GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/dcaenc.c Lines: 519 600 86.5 %
Date: 2019-11-18 18:00:01 Branches: 309 386 80.1 %

Line Branch Exec Source
1
/*
2
 * DCA encoder
3
 * Copyright (C) 2008-2012 Alexander E. Patrakov
4
 *               2010 Benjamin Larsson
5
 *               2011 Xiang Wang
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23
24
#define FFT_FLOAT 0
25
#define FFT_FIXED_32 1
26
27
#include "libavutil/avassert.h"
28
#include "libavutil/channel_layout.h"
29
#include "libavutil/common.h"
30
#include "libavutil/ffmath.h"
31
#include "libavutil/opt.h"
32
#include "avcodec.h"
33
#include "dca.h"
34
#include "dcaadpcm.h"
35
#include "dcamath.h"
36
#include "dca_core.h"
37
#include "dcadata.h"
38
#include "dcaenc.h"
39
#include "fft.h"
40
#include "internal.h"
41
#include "mathops.h"
42
#include "put_bits.h"
43
44
#define MAX_CHANNELS 6
45
#define DCA_MAX_FRAME_SIZE 16384
46
#define DCA_HEADER_SIZE 13
47
#define DCA_LFE_SAMPLES 8
48
49
#define DCAENC_SUBBANDS 32
50
#define SUBFRAMES 1
51
#define SUBSUBFRAMES 2
52
#define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8)
53
#define AUBANDS 25
54
55
#define COS_T(x) (c->cos_table[(x) & 2047])
56
57
typedef struct CompressionOptions {
58
    int adpcm_mode;
59
} CompressionOptions;
60
61
typedef struct DCAEncContext {
62
    AVClass *class;
63
    PutBitContext pb;
64
    DCAADPCMEncContext adpcm_ctx;
65
    FFTContext mdct;
66
    CompressionOptions options;
67
    int frame_size;
68
    int frame_bits;
69
    int fullband_channels;
70
    int channels;
71
    int lfe_channel;
72
    int samplerate_index;
73
    int bitrate_index;
74
    int channel_config;
75
    const int32_t *band_interpolation;
76
    const int32_t *band_spectrum;
77
    int lfe_scale_factor;
78
    softfloat lfe_quant;
79
    int32_t lfe_peak_cb;
80
    const int8_t *channel_order_tab;  ///< channel reordering table, lfe and non lfe
81
82
    int32_t prediction_mode[MAX_CHANNELS][DCAENC_SUBBANDS];
83
    int32_t adpcm_history[MAX_CHANNELS][DCAENC_SUBBANDS][DCA_ADPCM_COEFFS * 2];
84
    int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */
85
    int32_t *subband[MAX_CHANNELS][DCAENC_SUBBANDS];
86
    int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES];
87
    int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS];
88
    int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; ///< expected peak of residual signal
89
    int32_t downsampled_lfe[DCA_LFE_SAMPLES];
90
    int32_t masking_curve_cb[SUBSUBFRAMES][256];
91
    int32_t bit_allocation_sel[MAX_CHANNELS];
92
    int abits[MAX_CHANNELS][DCAENC_SUBBANDS];
93
    int scale_factor[MAX_CHANNELS][DCAENC_SUBBANDS];
94
    softfloat quant[MAX_CHANNELS][DCAENC_SUBBANDS];
95
    int32_t quant_index_sel[MAX_CHANNELS][DCA_CODE_BOOKS];
96
    int32_t eff_masking_curve_cb[256];
97
    int32_t band_masking_cb[32];
98
    int32_t worst_quantization_noise;
99
    int32_t worst_noise_ever;
100
    int consumed_bits;
101
    int consumed_adpcm_bits; ///< Number of bits to transmit ADPCM related info
102
103
    int32_t cos_table[2048];
104
    int32_t band_interpolation_tab[2][512];
105
    int32_t band_spectrum_tab[2][8];
106
    int32_t auf[9][AUBANDS][256];
107
    int32_t cb_to_add[256];
108
    int32_t cb_to_level[2048];
109
    int32_t lfe_fir_64i[512];
110
} DCAEncContext;
111
112
/* Transfer function of outer and middle ear, Hz -> dB */
113
115200
static double hom(double f)
114
{
115
115200
    double f1 = f / 1000;
116
117
115200
    return -3.64 * pow(f1, -0.8)
118
115200
           + 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4))
119
115200
           - 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7))
120
115200
           - 0.0006 * (f1 * f1) * (f1 * f1);
121
}
122
123
115200
static double gammafilter(int i, double f)
124
{
125
115200
    double h = (f - fc[i]) / erb[i];
126
127
115200
    h = 1 + h * h;
128
115200
    h = 1 / (h * h);
129
115200
    return 20 * log10(h);
130
}
131
132
2
static int subband_bufer_alloc(DCAEncContext *c)
133
{
134
    int ch, band;
135
2
    int32_t *bufer = av_calloc(MAX_CHANNELS * DCAENC_SUBBANDS *
136
                               (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS),
137
                               sizeof(int32_t));
138
2
    if (!bufer)
139
        return AVERROR(ENOMEM);
140
141
    /* we need a place for DCA_ADPCM_COEFF samples from previous frame
142
     * to calc prediction coefficients for each subband */
143
14
    for (ch = 0; ch < MAX_CHANNELS; ch++) {
144
396
        for (band = 0; band < DCAENC_SUBBANDS; band++) {
145
384
            c->subband[ch][band] = bufer +
146
384
                                   ch * DCAENC_SUBBANDS * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) +
147
384
                                   band * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + DCA_ADPCM_COEFFS;
148
        }
149
    }
150
2
    return 0;
151
}
152
153
2
static void subband_bufer_free(DCAEncContext *c)
154
{
155
2
    if (c->subband[0][0]) {
156
2
        int32_t *bufer = c->subband[0][0] - DCA_ADPCM_COEFFS;
157
2
        av_free(bufer);
158
2
        c->subband[0][0] = NULL;
159
    }
160
2
}
161
162
2
static int encode_init(AVCodecContext *avctx)
163
{
164
2
    DCAEncContext *c = avctx->priv_data;
165
2
    uint64_t layout = avctx->channel_layout;
166
    int i, j, k, min_frame_bits;
167
    int ret;
168
169
2
    if ((ret = subband_bufer_alloc(c)) < 0)
170
        return ret;
171
172
2
    c->fullband_channels = c->channels = avctx->channels;
173

2
    c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6);
174
2
    c->band_interpolation = c->band_interpolation_tab[1];
175
2
    c->band_spectrum = c->band_spectrum_tab[1];
176
2
    c->worst_quantization_noise = -2047;
177
2
    c->worst_noise_ever = -2047;
178
2
    c->consumed_adpcm_bits = 0;
179
180
2
    if (ff_dcaadpcm_init(&c->adpcm_ctx))
181
        return AVERROR(ENOMEM);
182
183
2
    if (!layout) {
184
        av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
185
