
        }
683
    }
684
51881432
    return bits;
685
}
686
687
static av_always_inline
688
9849999
void dnxhd_get_blocks(DNXHDEncContext *ctx, int mb_x, int mb_y)
689
{
690
9849999
    const int bs = ctx->block_width_l2;
691
9849999
    const int bw = 1 << bs;
692
9849999
    int dct_y_offset = ctx->dct_y_offset;
693
9849999
    int dct_uv_offset = ctx->dct_uv_offset;
694
9849999
    int linesize = ctx->m.linesize;
695
9849999
    int uvlinesize = ctx->m.uvlinesize;
696
9849999
    const uint8_t *ptr_y = ctx->thread[0]->src[0] +
697
9849999
                           ((mb_y << 4) * ctx->m.linesize) + (mb_x << bs + 1);
698
9849999
    const uint8_t *ptr_u = ctx->thread[0]->src[1] +
699
9849999
                           ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
700
9849999
    const uint8_t *ptr_v = ctx->thread[0]->src[2] +
701
9849999
                           ((mb_y << 4) * ctx->m.uvlinesize) + (mb_x << bs + ctx->is_444);
702
9849999
    PixblockDSPContext *pdsp = &ctx->m.pdsp;
703
9849999
    VideoDSPContext *vdsp = &ctx->m.vdsp;
704
705

9849999
    if (ctx->bit_depth != 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
706
7203152
                                                           (mb_y << 4) + 16 > ctx->m.avctx->height)) {
707
22511
        int y_w = ctx->m.avctx->width  - (mb_x << 4);
708
22511
        int y_h = ctx->m.avctx->height - (mb_y << 4);
709
22511
        int uv_w = (y_w + 1) / 2;
710
22511
        int uv_h = y_h;
711
22511
        linesize = 16;
712
22511
        uvlinesize = 8;
713
714
22511
        vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
715
                               linesize, ctx->m.linesize,
716
                               linesize, 16,
717
                               0, 0, y_w, y_h);
718
22511
        vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
719
                               uvlinesize, ctx->m.uvlinesize,
720
                               uvlinesize, 16,
721
                               0, 0, uv_w, uv_h);
722
22511
        vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
723
                               uvlinesize, ctx->m.uvlinesize,
724
                               uvlinesize, 16,
725
                               0, 0, uv_w, uv_h);
726
727
22511
        dct_y_offset =  bw * linesize;
728
22511
        dct_uv_offset = bw * uvlinesize;
729
22511
        ptr_y = &ctx->edge_buf_y[0];
730
22511
        ptr_u = &ctx->edge_buf_uv[0][0];
731
22511
        ptr_v = &ctx->edge_buf_uv[1][0];
732

9827488
    } else if (ctx->bit_depth == 10 && vdsp->emulated_edge_mc && ((mb_x << 4) + 16 > ctx->m.avctx->width ||
733
                                                                  (mb_y << 4) + 16 > ctx->m.avctx->height)) {
734
        int y_w = ctx->m.avctx->width  - (mb_x << 4);
735
        int y_h = ctx->m.avctx->height - (mb_y << 4);
736
        int uv_w = ctx->is_444 ? y_w : (y_w + 1) / 2;
737
        int uv_h = y_h;
738
        linesize = 32;
739
        uvlinesize = 16 + 16 * ctx->is_444;
740
741
        vdsp->emulated_edge_mc(&ctx->edge_buf_y[0], ptr_y,
742
                               linesize, ctx->m.linesize,
743
                               linesize / 2, 16,
744
                               0, 0, y_w, y_h);
745
        vdsp->emulated_edge_mc(&ctx->edge_buf_uv[0][0], ptr_u,
746
                               uvlinesize, ctx->m.uvlinesize,
747
                               uvlinesize / 2, 16,
748
                               0, 0, uv_w, uv_h);
749
        vdsp->emulated_edge_mc(&ctx->edge_buf_uv[1][0], ptr_v,
750
                               uvlinesize, ctx->m.uvlinesize,
751
                               uvlinesize / 2, 16,
752
                               0, 0, uv_w, uv_h);
753
754
        dct_y_offset =  bw * linesize / 2;
755
