1 |
|
|
/* |
2 |
|
|
* DCA encoder |
3 |
|
|
* Copyright (C) 2008-2012 Alexander E. Patrakov |
4 |
|
|
* 2010 Benjamin Larsson |
5 |
|
|
* 2011 Xiang Wang |
6 |
|
|
* |
7 |
|
|
* This file is part of FFmpeg. |
8 |
|
|
* |
9 |
|
|
* FFmpeg is free software; you can redistribute it and/or |
10 |
|
|
* modify it under the terms of the GNU Lesser General Public |
11 |
|
|
* License as published by the Free Software Foundation; either |
12 |
|
|
* version 2.1 of the License, or (at your option) any later version. |
13 |
|
|
* |
14 |
|
|
* FFmpeg is distributed in the hope that it will be useful, |
15 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
16 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
17 |
|
|
* Lesser General Public License for more details. |
18 |
|
|
* |
19 |
|
|
* You should have received a copy of the GNU Lesser General Public |
20 |
|
|
* License along with FFmpeg; if not, write to the Free Software |
21 |
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
22 |
|
|
*/ |
23 |
|
|
|
24 |
|
|
#define FFT_FLOAT 0 |
25 |
|
|
#define FFT_FIXED_32 1 |
26 |
|
|
|
27 |
|
|
#include "libavutil/avassert.h" |
28 |
|
|
#include "libavutil/channel_layout.h" |
29 |
|
|
#include "libavutil/common.h" |
30 |
|
|
#include "libavutil/ffmath.h" |
31 |
|
|
#include "libavutil/mem_internal.h" |
32 |
|
|
#include "libavutil/opt.h" |
33 |
|
|
#include "avcodec.h" |
34 |
|
|
#include "dca.h" |
35 |
|
|
#include "dcaadpcm.h" |
36 |
|
|
#include "dcamath.h" |
37 |
|
|
#include "dca_core.h" |
38 |
|
|
#include "dcadata.h" |
39 |
|
|
#include "dcaenc.h" |
40 |
|
|
#include "fft.h" |
41 |
|
|
#include "internal.h" |
42 |
|
|
#include "mathops.h" |
43 |
|
|
#include "put_bits.h" |
44 |
|
|
|
45 |
|
|
#define MAX_CHANNELS 6 |
46 |
|
|
#define DCA_MAX_FRAME_SIZE 16384 |
47 |
|
|
#define DCA_HEADER_SIZE 13 |
48 |
|
|
#define DCA_LFE_SAMPLES 8 |
49 |
|
|
|
50 |
|
|
#define DCAENC_SUBBANDS 32 |
51 |
|
|
#define SUBFRAMES 1 |
52 |
|
|
#define SUBSUBFRAMES 2 |
53 |
|
|
#define SUBBAND_SAMPLES (SUBFRAMES * SUBSUBFRAMES * 8) |
54 |
|
|
#define AUBANDS 25 |
55 |
|
|
|
56 |
|
|
#define COS_T(x) (c->cos_table[(x) & 2047]) |
57 |
|
|
|
58 |
|
|
typedef struct CompressionOptions { |
59 |
|
|
int adpcm_mode; |
60 |
|
|
} CompressionOptions; |
61 |
|
|
|
62 |
|
|
typedef struct DCAEncContext { |
63 |
|
|
AVClass *class; |
64 |
|
|
PutBitContext pb; |
65 |
|
|
DCAADPCMEncContext adpcm_ctx; |
66 |
|
|
FFTContext mdct; |
67 |
|
|
CompressionOptions options; |
68 |
|
|
int frame_size; |
69 |
|
|
int frame_bits; |
70 |
|
|
int fullband_channels; |
71 |
|
|
int channels; |
72 |
|
|
int lfe_channel; |
73 |
|
|
int samplerate_index; |
74 |
|
|
int bitrate_index; |
75 |
|
|
int channel_config; |
76 |
|
|
const int32_t *band_interpolation; |
77 |
|
|
const int32_t *band_spectrum; |
78 |
|
|
int lfe_scale_factor; |
79 |
|
|
softfloat lfe_quant; |
80 |
|
|
int32_t lfe_peak_cb; |
81 |
|
|
const int8_t *channel_order_tab; ///< channel reordering table, lfe and non lfe |
82 |
|
|
|
83 |
|
|
int32_t prediction_mode[MAX_CHANNELS][DCAENC_SUBBANDS]; |
84 |
|
|
int32_t adpcm_history[MAX_CHANNELS][DCAENC_SUBBANDS][DCA_ADPCM_COEFFS * 2]; |
85 |
|
|
int32_t history[MAX_CHANNELS][512]; /* This is a circular buffer */ |
86 |
|
|
int32_t *subband[MAX_CHANNELS][DCAENC_SUBBANDS]; |
87 |
|
|
int32_t quantized[MAX_CHANNELS][DCAENC_SUBBANDS][SUBBAND_SAMPLES]; |
88 |
|
|
int32_t peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; |
89 |
|
|
int32_t diff_peak_cb[MAX_CHANNELS][DCAENC_SUBBANDS]; ///< expected peak of residual signal |
90 |
|
|
int32_t downsampled_lfe[DCA_LFE_SAMPLES]; |
91 |
|
|
int32_t masking_curve_cb[SUBSUBFRAMES][256]; |
92 |
|
|
int32_t bit_allocation_sel[MAX_CHANNELS]; |
93 |
|
|
int abits[MAX_CHANNELS][DCAENC_SUBBANDS]; |
94 |
|
|
int scale_factor[MAX_CHANNELS][DCAENC_SUBBANDS]; |
95 |
|
|
softfloat quant[MAX_CHANNELS][DCAENC_SUBBANDS]; |
96 |
|
|
int32_t quant_index_sel[MAX_CHANNELS][DCA_CODE_BOOKS]; |
97 |
|
|
int32_t eff_masking_curve_cb[256]; |
98 |
|
|
int32_t band_masking_cb[32]; |
99 |
|
|
int32_t worst_quantization_noise; |
100 |
|
|
int32_t worst_noise_ever; |
101 |
|
|
int consumed_bits; |
102 |
|
|
int consumed_adpcm_bits; ///< Number of bits to transmit ADPCM related info |
103 |
|
|
|
104 |
|
|
int32_t cos_table[2048]; |
105 |
|
|
int32_t band_interpolation_tab[2][512]; |
106 |
|
|
int32_t band_spectrum_tab[2][8]; |
107 |
|
|