                                      "encoder will guess the layout, but it "
186
                                      "might be incorrect.\n");
187
        layout = av_get_default_channel_layout(avctx->channels);
188
    }
189

2
    switch (layout) {
190
    case AV_CH_LAYOUT_MONO:         c->channel_config = 0; break;
191
2
    case AV_CH_LAYOUT_STEREO:       c->channel_config = 2; break;
192
    case AV_CH_LAYOUT_2_2:          c->channel_config = 8; break;
193
    case AV_CH_LAYOUT_5POINT0:      c->channel_config = 9; break;
194
    case AV_CH_LAYOUT_5POINT1:      c->channel_config = 9; break;
195
    default:
196
        av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n");
197
        return AVERROR_PATCHWELCOME;
198
    }
199
200
2
    if (c->lfe_channel) {
201
        c->fullband_channels--;
202
        c->channel_order_tab = channel_reorder_lfe[c->channel_config];
203
    } else {
204
2
        c->channel_order_tab = channel_reorder_nolfe[c->channel_config];
205
    }
206
207
14
    for (i = 0; i < MAX_CHANNELS; i++) {
208
132
        for (j = 0; j < DCA_CODE_BOOKS; j++) {
209
120
            c->quant_index_sel[i][j] = ff_dca_quant_index_group_size[j];
210
        }
211
        /* 6 - no Huffman */
212
12
        c->bit_allocation_sel[i] = 6;
213
214
396
        for (j = 0; j < DCAENC_SUBBANDS; j++) {
215
            /* -1 - no ADPCM */
216
384
            c->prediction_mode[i][j] = -1;
217
384
            memset(c->adpcm_history[i][j], 0, sizeof(int32_t)*DCA_ADPCM_COEFFS);
218
        }
219
    }
220
221
12
    for (i = 0; i < 9; i++) {
222
12
        if (sample_rates[i] == avctx->sample_rate)
223
2
            break;
224
    }
225
2
    if (i == 9)
226
        return AVERROR(EINVAL);
227
2
    c->samplerate_index = i;
228
229

2
    if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) {
230
        av_log(avctx, AV_LOG_ERROR, "Bit rate %"PRId64" not supported.", avctx->bit_rate);
231
        return AVERROR(EINVAL);
232
    }
233
46
    for (i = 0; ff_dca_bit_rates[i] < avctx->bit_rate; i++)
234
        ;
235
2
    c->bitrate_index = i;
236
2
    c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32);
237
2
    min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72;
238

2
    if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3))
239
        return AVERROR(EINVAL);
240
241
2
    c->frame_size = (c->frame_bits + 7) / 8;
242
243
2
    avctx->frame_size = 32 * SUBBAND_SAMPLES;
244
245
2
    if ((ret = ff_mdct_init(&c->mdct, 9, 0, 1.0)) < 0)
246
        return ret;
247
248
    /* Init all tables */
249
2
    c->cos_table[0] = 0x7fffffff;
250
2
    c->cos_table[512] = 0;
251
2
    c->cos_table[1024] = -c->cos_table[0];
252
1024
    for (i = 1; i < 512; i++) {
253
1022
        c->cos_table[i]   = (int32_t)(0x7fffffff * cos(M_PI * i / 1024));
254
1022
        c->cos_table[1024-i] = -c->cos_table[i];
255
1022
        c->cos_table[1024+i] = -c->cos_table[i];
256
1022
        c->cos_table[2048-i] = +c->cos_table[i];
257
    }
258
259
4098
    for (i = 0; i < 2048; i++)
260
4096
        c->cb_to_level[i] = (int32_t)(0x7fffffff * ff_exp10(-0.005 * i));
261
262
66
    for (k = 0; k < 32; k++) {
263
576
        for (j = 0; j < 8; j++) {
264
512
            c->lfe_fir_64i[64 * j + k] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
265
512
            c->lfe_fir_64i[64 * (7-j) + (63 - k)] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
266
        }
267
    }
268
269
1026
    for (i = 0; i < 512; i++) {
270
1024
        c->band_interpolation_tab[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]);
271
1024
        c->band_interpolation_tab[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]);
272
    }
273
274
20
    for (i = 0; i < 9; i++) {
275
468
        for (j = 0; j < AUBANDS; j++) {
276
115650
            for (k = 0; k < 256; k++) {
277
115200
                double freq = sample_rates[i] * (k + 0.5) / 512;
278
279
115200
                c->auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq)));
280
            }
281
        }
282
    }
283
284
514
    for (i = 0; i < 256; i++) {
285
512
        double add = 1 + ff_exp10(-0.01 * i);
286
512
        c->cb_to_add[i] = (int32_t)(100 * log10(add));
287
    }
288
18
    for (j = 0; j < 8; j++) {
289
16
        double accum = 0;
290
8208
        for (i = 0; i < 512; i++) {
291
8192
            double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1);
292
8192
            accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
293
        }
294
16
        c->band_spectrum_tab[0][j] = (int32_t)(200 * log10(accum));
295
    }
296
18
    for (j = 0; j < 8; j++) {
297
16
        double accum = 0;
298
8208
        for (i = 0; i < 512; i++) {
299
8192
            double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1);
300
8192
            accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
301
        }
302
16
        c->band_spectrum_tab[1][j] = (int32_t)(200 * log10(accum));
303
    }
304
305
2
    return 0;
306
}
307
308
2
static av_cold int encode_close(AVCodecContext *avctx)
309
{
310
2
    DCAEncContext *c = avctx->priv_data;
311
2
    ff_mdct_end(&c->mdct);
312
2
    subband_bufer_free(c);
313
2
    ff_dcaadpcm_free(&c->adpcm_ctx);
314
315
2
    return 0;
316
}
317
318
1034
static void subband_transform(DCAEncContext *c, const int32_t *input)
319
{
320
    int ch, subs, i, k, j;
321
322
3102
    for (ch = 0; ch < c->fullband_channels; ch++) {
323
        /* History is copied because it is also needed for PSY */
324
        int32_t hist[512];
325
2068
        int hist_start = 0;
326
2068
        const int chi = c->channel_order_tab[ch];
327
328
2068
        memcpy(hist, &c->history[ch][0], 512 * sizeof(int32_t));
329
330
35156
        for (subs = 0; subs < SUBBAND_SAMPLES; subs++) {
331
            int32_t accum[64];
332
            int32_t resp;
333
            int band;
334
335
            /* Calculate the convolutions at once */
336
33088
            memset(accum, 0, 64 * sizeof(int32_t));
337
338
9033024
            for (k = 0, i = hist_start, j = 0;
339
8999936
