GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/dcaenc.c Lines: 519 600 86.5 %
Date: 2021-04-18 21:26:34 Branches: 309 386 80.1 %

Line Branch Exec Source
1
/*
2
 * DCA encoder
3
 * Copyright (C) 2008-2012 Alexander E. Patrakov
4
 *               2010 Benjamin Larsson
5
 *               2011 Xiang Wang
6
 *
7
 * This file is part of FFmpeg.
8
 *
9
 * FFmpeg is free software; you can redistribute it and/or
10
 * modify it under the terms of the GNU Lesser General Public
11
 * License as published by the Free Software Foundation; either
12
 * version 2.1 of the License, or (at your option) any later version.
13
 *
14
 * FFmpeg is distributed in the hope that it will be useful,
15
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17
 * Lesser General Public License for more details.
18
 *
19
 * You should have received a copy of the GNU Lesser General Public
20
 * License along with FFmpeg; if not, write to the Free Software
21
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22
 */
23
24
#define FFT_FLOAT 0
25
#define FFT_FIXED_32 1
26
27
#include "libavutil/avassert.h"
28
#include "libavutil/channel_layout.h"
29
#include "libavutil/common.h"
30
#include "libavutil/ffmath.h"
31
#include "libavutil/mem_internal.h"
32
#include "libavutil/opt.h"
33
#include "avcodec.h"
34
#include "dca.h"
35
#include "dcaadpcm.h"
36
#include "dcamath.h"
37
#include "dca_core.h"
38
#include "dcadata.h"
39
#include "dcaenc.h"
40
#include "fft.h"
41
#include "internal.h"
42
#include "mathops.h"
43
#include "put_bits.h"
44
45
#define MAX_CHANNELS 6
46
#define DCA_MAX_FRAME_SIZE 16384
47
#define DCA_HEADER_SIZE 13
48
#define DCA_LFE_SAMPLES 8
49
50
#define DCAENC_SUBBANDS 32
51
#define SUBFRAMES 1
52
#define SUBSUBFRAMES 2
53
#define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8)
54
#define AUBANDS 25
55
56
#define COS_T(x) (c->cos_table[(x) & 2047])
57
58
typedef struct CompressionOptions {
59
    int adpcm_mode;
60
} CompressionOptions;
61
62
typedef struct DCAEncContext {
63
    AVClass *class;
64
    PutBitContext pb;
65
    DCAADPCMEncContext adpcm_ctx;
66
    FFTContext mdct;
67
    CompressionOptions options;
68
    int frame_size;
69
    int frame_bits;
70
    int fullband_channels;
71
    int channels;
72
    int lfe_channel;
73
    int samplerate_index;
74
    int bitrate_index;
75
    int channel_config;
76
    const int32_t *band_interpolation;
77
    const int32_t *band_spectrum;
78
    int lfe_scale_factor;
79
    softfloat lfe_quant;
80
    int32_t lfe_peak_cb;
81
    const int8_t *channel_order_tab;  ///< channel reordering table, lfe and non lfe
82
83
    int32_t prediction_mode[MAX_CHANNELS][DCAENC_SUBBANDS];
84
    int32_t adpcm_history[MAX_CHANNELS][DCAENC_SUBBANDS][DCA_ADPCM_COEFFS * 2];
85
    int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */
86
    int32_t *subband[MAX_CHANNELS][DCAENC_SUBBANDS];
87
    int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES];
88
    int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS];
89
    int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; ///< expected peak of residual signal
90
    int32_t downsampled_lfe[DCA_LFE_SAMPLES];
91
    int32_t masking_curve_cb[SUBSUBFRAMES][256];
92
    int32_t bit_allocation_sel[MAX_CHANNELS];
93
    int abits[MAX_CHANNELS][DCAENC_SUBBANDS];
94
    int scale_factor[MAX_CHANNELS][DCAENC_SUBBANDS];
95
    softfloat quant[MAX_CHANNELS][DCAENC_SUBBANDS];
96
    int32_t quant_index_sel[MAX_CHANNELS][DCA_CODE_BOOKS];
97
    int32_t eff_masking_curve_cb[256];
98
    int32_t band_masking_cb[32];
99
    int32_t worst_quantization_noise;
100
    int32_t worst_noise_ever;
101
    int consumed_bits;
102
    int consumed_adpcm_bits; ///< Number of bits to transmit ADPCM related info
103
104
    int32_t cos_table[2048];
105
    int32_t band_interpolation_tab[2][512];
106
    int32_t band_spectrum_tab[2][8];
107
    int32_t auf[9][AUBANDS][256];
108
    int32_t cb_to_add[256];
109
    int32_t cb_to_level[2048];
110
    int32_t lfe_fir_64i[512];
111
} DCAEncContext;
112
113
/* Transfer function of outer and middle ear, Hz -> dB */
114
115200
static double hom(double f)
115
{
116
115200
    double f1 = f / 1000;
117
118
115200
    return -3.64 * pow(f1, -0.8)
119
115200
           + 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4))
120
115200
           - 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7))
121
115200
           - 0.0006 * (f1 * f1) * (f1 * f1);
122
}
123
124
115200
static double gammafilter(int i, double f)
125
{
126
115200
    double h = (f - fc[i]) / erb[i];
127
128
115200
    h = 1 + h * h;
129
115200
    h = 1 / (h * h);
130
115200
    return 20 * log10(h);
131
}
132
133
2
static int subband_bufer_alloc(DCAEncContext *c)
134
{
135
    int ch, band;
136
2
    int32_t *bufer = av_calloc(MAX_CHANNELS * DCAENC_SUBBANDS *
137
                               (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS),
138
                               sizeof(int32_t));
139
2
    if (!bufer)
140
        return AVERROR(ENOMEM);
141
142
    /* we need a place for DCA_ADPCM_COEFF samples from previous frame
143
     * to calc prediction coefficients for each subband */
144
14
    for (ch = 0; ch < MAX_CHANNELS; ch++) {
145
396
        for (band = 0; band < DCAENC_SUBBANDS; band++) {
146
384
            c->subband[ch][band] = bufer +
147
384
                                   ch * DCAENC_SUBBANDS * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) +
148
384
                                   band * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + DCA_ADPCM_COEFFS;
149
        }
150
    }
151
2
    return 0;
152
}
153
154
2
static void subband_bufer_free(DCAEncContext *c)
155
{
156
2
    if (c->subband[0][0]) {
157
2
        int32_t *bufer = c->subband[0][0] - DCA_ADPCM_COEFFS;
158
2
        av_free(bufer);
159
2
        c->subband[0][0] = NULL;
160
    }
161
2
}
162
163
2
static int encode_init(AVCodecContext *avctx)
164
{
165
2
    DCAEncContext *c = avctx->priv_data;
166
2
    uint64_t layout = avctx->channel_layout;
167
    int i, j, k, min_frame_bits;
168
    int ret;
169
170
2
    if ((ret = subband_bufer_alloc(c)) < 0)
171
        return ret;
172
173
2
    c->fullband_channels = c->channels = avctx->channels;