int32_t auf[9][AUBANDS][256]; |
108 |
|
|
int32_t cb_to_add[256]; |
109 |
|
|
int32_t cb_to_level[2048]; |
110 |
|
|
int32_t lfe_fir_64i[512]; |
111 |
|
|
} DCAEncContext; |
112 |
|
|
|
113 |
|
|
/* Transfer function of outer and middle ear, Hz -> dB */ |
114 |
|
115200 |
static double hom(double f) |
115 |
|
|
{ |
116 |
|
115200 |
double f1 = f / 1000; |
117 |
|
|
|
118 |
|
115200 |
return -3.64 * pow(f1, -0.8) |
119 |
|
115200 |
+ 6.8 * exp(-0.6 * (f1 - 3.4) * (f1 - 3.4)) |
120 |
|
115200 |
- 6.0 * exp(-0.15 * (f1 - 8.7) * (f1 - 8.7)) |
121 |
|
115200 |
- 0.0006 * (f1 * f1) * (f1 * f1); |
122 |
|
|
} |
123 |
|
|
|
124 |
|
115200 |
static double gammafilter(int i, double f) |
125 |
|
|
{ |
126 |
|
115200 |
double h = (f - fc[i]) / erb[i]; |
127 |
|
|
|
128 |
|
115200 |
h = 1 + h * h; |
129 |
|
115200 |
h = 1 / (h * h); |
130 |
|
115200 |
return 20 * log10(h); |
131 |
|
|
} |
132 |
|
|
|
133 |
|
2 |
static int subband_bufer_alloc(DCAEncContext *c) |
134 |
|
|
{ |
135 |
|
|
int ch, band; |
136 |
|
2 |
int32_t *bufer = av_calloc(MAX_CHANNELS * DCAENC_SUBBANDS * |
137 |
|
|
(SUBBAND_SAMPLES + DCA_ADPCM_COEFFS), |
138 |
|
|
sizeof(int32_t)); |
139 |
✗✓ |
2 |
if (!bufer) |
140 |
|
|
return AVERROR(ENOMEM); |
141 |
|
|
|
142 |
|
|
/* we need a place for DCA_ADPCM_COEFF samples from previous frame |
143 |
|
|
* to calc prediction coefficients for each subband */ |
144 |
✓✓ |
14 |
for (ch = 0; ch < MAX_CHANNELS; ch++) { |
145 |
✓✓ |
396 |
for (band = 0; band < DCAENC_SUBBANDS; band++) { |
146 |
|
384 |
c->subband[ch][band] = bufer + |
147 |
|
384 |
ch * DCAENC_SUBBANDS * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + |
148 |
|
384 |
band * (SUBBAND_SAMPLES + DCA_ADPCM_COEFFS) + DCA_ADPCM_COEFFS; |
149 |
|
|
} |
150 |
|
|
} |
151 |
|
2 |
return 0; |
152 |
|
|
} |
153 |
|
|
|
154 |
|
2 |
static void subband_bufer_free(DCAEncContext *c) |
155 |
|
|
{ |
156 |
✓✗ |
2 |
if (c->subband[0][0]) { |
157 |
|
2 |
int32_t *bufer = c->subband[0][0] - DCA_ADPCM_COEFFS; |
158 |
|
2 |
av_free(bufer); |
159 |
|
2 |
c->subband[0][0] = NULL; |
160 |
|
|
} |
161 |
|
2 |
} |
162 |
|
|
|
163 |
|
2 |
static int encode_init(AVCodecContext *avctx) |
164 |
|
|
{ |
165 |
|
2 |
DCAEncContext *c = avctx->priv_data; |
166 |
|
2 |
uint64_t layout = avctx->channel_layout; |
167 |
|
|
int i, j, k, min_frame_bits; |
168 |
|
|
int ret; |
169 |
|
|
|
170 |
✗✓ |
2 |
if ((ret = subband_bufer_alloc(c)) < 0) |
171 |
|
|
return ret; |
172 |
|
|
|
173 |
|
2 |
c->fullband_channels = c->channels = avctx->channels; |
174 |
✓✗✗✓
|
2 |
c->lfe_channel = (avctx->channels == 3 || avctx->channels == 6); |
175 |
|
2 |
c->band_interpolation = c->band_interpolation_tab[1]; |
176 |
|
2 |
c->band_spectrum = c->band_spectrum_tab[1]; |
177 |
|
2 |
c->worst_quantization_noise = -2047; |
178 |
|
2 |
c->worst_noise_ever = -2047; |
179 |
|
2 |
c->consumed_adpcm_bits = 0; |
180 |
|
|
|
181 |
✗✓ |
2 |
if (ff_dcaadpcm_init(&c->adpcm_ctx)) |
182 |
|
|
return AVERROR(ENOMEM); |
183 |
|
|
|
184 |
✗✓ |
2 |
if (!layout) { |
185 |
|
|
av_log(avctx, AV_LOG_WARNING, "No channel layout specified. The " |
186 |
|
|
"encoder will guess the layout, but it " |
187 |
|
|
"might be incorrect.\n"); |
188 |
|
|
layout = av_get_default_channel_layout(avctx->channels); |
189 |
|
|
} |
190 |
✗✓✗✗ ✗✗ |
2 |
switch (layout) { |
191 |
|
|
case AV_CH_LAYOUT_MONO: c->channel_config = 0; break; |
192 |
|
2 |
case AV_CH_LAYOUT_STEREO: c->channel_config = 2; break; |
193 |
|
|
case AV_CH_LAYOUT_2_2: c->channel_config = 8; break; |
194 |
|
|
case AV_CH_LAYOUT_5POINT0: c->channel_config = 9; break; |
195 |
|
|
case AV_CH_LAYOUT_5POINT1: c->channel_config = 9; break; |
196 |
|
|
default: |
197 |
|
|
av_log(avctx, AV_LOG_ERROR, "Unsupported channel layout!\n"); |
198 |
|
|
return AVERROR_PATCHWELCOME; |
199 |
|
|
} |
200 |
|
|
|
201 |
✗✓ |
2 |
if (c->lfe_channel) { |
202 |
|
|
c->fullband_channels--; |
203 |
|
|
c->channel_order_tab = channel_reorder_lfe[c->channel_config]; |
204 |
|
|
} else { |
205 |
|
2 |
c->channel_order_tab = channel_reorder_nolfe[c->channel_config]; |
206 |
|
|
} |
207 |
|
|
|
208 |
✓✓ |
14 |
for (i = 0; i < MAX_CHANNELS; i++) { |
209 |
✓✓ |
132 |
for (j = 0; j < DCA_CODE_BOOKS; j++) { |
210 |
|
120 |
c->quant_index_sel[i][j] = ff_dca_quant_index_group_size[j]; |
211 |
|
|
} |
212 |
|
|
/* 6 - no Huffman */ |
213 |
|
12 |
c->bit_allocation_sel[i] = 6; |
214 |
|
|
|
215 |
✓✓ |
396 |
for (j = 0; j < DCAENC_SUBBANDS; j++) { |