                    i < 512; k = (k + 1) & 63, i++, j++)
340
8999936
                accum[k] += mul32(hist[i], c->band_interpolation[j]);
341
7974208
            for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++)
342
7941120
                accum[k] += mul32(hist[i], c->band_interpolation[j]);
343
344
562496
            for (k = 16; k < 32; k++)
345
529408
                accum[k] = accum[k] - accum[31 - k];
346
562496
            for (k = 32; k < 48; k++)
347
529408
                accum[k] = accum[k] + accum[95 - k];
348
349
1091904
            for (band = 0; band < 32; band++) {
350
1058816
                resp = 0;
351
34940928
                for (i = 16; i < 48; i++) {
352
33882112
                    int s = (2 * band + 1) * (2 * (i + 16) + 1);
353
33882112
                    resp += mul32(accum[i], COS_T(s << 3)) >> 3;
354
                }
355
356
1058816
                c->subband[ch][band][subs] = ((band + 1) & 2) ? -resp : resp;
357
            }
358
359
            /* Copy in 32 new samples from input */
360
1091904
            for (i = 0; i < 32; i++)
361
1058816
                hist[i + hist_start] = input[(subs * 32 + i) * c->channels + chi];
362
363
33088
            hist_start = (hist_start + 32) & 511;
364
        }
365
    }
366
1034
}
367
368
static void lfe_downsample(DCAEncContext *c, const int32_t *input)
369
{
370
    /* FIXME: make 128x LFE downsampling possible */
371
    const int lfech = lfe_index[c->channel_config];
372
    int i, j, lfes;
373
    int32_t hist[512];
374
    int32_t accum;
375
    int hist_start = 0;
376
377
    memcpy(hist, &c->history[c->channels - 1][0], 512 * sizeof(int32_t));
378
379
    for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) {
380
        /* Calculate the convolution */
381
        accum = 0;
382
383
        for (i = hist_start, j = 0; i < 512; i++, j++)
384
            accum += mul32(hist[i], c->lfe_fir_64i[j]);
385
        for (i = 0; i < hist_start; i++, j++)
386
            accum += mul32(hist[i], c->lfe_fir_64i[j]);
387
388
        c->downsampled_lfe[lfes] = accum;
389
390
        /* Copy in 64 new samples from input */
391
        for (i = 0; i < 64; i++)
392
            hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + lfech];
393
394
        hist_start = (hist_start + 64) & 511;
395
    }
396
}
397
398
1124992
static int32_t get_cb(DCAEncContext *c, int32_t in)
399
{
400
1124992
    int i, res = 0;
401
1124992
    in = FFABS(in);
402
403
13499904
    for (i = 1024; i > 0; i >>= 1) {
404
12374912
        if (c->cb_to_level[i + res] >= in)
405
6580690
            res += i;
406
    }
407
1124992
    return -res;
408
}
409
410
55058432
static int32_t add_cb(DCAEncContext *c, int32_t a, int32_t b)
411
{
412
55058432
    if (a < b)
413
13348074
        FFSWAP(int32_t, a, b);
414
415
55058432
    if (a - b >= 256)
416
31966962
        return a;
417
23091470
    return a + c->cb_to_add[a - b];
418
}
419
420
4136
static void calc_power(DCAEncContext *c,
421
                       const int32_t in[2 * 256], int32_t power[256])
422
{
423
    int i;
424
4136
    LOCAL_ALIGNED_32(int32_t, data,  [512]);
425
4136
    LOCAL_ALIGNED_32(int32_t, coeff, [256]);
426
427
2121768
    for (i = 0; i < 512; i++)
428
2117632
        data[i] = norm__(mul32(in[i], 0x3fffffff - (COS_T(4 * i + 2) >> 1)), 4);
429
430
4136
    c->mdct.mdct_calc(&c->mdct, coeff, data);
431
1062952
    for (i = 0; i < 256; i++) {
432
1058816
        const int32_t cb = get_cb(c, coeff[i]);
433
1058816
        power[i] = add_cb(c, cb, cb);
434
    }
435
4136
}
436
437
4136
static void adjust_jnd(DCAEncContext *c,
438
                       const int32_t in[512], int32_t out_cb[256])
439
{
440
    int32_t power[256];
441
    int32_t out_cb_unnorm[256];
442
    int32_t denom;
443
4136
    const int32_t ca_cb = -1114;
444
4136
    const int32_t cs_cb = 928;
445
4136
    const int samplerate_index = c->samplerate_index;
446
    int i, j;
447
448
4136
    calc_power(c, in, power);
449
450
1062952
    for (j = 0; j < 256; j++)
451
1058816
        out_cb_unnorm[j] = -2047; /* and can only grow */
452
453
107536
    for (i = 0; i < AUBANDS; i++) {
454
103400
        denom = ca_cb; /* and can only grow */
455
26573800
        for (j = 0; j < 256; j++)
456
26470400
            denom = add_cb(c, denom, power[j] + c->auf[samplerate_index][i][j]);
457
26573800
        for (j = 0; j < 256; j++)
458
26470400
            out_cb_unnorm[j] = add_cb(c, out_cb_unnorm[j],
459
26470400
                                      -denom + c->auf[samplerate_index][i][j]);
460
    }
461
462
1062952
    for (j = 0; j < 256; j++)
463
1058816
        out_cb[j] = add_cb(c, out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb);
464
4136
}
465
466
typedef void (*walk_band_t)(DCAEncContext *c, int band1, int band2, int f,
467
                            int32_t spectrum1, int32_t spectrum2, int channel,
468
                            int32_t * arg);
469
470
33088
static void walk_band_low(DCAEncContext *c, int band, int channel,
471
                          walk_band_t walk, int32_t *arg)
472
{
473
    int f;
474
475
33088
    if (band == 0) {
476
5170
        for (f = 0; f < 4; f++)
477
4136
            walk(c, 0, 0, f, 0, -2047, channel, arg);
478
    } else {
479
288486
        for (f = 0; f < 8; f++)
480
256432
            walk(c, band, band - 1, 8 * band - 4 + f,
481
256432
                    c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg);
482
    }
483
33088
}
484
485
33088
static void walk_band_high(DCAEncContext *c, int band, int channel,
486
                           walk_band_t walk, int32_t *arg)
487
{
488
    int f;
489
490
33088
    if (band == 31) {
491
5170
        for (f = 0; f < 4; f++)
492
4136
            walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg);
493
    } else {
494
288486
        for (f = 0; f < 8; f++)
495
256432
            walk(c, band, band + 1, 8 * band + 4 + f,
496
256432
                    c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg);
497
    }
498
33088
}
499
500
521136
static void update_band_masking(DCAEncContext *c, int band1, int band2,