        dct_uv_offset = bw * uvlinesize / 2;
756
        ptr_y = &ctx->edge_buf_y[0];
757
        ptr_u = &ctx->edge_buf_uv[0][0];
758
        ptr_v = &ctx->edge_buf_uv[1][0];
759
    }
760
761
9849999
    if (!ctx->is_444) {
762
9849999
        pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
763
9849999
        pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
764
9849999
        pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
765
9849999
        pdsp->get_pixels(ctx->blocks[3], ptr_v,      uvlinesize);
766
767

9849999
        if (mb_y + 1 == ctx->m.mb_height && ctx->m.avctx->height == 1080) {
768
56560
            if (ctx->interlaced) {
769
35280
                ctx->get_pixels_8x4_sym(ctx->blocks[4],
770
                                        ptr_y + dct_y_offset,
771
                                        linesize);
772
35280
                ctx->get_pixels_8x4_sym(ctx->blocks[5],
773
35280
                                        ptr_y + dct_y_offset + bw,
774
                                        linesize);
775
35280
                ctx->get_pixels_8x4_sym(ctx->blocks[6],
776
                                        ptr_u + dct_uv_offset,
777
                                        uvlinesize);
778
35280
                ctx->get_pixels_8x4_sym(ctx->blocks[7],
779
                                        ptr_v + dct_uv_offset,
780
                                        uvlinesize);
781
            } else {
782
21280
                ctx->bdsp.clear_block(ctx->blocks[4]);
783
21280
                ctx->bdsp.clear_block(ctx->blocks[5]);
784
21280
                ctx->bdsp.clear_block(ctx->blocks[6]);
785
21280
                ctx->bdsp.clear_block(ctx->blocks[7]);
786
            }
787
        } else {
788
9793439
            pdsp->get_pixels(ctx->blocks[4],
789
                             ptr_y + dct_y_offset, linesize);
790
9793439
            pdsp->get_pixels(ctx->blocks[5],
791
9793439
                             ptr_y + dct_y_offset + bw, linesize);
792
9793439
            pdsp->get_pixels(ctx->blocks[6],
793
                             ptr_u + dct_uv_offset, uvlinesize);
794
9793439
            pdsp->get_pixels(ctx->blocks[7],
795
                             ptr_v + dct_uv_offset, uvlinesize);
796
        }
797
    } else {
798
        pdsp->get_pixels(ctx->blocks[0], ptr_y,      linesize);
799
        pdsp->get_pixels(ctx->blocks[1], ptr_y + bw, linesize);
800
        pdsp->get_pixels(ctx->blocks[6], ptr_y + dct_y_offset, linesize);
801
        pdsp->get_pixels(ctx->blocks[7], ptr_y + dct_y_offset + bw, linesize);
802
803
        pdsp->get_pixels(ctx->blocks[2], ptr_u,      uvlinesize);
804
        pdsp->get_pixels(ctx->blocks[3], ptr_u + bw, uvlinesize);
805
        pdsp->get_pixels(ctx->blocks[8], ptr_u + dct_uv_offset, uvlinesize);
806
        pdsp->get_pixels(ctx->blocks[9], ptr_u + dct_uv_offset + bw, uvlinesize);
807
808
        pdsp->get_pixels(ctx->blocks[4], ptr_v,      uvlinesize);
809
        pdsp->get_pixels(ctx->blocks[5], ptr_v + bw, uvlinesize);
810
        pdsp->get_pixels(ctx->blocks[10], ptr_v + dct_uv_offset, uvlinesize);
811
        pdsp->get_pixels(ctx->blocks[11], ptr_v + dct_uv_offset + bw, uvlinesize);
812
    }
813
9849999
}
814
815
static av_always_inline
816
78799992
int dnxhd_switch_matrix(DNXHDEncContext *ctx, int i)
817
{
818
    int x;
819
820
78799992
    if (ctx->is_444) {
821
        x = (i >> 1) % 3;
822
    } else {
823
        const static uint8_t component[8]={0,0,1,2,0,0,1,2};
824
78799992
        x = component[i];
825
    }
826
78799992
    return x;
827
}
828
829
41557
static int dnxhd_calc_bits_thread(AVCodecContext *avctx, void *arg,
830
                                  int jobnr, int threadnr)
831
{
832
41557
    DNXHDEncContext *ctx = avctx->priv_data;
833
41557
    int mb_y = jobnr, mb_x;
834