216 |
|
|
/* -1 - no ADPCM */ |
217 |
|
384 |
c->prediction_mode[i][j] = -1; |
218 |
|
384 |
memset(c->adpcm_history[i][j], 0, sizeof(int32_t)*DCA_ADPCM_COEFFS); |
219 |
|
|
} |
220 |
|
|
} |
221 |
|
|
|
222 |
✓✗ |
12 |
for (i = 0; i < 9; i++) { |
223 |
✓✓ |
12 |
if (sample_rates[i] == avctx->sample_rate) |
224 |
|
2 |
break; |
225 |
|
|
} |
226 |
✗✓ |
2 |
if (i == 9) |
227 |
|
|
return AVERROR(EINVAL); |
228 |
|
2 |
c->samplerate_index = i; |
229 |
|
|
|
230 |
✓✗✗✓
|
2 |
if (avctx->bit_rate < 32000 || avctx->bit_rate > 3840000) { |
231 |
|
|
av_log(avctx, AV_LOG_ERROR, "Bit rate %"PRId64" not supported.", avctx->bit_rate); |
232 |
|
|
return AVERROR(EINVAL); |
233 |
|
|
} |
234 |
✓✓ |
46 |
for (i = 0; ff_dca_bit_rates[i] < avctx->bit_rate; i++) |
235 |
|
|
; |
236 |
|
2 |
c->bitrate_index = i; |
237 |
|
2 |
c->frame_bits = FFALIGN((avctx->bit_rate * 512 + avctx->sample_rate - 1) / avctx->sample_rate, 32); |
238 |
|
2 |
min_frame_bits = 132 + (493 + 28 * 32) * c->fullband_channels + c->lfe_channel * 72; |
239 |
✓✗✗✓
|
2 |
if (c->frame_bits < min_frame_bits || c->frame_bits > (DCA_MAX_FRAME_SIZE << 3)) |
240 |
|
|
return AVERROR(EINVAL); |
241 |
|
|
|
242 |
|
2 |
c->frame_size = (c->frame_bits + 7) / 8; |
243 |
|
|
|
244 |
|
2 |
avctx->frame_size = 32 * SUBBAND_SAMPLES; |
245 |
|
|
|
246 |
✗✓ |
2 |
if ((ret = ff_mdct_init(&c->mdct, 9, 0, 1.0)) < 0) |
247 |
|
|
return ret; |
248 |
|
|
|
249 |
|
|
/* Init all tables */ |
250 |
|
2 |
c->cos_table[0] = 0x7fffffff; |
251 |
|
2 |
c->cos_table[512] = 0; |
252 |
|
2 |
c->cos_table[1024] = -c->cos_table[0]; |
253 |
✓✓ |
1024 |
for (i = 1; i < 512; i++) { |
254 |
|
1022 |
c->cos_table[i] = (int32_t)(0x7fffffff * cos(M_PI * i / 1024)); |
255 |
|
1022 |
c->cos_table[1024-i] = -c->cos_table[i]; |
256 |
|
1022 |
c->cos_table[1024+i] = -c->cos_table[i]; |
257 |
|
1022 |
c->cos_table[2048-i] = +c->cos_table[i]; |
258 |
|
|
} |
259 |
|
|
|
260 |
✓✓ |
4098 |
for (i = 0; i < 2048; i++) |
261 |
|
4096 |
c->cb_to_level[i] = (int32_t)(0x7fffffff * ff_exp10(-0.005 * i)); |
262 |
|
|
|
263 |
✓✓ |
66 |
for (k = 0; k < 32; k++) { |
264 |
✓✓ |
576 |
for (j = 0; j < 8; j++) { |
265 |
|
512 |
c->lfe_fir_64i[64 * j + k] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]); |
266 |
|
512 |
c->lfe_fir_64i[64 * (7-j) + (63 - k)] = (int32_t)(0xffffff800000ULL * ff_dca_lfe_fir_64[8 * k + j]); |
267 |
|
|
} |
268 |
|
|
} |
269 |
|
|
|
270 |
✓✓ |
1026 |
for (i = 0; i < 512; i++) { |
271 |
|
1024 |
c->band_interpolation_tab[0][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_perfect[i]); |
272 |
|
1024 |
c->band_interpolation_tab[1][i] = (int32_t)(0x1000000000ULL * ff_dca_fir_32bands_nonperfect[i]); |
273 |
|
|
} |
274 |
|
|
|
275 |
✓✓ |
20 |
for (i = 0; i < 9; i++) { |
276 |
✓✓ |
468 |
for (j = 0; j < AUBANDS; j++) { |
277 |
✓✓ |
115650 |
for (k = 0; k < 256; k++) { |
278 |
|
115200 |
double freq = sample_rates[i] * (k + 0.5) / 512; |
279 |
|
|
|
280 |
|
115200 |
c->auf[i][j][k] = (int32_t)(10 * (hom(freq) + gammafilter(j, freq))); |
281 |
|
|
} |
282 |
|
|
} |
283 |
|
|
} |
284 |
|
|
|
285 |
✓✓ |
514 |
for (i = 0; i < 256; i++) { |
286 |
|
512 |
double add = 1 + ff_exp10(-0.01 * i); |
287 |
|
512 |
c->cb_to_add[i] = (int32_t)(100 * log10(add)); |
288 |
|
|
} |
289 |
✓✓ |
18 |
for (j = 0; j < 8; j++) { |
290 |
|
16 |
double accum = 0; |
291 |
✓✓ |
8208 |
for (i = 0; i < 512; i++) { |
292 |
✓✓ |
8192 |
double reconst = ff_dca_fir_32bands_perfect[i] * ((i & 64) ? (-1) : 1); |
293 |
|
8192 |
accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512); |
294 |
|
|
} |
295 |
|
16 |
c->band_spectrum_tab[0][j] = (int32_t)(200 * log10(accum)); |
296 |
|
|
} |
297 |
✓✓ |
18 |
for (j = 0; j < 8; j++) { |
298 |
|
16 |
double accum = 0; |
299 |
✓✓ |
8208 |
for (i = 0; i < 512; i++) { |
300 |
✓✓ |
8192 |
double reconst = ff_dca_fir_32bands_nonperfect[i] * ((i & 64) ? (-1) : 1); |
301 |
|
8192 |
accum += reconst * cos(2 * M_PI * (i + 0.5 - 256) * (j + 0.5) / 512); |
302 |
|
|
} |
303 |
|
16 |
c->band_spectrum_tab[1][j] = (int32_t)(200 * log10(accum)); |
304 |
|
|
} |
305 |
|
|
|
306 |
|
2 |
return 0; |
307 |
|
|
} |
308 |
|
|
|
309 |
|
2 |
static av_cold int encode_close(AVCodecContext *avctx) |
310 |
|
|
{ |
311 |
|
2 |
DCAEncContext *c = avctx->priv_data; |
312 |
|
2 |
ff_mdct_end(&c->mdct); |
313 |
|
2 |
subband_bufer_free(c); |
314 |
|
2 |
ff_dcaadpcm_free(&c->adpcm_ctx); |
315 |
|
|
|
316 |
|
2 |
return 0; |
317 |