501
                                int f, int32_t spectrum1, int32_t spectrum2,
502
                                int channel, int32_t * arg)
503
{
504
521136
    int32_t value = c->eff_masking_curve_cb[f] - spectrum1;
505
506
521136
    if (value < c->band_masking_cb[band1])
507
211342
        c->band_masking_cb[band1] = value;
508
521136
}
509
510
1034
static void calc_masking(DCAEncContext *c, const int32_t *input)
511
{
512
    int i, k, band, ch, ssf;
513
    int32_t data[512];
514
515
265738
    for (i = 0; i < 256; i++)
516
794112
        for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
517
529408
            c->masking_curve_cb[ssf][i] = -2047;
518
519
3102
    for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
520
6204
        for (ch = 0; ch < c->fullband_channels; ch++) {
521
4136
            const int chi = c->channel_order_tab[ch];
522
523
1062952
            for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++)
524
1058816
                data[i] = c->history[ch][k];
525
1062952
            for (k -= 512; i < 512; i++, k++)
526
1058816
                data[i] = input[k * c->channels + chi];
527
4136
            adjust_jnd(c, data, c->masking_curve_cb[ssf]);
528
        }
529
265738
    for (i = 0; i < 256; i++) {
530
264704
        int32_t m = 2048;
531
532
794112
        for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
533
529408
            if (c->masking_curve_cb[ssf][i] < m)
534
386776
                m = c->masking_curve_cb[ssf][i];
535
264704
        c->eff_masking_curve_cb[i] = m;
536
    }
537
538
34122
    for (band = 0; band < 32; band++) {
539
33088
        c->band_masking_cb[band] = 2048;
540
33088
        walk_band_low(c, band, 0, update_band_masking, NULL);
541
33088
        walk_band_high(c, band, 0, update_band_masking, NULL);
542
    }
543
1034
}
544
545
66176
static inline int32_t find_peak(DCAEncContext *c, const int32_t *in, int len)
546
{
547
    int sample;
548
66176
    int32_t m = 0;
549
1124992
    for (sample = 0; sample < len; sample++) {
550
1058816
        int32_t s = abs(in[sample]);
551
1058816
        if (m < s)
552
228656
            m = s;
553
    }
554
66176
    return get_cb(c, m);
555
}
556
557
1034
static void find_peaks(DCAEncContext *c)
558
{
559
    int band, ch;
560
561
3102
    for (ch = 0; ch < c->fullband_channels; ch++) {
562
68244
        for (band = 0; band < 32; band++)
563
66176
            c->peak_cb[ch][band] = find_peak(c, c->subband[ch][band],
564
                                             SUBBAND_SAMPLES);
565
    }
566
567
1034
    if (c->lfe_channel)
568
        c->lfe_peak_cb = find_peak(c, c->downsampled_lfe, DCA_LFE_SAMPLES);
569
1034
}
570
571
static void adpcm_analysis(DCAEncContext *c)
572
{
573
    int ch, band;
574
    int pred_vq_id;
575
    int32_t *samples;
576
    int32_t estimated_diff[SUBBAND_SAMPLES];
577
578
    c->consumed_adpcm_bits = 0;
579
    for (ch = 0; ch < c->fullband_channels; ch++) {
580
        for (band = 0; band < 32; band++) {
581
            samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
582
            pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples,
583
                                                      SUBBAND_SAMPLES, estimated_diff);
584
            if (pred_vq_id >= 0) {
585
                c->prediction_mode[ch][band] = pred_vq_id;
586
                c->consumed_adpcm_bits += 12; //12 bits to transmit prediction vq index
587
                c->diff_peak_cb[ch][band] = find_peak(c, estimated_diff, 16);
588
            } else {
589
                c->prediction_mode[ch][band] = -1;
590
            }
591
        }
592
    }
593
}
594
595
static const int snr_fudge = 128;
596
#define USED_1ABITS 1
597
#define USED_26ABITS 4
598
599
66176
static inline int32_t get_step_size(DCAEncContext *c, int ch, int band)
600
{
601
    int32_t step_size;
602
603
66176
    if (c->bitrate_index == 3)
604
        step_size = ff_dca_lossless_quant[c->abits[ch][band]];
605
    else
606
66176
        step_size = ff_dca_lossy_quant[c->abits[ch][band]];
607
608
66176
    return step_size;
609
}
610
611
666752
static int calc_one_scale(DCAEncContext *c, int32_t peak_cb, int abits,
612
                          softfloat *quant)
613
{
614
    int32_t peak;
615
    int our_nscale, try_remove;
616
    softfloat our_quant;
617
618
666752
    av_assert0(peak_cb <= 0);
619
666752
    av_assert0(peak_cb >= -2047);
620
621
666752
    our_nscale = 127;
622
666752
    peak = c->cb_to_level[-peak_cb];
623
624
5334016
    for (try_remove = 64; try_remove > 0; try_remove >>= 1) {
625
4667264
        if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17)
626
1414480
            continue;
627
3252784
        our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m);
628
3252784
        our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17;
629
3252784
        if ((ff_dca_quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant))
630
755786
            continue;
631
2496998
        our_nscale -= try_remove;
632
    }
633
634
666752
    if (our_nscale >= 125)
635
        our_nscale = 124;
636
637
666752
    quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m);
638
666752
    quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17;
639
666752
    av_assert0((ff_dca_quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant));
640
641
666752
    return our_nscale;
642
}
643
644
static inline void quantize_adpcm_subband(DCAEncContext *c, int ch, int band)
645
{
646
    int32_t step_size;
647
    int32_t diff_peak_cb = c->diff_peak_cb[ch][band];
648
    c->scale_factor[ch][band] = calc_one_scale(c, diff_peak_cb,
649
                                               c->abits[ch][band],
650
                                               &c->quant[ch][band]);
651
652
    step_size = get_step_size(c, ch, band);
653
    ff_dcaadpcm_do_real(c->prediction_mode[ch][band],
654
                        c->quant[ch][band],
655
                        ff_dca_scale_factor_quant7[c->scale_factor[ch][band]],
656