174

2
    c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6);
175
2
    c->band_interpolation = c->band_interpolation_tab[1];
176
2
    c->band_spectrum = c->band_spectrum_tab[1];
177
2
    c->worst_quantization_noise = -2047;
178
2
    c->worst_noise_ever = -2047;
179
2
    c->consumed_adpcm_bits = 0;
180
181
2
    if (ff_dcaadpcm_init(&c->adpcm_ctx))
182
        return AVERROR(ENOMEM);
183
184
2
    if (!layout) {
185
        av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The "
186
                                      "encoder will guess the layout, but it "
187
                                      "might be incorrect.\n");
188
        layout = av_get_default_channel_layout(avctx->channels);
189
    }
190

2
    switch (layout) {
191
    case AV_CH_LAYOUT_MONO:         c->channel_config = 0; break;
192
2
    case AV_CH_LAYOUT_STEREO:       c->channel_config = 2; break;
193
    case AV_CH_LAYOUT_2_2:          c->channel_config = 8; break;
194
    case AV_CH_LAYOUT_5POINT0:      c->channel_config = 9; break;
195
    case AV_CH_LAYOUT_5POINT1:      c->channel_config = 9; break;
196
    default:
197
        av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n");
198
        return AVERROR_PATCHWELCOME;
199
    }
200
201
2
    if (c->lfe_channel) {
202
        c->fullband_channels--;
203
        c->channel_order_tab = channel_reorder_lfe[c->channel_config];
204
    } else {
205
2
        c->channel_order_tab = channel_reorder_nolfe[c->channel_config];
206
    }
207
208
14
    for (i = 0; i < MAX_CHANNELS; i++) {
209
132
        for (j = 0; j < DCA_CODE_BOOKS; j++) {
210
120
            c->quant_index_sel[i][j] = ff_dca_quant_index_group_size[j];
211
        }
212
        /* 6 - no Huffman */
213
12
        c->bit_allocation_sel[i] = 6;
214
215
396
        for (j = 0; j < DCAENC_SUBBANDS; j++) {
216
            /* -1 - no ADPCM */
217
384
            c->prediction_mode[i][j] = -1;
218
384
            memset(c->adpcm_history[i][j], 0, sizeof(int32_t)*DCA_ADPCM_COEFFS);
219
        }
220
    }
221
222
12
    for (i = 0; i < 9; i++) {
223
12
        if (sample_rates[i] == avctx->sample_rate)
224
2
            break;
225
    }
226
2
    if (i == 9)
227
        return AVERROR(EINVAL);
228
2
    c->samplerate_index = i;
229
230

2
    if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) {
231
        av_log(avctx, AV_LOG_ERROR, "Bit rate %"PRId64" not supported.", avctx->bit_rate);
232
        return AVERROR(EINVAL);
233
    }
234
46
    for (i = 0; ff_dca_bit_rates[i] < avctx->bit_rate; i++)
235
        ;
236
2
    c->bitrate_index = i;
237
2
    c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32);
238
2
    min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72;
239

2
    if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3))
240
        return AVERROR(EINVAL);
241
242
2
    c->frame_size = (c->frame_bits + 7) / 8;
243
244
2
    avctx->frame_size = 32 * SUBBAND_SAMPLES;
245
246
2
    if ((ret = ff_mdct_init(&c->mdct, 9, 0, 1.0)) < 0)
247
        return ret;
248
249
    /* Init all tables */
250
2
    c->cos_table[0] = 0x7fffffff;
251
2
    c->cos_table[512] = 0;
252
2
    c->cos_table[1024] = -c->cos_table[0];
253
1024
    for (i = 1; i < 512; i++) {
254
1022
        c->cos_table[i]   = (int32_t)(0x7fffffff * cos(M_PI * i / 1024));
255
1022
        c->cos_table[1024-i] = -c->cos_table[i];
256
1022
        c->cos_table[1024+i] = -c->cos_table[i];
257
1022
        c->cos_table[2048-i] = +c->cos_table[i];
258
    }
259
260
4098
    for (i = 0; i < 2048; i++)
261
4096
        c->cb_to_level[i] = (int32_t)(0x7fffffff * ff_exp10(-0.005 * i));
262
263
66
    for (k = 0; k < 32; k++) {
264
576
        for (j = 0; j < 8; j++) {
265
512
            c->lfe_fir_64i[64 * j + k] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
266
512
            c->lfe_fir_64i[64 * (7-j) + (63 - k)] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]);
267
        }
268
    }
269
270
1026
    for (i = 0; i < 512; i++) {
271
1024
        c->band_interpolation_tab[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]);
272
1024
        c->band_interpolation_tab[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]);
273
    }
274
275
20
    for (i = 0; i < 9; i++) {
276
468
        for (j = 0; j < AUBANDS; j++) {
277
115650
            for (k = 0; k < 256; k++) {
278
115200
                double freq = sample_rates[i] * (k + 0.5) / 512;
279
280
115200
                c->auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq)));
281
            }
282
        }
283
    }
284
285
514
    for (i = 0; i < 256; i++) {
286
512
        double add = 1 + ff_exp10(-0.01 * i);
287
512
        c->cb_to_add[i] = (int32_t)(100 * log10(add));
288
    }
289
18
    for (j = 0; j < 8; j++) {
290
16
        double accum = 0;
291
8208
        for (i = 0; i < 512; i++) {
292
8192
            double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1);
293
8192
            accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
294
        }
295
16
        c->band_spectrum_tab[0][j] = (int32_t)(200 * log10(accum));
296
    }
297
18
    for (j = 0; j < 8; j++) {
298
16
        double accum = 0;
299
8208
        for (i = 0; i < 512; i++) {
300
8192
            double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1);
301
8192
            accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512);
302
        }
303
16
        c->band_spectrum_tab[1][j] = (int32_t)(200 * log10(accum));
304
    }
305
306
2
    return 0;
307
}
308
309
2
static av_cold int encode_close(AVCodecContext *avctx)
310
{
311
2
    DCAEncContext *c = avctx->priv_data;
312
2
    ff_mdct_end(&c->mdct);
313
2
    subband_bufer_free(c);
314
2
    ff_dcaadpcm_free(&c->adpcm_ctx);
315
316
2
    return 0;
317
}
318
319
1034
static void subband_transform(DCAEncContext *c, const int32_t *input)
320
{
321
    int ch, subs, i, k, j;
322
323
3102
    for (ch = 0; ch < c->fullband_channels; ch++) {
324
        /* History is copied because it is also needed for PSY */
325
        int32_t hist[512];
326
2068
        int hist_start = 0;
327
2068
        const int chi = c->channel_order_tab[ch];
328
329
2068