41557
    int qscale = ctx->qscale;
835
41557
    LOCAL_ALIGNED_16(int16_t, block, [64]);
836
41557
    ctx = ctx->thread[threadnr];
837
838
41557
    ctx->m.last_dc[0] =
839
41557
    ctx->m.last_dc[1] =
840
41557
    ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
841
842
6526736
    for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
843
6485179
        unsigned mb = mb_y * ctx->m.mb_width + mb_x;
844
6485179
        int ssd     = 0;
845
6485179
        int ac_bits = 0;
846
6485179
        int dc_bits = 0;
847
        int i;
848
849
6485179
        dnxhd_get_blocks(ctx, mb_x, mb_y);
850
851
58366611
        for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
852
51881432
            int16_t *src_block = ctx->blocks[i];
853
            int overflow, nbits, diff, last_index;
854
51881432
            int n = dnxhd_switch_matrix(ctx, i);
855
856
51881432
            memcpy(block, src_block, 64 * sizeof(*block));
857
51881432
            last_index = ctx->m.dct_quantize(&ctx->m, block,
858

51881432
                                             ctx->is_444 ? 4 * (n > 0): 4 & (2*i),
859
                                             qscale, &overflow);
860
51881432
            ac_bits   += dnxhd_calc_ac_bits(ctx, block, last_index);
861
862
51881432
            diff = block[0] - ctx->m.last_dc[n];
863
51881432
            if (diff < 0)
864
23766663
                nbits = av_log2_16bit(-2 * diff);
865
            else
866
28114769
                nbits = av_log2_16bit(2 * diff);
867
868
            av_assert1(nbits < ctx->bit_depth + 4);
869
51881432
            dc_bits += ctx->cid_table->dc_bits[nbits] + nbits;
870
871
51881432
            ctx->m.last_dc[n] = block[0];
872
873
51881432
            if (avctx->mb_decision == FF_MB_DECISION_RD || !RC_VARIANCE) {
874
3024000
                dnxhd_unquantize_c(ctx, block, i, qscale, last_index);
875
3024000
                ctx->m.idsp.idct(block);
876
3024000
                ssd += dnxhd_ssd_block(block, src_block);
877
            }
878
        }
879
6485179
        ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].ssd  = ssd;
880
6485179
        ctx->mb_rc[(qscale * ctx->m.mb_num) + mb].bits = ac_bits + dc_bits + 12 +
881
6485179
                                     (1 + ctx->is_444) * 8 * ctx->vlc_bits[0];
882
    }
883
41557
    return 0;
884
}
885
886
20765
static int dnxhd_encode_thread(AVCodecContext *avctx, void *arg,
887
                               int jobnr, int threadnr)
888
{
889
20765
    DNXHDEncContext *ctx = avctx->priv_data;
890
20765
    int mb_y = jobnr, mb_x;
891
20765
    ctx = ctx->thread[threadnr];
892
20765
    init_put_bits(&ctx->m.pb, (uint8_t *)arg + ctx->data_offset + ctx->slice_offs[jobnr],
893
20765
                  ctx->slice_size[jobnr]);
894
895
20765
    ctx->m.last_dc[0] =
896
20765
    ctx->m.last_dc[1] =
897
20765
    ctx->m.last_dc[2] = 1 << (ctx->bit_depth + 2);
898
3385585
    for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
899
3364820
        unsigned mb = mb_y * ctx->m.mb_width + mb_x;
900
3364820
        int qscale = ctx->mb_qscale[mb];
901
        int i;
902
903
3364820
        put_bits(&ctx->m.pb, 11, qscale);
904
3364820
        put_bits(&ctx->m.pb, 1, avctx->pix_fmt == AV_PIX_FMT_YUV444P10);
905
906
3364820
        dnxhd_get_blocks(ctx, mb_x, mb_y);
907
908
30283380
        for (i = 0; i < 8 + 4 * ctx->is_444; i++) {
909
26918560
            int16_t *block = ctx->blocks[i];
910
26918560
            int overflow, n = dnxhd_switch_matrix(ctx, i);
911
26918560
            int last_index = ctx->m.dct_quantize(&ctx->m, block,
912

26918560
                                                 ctx->is_444 ? (((i >> 1) % 3) < 1 ? 0 : 4): 4 & (2*i),
913
                                                 qscale, &overflow);
914
915
26918560