                        step_size, c->adpcm_history[ch][band], c->subband[ch][band],
657
                        c->adpcm_history[ch][band] + 4, c->quantized[ch][band],
658
                        SUBBAND_SAMPLES, c->cb_to_level[-diff_peak_cb]);
659
}
660
661
10418
static void quantize_adpcm(DCAEncContext *c)
662
{
663
    int band, ch;
664
665
31254
    for (ch = 0; ch < c->fullband_channels; ch++)
666
687588
        for (band = 0; band < 32; band++)
667
666752
            if (c->prediction_mode[ch][band] >= 0)
668
                quantize_adpcm_subband(c, ch, band);
669
10418
}
670
671
10418
static void quantize_pcm(DCAEncContext *c)
672
{
673
    int sample, band, ch;
674
675
31254
    for (ch = 0; ch < c->fullband_channels; ch++) {
676
687588
        for (band = 0; band < 32; band++) {
677
666752
            if (c->prediction_mode[ch][band] == -1) {
678
11334784
                for (sample = 0; sample < SUBBAND_SAMPLES; sample++) {
679
10668032
                    int32_t val = quantize_value(c->subband[ch][band][sample],
680
                                                 c->quant[ch][band]);
681
10668032
                    c->quantized[ch][band][sample] = val;
682
                }
683
            }
684
        }
685
    }
686
10418
}
687
688
102450
static void accumulate_huff_bit_consumption(int abits, int32_t *quantized,
689
                                            uint32_t *result)
690
{
691
102450
    uint8_t sel, id = abits - 1;
692
477400
    for (sel = 0; sel < ff_dca_quant_index_group_size[id]; sel++)
693
374950
        result[sel] += ff_dca_vlc_calc_quant_bits(quantized, SUBBAND_SAMPLES,
694
                                                  sel, id);
695
102450
}
696
697
20836
static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7],
698
                              uint32_t clc_bits[DCA_CODE_BOOKS],
699
                              int32_t res[DCA_CODE_BOOKS])
700
{
701
    uint8_t i, sel;
702
    uint32_t best_sel_bits[DCA_CODE_BOOKS];
703
    int32_t best_sel_id[DCA_CODE_BOOKS];
704
20836
    uint32_t t, bits = 0;
705
706
229196
    for (i = 0; i < DCA_CODE_BOOKS; i++) {
707
708
208360
        av_assert0(!((!!vlc_bits[i][0]) ^ (!!clc_bits[i])));
709
208360
        if (vlc_bits[i][0] == 0) {
710
            /* do not transmit adjustment index for empty codebooks */
711
130000
            res[i] = ff_dca_quant_index_group_size[i];
712
            /* and skip it */
713
130000
            continue;
714
        }
715
716
78360
        best_sel_bits[i] = vlc_bits[i][0];
717
78360
        best_sel_id[i] = 0;
718
427676
        for (sel = 0; sel < ff_dca_quant_index_group_size[i]; sel++) {
719

349316
            if (best_sel_bits[i] > vlc_bits[i][sel] && vlc_bits[i][sel]) {
720
89308
                best_sel_bits[i] = vlc_bits[i][sel];
721
89308
                best_sel_id[i] = sel;
722
            }
723
        }
724
725
        /* 2 bits to transmit scale factor adjustment index */
726
78360
        t = best_sel_bits[i] + 2;
727
78360
        if (t < clc_bits[i]) {
728
56868
            res[i] = best_sel_id[i];
729
56868
            bits += t;
730
        } else {
731
21492
            res[i] = ff_dca_quant_index_group_size[i];
732
21492
            bits += clc_bits[i];
733
        }
734
    }
735
20836
    return bits;
736
}
737
738
20836
static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands,
739
                                    int32_t *res)
740
{
741
    uint8_t i;
742
    uint32_t t;
743
20836
    int32_t best_sel = 6;
744
20836
    int32_t best_bits = bands * 5;
745
746
    /* Check do we have subband which cannot be encoded by Huffman tables */
747
20836
    for (i = 0; i < bands; i++) {
748

20836
        if (abits[i] > 12 || abits[i] == 0) {
749
20836
            *res = best_sel;
750
20836
            return best_bits;
751
        }
752
    }
753
754
    for (i = 0; i < DCA_BITALLOC_12_COUNT; i++) {
755
        t = ff_dca_vlc_calc_alloc_bits(abits, bands, i);
756
        if (t < best_bits) {
757
            best_bits = t;
758
            best_sel = i;
759
        }
760
    }
761
762
    *res = best_sel;
763
    return best_bits;
764
}
765
766
10418
static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
767
{
768
10418
    int ch, band, ret = USED_26ABITS | USED_1ABITS;
769
    uint32_t huff_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS][7];
770
    uint32_t clc_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS];
771
10418
    uint32_t bits_counter = 0;
772
773
10418
    c->consumed_bits = 132 + 333 * c->fullband_channels;
774
10418
    c->consumed_bits += c->consumed_adpcm_bits;
775
10418
    if (c->lfe_channel)
776
        c->consumed_bits += 72;
777
778
    /* attempt to guess the bit distribution based on the prevoius frame */
779
31254
    for (ch = 0; ch < c->fullband_channels; ch++) {
780
687588
        for (band = 0; band < 32; band++) {
781
666752
            int snr_cb = c->peak_cb[ch][band] - c->band_masking_cb[band] - noise;
782
783
666752
            if (snr_cb >= 1312) {
784
58244
                c->abits[ch][band] = 26;
785
58244
                ret &= ~USED_1ABITS;
786
608508
            } else if (snr_cb >= 222) {
787
528984
                c->abits[ch][band] = 8 + mul32(snr_cb - 222, 69000000);
788
528984
                ret &= ~(USED_26ABITS | USED_1ABITS);
789
79524
            } else if (snr_cb >= 0) {
790
34916
                c->abits[ch][band] = 2 + mul32(snr_cb, 106000000);
791
34916
                ret &= ~(USED_26ABITS | USED_1ABITS);
792

44608
            } else if (forbid_zero || snr_cb >= -140) {
793
44608
                c->abits[ch][band] = 1;
794
44608
                ret &= ~USED_26ABITS;
795
            } else {
796
                c->abits[ch][band] = 0;
797
                ret &= ~(USED_26ABITS | USED_1ABITS);
798
            }
799
        }
800
20836
        c->consumed_bits += set_best_abits_code(c->abits[ch], 32,
801
                                                &c->bit_allocation_sel[ch]);
802
    }
803
804
    /* Recalc scale_factor each time to get bits consumption in case of Huffman coding.