|
|
} |
318 |
|
|
|
319 |
|
1034 |
static void subband_transform(DCAEncContext *c, const int32_t *input) |
320 |
|
|
{ |
321 |
|
|
int ch, subs, i, k, j; |
322 |
|
|
|
323 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) { |
324 |
|
|
/* History is copied because it is also needed for PSY */ |
325 |
|
|
int32_t hist[512]; |
326 |
|
2068 |
int hist_start = 0; |
327 |
|
2068 |
const int chi = c->channel_order_tab[ch]; |
328 |
|
|
|
329 |
|
2068 |
memcpy(hist, &c->history[ch][0], 512 * sizeof(int32_t)); |
330 |
|
|
|
331 |
✓✓ |
35156 |
for (subs = 0; subs < SUBBAND_SAMPLES; subs++) { |
332 |
|
|
int32_t accum[64]; |
333 |
|
|
int32_t resp; |
334 |
|
|
int band; |
335 |
|
|
|
336 |
|
|
/* Calculate the convolutions at once */ |
337 |
|
33088 |
memset(accum, 0, 64 * sizeof(int32_t)); |
338 |
|
|
|
339 |
✓✓ |
9033024 |
for (k = 0, i = hist_start, j = 0; |
340 |
|
8999936 |
i < 512; k = (k + 1) & 63, i++, j++) |
341 |
|
8999936 |
accum[k] += mul32(hist[i], c->band_interpolation[j]); |
342 |
✓✓ |
7974208 |
for (i = 0; i < hist_start; k = (k + 1) & 63, i++, j++) |
343 |
|
7941120 |
accum[k] += mul32(hist[i], c->band_interpolation[j]); |
344 |
|
|
|
345 |
✓✓ |
562496 |
for (k = 16; k < 32; k++) |
346 |
|
529408 |
accum[k] = accum[k] - accum[31 - k]; |
347 |
✓✓ |
562496 |
for (k = 32; k < 48; k++) |
348 |
|
529408 |
accum[k] = accum[k] + accum[95 - k]; |
349 |
|
|
|
350 |
✓✓ |
1091904 |
for (band = 0; band < 32; band++) { |
351 |
|
1058816 |
resp = 0; |
352 |
✓✓ |
34940928 |
for (i = 16; i < 48; i++) { |
353 |
|
33882112 |
int s = (2 * band + 1) * (2 * (i + 16) + 1); |
354 |
|
33882112 |
resp += mul32(accum[i], COS_T(s << 3)) >> 3; |
355 |
|
|
} |
356 |
|
|
|
357 |
✓✓ |
1058816 |
c->subband[ch][band][subs] = ((band + 1) & 2) ? -resp : resp; |
358 |
|
|
} |
359 |
|
|
|
360 |
|
|
/* Copy in 32 new samples from input */ |
361 |
✓✓ |
1091904 |
for (i = 0; i < 32; i++) |
362 |
|
1058816 |
hist[i + hist_start] = input[(subs * 32 + i) * c->channels + chi]; |
363 |
|
|
|
364 |
|
33088 |
hist_start = (hist_start + 32) & 511; |
365 |
|
|
} |
366 |
|
|
} |
367 |
|
1034 |
} |
368 |
|
|
|
369 |
|
|
static void lfe_downsample(DCAEncContext *c, const int32_t *input) |
370 |
|
|
{ |
371 |
|
|
/* FIXME: make 128x LFE downsampling possible */ |
372 |
|
|
const int lfech = lfe_index[c->channel_config]; |
373 |
|
|
int i, j, lfes; |
374 |
|
|
int32_t hist[512]; |
375 |
|
|
int32_t accum; |
376 |
|
|
int hist_start = 0; |
377 |
|
|
|
378 |
|
|
memcpy(hist, &c->history[c->channels - 1][0], 512 * sizeof(int32_t)); |
379 |
|
|
|
380 |
|
|
for (lfes = 0; lfes < DCA_LFE_SAMPLES; lfes++) { |
381 |
|
|
/* Calculate the convolution */ |
382 |
|
|
accum = 0; |
383 |
|
|
|
384 |
|
|
for (i = hist_start, j = 0; i < 512; i++, j++) |
385 |
|
|
accum += mul32(hist[i], c->lfe_fir_64i[j]); |
386 |
|
|
for (i = 0; i < hist_start; i++, j++) |
387 |
|
|
accum += mul32(hist[i], c->lfe_fir_64i[j]); |
388 |
|
|
|
389 |
|
|
c->downsampled_lfe[lfes] = accum; |
390 |
|
|
|
391 |
|
|
/* Copy in 64 new samples from input */ |
392 |
|
|
for (i = 0; i < 64; i++) |
393 |
|
|
hist[i + hist_start] = input[(lfes * 64 + i) * c->channels + lfech]; |
394 |
|
|
|
395 |
|
|
hist_start = (hist_start + 64) & 511; |
396 |
|
|
} |
397 |
|
|
} |
398 |
|
|
|
399 |
|
1124992 |
static int32_t get_cb(DCAEncContext *c, int32_t in) |
400 |
|
|
{ |
401 |
|
1124992 |
int i, res = 0; |
402 |
|
1124992 |
in = FFABS(in); |
403 |
|
|
|
404 |
✓✓ |
13499904 |
for (i = 1024; i > 0; i >>= 1) { |
405 |
✓✓ |
12374912 |
if (c->cb_to_level[i + res] >= in) |
406 |
|
6580690 |
res += i; |
407 |
|
|
} |
408 |
|
1124992 |
return -res; |
409 |
|
|
} |
410 |
|
|
|
411 |
|
55058432 |
static int32_t add_cb(DCAEncContext *c, int32_t a, int32_t b) |
412 |
|
|
{ |
413 |
✓✓ |
55058432 |
if (a < b) |
414 |
|
13348074 |
FFSWAP(int32_t, a, b); |
415 |
|
|
|
416 |
✓✓ |
55058432 |
if (a - b >= 256) |
417 |
|
31966962 |
return a; |
418 |
|
23091470 |
return a + c->cb_to_add[a - b]; |
419 |
|
|
} |
420 |
|
|
|
421 |
|
4136 |
static void calc_power(DCAEncContext *c, |
422 |
|
|
const int32_t in[2 * 256], int32_t power[256]) |
423 |
|
|
{ |
424 |
|
|
int i; |
425 |
|
4136 |
LOCAL_ALIGNED_32(int32_t, data, [512]); |
426 |
|
4136 |
LOCAL_ALIGNED_32(int32_t, coeff, [256]); |
427 |
|
|
|
428 |
✓✓ |
2121768 |
for (i = 0; i < 512; i++) |
429 |
|
2117632 |
data[i] = norm__(mul32(in[i], 0x3fffffff - (COS_T(4 * i + 2) >> 1)), 4); |
430 |
|
|
|