            dnxhd_encode_block(ctx, block, last_index, n);
916
        }
917
    }
918
20765
    if (put_bits_count(&ctx->m.pb) & 31)
919
20137
        put_bits(&ctx->m.pb, 32 - (put_bits_count(&ctx->m.pb) & 31), 0);
920
20765
    flush_put_bits(&ctx->m.pb);
921
20765
    return 0;
922
}
923
924
380
static void dnxhd_setup_threads_slices(DNXHDEncContext *ctx)
925
{
926
    int mb_y, mb_x;
927
380
    int offset = 0;
928
21145
    for (mb_y = 0; mb_y < ctx->m.mb_height; mb_y++) {
929
        int thread_size;
930
20765
        ctx->slice_offs[mb_y] = offset;
931
20765
        ctx->slice_size[mb_y] = 0;
932
3385585
        for (mb_x = 0; mb_x < ctx->m.mb_width; mb_x++) {
933
3364820
            unsigned mb = mb_y * ctx->m.mb_width + mb_x;
934
3364820
            ctx->slice_size[mb_y] += ctx->mb_bits[mb];
935
        }
936
20765
        ctx->slice_size[mb_y]   = (ctx->slice_size[mb_y] + 31) & ~31;
937
20765
        ctx->slice_size[mb_y] >>= 3;
938
20765
        thread_size = ctx->slice_size[mb_y];
939
20765
        offset += thread_size;
940
    }
941
380
}
942
943
11520
static int dnxhd_mb_var_thread(AVCodecContext *avctx, void *arg,
944
                               int jobnr, int threadnr)
945
{
946
11520
    DNXHDEncContext *ctx = avctx->priv_data;
947
11520
    int mb_y = jobnr, mb_x, x, y;
948
11740
    int partial_last_row = (mb_y == ctx->m.mb_height - 1) &&
949
220
                           ((avctx->height >> ctx->interlaced) & 0xF);
950
951
11520
    ctx = ctx->thread[threadnr];
952
11520
    if (ctx->bit_depth == 8) {
953
10955
        uint8_t *pix = ctx->thread[0]->src[0] + ((mb_y << 4) * ctx->m.linesize);
954
1930655
        for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x, pix += 16) {
955
1919700
            unsigned mb = mb_y * ctx->m.mb_width + mb_x;
956
            int sum;
957
            int varc;
958
959

1919700
            if (!partial_last_row && mb_x * 16 <= avctx->width - 16 && (avctx->width % 16) == 0) {
960
1901720
                sum  = ctx->m.mpvencdsp.pix_sum(pix, ctx->m.linesize);
961
1901720
                varc = ctx->m.mpvencdsp.pix_norm1(pix, ctx->m.linesize);
962
            } else {
963
17980
                int bw = FFMIN(avctx->width - 16 * mb_x, 16);
964
17980
                int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
965
17980
                sum = varc = 0;
966
244175
                for (y = 0; y < bh; y++) {
967
3800030
                    for (x = 0; x < bw; x++) {
968
3573835
                        uint8_t val = pix[x + y * ctx->m.linesize];
969
3573835
                        sum  += val;
970
3573835
                        varc += val * val;
971
                    }
972
                }
973
            }
974
1919700
            varc = (varc - (((unsigned) sum * sum) >> 8) + 128) >> 8;
975
976
1919700
            ctx->mb_cmp[mb].value = varc;
977
1919700
            ctx->mb_cmp[mb].mb    = mb;
978
        }
979
    } else { // 10-bit
980
565
        const int linesize = ctx->m.linesize >> 1;
981
59365
        for (mb_x = 0; mb_x < ctx->m.mb_width; ++mb_x) {
982
58800
            uint16_t *pix = (uint16_t *)ctx->thread[0]->src[0] +
983
58800
                            ((mb_y << 4) * linesize) + (mb_x << 4);
984
58800
            unsigned mb  = mb_y * ctx->m.mb_width + mb_x;
985
58800
            int sum = 0;
986
58800
            int sqsum = 0;
987
58800
            int bw = FFMIN(avctx->width - 16 * mb_x, 16);
988
58800
            int bh = FFMIN((avctx->height >> ctx->interlaced) - 16 * mb_y, 16);
989
            int mean, sqmean;
990
            int i, j;
991
            // Macroblocks are 16x16 pixels, unlike DCT blocks which are 8x8.
992
994800
            for (i = 0; i < bh; ++i) {
993
15912000
                for (j = 0; j < bw; ++j) {
994
                    // Turn 16-bit pixels into 10-bit ones.