805
       It is suboptimal solution */
806
    /* TODO: May be cache scaled values */
807
31254
    for (ch = 0; ch < c->fullband_channels; ch++) {
808
687588
        for (band = 0; band < 32; band++) {
809
666752
            if (c->prediction_mode[ch][band] == -1) {
810
666752
                c->scale_factor[ch][band] = calc_one_scale(c, c->peak_cb[ch][band],
811
                                                           c->abits[ch][band],
812
                                                           &c->quant[ch][band]);
813
            }
814
        }
815
    }
816
10418
    quantize_adpcm(c);
817
10418
    quantize_pcm(c);
818
819
10418
    memset(huff_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * 7 * sizeof(uint32_t));
820
10418
    memset(clc_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * sizeof(uint32_t));
821
31254
    for (ch = 0; ch < c->fullband_channels; ch++) {
822
687588
        for (band = 0; band < 32; band++) {
823

666752
            if (c->abits[ch][band] && c->abits[ch][band] <= DCA_CODE_BOOKS) {
824
102450
                accumulate_huff_bit_consumption(c->abits[ch][band],
825
102450
                                                c->quantized[ch][band],
826
102450
                                                huff_bit_count_accum[ch][c->abits[ch][band] - 1]);
827
102450
                clc_bit_count_accum[ch][c->abits[ch][band] - 1] += bit_consumption[c->abits[ch][band]];
828
            } else {
829
564302
                bits_counter += bit_consumption[c->abits[ch][band]];
830
            }
831
        }
832
    }
833
834
31254
    for (ch = 0; ch < c->fullband_channels; ch++) {
835
20836
        bits_counter += set_best_code(huff_bit_count_accum[ch],
836
20836
                                      clc_bit_count_accum[ch],
837
20836
                                      c->quant_index_sel[ch]);
838
    }
839
840
10418
    c->consumed_bits += bits_counter;
841
842
10418
    return ret;
843
}
844
845
1034
static void assign_bits(DCAEncContext *c)
846
{
847
    /* Find the bounds where the binary search should work */
848
    int low, high, down;
849
1034
    int used_abits = 0;
850
1034
    int forbid_zero = 1;
851
1034
restart:
852
1034
    init_quantization_noise(c, c->worst_quantization_noise, forbid_zero);
853
1034
    low = high = c->worst_quantization_noise;
854
1034
    if (c->consumed_bits > c->frame_bits) {
855
1118
        while (c->consumed_bits > c->frame_bits) {
856

580
            if (used_abits == USED_1ABITS && forbid_zero) {
857
                forbid_zero = 0;
858
                goto restart;
859
            }
860
580
            low = high;
861
580
            high += snr_fudge;
862
580
            used_abits = init_quantization_noise(c, high, forbid_zero);
863
        }
864
    } else {
865
1028
        while (c->consumed_bits <= c->frame_bits) {
866
532
            high = low;
867
532
            if (used_abits == USED_26ABITS)
868
                goto out; /* The requested bitrate is too high, pad with zeros */
869
532
            low -= snr_fudge;
870
532
            used_abits = init_quantization_noise(c, low, forbid_zero);
871
        }
872
    }
873
874
    /* Now do a binary search between low and high to see what fits */
875
8272
    for (down = snr_fudge >> 1; down; down >>= 1) {
876
7238
        init_quantization_noise(c, high - down, forbid_zero);
877
7238
        if (c->consumed_bits <= c->frame_bits)
878
3724
            high -= down;
879
    }
880
1034
    init_quantization_noise(c, high, forbid_zero);
881
1034
out:
882
1034
    c->worst_quantization_noise = high;
883
1034
    if (high > c->worst_noise_ever)
884
2
        c->worst_noise_ever = high;
885
1034
}
886
887
1034
static void shift_history(DCAEncContext *c, const int32_t *input)
888
{
889
    int k, ch;
890
891
530442
    for (k = 0; k < 512; k++)
892
1588224
        for (ch = 0; ch < c->channels; ch++) {
893
1058816
            const int chi = c->channel_order_tab[ch];
894
895
1058816
            c->history[ch][k] = input[k * c->channels + chi];
896
        }
897
1034
}
898
899
1034
static void fill_in_adpcm_bufer(DCAEncContext *c)
900
{
901
     int ch, band;
902
     int32_t step_size;
903
     /* We fill in ADPCM work buffer for subbands which hasn't been ADPCM coded
904
      * in current frame - we need this data if subband of next frame is
905
      * ADPCM
906
      */
907
3102
     for (ch = 0; ch < c->channels; ch++) {
908
68244
        for (band = 0; band < 32; band++) {
909
66176
            int32_t *samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
910
66176
            if (c->prediction_mode[ch][band] == -1) {
911
66176
                step_size = get_step_size(c, ch, band);
912
913
66176
                ff_dca_core_dequantize(c->adpcm_history[ch][band],
914
66176
                                       c->quantized[ch][band]+12, step_size,
915
66176
                                       ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4);
916
            } else {
917
                AV_COPY128U(c->adpcm_history[ch][band], c->adpcm_history[ch][band]+4);
918
            }
919
            /* Copy dequantized values for LPC analysis.
920
             * It reduces artifacts in case of extreme quantization,
921
             * example: in current frame abits is 1 and has no prediction flag,
922
             * but end of this frame is sine like signal. In this case, if LPC analysis uses
923
             * original values, likely LPC analysis returns good prediction gain, and sets prediction flag.
924
             * But there are no proper value in decoder history, so likely result will be no good.