        memcpy(hist, &c->history[ch][0], 512 * sizeof(int32_t));
330
331
35156
        for (subs = 0; subs < SUBBAND_SAMPLES; subs++) {
332
            int32_t accum[64];
333
            int32_t resp;
334
            int band;
335
336
            /* Calculate the convolutions at once */
337
33088
            memset(accum, 0, 64 * sizeof(int32_t));
338
339
9033024
            for (k = 0, i = hist_start, j = 0;
340
8999936
                    i < 512; k = (k + 1) & 63, i++, j++)
341
8999936
                accum[k] += mul32(hist[i], c->band_interpolation[j]);
342
7974208
            for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++)
343
7941120
                accum[k] += mul32(hist[i], c->band_interpolation[j]);
344
345
562496
            for (k = 16; k < 32; k++)
346
529408
                accum[k] = accum[k] - accum[31 - k];
347
562496
            for (k = 32; k < 48; k++)
348
529408
                accum[k] = accum[k] + accum[95 - k];
349
350
1091904
            for (band = 0; band < 32; band++) {
351
1058816
                resp = 0;
352
34940928
                for (i = 16; i < 48; i++) {
353
33882112
                    int s = (2 * band + 1) * (2 * (i + 16) + 1);
354
33882112
                    resp += mul32(accum[i], COS_T(s << 3)) >> 3;
355
                }
356
357
1058816
                c->subband[ch][band][subs] = ((band + 1) & 2) ? -resp : resp;
358
            }
359
360
            /* Copy in 32 new samples from input */
361
1091904
            for (i = 0; i < 32; i++)
362
1058816
                hist[i + hist_start] = input[(subs * 32 + i) * c->channels + chi];
363
364
33088
            hist_start = (hist_start + 32) & 511;
365
        }
366
    }
367
1034
}
368
369
static void lfe_downsample(DCAEncContext *c, const int32_t *input)
370
{
371
    /* FIXME: make 128x LFE downsampling possible */
372
    const int lfech = lfe_index[c->channel_config];
373
    int i, j, lfes;
374
    int32_t hist[512];
375
    int32_t accum;
376
    int hist_start = 0;
377
378
    memcpy(hist, &c->history[c->channels - 1][0], 512 * sizeof(int32_t));
379
380
    for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) {
381
        /* Calculate the convolution */
382
        accum = 0;
383
384
        for (i = hist_start, j = 0; i < 512; i++, j++)
385
            accum += mul32(hist[i], c->lfe_fir_64i[j]);
386
        for (i = 0; i < hist_start; i++, j++)
387
            accum += mul32(hist[i], c->lfe_fir_64i[j]);
388
389
        c->downsampled_lfe[lfes] = accum;
390
391
        /* Copy in 64 new samples from input */
392
        for (i = 0; i < 64; i++)
393
            hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + lfech];
394
395
        hist_start = (hist_start + 64) & 511;
396
    }
397
}
398
399
1124992
static int32_t get_cb(DCAEncContext *c, int32_t in)
400
{
401
1124992
    int i, res = 0;
402
1124992
    in = FFABS(in);
403
404
13499904
    for (i = 1024; i > 0; i >>= 1) {
405
12374912
        if (c->cb_to_level[i + res] >= in)
406
6580690
            res += i;
407
    }
408
1124992
    return -res;
409
}
410
411
55058432
static int32_t add_cb(DCAEncContext *c, int32_t a, int32_t b)
412
{
413
55058432
    if (a < b)
414
13348074
        FFSWAP(int32_t, a, b);
415
416
55058432
    if (a - b >= 256)
417
31966962
        return a;
418
23091470
    return a + c->cb_to_add[a - b];
419
}
420
421
4136
static void calc_power(DCAEncContext *c,
422
                       const int32_t in[2 * 256], int32_t power[256])
423
{
424
    int i;
425
4136
    LOCAL_ALIGNED_32(int32_t, data,  [512]);
426
4136
    LOCAL_ALIGNED_32(int32_t, coeff, [256]);
427
428
2121768
    for (i = 0; i < 512; i++)
429
2117632
        data[i] = norm__(mul32(in[i], 0x3fffffff - (COS_T(4 * i + 2) >> 1)), 4);
430
431
4136
    c->mdct.mdct_calc(&c->mdct, coeff, data);
432
1062952
    for (i = 0; i < 256; i++) {
433
1058816
        const int32_t cb = get_cb(c, coeff[i]);
434
1058816
        power[i] = add_cb(c, cb, cb);
435
    }
436
4136
}
437
438
4136
static void adjust_jnd(DCAEncContext *c,
439
                       const int32_t in[512], int32_t out_cb[256])
440
{
441
    int32_t power[256];
442
    int32_t out_cb_unnorm[256];
443
    int32_t denom;
444
4136
    const int32_t ca_cb = -1114;
445
4136
    const int32_t cs_cb = 928;
446
4136
    const int samplerate_index = c->samplerate_index;
447
    int i, j;
448
449
4136
    calc_power(c, in, power);
450
451
1062952
    for (j = 0; j < 256; j++)
452
1058816
        out_cb_unnorm[j] = -2047; /* and can only grow */
453
454
107536
    for (i = 0; i < AUBANDS; i++) {
455
103400
        denom = ca_cb; /* and can only grow */
456
26573800
        for (j = 0; j < 256; j++)
457
26470400
            denom = add_cb(c, denom, power[j] + c->auf[samplerate_index][i][j]);
458
26573800
        for (j = 0; j < 256; j++)
459
26470400
            out_cb_unnorm[j] = add_cb(c, out_cb_unnorm[j],
460
26470400
                                      -denom + c->auf[samplerate_index][i][j]);
461
    }
462
463
1062952
    for (j = 0; j < 256; j++)
464
1058816
        out_cb[j] = add_cb(c, out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb);
465
4136
}
466
467
typedef void (*walk_band_t)(DCAEncContext *c, int band1, int band2, int f,
468
                            int32_t spectrum1, int32_t spectrum2, int channel,
469
                            int32_t * arg);
470
471
33088
static void walk_band_low(DCAEncContext *c, int band, int channel,
472
                          walk_band_t walk, int32_t *arg)
473
{
474
    int f;
475
476
33088
    if (band == 0) {
477
5170
        for (f = 0; f < 4; f++)
478
4136
            walk(c, 0, 0, f, 0, -2047, channel, arg);
479
    } else {
480
288486
        for (f = 0; f < 8; f++)
481
256432
            walk(c, band, band - 1, 8 * band - 4 + f,
482
256432
                    c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg);
483
    }
484
33088
}
485
486
33088
static void walk_band_high(DCAEncContext *c, int band, int channel,
487
                           walk_band_t walk, int32_t *arg)
488
{
489
    int f;
490
491
33088
    if (band == 31) {
492
5170
        for (f = 0; f < 4; f++)
493
4136
            walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg);
494
    } else {