995
14976000
                    const int sample = (unsigned) pix[j] >> 6;
996
14976000
                    sum   += sample;
997
14976000
                    sqsum += sample * sample;
998
                    // 2^10 * 2^10 * 16 * 16 = 2^28, which is less than INT_MAX
999
                }
1000
936000
                pix += linesize;
1001
            }
1002
58800
            mean = sum >> 8; // 16*16 == 2^8
1003
58800
            sqmean = sqsum >> 8;
1004
58800
            ctx->mb_cmp[mb].value = sqmean - mean * mean;
1005
58800
            ctx->mb_cmp[mb].mb    = mb;
1006
        }
1007
    }
1008
11520
    return 0;
1009
}
1010
1011
15
static int dnxhd_encode_rdo(AVCodecContext *avctx, DNXHDEncContext *ctx)
1012
{
1013
    int lambda, up_step, down_step;
1014
15
    int last_lower = INT_MAX, last_higher = 0;
1015
    int x, y, q;
1016
1017
120
    for (q = 1; q < avctx->qmax; q++) {
1018
105
        ctx->qscale = q;
1019
105
        avctx->execute2(avctx, dnxhd_calc_bits_thread,
1020
                        NULL, NULL, ctx->m.mb_height);
1021
    }
1022
15
    up_step = down_step = 2 << LAMBDA_FRAC_BITS;
1023
15
    lambda  = ctx->lambda;
1024
1025
73
    for (;;) {
1026
88
        int bits = 0;
1027
88
        int end  = 0;
1028
88
        if (lambda == last_higher) {
1029
5
            lambda++;
1030
5
            end = 1; // need to set final qscales/bits
1031
        }
1032
4009
        for (y = 0; y < ctx->m.mb_height; y++) {
1033
319788
            for (x = 0; x < ctx->m.mb_width; x++) {
1034
315840
                unsigned min = UINT_MAX;
1035
315840
                int qscale = 1;
1036
315840
                int mb     = y * ctx->m.mb_width + x;
1037
315840
                int rc = 0;
1038
2526720
                for (q = 1; q < avctx->qmax; q++) {
1039
2210880
                    int i = (q*ctx->m.mb_num) + mb;
1040
2210880
                    unsigned score = ctx->mb_rc[i].bits * lambda +
1041
2210880
                                     ((unsigned) ctx->mb_rc[i].ssd << LAMBDA_FRAC_BITS);
1042
2210880
                    if (score < min) {
1043
532068
                        min    = score;
1044
532068
                        qscale = q;
1045
532068
                        rc = i;
1046
                    }
1047
                }
1048
315840
                bits += ctx->mb_rc[rc].bits;
1049
315840
                ctx->mb_qscale[mb] = qscale;
1050
315840
                ctx->mb_bits[mb]   = ctx->mb_rc[rc].bits;
1051
            }
1052
3948
            bits = (bits + 31) & ~31; // padding
1053
3948
            if (bits > ctx->frame_bits)
1054
27
                break;
1055
        }
1056
88
        if (end) {
1057
5
            if (bits > ctx->frame_bits)
1058
                return AVERROR(EINVAL);
1059
5
            break;
1060
        }
1061
83
        if (bits < ctx->frame_bits) {
1062
56
            last_lower = FFMIN(lambda, last_lower);
1063
56
            if (last_higher != 0)
1064
34
                lambda = (lambda+last_higher)>>1;
1065
            else
1066
22
                lambda -= down_step;
1067
56
            down_step = FFMIN((int64_t)down_step*5, INT_MAX);
1068
56
            up_step = 1<<LAMBDA_FRAC_BITS;
1069
56
            lambda = FFMAX(1, lambda);
1070
56
            if (lambda == last_lower)
1071
10
                break;
1072
        } else {
1073
27
            last_higher = FFMAX(lambda, last_higher);
1074
27
            if (last_lower != INT_MAX)
1075
26
                lambda = (lambda+last_lower)>>1;
1076
1
            else if ((int64_t)lambda + up_step > INT_MAX)
1077
                return AVERROR(EINVAL);
1078
            else
1079
1
                lambda += up_step;
1080
27
            up_step = FFMIN((int64_t)up_step*5, INT_MAX);
1081
27
            down_step = 1<<LAMBDA_FRAC_BITS;
1082
        }
1083
    }
1084
15
    ctx->lambda = lambda;
1085
15
    return 0;
1086
}
1087
1088
365