925
             * Bitstream has "Predictor history flag switch", but this flag disables history for all subbands
926
             */
927
66176
            samples[0] = c->adpcm_history[ch][band][0] << 7;
928
66176
            samples[1] = c->adpcm_history[ch][band][1] << 7;
929
66176
            samples[2] = c->adpcm_history[ch][band][2] << 7;
930
66176
            samples[3] = c->adpcm_history[ch][band][3] << 7;
931
        }
932
     }
933
1034
}
934
935
1034
static void calc_lfe_scales(DCAEncContext *c)
936
{
937
1034
    if (c->lfe_channel)
938
        c->lfe_scale_factor = calc_one_scale(c, c->lfe_peak_cb, 11, &c->lfe_quant);
939
1034
}
940
941
1034
static void put_frame_header(DCAEncContext *c)
942
{
943
    /* SYNC */
944
1034
    put_bits(&c->pb, 16, 0x7ffe);
945
1034
    put_bits(&c->pb, 16, 0x8001);
946
947
    /* Frame type: normal */
948
1034
    put_bits(&c->pb, 1, 1);
949
950
    /* Deficit sample count: none */
951
1034
    put_bits(&c->pb, 5, 31);
952
953
    /* CRC is not present */
954
1034
    put_bits(&c->pb, 1, 0);
955
956
    /* Number of PCM sample blocks */
957
1034
    put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1);
958
959
    /* Primary frame byte size */
960
1034
    put_bits(&c->pb, 14, c->frame_size - 1);
961
962
    /* Audio channel arrangement */
963
1034
    put_bits(&c->pb, 6, c->channel_config);
964
965
    /* Core audio sampling frequency */
966
1034
    put_bits(&c->pb, 4, bitstream_sfreq[c->samplerate_index]);
967
968
    /* Transmission bit rate */
969
1034
    put_bits(&c->pb, 5, c->bitrate_index);
970
971
    /* Embedded down mix: disabled */
972
1034
    put_bits(&c->pb, 1, 0);
973
974
    /* Embedded dynamic range flag: not present */
975
1034
    put_bits(&c->pb, 1, 0);
976
977
    /* Embedded time stamp flag: not present */
978
1034
    put_bits(&c->pb, 1, 0);
979
980
    /* Auxiliary data flag: not present */
981
1034
    put_bits(&c->pb, 1, 0);
982
983
    /* HDCD source: no */
984
1034
    put_bits(&c->pb, 1, 0);
985
986
    /* Extension audio ID: N/A */
987
1034
    put_bits(&c->pb, 3, 0);
988
989
    /* Extended audio data: not present */
990
1034
    put_bits(&c->pb, 1, 0);
991
992
    /* Audio sync word insertion flag: after each sub-frame */
993
1034
    put_bits(&c->pb, 1, 0);
994
995
    /* Low frequency effects flag: not present or 64x subsampling */
996
1034
    put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0);
997
998
    /* Predictor history switch flag: on */
999
1034
    put_bits(&c->pb, 1, 1);
1000
1001
    /* No CRC */
1002
    /* Multirate interpolator switch: non-perfect reconstruction */
1003
1034
    put_bits(&c->pb, 1, 0);
1004
1005
    /* Encoder software revision: 7 */
1006
1034
    put_bits(&c->pb, 4, 7);
1007
1008
    /* Copy history: 0 */
1009
1034
    put_bits(&c->pb, 2, 0);
1010
1011
    /* Source PCM resolution: 16 bits, not DTS ES */
1012
1034
    put_bits(&c->pb, 3, 0);
1013
1014
    /* Front sum/difference coding: no */
1015
1034
    put_bits(&c->pb, 1, 0);
1016
1017
    /* Surrounds sum/difference coding: no */
1018
1034
    put_bits(&c->pb, 1, 0);
1019
1020
    /* Dialog normalization: 0 dB */
1021
1034
    put_bits(&c->pb, 4, 0);
1022
1034
}
1023
1024
1034
static void put_primary_audio_header(DCAEncContext *c)
1025
{
1026
    int ch, i;
1027
    /* Number of subframes */
1028
1034
    put_bits(&c->pb, 4, SUBFRAMES - 1);
1029
1030
    /* Number of primary audio channels */
1031
1034
    put_bits(&c->pb, 3, c->fullband_channels - 1);
1032
1033
    /* Subband activity count */
1034
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1035
2068
        put_bits(&c->pb, 5, DCAENC_SUBBANDS - 2);
1036
1037
    /* High frequency VQ start subband */
1038
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1039
2068
        put_bits(&c->pb, 5, DCAENC_SUBBANDS - 1);
1040
1041
    /* Joint intensity coding index: 0, 0 */
1042
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1043
2068
        put_bits(&c->pb, 3, 0);
1044
1045
    /* Transient mode codebook: A4, A4 (arbitrary) */
1046
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1047
2068
        put_bits(&c->pb, 2, 0);
1048
1049
    /* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */
1050
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1051
2068
        put_bits(&c->pb, 3, 6);
1052
1053
    /* Bit allocation quantizer select: linear 5-bit */
1054
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1055
2068
        put_bits(&c->pb, 3, c->bit_allocation_sel[ch]);
1056
1057
    /* Quantization index codebook select */
1058
11374
    for (i = 0; i < DCA_CODE_BOOKS; i++)
1059
31020
        for (ch = 0; ch < c->fullband_channels; ch++)
1060
20680
            put_bits(&c->pb, ff_dca_quant_index_sel_nbits[i], c->quant_index_sel[ch][i]);
1061
1062
    /* Scale factor adjustment index: transmitted in case of Huffman coding */
1063
11374
    for (i = 0; i < DCA_CODE_BOOKS; i++)
1064
31020
        for (ch = 0; ch < c->fullband_channels; ch++)
1065
20680
            if (c->quant_index_sel[ch][i] < ff_dca_quant_index_group_size[i])
1066
5828
                put_bits(&c->pb, 2, 0);
1067
1068
    /* Audio header CRC check word: not transmitted */
1069
1034
}
1070
1071
132352
static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch)
1072
{
1073
    int i, j, sum, bits, sel;
1074
132352
    if (c->abits[ch][band] <= DCA_CODE_BOOKS) {
1075
20216
        av_assert0(c->abits[ch][band] > 0);
1076
20216
        sel = c->quant_index_sel[ch][c->abits[ch][band] - 1];
1077
        // Huffman codes
1078
20216
        if (sel < ff_dca_quant_index_group_size[c->abits[ch][band] - 1]) {
1079
16068
            ff_dca_vlc_enc_quant(&c->pb, &c->quantized[ch][band][ss * 8], 8,
1080
16068
                                 sel, c->abits[ch][band] - 1);
1081
16068
            return;
1082
        }
1083
1084
        // Block codes
1085
4148
        if (c->abits[ch][band] <= 7) {
1086
5724
            for (i = 0; i < 8; i += 4) {
1087
3816
                sum = 0;
1088
19080
                for (j = 3; j >= 0; j--) {
1089
15264
                    sum *= ff_dca_quant_levels[c->abits[ch][band]];
1090
15264
                    sum += c->quantized[ch][band][ss * 8 + i + j];
1091
15264
                    sum += (ff_dca_quant_levels[c->abits[ch][band]] - 1) / 2;
1092
                }
1093
3816
                put_bits(&c->pb, bit_consumption[c->abits[ch][band]] / 4, sum);
1094
            }
1095
1908
            return;
1096
        }
1097
    }
1098
1099
1029384
    for (i = 0; i < 8; i++) {
1100
915008
        bits = bit_consumption[c->abits[ch][band]] / 16;
1101
915008
        put_sbits(&c->pb, bits, c->quantized[ch][band][ss * 8 + i]);