495
288486
        for (f = 0; f < 8; f++)
496
256432
            walk(c, band, band + 1, 8 * band + 4 + f,
497
256432
                    c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg);
498
    }
499
33088
}
500
501
521136
static void update_band_masking(DCAEncContext *c, int band1, int band2,
502
                                int f, int32_t spectrum1, int32_t spectrum2,
503
                                int channel, int32_t * arg)
504
{
505
521136
    int32_t value = c->eff_masking_curve_cb[f] - spectrum1;
506
507
521136
    if (value < c->band_masking_cb[band1])
508
211342
        c->band_masking_cb[band1] = value;
509
521136
}
510
511
1034
static void calc_masking(DCAEncContext *c, const int32_t *input)
512
{
513
    int i, k, band, ch, ssf;
514
    int32_t data[512];
515
516
265738
    for (i = 0; i < 256; i++)
517
794112
        for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
518
529408
            c->masking_curve_cb[ssf][i] = -2047;
519
520
3102
    for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
521
6204
        for (ch = 0; ch < c->fullband_channels; ch++) {
522
4136
            const int chi = c->channel_order_tab[ch];
523
524
1062952
            for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++)
525
1058816
                data[i] = c->history[ch][k];
526
1062952
            for (k -= 512; i < 512; i++, k++)
527
1058816
                data[i] = input[k * c->channels + chi];
528
4136
            adjust_jnd(c, data, c->masking_curve_cb[ssf]);
529
        }
530
265738
    for (i = 0; i < 256; i++) {
531
264704
        int32_t m = 2048;
532
533
794112
        for (ssf = 0; ssf < SUBSUBFRAMES; ssf++)
534
529408
            if (c->masking_curve_cb[ssf][i] < m)
535
386776
                m = c->masking_curve_cb[ssf][i];
536
264704
        c->eff_masking_curve_cb[i] = m;
537
    }
538
539
34122
    for (band = 0; band < 32; band++) {
540
33088
        c->band_masking_cb[band] = 2048;
541
33088
        walk_band_low(c, band, 0, update_band_masking, NULL);
542
33088
        walk_band_high(c, band, 0, update_band_masking, NULL);
543
    }
544
1034
}
545
546
66176
static inline int32_t find_peak(DCAEncContext *c, const int32_t *in, int len)
547
{
548
    int sample;
549
66176
    int32_t m = 0;
550
1124992
    for (sample = 0; sample < len; sample++) {
551
1058816
        int32_t s = abs(in[sample]);
552
1058816
        if (m < s)
553
228656
            m = s;
554
    }
555
66176
    return get_cb(c, m);
556
}
557
558
1034
static void find_peaks(DCAEncContext *c)
559
{
560
    int band, ch;
561
562
3102
    for (ch = 0; ch < c->fullband_channels; ch++) {
563
68244
        for (band = 0; band < 32; band++)
564
66176
            c->peak_cb[ch][band] = find_peak(c, c->subband[ch][band],
565
                                             SUBBAND_SAMPLES);
566
    }
567
568
1034
    if (c->lfe_channel)
569
        c->lfe_peak_cb = find_peak(c, c->downsampled_lfe, DCA_LFE_SAMPLES);
570
1034
}
571
572
static void adpcm_analysis(DCAEncContext *c)
573
{
574
    int ch, band;
575
    int pred_vq_id;
576
    int32_t *samples;
577
    int32_t estimated_diff[SUBBAND_SAMPLES];
578
579
    c->consumed_adpcm_bits = 0;
580
    for (ch = 0; ch < c->fullband_channels; ch++) {
581
        for (band = 0; band < 32; band++) {
582
            samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
583
            pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples,
584
                                                      SUBBAND_SAMPLES, estimated_diff);
585
            if (pred_vq_id >= 0) {
586
                c->prediction_mode[ch][band] = pred_vq_id;
587
                c->consumed_adpcm_bits += 12; //12 bits to transmit prediction vq index
588
                c->diff_peak_cb[ch][band] = find_peak(c, estimated_diff, 16);
589
            } else {
590
                c->prediction_mode[ch][band] = -1;
591
            }
592
        }
593
    }
594
}
595
596
static const int snr_fudge = 128;
597
#define USED_1ABITS 1
598
#define USED_26ABITS 4
599
600
66176
static inline int32_t get_step_size(DCAEncContext *c, int ch, int band)
601
{
602
    int32_t step_size;
603
604
66176
    if (c->bitrate_index == 3)
605
        step_size = ff_dca_lossless_quant[c->abits[ch][band]];
606
    else
607
66176
        step_size = ff_dca_lossy_quant[c->abits[ch][band]];
608
609
66176
    return step_size;
610
}
611
612
666752
static int calc_one_scale(DCAEncContext *c, int32_t peak_cb, int abits,
613
                          softfloat *quant)
614
{
615
    int32_t peak;
616
    int our_nscale, try_remove;
617
    softfloat our_quant;
618
619
666752
    av_assert0(peak_cb <= 0);
620
666752
    av_assert0(peak_cb >= -2047);
621
622
666752
    our_nscale = 127;
623
666752
    peak = c->cb_to_level[-peak_cb];
624
625
5334016
    for (try_remove = 64; try_remove > 0; try_remove >>= 1) {
626
4667264
        if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17)
627
1414480
            continue;
628
3252784
        our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m);
629
3252784
        our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17;
630
3252784
        if ((ff_dca_quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant))
631
755786
            continue;
632
2496998
        our_nscale -= try_remove;
633
    }
634
635
666752
    if (our_nscale >= 125)
636
        our_nscale = 124;
637
638
666752
    quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m);
639
666752
    quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17;
640
666752
    av_assert0((ff_dca_quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant));
641
642
666752
    return our_nscale;
643
}
644
645
static inline void quantize_adpcm_subband(DCAEncContext *c, int ch, int band)
646
{
647
    int32_t step_size;
648
    int32_t diff_peak_cb = c->diff_peak_cb[ch][band];
649
    c->scale_factor[ch][band] = calc_one_scale(c, diff_peak_cb,
650
                                               c->abits[ch][band],
651
                                               &c->quant[ch][band]);
652
653
    step_size = get_step_size(c, ch, band);
654
    ff_dcaadpcm_do_real(c->prediction_mode[ch][band],
655