431 |
|
4136 |
c->mdct.mdct_calc(&c->mdct, coeff, data); |
432 |
✓✓ |
1062952 |
for (i = 0; i < 256; i++) { |
433 |
|
1058816 |
const int32_t cb = get_cb(c, coeff[i]); |
434 |
|
1058816 |
power[i] = add_cb(c, cb, cb); |
435 |
|
|
} |
436 |
|
4136 |
} |
437 |
|
|
|
438 |
|
4136 |
static void adjust_jnd(DCAEncContext *c, |
439 |
|
|
const int32_t in[512], int32_t out_cb[256]) |
440 |
|
|
{ |
441 |
|
|
int32_t power[256]; |
442 |
|
|
int32_t out_cb_unnorm[256]; |
443 |
|
|
int32_t denom; |
444 |
|
4136 |
const int32_t ca_cb = -1114; |
445 |
|
4136 |
const int32_t cs_cb = 928; |
446 |
|
4136 |
const int samplerate_index = c->samplerate_index; |
447 |
|
|
int i, j; |
448 |
|
|
|
449 |
|
4136 |
calc_power(c, in, power); |
450 |
|
|
|
451 |
✓✓ |
1062952 |
for (j = 0; j < 256; j++) |
452 |
|
1058816 |
out_cb_unnorm[j] = -2047; /* and can only grow */ |
453 |
|
|
|
454 |
✓✓ |
107536 |
for (i = 0; i < AUBANDS; i++) { |
455 |
|
103400 |
denom = ca_cb; /* and can only grow */ |
456 |
✓✓ |
26573800 |
for (j = 0; j < 256; j++) |
457 |
|
26470400 |
denom = add_cb(c, denom, power[j] + c->auf[samplerate_index][i][j]); |
458 |
✓✓ |
26573800 |
for (j = 0; j < 256; j++) |
459 |
|
26470400 |
out_cb_unnorm[j] = add_cb(c, out_cb_unnorm[j], |
460 |
|
26470400 |
-denom + c->auf[samplerate_index][i][j]); |
461 |
|
|
} |
462 |
|
|
|
463 |
✓✓ |
1062952 |
for (j = 0; j < 256; j++) |
464 |
|
1058816 |
out_cb[j] = add_cb(c, out_cb[j], -out_cb_unnorm[j] - ca_cb - cs_cb); |
465 |
|
4136 |
} |
466 |
|
|
|
467 |
|
|
typedef void (*walk_band_t)(DCAEncContext *c, int band1, int band2, int f, |
468 |
|
|
int32_t spectrum1, int32_t spectrum2, int channel, |
469 |
|
|
int32_t * arg); |
470 |
|
|
|
471 |
|
33088 |
static void walk_band_low(DCAEncContext *c, int band, int channel, |
472 |
|
|
walk_band_t walk, int32_t *arg) |
473 |
|
|
{ |
474 |
|
|
int f; |
475 |
|
|
|
476 |
✓✓ |
33088 |
if (band == 0) { |
477 |
✓✓ |
5170 |
for (f = 0; f < 4; f++) |
478 |
|
4136 |
walk(c, 0, 0, f, 0, -2047, channel, arg); |
479 |
|
|
} else { |
480 |
✓✓ |
288486 |
for (f = 0; f < 8; f++) |
481 |
|
256432 |
walk(c, band, band - 1, 8 * band - 4 + f, |
482 |
|
256432 |
c->band_spectrum[7 - f], c->band_spectrum[f], channel, arg); |
483 |
|
|
} |
484 |
|
33088 |
} |
485 |
|
|
|
486 |
|
33088 |
static void walk_band_high(DCAEncContext *c, int band, int channel, |
487 |
|
|
walk_band_t walk, int32_t *arg) |
488 |
|
|
{ |
489 |
|
|
int f; |
490 |
|
|
|
491 |
✓✓ |
33088 |
if (band == 31) { |
492 |
✓✓ |
5170 |
for (f = 0; f < 4; f++) |
493 |
|
4136 |
walk(c, 31, 31, 256 - 4 + f, 0, -2047, channel, arg); |
494 |
|
|
} else { |
495 |
✓✓ |
288486 |
for (f = 0; f < 8; f++) |
496 |
|
256432 |
walk(c, band, band + 1, 8 * band + 4 + f, |
497 |
|
256432 |
c->band_spectrum[f], c->band_spectrum[7 - f], channel, arg); |
498 |
|
|
} |
499 |
|
33088 |
} |
500 |
|
|
|
501 |
|
521136 |
static void update_band_masking(DCAEncContext *c, int band1, int band2, |
502 |
|
|
int f, int32_t spectrum1, int32_t spectrum2, |
503 |
|
|
int channel, int32_t * arg) |
504 |
|
|
{ |
505 |
|
521136 |
int32_t value = c->eff_masking_curve_cb[f] - spectrum1; |
506 |
|
|
|
507 |
✓✓ |
521136 |
if (value < c->band_masking_cb[band1]) |
508 |
|
211342 |
c->band_masking_cb[band1] = value; |
509 |
|
521136 |
} |
510 |
|
|
|
511 |
|
1034 |
static void calc_masking(DCAEncContext *c, const int32_t *input) |
512 |
|
|
{ |
513 |
|
|
int i, k, band, ch, ssf; |
514 |
|
|
int32_t data[512]; |
515 |
|
|
|
516 |
✓✓ |
265738 |
for (i = 0; i < 256; i++) |
517 |
✓✓ |
794112 |
for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) |
518 |
|
529408 |
c->masking_curve_cb[ssf][i] = -2047; |
519 |
|
|
|
520 |
✓✓ |
3102 |
for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) |
521 |
✓✓ |
6204 |
for (ch = 0; ch < c->fullband_channels; ch++) { |
522 |
|
4136 |
const int chi = c->channel_order_tab[ch]; |
523 |
|
|
|
524 |
✓✓ |
1062952 |
for (i = 0, k = 128 + 256 * ssf; k < 512; i++, k++) |
525 |
|
1058816 |
data[i] = c->history[ch][k]; |
526 |
✓✓ |
1062952 |
for (k -= 512; i < 512; i++, k++) |
527 |
|
1058816 |
data[i] = input[k * c->channels + chi]; |
528 |
|
4136 |
adjust_jnd(c, data, c->masking_curve_cb[ssf]); |
529 |
|
|
} |
530 |
✓✓ |
265738 |
for (i = 0; i < 256; i++) { |
531 |
|
264704 |
int32_t m = 2048; |
532 |
|
|
|
533 |
✓✓ |
794112 |
for (ssf = 0; ssf < SUBSUBFRAMES; ssf++) |
534 |
✓✓ |
529408 |
if (c->masking_curve_cb[ssf][i] < m) |
535 |
|