static int dnxhd_find_qscale(DNXHDEncContext *ctx)
1089
{
1090
365
    int bits = 0;
1091
365
    int up_step = 1;
1092
365
    int down_step = 1;
1093
365
    int last_higher = 0;
1094
365
    int last_lower = INT_MAX;
1095
    int qscale;
1096
    int x, y;
1097
1098
365
    qscale = ctx->qscale;
1099
    for (;;) {
1100
691
        bits = 0;
1101
691
        ctx->qscale = qscale;
1102
        // XXX avoid recalculating bits
1103
691
        ctx->m.avctx->execute2(ctx->m.avctx, dnxhd_calc_bits_thread,
1104
                               NULL, NULL, ctx->m.mb_height);
1105
35231
        for (y = 0; y < ctx->m.mb_height; y++) {
1106
5794959
            for (x = 0; x < ctx->m.mb_width; x++)
1107
5760121
                bits += ctx->mb_rc[(qscale*ctx->m.mb_num) + (y*ctx->m.mb_width+x)].bits;
1108
34838
            bits = (bits+31)&~31; // padding
1109
34838
            if (bits > ctx->frame_bits)
1110
298
                break;
1111
        }
1112
691
        if (bits < ctx->frame_bits) {
1113
393
            if (qscale == 1)
1114
145
                return 1;
1115
248
            if (last_higher == qscale - 1) {
1116
195
                qscale = last_higher;
1117
195
                break;
1118
            }
1119
53
            last_lower = FFMIN(qscale, last_lower);
1120
53
            if (last_higher != 0)
1121
38
                qscale = (qscale + last_higher) >> 1;
1122
            else
1123
15
                qscale -= down_step++;
1124
53
            if (qscale < 1)
1125
                qscale = 1;
1126
53
            up_step = 1;
1127
        } else {
1128
298
            if (last_lower == qscale + 1)
1129
25
                break;
1130
273
            last_higher = FFMAX(qscale, last_higher);
1131
273
            if (last_lower != INT_MAX)
1132
5
                qscale = (qscale + last_lower) >> 1;
1133
            else
1134
268
                qscale += up_step++;
1135
273
            down_step = 1;
1136
273
            if (qscale >= ctx->m.avctx->qmax)
1137
                return AVERROR(EINVAL);
1138
        }
1139
    }
1140
220
    ctx->qscale = qscale;
1141
220
    return 0;
1142
}
1143
1144
#define BUCKET_BITS 8
1145
#define RADIX_PASSES 4
1146
#define NBUCKETS (1 << BUCKET_BITS)
1147
1148
11871000
static inline int get_bucket(int value, int shift)
1149
{
1150
11871000
    value >>= shift;
1151
11871000
    value  &= NBUCKETS - 1;
1152
11871000
    return NBUCKETS - 1 - value;
1153
}
1154
1155
220
static void radix_count(const RCCMPEntry *data, int size,
1156
                        int buckets[RADIX_PASSES][NBUCKETS])
1157
{
1158
    int i, j;
1159
220
    memset(buckets, 0, sizeof(buckets[0][0]) * RADIX_PASSES * NBUCKETS);
1160
1978720
    for (i = 0; i < size; i++) {
1161
1978500
        int v = data[i].value;
1162
9892500
        for (j = 0; j < RADIX_PASSES; j++) {
1163
7914000
            buckets[j][get_bucket(v, 0)]++;
1164
7914000
            v >>= BUCKET_BITS;
1165
        }
1166
        av_assert1(!v);
1167
    }
1168
1100
    for (j = 0; j < RADIX_PASSES; j++) {
1169
880
        int offset = size;
1170
226160
        for (i = NBUCKETS - 1; i >= 0; i--)
1171
225280
            buckets[j][i] = offset -= buckets[j][i];
1172
        av_assert1(!buckets[j][0]);
1173
    }
1174
220
}
1175
1176
440
static void radix_sort_pass(RCCMPEntry *dst, const RCCMPEntry *data,
1177
                            int size, int buckets[NBUCKETS], int pass)
1178
{
1179
440
    int shift = pass * BUCKET_BITS;
1180
    int i;
1181
3957440
    for (i = 0; i < size; i++) {
1182
3957000
        int v   = get_bucket(data[i].value, shift);
1183
3957000
        int pos = buckets[v]++;
1184
3957000
        dst[pos] = data[i];
1185
    }
1186
440
}
1187
1188
220
static void radix_sort(RCCMPEntry *data, RCCMPEntry *tmp, int size)
1189
{
1190
    int buckets[RADIX_PASSES][NBUCKETS];
1191
220
    radix_count(data, size, buckets);
1192
220
    radix_sort_pass(tmp, data, size, buckets[0], 0);