                        c->quant[ch][band],
656
                        ff_dca_scale_factor_quant7[c->scale_factor[ch][band]],
657
                        step_size, c->adpcm_history[ch][band], c->subband[ch][band],
658
                        c->adpcm_history[ch][band] + 4, c->quantized[ch][band],
659
                        SUBBAND_SAMPLES, c->cb_to_level[-diff_peak_cb]);
660
}
661
662
10418
static void quantize_adpcm(DCAEncContext *c)
663
{
664
    int band, ch;
665
666
31254
    for (ch = 0; ch < c->fullband_channels; ch++)
667
687588
        for (band = 0; band < 32; band++)
668
666752
            if (c->prediction_mode[ch][band] >= 0)
669
                quantize_adpcm_subband(c, ch, band);
670
10418
}
671
672
10418
static void quantize_pcm(DCAEncContext *c)
673
{
674
    int sample, band, ch;
675
676
31254
    for (ch = 0; ch < c->fullband_channels; ch++) {
677
687588
        for (band = 0; band < 32; band++) {
678
666752
            if (c->prediction_mode[ch][band] == -1) {
679
11334784
                for (sample = 0; sample < SUBBAND_SAMPLES; sample++) {
680
10668032
                    int32_t val = quantize_value(c->subband[ch][band][sample],
681
                                                 c->quant[ch][band]);
682
10668032
                    c->quantized[ch][band][sample] = val;
683
                }
684
            }
685
        }
686
    }
687
10418
}
688
689
102450
static void accumulate_huff_bit_consumption(int abits, int32_t *quantized,
690
                                            uint32_t *result)
691
{
692
102450
    uint8_t sel, id = abits - 1;
693
477400
    for (sel = 0; sel < ff_dca_quant_index_group_size[id]; sel++)
694
374950
        result[sel] += ff_dca_vlc_calc_quant_bits(quantized, SUBBAND_SAMPLES,
695
                                                  sel, id);
696
102450
}
697
698
20836
static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7],
699
                              uint32_t clc_bits[DCA_CODE_BOOKS],
700
                              int32_t res[DCA_CODE_BOOKS])
701
{
702
    uint8_t i, sel;
703
    uint32_t best_sel_bits[DCA_CODE_BOOKS];
704
    int32_t best_sel_id[DCA_CODE_BOOKS];
705
20836
    uint32_t t, bits = 0;
706
707
229196
    for (i = 0; i < DCA_CODE_BOOKS; i++) {
708
709
208360
        av_assert0(!((!!vlc_bits[i][0]) ^ (!!clc_bits[i])));
710
208360
        if (vlc_bits[i][0] == 0) {
711
            /* do not transmit adjustment index for empty codebooks */
712
130000
            res[i] = ff_dca_quant_index_group_size[i];
713
            /* and skip it */
714
130000
            continue;
715
        }
716
717
78360
        best_sel_bits[i] = vlc_bits[i][0];
718
78360
        best_sel_id[i] = 0;
719
427676
        for (sel = 0; sel < ff_dca_quant_index_group_size[i]; sel++) {
720

349316
            if (best_sel_bits[i] > vlc_bits[i][sel] && vlc_bits[i][sel]) {
721
89308
                best_sel_bits[i] = vlc_bits[i][sel];
722
89308
                best_sel_id[i] = sel;
723
            }
724
        }
725
726
        /* 2 bits to transmit scale factor adjustment index */
727
78360
        t = best_sel_bits[i] + 2;
728
78360
        if (t < clc_bits[i]) {
729
56868
            res[i] = best_sel_id[i];
730
56868
            bits += t;
731
        } else {
732
21492
            res[i] = ff_dca_quant_index_group_size[i];
733
21492
            bits += clc_bits[i];
734
        }
735
    }
736
20836
    return bits;
737
}
738
739
20836
static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands,
740
                                    int32_t *res)
741
{
742
    uint8_t i;
743
    uint32_t t;
744
20836
    int32_t best_sel = 6;
745
20836
    int32_t best_bits = bands * 5;
746
747
    /* Check do we have subband which cannot be encoded by Huffman tables */
748
20836
    for (i = 0; i < bands; i++) {
749

20836
        if (abits[i] > 12 || abits[i] == 0) {
750
20836
            *res = best_sel;
751
20836
            return best_bits;
752
        }
753
    }
754
755
    for (i = 0; i < DCA_BITALLOC_12_COUNT; i++) {
756
        t = ff_dca_vlc_calc_alloc_bits(abits, bands, i);
757
        if (t < best_bits) {
758
            best_bits = t;
759
            best_sel = i;
760
        }
761
    }
762
763
    *res = best_sel;
764
    return best_bits;
765
}
766
767
10418
static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero)
768
{
769
10418
    int ch, band, ret = USED_26ABITS | USED_1ABITS;
770
    uint32_t huff_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS][7];
771
    uint32_t clc_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS];
772
10418
    uint32_t bits_counter = 0;
773
774
10418
    c->consumed_bits = 132 + 333 * c->fullband_channels;
775
10418
    c->consumed_bits += c->consumed_adpcm_bits;
776
10418
    if (c->lfe_channel)
777
        c->consumed_bits += 72;
778
779
    /* attempt to guess the bit distribution based on the prevoius frame */
780
31254
    for (ch = 0; ch < c->fullband_channels; ch++) {
781
687588
        for (band = 0; band < 32; band++) {
782
666752
            int snr_cb = c->peak_cb[ch][band] - c->band_masking_cb[band] - noise;
783
784
666752
            if (snr_cb >= 1312) {
785
58244
                c->abits[ch][band] = 26;
786
58244
                ret &= ~USED_1ABITS;
787
608508
            } else if (snr_cb >= 222) {
788
528984
                c->abits[ch][band] = 8 + mul32(snr_cb - 222, 69000000);
789
528984
                ret &= ~(USED_26ABITS | USED_1ABITS);
790
79524
            } else if (snr_cb >= 0) {
791
34916
                c->abits[ch][band] = 2 + mul32(snr_cb, 106000000);
792
34916
                ret &= ~(USED_26ABITS | USED_1ABITS);
793

44608
            } else if (forbid_zero || snr_cb >= -140) {
794
44608
                c->abits[ch][band] = 1;
795
44608
                ret &= ~USED_26ABITS;
796
            } else {
797
                c->abits[ch][band] = 0;
798
                ret &= ~(USED_26ABITS | USED_1ABITS);
799
            }
800
        }
801
20836
        c->consumed_bits += set_best_abits_code(c->abits[ch], 32,
802
                                                &c->bit_allocation_sel[ch]);
803
    }
804
805
    /* Recalc scale_factor each time to get bits consumption in case of Huffman coding.