386776 |
m = c->masking_curve_cb[ssf][i]; |
536 |
|
264704 |
c->eff_masking_curve_cb[i] = m; |
537 |
|
|
} |
538 |
|
|
|
539 |
✓✓ |
34122 |
for (band = 0; band < 32; band++) { |
540 |
|
33088 |
c->band_masking_cb[band] = 2048; |
541 |
|
33088 |
walk_band_low(c, band, 0, update_band_masking, NULL); |
542 |
|
33088 |
walk_band_high(c, band, 0, update_band_masking, NULL); |
543 |
|
|
} |
544 |
|
1034 |
} |
545 |
|
|
|
546 |
|
66176 |
static inline int32_t find_peak(DCAEncContext *c, const int32_t *in, int len) |
547 |
|
|
{ |
548 |
|
|
int sample; |
549 |
|
66176 |
int32_t m = 0; |
550 |
✓✓ |
1124992 |
for (sample = 0; sample < len; sample++) { |
551 |
|
1058816 |
int32_t s = abs(in[sample]); |
552 |
✓✓ |
1058816 |
if (m < s) |
553 |
|
228656 |
m = s; |
554 |
|
|
} |
555 |
|
66176 |
return get_cb(c, m); |
556 |
|
|
} |
557 |
|
|
|
558 |
|
1034 |
static void find_peaks(DCAEncContext *c) |
559 |
|
|
{ |
560 |
|
|
int band, ch; |
561 |
|
|
|
562 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) { |
563 |
✓✓ |
68244 |
for (band = 0; band < 32; band++) |
564 |
|
66176 |
c->peak_cb[ch][band] = find_peak(c, c->subband[ch][band], |
565 |
|
|
SUBBAND_SAMPLES); |
566 |
|
|
} |
567 |
|
|
|
568 |
✗✓ |
1034 |
if (c->lfe_channel) |
569 |
|
|
c->lfe_peak_cb = find_peak(c, c->downsampled_lfe, DCA_LFE_SAMPLES); |
570 |
|
1034 |
} |
571 |
|
|
|
572 |
|
|
static void adpcm_analysis(DCAEncContext *c) |
573 |
|
|
{ |
574 |
|
|
int ch, band; |
575 |
|
|
int pred_vq_id; |
576 |
|
|
int32_t *samples; |
577 |
|
|
int32_t estimated_diff[SUBBAND_SAMPLES]; |
578 |
|
|
|
579 |
|
|
c->consumed_adpcm_bits = 0; |
580 |
|
|
for (ch = 0; ch < c->fullband_channels; ch++) { |
581 |
|
|
for (band = 0; band < 32; band++) { |
582 |
|
|
samples = c->subband[ch][band] - DCA_ADPCM_COEFFS; |
583 |
|
|
pred_vq_id = ff_dcaadpcm_subband_analysis(&c->adpcm_ctx, samples, |
584 |
|
|
SUBBAND_SAMPLES, estimated_diff); |
585 |
|
|
if (pred_vq_id >= 0) { |
586 |
|
|
c->prediction_mode[ch][band] = pred_vq_id; |
587 |
|
|
c->consumed_adpcm_bits += 12; //12 bits to transmit prediction vq index |
588 |
|
|
c->diff_peak_cb[ch][band] = find_peak(c, estimated_diff, 16); |
589 |
|
|
} else { |
590 |
|
|
c->prediction_mode[ch][band] = -1; |
591 |
|
|
} |
592 |
|
|
} |
593 |
|
|
} |
594 |
|
|
} |
595 |
|
|
|
596 |
|
|
static const int snr_fudge = 128; |
597 |
|
|
#define USED_1ABITS 1 |
598 |
|
|
#define USED_26ABITS 4 |
599 |
|
|
|
600 |
|
66176 |
static inline int32_t get_step_size(DCAEncContext *c, int ch, int band) |
601 |
|
|
{ |
602 |
|
|
int32_t step_size; |
603 |
|
|
|
604 |
✗✓ |
66176 |
if (c->bitrate_index == 3) |
605 |
|
|
step_size = ff_dca_lossless_quant[c->abits[ch][band]]; |
606 |
|
|
else |
607 |
|
66176 |
step_size = ff_dca_lossy_quant[c->abits[ch][band]]; |
608 |
|
|
|
609 |
|
66176 |
return step_size; |
610 |
|
|
} |
611 |
|
|
|
612 |
|
666752 |
static int calc_one_scale(DCAEncContext *c, int32_t peak_cb, int abits, |
613 |
|
|
softfloat *quant) |
614 |
|
|
{ |
615 |
|
|
int32_t peak; |
616 |
|
|
int our_nscale, try_remove; |
617 |
|
|
softfloat our_quant; |
618 |
|
|
|
619 |
✗✓ |
666752 |
av_assert0(peak_cb <= 0); |
620 |
✗✓ |
666752 |
av_assert0(peak_cb >= -2047); |
621 |
|
|
|
622 |
|
666752 |
our_nscale = 127; |
623 |
|
666752 |
peak = c->cb_to_level[-peak_cb]; |
624 |
|
|
|
625 |
✓✓ |
5334016 |
for (try_remove = 64; try_remove > 0; try_remove >>= 1) { |
626 |
✓✓ |
4667264 |
if (scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e <= 17) |
627 |
|
1414480 |
continue; |
628 |
|
3252784 |
our_quant.m = mul32(scalefactor_inv[our_nscale - try_remove].m, stepsize_inv[abits].m); |
629 |
|
3252784 |
our_quant.e = scalefactor_inv[our_nscale - try_remove].e + stepsize_inv[abits].e - 17; |
630 |
✓✓ |
3252784 |
if ((ff_dca_quant_levels[abits] - 1) / 2 < quantize_value(peak, our_quant)) |
631 |
|
755786 |
continue; |
632 |
|
2496998 |
our_nscale -= try_remove; |
633 |
|
|
} |
634 |
|
|
|
635 |
✗✓ |
666752 |
if (our_nscale >= 125) |
636 |
|
|
our_nscale = 124; |
637 |
|
|
|
638 |
|
666752 |
quant->m = mul32(scalefactor_inv[our_nscale].m, stepsize_inv[abits].m); |
639 |
|
666752 |
quant->e = scalefactor_inv[our_nscale].e + stepsize_inv[abits].e - 17; |
640 |
✗✓ |
666752 |
av_assert0((ff_dca_quant_levels[abits] - 1) / 2 >= quantize_value(peak, *quant)); |
641 |
|
|
|
642 |
|
666752 |
return our_nscale; |
643 |
|
|
} |
644 |
|
|
|
645 |
|
|