1193
220
    radix_sort_pass(data, tmp, size, buckets[1], 1);
1194

220
    if (buckets[2][NBUCKETS - 1] || buckets[3][NBUCKETS - 1]) {
1195
        radix_sort_pass(tmp, data, size, buckets[2], 2);
1196
        radix_sort_pass(data, tmp, size, buckets[3], 3);
1197
    }
1198
220
}
1199
1200
365
static int dnxhd_encode_fast(AVCodecContext *avctx, DNXHDEncContext *ctx)
1201
{
1202
365
    int max_bits = 0;
1203
    int ret, x, y;
1204
365
    if ((ret = dnxhd_find_qscale(ctx)) < 0)
1205
        return ret;
1206
20455
    for (y = 0; y < ctx->m.mb_height; y++) {
1207
3330910
        for (x = 0; x < ctx->m.mb_width; x++) {
1208
3310820
            int mb = y * ctx->m.mb_width + x;
1209
3310820
            int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1210
            int delta_bits;
1211
3310820
            ctx->mb_qscale[mb] = ctx->qscale;
1212
3310820
            ctx->mb_bits[mb] = ctx->mb_rc[rc].bits;
1213
3310820
            max_bits += ctx->mb_rc[rc].bits;
1214
            if (!RC_VARIANCE) {
1215
                delta_bits = ctx->mb_rc[rc].bits -
1216
                             ctx->mb_rc[rc + ctx->m.mb_num].bits;
1217
                ctx->mb_cmp[mb].mb = mb;
1218
                ctx->mb_cmp[mb].value =
1219
                    delta_bits ? ((ctx->mb_rc[rc].ssd -
1220
                                   ctx->mb_rc[rc + ctx->m.mb_num].ssd) * 100) /
1221
                                  delta_bits
1222
                               : INT_MIN; // avoid increasing qscale
1223
            }
1224
        }
1225
20090
        max_bits += 31; // worst padding
1226
    }
1227
365
    if (!ret) {
1228
        if (RC_VARIANCE)
1229
220
            avctx->execute2(avctx, dnxhd_mb_var_thread,
1230
                            NULL, NULL, ctx->m.mb_height);
1231
220
        radix_sort(ctx->mb_cmp, ctx->mb_cmp_tmp, ctx->m.mb_num);
1232

647025
        for (x = 0; x < ctx->m.mb_num && max_bits > ctx->frame_bits; x++) {
1233
646805
            int mb = ctx->mb_cmp[x].mb;
1234
646805
            int rc = (ctx->qscale * ctx->m.mb_num ) + mb;
1235
646805
            max_bits -= ctx->mb_rc[rc].bits -
1236
646805
                        ctx->mb_rc[rc + ctx->m.mb_num].bits;
1237
646805
            ctx->mb_qscale[mb] = ctx->qscale + 1;
1238
646805
            ctx->mb_bits[mb]   = ctx->mb_rc[rc + ctx->m.mb_num].bits;
1239
        }
1240
    }
1241
365
    return 0;
1242
}
1243
1244
325
static void dnxhd_load_picture(DNXHDEncContext *ctx, const AVFrame *frame)
1245
{
1246
    int i;
1247
1248
650
    for (i = 0; i < ctx->m.avctx->thread_count; i++) {
1249
325
        ctx->thread[i]->m.linesize    = frame->linesize[0] << ctx->interlaced;
1250
325
        ctx->thread[i]->m.uvlinesize  = frame->linesize[1] << ctx->interlaced;
1251
325
        ctx->thread[i]->dct_y_offset  = ctx->m.linesize  *8;
1252
325
        ctx->thread[i]->dct_uv_offset = ctx->m.uvlinesize*8;
1253
    }
1254
1255
#if FF_API_CODED_FRAME
1256
FF_DISABLE_DEPRECATION_WARNINGS
1257
325
    ctx->m.avctx->coded_frame->interlaced_frame = frame->interlaced_frame;
1258
FF_ENABLE_DEPRECATION_WARNINGS
1259
#endif
1260

325
    ctx->cur_field = frame->interlaced_frame && !frame->top_field_first;
1261
325
}
1262
1263
325
static int dnxhd_encode_picture(AVCodecContext *avctx, AVPacket *pkt,
1264
                                const AVFrame *frame, int *got_packet)
1265
{
1266
325
    DNXHDEncContext *ctx = avctx->priv_data;
1267
325
    int first_field = 1;
1268
    int offset, i, ret;
1269
    uint8_t *buf;
1270
1271
325
    if ((ret = ff_alloc_packet2(avctx, pkt, ctx->frame_size, 0)) < 0)
1272
        return ret;
1273
325
    buf = pkt->data;
1274
1275
325
    dnxhd_load_picture(ctx, frame);
1276
1277
380
encode_coding_unit:
1278
1520
    for (i = 0; i < 3; i++) {
1279
1140
        ctx->src[i] = frame->data[i];
1280

1140
        if (ctx->interlaced && ctx->cur_field)
1281
165