806
       It is suboptimal solution */
807
    /* TODO: May be cache scaled values */
808
31254
    for (ch = 0; ch < c->fullband_channels; ch++) {
809
687588
        for (band = 0; band < 32; band++) {
810
666752
            if (c->prediction_mode[ch][band] == -1) {
811
666752
                c->scale_factor[ch][band] = calc_one_scale(c, c->peak_cb[ch][band],
812
                                                           c->abits[ch][band],
813
                                                           &c->quant[ch][band]);
814
            }
815
        }
816
    }
817
10418
    quantize_adpcm(c);
818
10418
    quantize_pcm(c);
819
820
10418
    memset(huff_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * 7 * sizeof(uint32_t));
821
10418
    memset(clc_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * sizeof(uint32_t));
822
31254
    for (ch = 0; ch < c->fullband_channels; ch++) {
823
687588
        for (band = 0; band < 32; band++) {
824

666752
            if (c->abits[ch][band] && c->abits[ch][band] <= DCA_CODE_BOOKS) {
825
102450
                accumulate_huff_bit_consumption(c->abits[ch][band],
826
102450
                                                c->quantized[ch][band],
827
102450
                                                huff_bit_count_accum[ch][c->abits[ch][band] - 1]);
828
102450
                clc_bit_count_accum[ch][c->abits[ch][band] - 1] += bit_consumption[c->abits[ch][band]];
829
            } else {
830
564302
                bits_counter += bit_consumption[c->abits[ch][band]];
831
            }
832
        }
833
    }
834
835
31254
    for (ch = 0; ch < c->fullband_channels; ch++) {
836
20836
        bits_counter += set_best_code(huff_bit_count_accum[ch],
837
20836
                                      clc_bit_count_accum[ch],
838
20836
                                      c->quant_index_sel[ch]);
839
    }
840
841
10418
    c->consumed_bits += bits_counter;
842
843
10418
    return ret;
844
}
845
846
1034
static void assign_bits(DCAEncContext *c)
847
{
848
    /* Find the bounds where the binary search should work */
849
    int low, high, down;
850
1034
    int used_abits = 0;
851
1034
    int forbid_zero = 1;
852
1034
restart:
853
1034
    init_quantization_noise(c, c->worst_quantization_noise, forbid_zero);
854
1034
    low = high = c->worst_quantization_noise;
855
1034
    if (c->consumed_bits > c->frame_bits) {
856
1118
        while (c->consumed_bits > c->frame_bits) {
857

580
            if (used_abits == USED_1ABITS && forbid_zero) {
858
                forbid_zero = 0;
859
                goto restart;
860
            }
861
580
            low = high;
862
580
            high += snr_fudge;
863
580
            used_abits = init_quantization_noise(c, high, forbid_zero);
864
        }
865
    } else {
866
1028
        while (c->consumed_bits <= c->frame_bits) {
867
532
            high = low;
868
532
            if (used_abits == USED_26ABITS)
869
                goto out; /* The requested bitrate is too high, pad with zeros */
870
532
            low -= snr_fudge;
871
532
            used_abits = init_quantization_noise(c, low, forbid_zero);
872
        }
873
    }
874
875
    /* Now do a binary search between low and high to see what fits */
876
8272
    for (down = snr_fudge >> 1; down; down >>= 1) {
877
7238
        init_quantization_noise(c, high - down, forbid_zero);
878
7238
        if (c->consumed_bits <= c->frame_bits)
879
3724
            high -= down;
880
    }
881
1034
    init_quantization_noise(c, high, forbid_zero);
882
1034
out:
883
1034
    c->worst_quantization_noise = high;
884
1034
    if (high > c->worst_noise_ever)
885
2
        c->worst_noise_ever = high;
886
1034
}
887
888
1034
static void shift_history(DCAEncContext *c, const int32_t *input)
889
{
890
    int k, ch;
891
892
530442
    for (k = 0; k < 512; k++)
893
1588224
        for (ch = 0; ch < c->channels; ch++) {
894
1058816
            const int chi = c->channel_order_tab[ch];
895
896
1058816
            c->history[ch][k] = input[k * c->channels + chi];
897
        }
898
1034
}
899
900
1034
static void fill_in_adpcm_bufer(DCAEncContext *c)
901
{
902
     int ch, band;
903
     int32_t step_size;
904
     /* We fill in ADPCM work buffer for subbands which hasn't been ADPCM coded
905
      * in current frame - we need this data if subband of next frame is
906
      * ADPCM
907
      */
908
3102
     for (ch = 0; ch < c->channels; ch++) {
909
68244
        for (band = 0; band < 32; band++) {
910
66176
            int32_t *samples = c->subband[ch][band] - DCA_ADPCM_COEFFS;
911
66176
            if (c->prediction_mode[ch][band] == -1) {
912
66176
                step_size = get_step_size(c, ch, band);
913
914
66176
                ff_dca_core_dequantize(c->adpcm_history[ch][band],
915
66176
                                       c->quantized[ch][band]+12, step_size,
916
66176
                                       ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4);
917
            } else {
918
                AV_COPY128U(c->adpcm_history[ch][band], c->adpcm_history[ch][band]+4);
919
            }
920
            /* Copy dequantized values for LPC analysis.
921
             * It reduces artifacts in case of extreme quantization,
922
             * example: in current frame abits is 1 and has no prediction flag,
923
             * but end of this frame is sine like signal. In this case, if LPC analysis uses
924
             * original values, likely LPC analysis returns good prediction gain, and sets prediction flag.
925
             * But there are no proper value in decoder history, so likely result will be no good.