static inline void quantize_adpcm_subband(DCAEncContext *c, int ch, int band) |
646 |
|
|
{ |
647 |
|
|
int32_t step_size; |
648 |
|
|
int32_t diff_peak_cb = c->diff_peak_cb[ch][band]; |
649 |
|
|
c->scale_factor[ch][band] = calc_one_scale(c, diff_peak_cb, |
650 |
|
|
c->abits[ch][band], |
651 |
|
|
&c->quant[ch][band]); |
652 |
|
|
|
653 |
|
|
step_size = get_step_size(c, ch, band); |
654 |
|
|
ff_dcaadpcm_do_real(c->prediction_mode[ch][band], |
655 |
|
|
c->quant[ch][band], |
656 |
|
|
ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], |
657 |
|
|
step_size, c->adpcm_history[ch][band], c->subband[ch][band], |
658 |
|
|
c->adpcm_history[ch][band] + 4, c->quantized[ch][band], |
659 |
|
|
SUBBAND_SAMPLES, c->cb_to_level[-diff_peak_cb]); |
660 |
|
|
} |
661 |
|
|
|
662 |
|
10418 |
static void quantize_adpcm(DCAEncContext *c) |
663 |
|
|
{ |
664 |
|
|
int band, ch; |
665 |
|
|
|
666 |
✓✓ |
31254 |
for (ch = 0; ch < c->fullband_channels; ch++) |
667 |
✓✓ |
687588 |
for (band = 0; band < 32; band++) |
668 |
✗✓ |
666752 |
if (c->prediction_mode[ch][band] >= 0) |
669 |
|
|
quantize_adpcm_subband(c, ch, band); |
670 |
|
10418 |
} |
671 |
|
|
|
672 |
|
10418 |
static void quantize_pcm(DCAEncContext *c) |
673 |
|
|
{ |
674 |
|
|
int sample, band, ch; |
675 |
|
|
|
676 |
✓✓ |
31254 |
for (ch = 0; ch < c->fullband_channels; ch++) { |
677 |
✓✓ |
687588 |
for (band = 0; band < 32; band++) { |
678 |
✓✗ |
666752 |
if (c->prediction_mode[ch][band] == -1) { |
679 |
✓✓ |
11334784 |
for (sample = 0; sample < SUBBAND_SAMPLES; sample++) { |
680 |
|
10668032 |
int32_t val = quantize_value(c->subband[ch][band][sample], |
681 |
|
|
c->quant[ch][band]); |
682 |
|
10668032 |
c->quantized[ch][band][sample] = val; |
683 |
|
|
} |
684 |
|
|
} |
685 |
|
|
} |
686 |
|
|
} |
687 |
|
10418 |
} |
688 |
|
|
|
689 |
|
102450 |
static void accumulate_huff_bit_consumption(int abits, int32_t *quantized, |
690 |
|
|
uint32_t *result) |
691 |
|
|
{ |
692 |
|
102450 |
uint8_t sel, id = abits - 1; |
693 |
✓✓ |
477400 |
for (sel = 0; sel < ff_dca_quant_index_group_size[id]; sel++) |
694 |
|
374950 |
result[sel] += ff_dca_vlc_calc_quant_bits(quantized, SUBBAND_SAMPLES, |
695 |
|
|
sel, id); |
696 |
|
102450 |
} |
697 |
|
|
|
698 |
|
20836 |
static uint32_t set_best_code(uint32_t vlc_bits[DCA_CODE_BOOKS][7], |
699 |
|
|
uint32_t clc_bits[DCA_CODE_BOOKS], |
700 |
|
|
int32_t res[DCA_CODE_BOOKS]) |
701 |
|
|
{ |
702 |
|
|
uint8_t i, sel; |
703 |
|
|
uint32_t best_sel_bits[DCA_CODE_BOOKS]; |
704 |
|
|
int32_t best_sel_id[DCA_CODE_BOOKS]; |
705 |
|
20836 |
uint32_t t, bits = 0; |
706 |
|
|
|
707 |
✓✓ |
229196 |
for (i = 0; i < DCA_CODE_BOOKS; i++) { |
708 |
|
|
|
709 |
✗✓ |
208360 |
av_assert0(!((!!vlc_bits[i][0]) ^ (!!clc_bits[i]))); |
710 |
✓✓ |
208360 |
if (vlc_bits[i][0] == 0) { |
711 |
|
|
/* do not transmit adjustment index for empty codebooks */ |
712 |
|
130000 |
res[i] = ff_dca_quant_index_group_size[i]; |
713 |
|
|
/* and skip it */ |
714 |
|
130000 |
continue; |
715 |
|
|
} |
716 |
|
|
|
717 |
|
78360 |
best_sel_bits[i] = vlc_bits[i][0]; |
718 |
|
78360 |
best_sel_id[i] = 0; |
719 |
✓✓ |
427676 |
for (sel = 0; sel < ff_dca_quant_index_group_size[i]; sel++) { |
720 |
✓✓✓✗
|
349316 |
if (best_sel_bits[i] > vlc_bits[i][sel] && vlc_bits[i][sel]) { |
721 |
|
89308 |
best_sel_bits[i] = vlc_bits[i][sel]; |
722 |
|
89308 |
best_sel_id[i] = sel; |
723 |
|
|
} |
724 |
|
|
} |
725 |
|
|
|
726 |
|
|
/* 2 bits to transmit scale factor adjustment index */ |
727 |
|
78360 |
t = best_sel_bits[i] + 2; |
728 |
✓✓ |
78360 |
if (t < clc_bits[i]) { |
729 |
|
56868 |
res[i] = best_sel_id[i]; |
730 |
|
56868 |
bits += t; |
731 |
|
|
} else { |
732 |
|
21492 |
res[i] = ff_dca_quant_index_group_size[i]; |
733 |
|
21492 |
bits += clc_bits[i]; |
734 |
|
|
} |
735 |
|
|
} |
736 |
|
20836 |
return bits; |
737 |
|
|
} |
738 |
|
|
|
739 |
|
20836 |
static uint32_t set_best_abits_code(int abits[DCAENC_SUBBANDS], int bands, |
740 |
|
|
int32_t *res) |
741 |
|
|
{ |
742 |
|
|
uint8_t i; |
743 |
|
|
uint32_t t; |
744 |
|
20836 |
int32_t best_sel = 6; |
745 |
|
20836 |
int32_t best_bits = bands * 5; |
746 |
|
|
|
747 |
|
|
/* Check do we have subband which cannot be encoded by Huffman tables */ |
748 |
✓✗ |
20836 |
for (i = 0; i < bands; i++) { |
749 |
✗✓✗✗
|
20836 |
if (abits[i] > 12 || abits[i] == 0) { |
750 |
|
20836 |
*res = best_sel; |
751 |
|
20836 |
return best_bits; |
752 |
|
|
} |
753 |
|
|
} |
754 |
|
|
|
755 |
|
|