1102
    }
1103
}
1104
1105
1034
static void put_subframe(DCAEncContext *c, int subframe)
1106
{
1107
    int i, band, ss, ch;
1108
1109
    /* Subsubframes count */
1110
1034
    put_bits(&c->pb, 2, SUBSUBFRAMES -1);
1111
1112
    /* Partial subsubframe sample count: dummy */
1113
1034
    put_bits(&c->pb, 3, 0);
1114
1115
    /* Prediction mode: no ADPCM, in each channel and subband */
1116
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1117
68244
        for (band = 0; band < DCAENC_SUBBANDS; band++)
1118
66176
            put_bits(&c->pb, 1, !(c->prediction_mode[ch][band] == -1));
1119
1120
    /* Prediction VQ address */
1121
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1122
68244
        for (band = 0; band < DCAENC_SUBBANDS; band++)
1123
66176
            if (c->prediction_mode[ch][band] >= 0)
1124
                put_bits(&c->pb, 12, c->prediction_mode[ch][band]);
1125
1126
    /* Bit allocation index */
1127
3102
    for (ch = 0; ch < c->fullband_channels; ch++) {
1128
2068
        if (c->bit_allocation_sel[ch] == 6) {
1129
68244
            for (band = 0; band < DCAENC_SUBBANDS; band++) {
1130
66176
                put_bits(&c->pb, 5, c->abits[ch][band]);
1131
            }
1132
        } else {
1133
            ff_dca_vlc_enc_alloc(&c->pb, c->abits[ch], DCAENC_SUBBANDS,
1134
                                 c->bit_allocation_sel[ch]);
1135
        }
1136
    }
1137
1138
    if (SUBSUBFRAMES > 1) {
1139
        /* Transition mode: none for each channel and subband */
1140
3102
        for (ch = 0; ch < c->fullband_channels; ch++)
1141
68244
            for (band = 0; band < DCAENC_SUBBANDS; band++)
1142
66176
                if (c->abits[ch][band])
1143
66176
                    put_bits(&c->pb, 1, 0); /* codebook A4 */
1144
    }
1145
1146
    /* Scale factors */
1147
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1148
68244
        for (band = 0; band < DCAENC_SUBBANDS; band++)
1149
66176
            if (c->abits[ch][band])
1150
66176
                put_bits(&c->pb, 7, c->scale_factor[ch][band]);
1151
1152
    /* Joint subband scale factor codebook select: not transmitted */
1153
    /* Scale factors for joint subband coding: not transmitted */
1154
    /* Stereo down-mix coefficients: not transmitted */
1155
    /* Dynamic range coefficient: not transmitted */
1156
    /* Stde information CRC check word: not transmitted */
1157
    /* VQ encoded high frequency subbands: not transmitted */
1158
1159
    /* LFE data: 8 samples and scalefactor */
1160
1034
    if (c->lfe_channel) {
1161
        for (i = 0; i < DCA_LFE_SAMPLES; i++)
1162
            put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff);
1163
        put_bits(&c->pb, 8, c->lfe_scale_factor);
1164
    }
1165
1166
    /* Audio data (subsubframes) */
1167
3102
    for (ss = 0; ss < SUBSUBFRAMES ; ss++)
1168
6204
        for (ch = 0; ch < c->fullband_channels; ch++)
1169
136488
            for (band = 0; band < DCAENC_SUBBANDS; band++)
1170
132352
                if (c->abits[ch][band])
1171
132352
                    put_subframe_samples(c, ss, band, ch);
1172
1173
    /* DSYNC */
1174
1034
    put_bits(&c->pb, 16, 0xffff);
1175
1034
}
1176
1177
1034
static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
1178
                        const AVFrame *frame, int *got_packet_ptr)
1179
{
1180
1034
    DCAEncContext *c = avctx->priv_data;
1181
    const int32_t *samples;
1182
    int ret, i;
1183
1184
1034
    if ((ret = ff_alloc_packet2(avctx, avpkt, c->frame_size, 0)) < 0)
1185
        return ret;
1186
1187
1034
    samples = (const int32_t *)frame->data[0];
1188
1189
1034
    subband_transform(c, samples);
1190
1034
    if (c->lfe_channel)
1191
        lfe_downsample(c, samples);
1192
1193
1034
    calc_masking(c, samples);
1194
1034
    if (c->options.adpcm_mode)
1195
        adpcm_analysis(c);
1196
1034
    find_peaks(c);
1197
1034
    assign_bits(c);
1198
1034
    calc_lfe_scales(c);
1199
1034
    shift_history(c, samples);
1200
1201
1034
    init_put_bits(&c->pb, avpkt->data, avpkt->size);
1202
1034
    fill_in_adpcm_bufer(c);
1203
1034
    put_frame_header(c);
1204
1034
    put_primary_audio_header(c);
1205
2068
    for (i = 0; i < SUBFRAMES; i++)
1206
1034
        put_subframe(c, i);
1207
1208
1209
18532
    for (i = put_bits_count(&c->pb); i < 8*c->frame_size; i++)
1210
17498
        put_bits(&c->pb, 1, 0);
1211
1212
1034
    flush_put_bits(&c->pb);
1213
1214
1034
    avpkt->pts      = frame->pts;
1215
1034
    avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
1216
1034
    avpkt->size     = put_bits_count(&c->pb) >> 3;
1217
1034
    *got_packet_ptr = 1;
1218
1034
    return 0;
1219
}
1220
1221
#define DCAENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
1222
1223
static const AVOption options[] = {
1224
    { "dca_adpcm", "Use ADPCM encoding", offsetof(DCAEncContext, options.adpcm_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, DCAENC_FLAGS },
1225
    { NULL },
1226
};
1227
1228
static const AVClass dcaenc_class = {
1229
    .class_name = "DCA (DTS Coherent Acoustics)",
1230
    .item_name = av_default_item_name,
1231
    .option = options,
1232
    .version = LIBAVUTIL_VERSION_INT,
1233
};
1234
1235
static const AVCodecDefault defaults[] = {
1236
    { "b",          "1411200" },
1237
    { NULL },
1238
};
1239
1240
AVCodec ff_dca_encoder = {
1241
    .name                  = "dca",
1242
    .long_name             = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
1243
    .type                  = AVMEDIA_TYPE_AUDIO,
1244
    .id                    = AV_CODEC_ID_DTS,
1245
    .priv_data_size        = sizeof(DCAEncContext),
1246
    .init                  = encode_init,
1247
    .close                 = encode_close,
1248
    .encode2               = encode_frame,
1249
    .capabilities          = AV_CODEC_CAP_EXPERIMENTAL,
1250
    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1251
    .sample_fmts           = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32,
1252
                                                            AV_SAMPLE_FMT_NONE },
1253
    .supported_samplerates = sample_rates,
1254
    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_MONO,
1255
                                                  AV_CH_LAYOUT_STEREO,
1256
                                                  AV_CH_LAYOUT_2_2,
1257
                                                  AV_CH_LAYOUT_5POINT0,
1258
                                                  AV_CH_LAYOUT_5POINT1,
1259
                                                  0 },
1260
    .defaults              = defaults,
1261
    .priv_class            = &dcaenc_class,
1262
};