926
             * Bitstream has "Predictor history flag switch", but this flag disables history for all subbands
927
             */
928
66176
            samples[0] = c->adpcm_history[ch][band][0] * (1 << 7);
929
66176
            samples[1] = c->adpcm_history[ch][band][1] * (1 << 7);
930
66176
            samples[2] = c->adpcm_history[ch][band][2] * (1 << 7);
931
66176
            samples[3] = c->adpcm_history[ch][band][3] * (1 << 7);
932
        }
933
     }
934
1034
}
935
936
1034
static void calc_lfe_scales(DCAEncContext *c)
937
{
938
1034
    if (c->lfe_channel)
939
        c->lfe_scale_factor = calc_one_scale(c, c->lfe_peak_cb, 11, &c->lfe_quant);
940
1034
}
941
942
1034
static void put_frame_header(DCAEncContext *c)
943
{
944
    /* SYNC */
945
1034
    put_bits(&c->pb, 16, 0x7ffe);
946
1034
    put_bits(&c->pb, 16, 0x8001);
947
948
    /* Frame type: normal */
949
1034
    put_bits(&c->pb, 1, 1);
950
951
    /* Deficit sample count: none */
952
1034
    put_bits(&c->pb, 5, 31);
953
954
    /* CRC is not present */
955
1034
    put_bits(&c->pb, 1, 0);
956
957
    /* Number of PCM sample blocks */
958
1034
    put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1);
959
960
    /* Primary frame byte size */
961
1034
    put_bits(&c->pb, 14, c->frame_size - 1);
962
963
    /* Audio channel arrangement */
964
1034
    put_bits(&c->pb, 6, c->channel_config);
965
966
    /* Core audio sampling frequency */
967
1034
    put_bits(&c->pb, 4, bitstream_sfreq[c->samplerate_index]);
968
969
    /* Transmission bit rate */
970
1034
    put_bits(&c->pb, 5, c->bitrate_index);
971
972
    /* Embedded down mix: disabled */
973
1034
    put_bits(&c->pb, 1, 0);
974
975
    /* Embedded dynamic range flag: not present */
976
1034
    put_bits(&c->pb, 1, 0);
977
978
    /* Embedded time stamp flag: not present */
979
1034
    put_bits(&c->pb, 1, 0);
980
981
    /* Auxiliary data flag: not present */
982
1034
    put_bits(&c->pb, 1, 0);
983
984
    /* HDCD source: no */
985
1034
    put_bits(&c->pb, 1, 0);
986
987
    /* Extension audio ID: N/A */
988
1034
    put_bits(&c->pb, 3, 0);
989
990
    /* Extended audio data: not present */
991
1034
    put_bits(&c->pb, 1, 0);
992
993
    /* Audio sync word insertion flag: after each sub-frame */
994
1034
    put_bits(&c->pb, 1, 0);
995
996
    /* Low frequency effects flag: not present or 64x subsampling */
997
1034
    put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0);
998
999
    /* Predictor history switch flag: on */
1000
1034
    put_bits(&c->pb, 1, 1);
1001
1002
    /* No CRC */
1003
    /* Multirate interpolator switch: non-perfect reconstruction */
1004
1034
    put_bits(&c->pb, 1, 0);
1005
1006
    /* Encoder software revision: 7 */
1007
1034
    put_bits(&c->pb, 4, 7);
1008
1009
    /* Copy history: 0 */
1010
1034
    put_bits(&c->pb, 2, 0);
1011
1012
    /* Source PCM resolution: 16 bits, not DTS ES */
1013
1034
    put_bits(&c->pb, 3, 0);
1014
1015
    /* Front sum/difference coding: no */
1016
1034
    put_bits(&c->pb, 1, 0);
1017
1018
    /* Surrounds sum/difference coding: no */
1019
1034
    put_bits(&c->pb, 1, 0);
1020
1021
    /* Dialog normalization: 0 dB */
1022
1034
    put_bits(&c->pb, 4, 0);
1023
1034
}
1024
1025
1034
static void put_primary_audio_header(DCAEncContext *c)
1026
{
1027
    int ch, i;
1028
    /* Number of subframes */
1029
1034
    put_bits(&c->pb, 4, SUBFRAMES - 1);
1030
1031
    /* Number of primary audio channels */
1032
1034
    put_bits(&c->pb, 3, c->fullband_channels - 1);
1033
1034
    /* Subband activity count */
1035
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1036
2068
        put_bits(&c->pb, 5, DCAENC_SUBBANDS - 2);
1037
1038
    /* High frequency VQ start subband */
1039
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1040
2068
        put_bits(&c->pb, 5, DCAENC_SUBBANDS - 1);
1041
1042
    /* Joint intensity coding index: 0, 0 */
1043
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1044
2068
        put_bits(&c->pb, 3, 0);
1045
1046
    /* Transient mode codebook: A4, A4 (arbitrary) */
1047
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1048
2068
        put_bits(&c->pb, 2, 0);
1049
1050
    /* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */
1051
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1052
2068
        put_bits(&c->pb, 3, 6);
1053
1054
    /* Bit allocation quantizer select: linear 5-bit */
1055
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1056
2068
        put_bits(&c->pb, 3, c->bit_allocation_sel[ch]);
1057
1058
    /* Quantization index codebook select */
1059
11374
    for (i = 0; i < DCA_CODE_BOOKS; i++)
1060
31020
        for (ch = 0; ch < c->fullband_channels; ch++)
1061
20680
            put_bits(&c->pb, ff_dca_quant_index_sel_nbits[i], c->quant_index_sel[ch][i]);
1062
1063
    /* Scale factor adjustment index: transmitted in case of Huffman coding */
1064
11374
    for (i = 0; i < DCA_CODE_BOOKS; i++)
1065
31020
        for (ch = 0; ch < c->fullband_channels; ch++)
1066
20680
            if (c->quant_index_sel[ch][i] < ff_dca_quant_index_group_size[i])
1067
5828
                put_bits(&c->pb, 2, 0);
1068
1069
    /* Audio header CRC check word: not transmitted */
1070
1034
}
1071
1072
132352
static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch)
1073
{
1074
    int i, j, sum, bits, sel;
1075
132352
    if (c->abits[ch][band] <= DCA_CODE_BOOKS) {
1076
20216
        av_assert0(c->abits[ch][band] > 0);
1077
20216
        sel = c->quant_index_sel[ch][c->abits[ch][band] - 1];
1078
        // Huffman codes
1079
20216
        if (sel < ff_dca_quant_index_group_size[c->abits[ch][band] - 1]) {
1080
16068
            ff_dca_vlc_enc_quant(&c->pb, &c->quantized[ch][band][ss * 8], 8,
1081
16068
                                 sel, c->abits[ch][band] - 1);
1082
16068
            return;
1083
        }
1084
1085
        // Block codes
1086
4148
        if (c->abits[ch][band] <= 7) {
1087
5724
            for (i = 0; i < 8; i += 4) {
1088
3816
                sum = 0;
1089
19080
                for (j = 3; j >= 0; j--) {
1090
15264
                    sum *= ff_dca_quant_levels[c->abits[ch][band]];
1091
15264
                    sum += c->quantized[ch][band][ss * 8 + i + j];
1092
15264
                    sum += (ff_dca_quant_levels[c->abits[ch][band]] - 1) / 2;
1093
                }
1094
3816
                put_bits(&c->pb, bit_consumption[c->abits[ch][band]] / 4, sum);
1095
            }
1096
1908
            return;
1097
        }
1098
    }
1099
1100
1029384
    for (i = 0; i < 8; i++) {
1101
915008
        bits = bit_consumption[c->abits[ch][band]] / 16;
1102
915008
        put_sbits(&c->pb, bits, c->quantized[ch][band][ss * 8 + i]);