            ctx->src[i] += frame->linesize[i];
1282
    }
1283
1284
380
    dnxhd_write_header(avctx, buf);
1285
1286
380
    if (avctx->mb_decision == FF_MB_DECISION_RD)
1287
15
        ret = dnxhd_encode_rdo(avctx, ctx);
1288
    else
1289
365
        ret = dnxhd_encode_fast(avctx, ctx);
1290
380
    if (ret < 0) {
1291
        av_log(avctx, AV_LOG_ERROR,
1292
               "picture could not fit ratecontrol constraints, increase qmax\n");
1293
        return ret;
1294
    }
1295
1296
380
    dnxhd_setup_threads_slices(ctx);
1297
1298
380
    offset = 0;
1299
21145
    for (i = 0; i < ctx->m.mb_height; i++) {
1300
20765
        AV_WB32(ctx->msip + i * 4, offset);
1301
20765
        offset += ctx->slice_size[i];
1302
        av_assert1(!(ctx->slice_size[i] & 3));
1303
    }
1304
1305
380
    avctx->execute2(avctx, dnxhd_encode_thread, buf, NULL, ctx->m.mb_height);
1306
1307
    av_assert1(ctx->data_offset + offset + 4 <= ctx->coding_unit_size);
1308
380
    memset(buf + ctx->data_offset + offset, 0,
1309
380
           ctx->coding_unit_size - 4 - offset - ctx->data_offset);
1310
1311
380
    AV_WB32(buf + ctx->coding_unit_size - 4, 0x600DC0DE); // EOF
1312
1313

380
    if (ctx->interlaced && first_field) {
1314
55
        first_field     = 0;
1315
55
        ctx->cur_field ^= 1;
1316
55
        buf            += ctx->coding_unit_size;
1317
55
        goto encode_coding_unit;
1318
    }
1319
1320
#if FF_API_CODED_FRAME
1321
FF_DISABLE_DEPRECATION_WARNINGS
1322
325
    avctx->coded_frame->quality = ctx->qscale * FF_QP2LAMBDA;
1323
FF_ENABLE_DEPRECATION_WARNINGS
1324
#endif
1325
1326
325
    ff_side_data_set_encoder_stats(pkt, ctx->qscale * FF_QP2LAMBDA, NULL, 0, AV_PICTURE_TYPE_I);
1327
1328
325
    pkt->flags |= AV_PKT_FLAG_KEY;
1329
325
    *got_packet = 1;
1330
325
    return 0;
1331
}
1332
1333
73
static av_cold int dnxhd_encode_end(AVCodecContext *avctx)
1334
{
1335
73
    DNXHDEncContext *ctx = avctx->priv_data;
1336
    int i;
1337
1338
73
    av_freep(&ctx->orig_vlc_codes);
1339
73
    av_freep(&ctx->orig_vlc_bits);
1340
73
    av_freep(&ctx->run_codes);
1341
73
    av_freep(&ctx->run_bits);
1342
1343
73
    av_freep(&ctx->mb_bits);
1344
73
    av_freep(&ctx->mb_qscale);
1345
73
    av_freep(&ctx->mb_rc);
1346
73
    av_freep(&ctx->mb_cmp);
1347
73
    av_freep(&ctx->mb_cmp_tmp);
1348
73
    av_freep(&ctx->slice_size);
1349
73
    av_freep(&ctx->slice_offs);
1350
1351
73
    av_freep(&ctx->qmatrix_c);
1352
73
    av_freep(&ctx->qmatrix_l);
1353
73
    av_freep(&ctx->qmatrix_c16);
1354
73
    av_freep(&ctx->qmatrix_l16);
1355
1356
73
    if (avctx->active_thread_type == FF_THREAD_SLICE) {
1357
        for (i = 1; i < avctx->thread_count; i++)
1358
            av_freep(&ctx->thread[i]);
1359
    }
1360
1361
73
    return 0;
1362
}
1363
1364
static const AVCodecDefault dnxhd_defaults[] = {
1365
    { "qmax", "1024" }, /* Maximum quantization scale factor allowed for VC-3 */
1366
    { NULL },
1367
};
1368
1369
AVCodec ff_dnxhd_encoder = {
1370
    .name           = "dnxhd",
1371
    .long_name      = NULL_IF_CONFIG_SMALL("VC3/DNxHD"),
1372
    .type           = AVMEDIA_TYPE_VIDEO,
1373
    .id             = AV_CODEC_ID_DNXHD,
1374
    .priv_data_size = sizeof(DNXHDEncContext),
1375
    .init           = dnxhd_encode_init,
1376
    .encode2        = dnxhd_encode_picture,
1377
    .close          = dnxhd_encode_end,
1378
    .capabilities   = AV_CODEC_CAP_SLICE_THREADS | AV_CODEC_CAP_FRAME_THREADS,
1379
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
1380
    .pix_fmts       = (const enum AVPixelFormat[]) {
1381
        AV_PIX_FMT_YUV422P,
1382
        AV_PIX_FMT_YUV422P10,
1383
        AV_PIX_FMT_YUV444P10,
1384
        AV_PIX_FMT_GBRP10,
1385
        AV_PIX_FMT_NONE
1386
    },
1387
    .priv_class     = &dnxhd_class,
1388
    .defaults       = dnxhd_defaults,
1389
    .profiles       = NULL_IF_CONFIG_SMALL(ff_dnxhd_profiles),
1390
};