1103
    }
1104
}
1105
1106
1034
static void put_subframe(DCAEncContext *c, int subframe)
1107
{
1108
    int i, band, ss, ch;
1109
1110
    /* Subsubframes count */
1111
1034
    put_bits(&c->pb, 2, SUBSUBFRAMES -1);
1112
1113
    /* Partial subsubframe sample count: dummy */
1114
1034
    put_bits(&c->pb, 3, 0);
1115
1116
    /* Prediction mode: no ADPCM, in each channel and subband */
1117
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1118
68244
        for (band = 0; band < DCAENC_SUBBANDS; band++)
1119
66176
            put_bits(&c->pb, 1, !(c->prediction_mode[ch][band] == -1));
1120
1121
    /* Prediction VQ address */
1122
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1123
68244
        for (band = 0; band < DCAENC_SUBBANDS; band++)
1124
66176
            if (c->prediction_mode[ch][band] >= 0)
1125
                put_bits(&c->pb, 12, c->prediction_mode[ch][band]);
1126
1127
    /* Bit allocation index */
1128
3102
    for (ch = 0; ch < c->fullband_channels; ch++) {
1129
2068
        if (c->bit_allocation_sel[ch] == 6) {
1130
68244
            for (band = 0; band < DCAENC_SUBBANDS; band++) {
1131
66176
                put_bits(&c->pb, 5, c->abits[ch][band]);
1132
            }
1133
        } else {
1134
            ff_dca_vlc_enc_alloc(&c->pb, c->abits[ch], DCAENC_SUBBANDS,
1135
                                 c->bit_allocation_sel[ch]);
1136
        }
1137
    }
1138
1139
    if (SUBSUBFRAMES > 1) {
1140
        /* Transition mode: none for each channel and subband */
1141
3102
        for (ch = 0; ch < c->fullband_channels; ch++)
1142
68244
            for (band = 0; band < DCAENC_SUBBANDS; band++)
1143
66176
                if (c->abits[ch][band])
1144
66176
                    put_bits(&c->pb, 1, 0); /* codebook A4 */
1145
    }
1146
1147
    /* Scale factors */
1148
3102
    for (ch = 0; ch < c->fullband_channels; ch++)
1149
68244
        for (band = 0; band < DCAENC_SUBBANDS; band++)
1150
66176
            if (c->abits[ch][band])
1151
66176
                put_bits(&c->pb, 7, c->scale_factor[ch][band]);
1152
1153
    /* Joint subband scale factor codebook select: not transmitted */
1154
    /* Scale factors for joint subband coding: not transmitted */
1155
    /* Stereo down-mix coefficients: not transmitted */
1156
    /* Dynamic range coefficient: not transmitted */
1157
    /* Stde information CRC check word: not transmitted */
1158
    /* VQ encoded high frequency subbands: not transmitted */
1159
1160
    /* LFE data: 8 samples and scalefactor */
1161
1034
    if (c->lfe_channel) {
1162
        for (i = 0; i < DCA_LFE_SAMPLES; i++)
1163
            put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff);
1164
        put_bits(&c->pb, 8, c->lfe_scale_factor);
1165
    }
1166
1167
    /* Audio data (subsubframes) */
1168
3102
    for (ss = 0; ss < SUBSUBFRAMES ; ss++)
1169
6204
        for (ch = 0; ch < c->fullband_channels; ch++)
1170
136488
            for (band = 0; band < DCAENC_SUBBANDS; band++)
1171
132352
                if (c->abits[ch][band])
1172
132352
                    put_subframe_samples(c, ss, band, ch);
1173
1174
    /* DSYNC */
1175
1034
    put_bits(&c->pb, 16, 0xffff);
1176
1034
}
1177
1178
1034
static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
1179
                        const AVFrame *frame, int *got_packet_ptr)
1180
{
1181
1034
    DCAEncContext *c = avctx->priv_data;
1182
    const int32_t *samples;
1183
    int ret, i;
1184
1185
1034
    if ((ret = ff_alloc_packet2(avctx, avpkt, c->frame_size, 0)) < 0)
1186
        return ret;
1187
1188
1034
    samples = (const int32_t *)frame->data[0];
1189
1190
1034
    subband_transform(c, samples);
1191
1034
    if (c->lfe_channel)
1192
        lfe_downsample(c, samples);
1193
1194
1034
    calc_masking(c, samples);
1195
1034
    if (c->options.adpcm_mode)
1196
        adpcm_analysis(c);
1197
1034
    find_peaks(c);
1198
1034
    assign_bits(c);
1199
1034
    calc_lfe_scales(c);
1200
1034
    shift_history(c, samples);
1201
1202
1034
    init_put_bits(&c->pb, avpkt->data, avpkt->size);
1203
1034
    fill_in_adpcm_bufer(c);
1204
1034
    put_frame_header(c);
1205
1034
    put_primary_audio_header(c);
1206
2068
    for (i = 0; i < SUBFRAMES; i++)
1207
1034
        put_subframe(c, i);
1208
1209
1210
18532
    for (i = put_bits_count(&c->pb); i < 8*c->frame_size; i++)
1211
17498
        put_bits(&c->pb, 1, 0);
1212
1213
1034
    flush_put_bits(&c->pb);
1214
1215
1034
    avpkt->pts      = frame->pts;
1216
1034
    avpkt->size     = put_bytes_output(&c->pb);
1217
1034
    avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples);
1218
1034
    *got_packet_ptr = 1;
1219
1034
    return 0;
1220
}
1221
1222
#define DCAENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM
1223
1224
static const AVOption options[] = {
1225
    { "dca_adpcm", "Use ADPCM encoding", offsetof(DCAEncContext, options.adpcm_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, DCAENC_FLAGS },
1226
    { NULL },
1227
};
1228
1229
static const AVClass dcaenc_class = {
1230
    .class_name = "DCA (DTS Coherent Acoustics)",
1231
    .item_name = av_default_item_name,
1232
    .option = options,
1233
    .version = LIBAVUTIL_VERSION_INT,
1234
};
1235
1236
static const AVCodecDefault defaults[] = {
1237
    { "b",          "1411200" },
1238
    { NULL },
1239
};
1240
1241
AVCodec ff_dca_encoder = {
1242
    .name                  = "dca",
1243
    .long_name             = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"),
1244
    .type                  = AVMEDIA_TYPE_AUDIO,
1245
    .id                    = AV_CODEC_ID_DTS,
1246
    .priv_data_size        = sizeof(DCAEncContext),
1247
    .init                  = encode_init,
1248
    .close                 = encode_close,
1249
    .encode2               = encode_frame,
1250
    .capabilities          = AV_CODEC_CAP_EXPERIMENTAL,
1251
    .caps_internal         = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1252
    .sample_fmts           = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32,
1253
                                                            AV_SAMPLE_FMT_NONE },
1254
    .supported_samplerates = sample_rates,
1255
    .channel_layouts       = (const uint64_t[]) { AV_CH_LAYOUT_MONO,
1256
                                                  AV_CH_LAYOUT_STEREO,
1257
                                                  AV_CH_LAYOUT_2_2,
1258
                                                  AV_CH_LAYOUT_5POINT0,
1259
                                                  AV_CH_LAYOUT_5POINT1,
1260
                                                  0 },
1261
    .defaults              = defaults,
1262
    .priv_class            = &dcaenc_class,
1263
};