for (i = 0; i < DCA_BITALLOC_12_COUNT; i++) { |
756 |
|
|
t = ff_dca_vlc_calc_alloc_bits(abits, bands, i); |
757 |
|
|
if (t < best_bits) { |
758 |
|
|
best_bits = t; |
759 |
|
|
best_sel = i; |
760 |
|
|
} |
761 |
|
|
} |
762 |
|
|
|
763 |
|
|
*res = best_sel; |
764 |
|
|
return best_bits; |
765 |
|
|
} |
766 |
|
|
|
767 |
|
10418 |
static int init_quantization_noise(DCAEncContext *c, int noise, int forbid_zero) |
768 |
|
|
{ |
769 |
|
10418 |
int ch, band, ret = USED_26ABITS | USED_1ABITS; |
770 |
|
|
uint32_t huff_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS][7]; |
771 |
|
|
uint32_t clc_bit_count_accum[MAX_CHANNELS][DCA_CODE_BOOKS]; |
772 |
|
10418 |
uint32_t bits_counter = 0; |
773 |
|
|
|
774 |
|
10418 |
c->consumed_bits = 132 + 333 * c->fullband_channels; |
775 |
|
10418 |
c->consumed_bits += c->consumed_adpcm_bits; |
776 |
✗✓ |
10418 |
if (c->lfe_channel) |
777 |
|
|
c->consumed_bits += 72; |
778 |
|
|
|
779 |
|
|
/* attempt to guess the bit distribution based on the prevoius frame */ |
780 |
✓✓ |
31254 |
for (ch = 0; ch < c->fullband_channels; ch++) { |
781 |
✓✓ |
687588 |
for (band = 0; band < 32; band++) { |
782 |
|
666752 |
int snr_cb = c->peak_cb[ch][band] - c->band_masking_cb[band] - noise; |
783 |
|
|
|
784 |
✓✓ |
666752 |
if (snr_cb >= 1312) { |
785 |
|
58244 |
c->abits[ch][band] = 26; |
786 |
|
58244 |
ret &= ~USED_1ABITS; |
787 |
✓✓ |
608508 |
} else if (snr_cb >= 222) { |
788 |
|
528984 |
c->abits[ch][band] = 8 + mul32(snr_cb - 222, 69000000); |
789 |
|
528984 |
ret &= ~(USED_26ABITS | USED_1ABITS); |
790 |
✓✓ |
79524 |
} else if (snr_cb >= 0) { |
791 |
|
34916 |
c->abits[ch][band] = 2 + mul32(snr_cb, 106000000); |
792 |
|
34916 |
ret &= ~(USED_26ABITS | USED_1ABITS); |
793 |
✗✓✗✗
|
44608 |
} else if (forbid_zero || snr_cb >= -140) { |
794 |
|
44608 |
c->abits[ch][band] = 1; |
795 |
|
44608 |
ret &= ~USED_26ABITS; |
796 |
|
|
} else { |
797 |
|
|
c->abits[ch][band] = 0; |
798 |
|
|
ret &= ~(USED_26ABITS | USED_1ABITS); |
799 |
|
|
} |
800 |
|
|
} |
801 |
|
20836 |
c->consumed_bits += set_best_abits_code(c->abits[ch], 32, |
802 |
|
|
&c->bit_allocation_sel[ch]); |
803 |
|
|
} |
804 |
|
|
|
805 |
|
|
/* Recalc scale_factor each time to get bits consumption in case of Huffman coding. |
806 |
|
|
It is suboptimal solution */ |
807 |
|
|
/* TODO: May be cache scaled values */ |
808 |
✓✓ |
31254 |
for (ch = 0; ch < c->fullband_channels; ch++) { |
809 |
✓✓ |
687588 |
for (band = 0; band < 32; band++) { |
810 |
✓✗ |
666752 |
if (c->prediction_mode[ch][band] == -1) { |
811 |
|
666752 |
c->scale_factor[ch][band] = calc_one_scale(c, c->peak_cb[ch][band], |
812 |
|
|
c->abits[ch][band], |
813 |
|
|
&c->quant[ch][band]); |
814 |
|
|
} |
815 |
|
|
} |
816 |
|
|
} |
817 |
|
10418 |
quantize_adpcm(c); |
818 |
|
10418 |
quantize_pcm(c); |
819 |
|
|
|
820 |
|
10418 |
memset(huff_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * 7 * sizeof(uint32_t)); |
821 |
|
10418 |
memset(clc_bit_count_accum, 0, MAX_CHANNELS * DCA_CODE_BOOKS * sizeof(uint32_t)); |
822 |
✓✓ |
31254 |
for (ch = 0; ch < c->fullband_channels; ch++) { |
823 |
✓✓ |
687588 |
for (band = 0; band < 32; band++) { |
824 |
✓✗✓✓
|
666752 |
if (c->abits[ch][band] && c->abits[ch][band] <= DCA_CODE_BOOKS) { |
825 |
|
102450 |
accumulate_huff_bit_consumption(c->abits[ch][band], |
826 |
|
102450 |
c->quantized[ch][band], |
827 |
|
102450 |
huff_bit_count_accum[ch][c->abits[ch][band] - 1]); |
828 |
|
102450 |
clc_bit_count_accum[ch][c->abits[ch][band] - 1] += bit_consumption[c->abits[ch][band]]; |
829 |
|
|
} else { |
830 |
|
564302 |
bits_counter += bit_consumption[c->abits[ch][band]]; |
831 |
|
|
} |
832 |
|
|
} |
833 |
|
|
} |
834 |
|
|
|
835 |
✓✓ |
31254 |
for (ch = 0; ch < c->fullband_channels; ch++) { |
836 |
|
20836 |
bits_counter += set_best_code(huff_bit_count_accum[ch], |
837 |
|
20836 |
clc_bit_count_accum[ch], |
838 |
|
20836 |
c->quant_index_sel[ch]); |
839 |
|
|
} |
840 |
|
|
|
841 |
|
10418 |
c->consumed_bits += bits_counter; |
842 |
|
|
|
843 |
|
10418 |
return ret; |
844 |
|
|
} |
845 |
|
|
|
846 |
|
1034 |
static void assign_bits(DCAEncContext *c) |
847 |
|
|
{ |
848 |
|
|
/* Find the bounds where the binary search should work */ |
849 |
|
|
int low, high, down; |
850 |
|
1034 |
int used_abits = 0; |
851 |
|
1034 |
int forbid_zero = 1; |
852 |
|
1034 |
restart: |
853 |
|
1034 |
init_quantization_noise(c, c->worst_quantization_noise, forbid_zero); |
854 |
|
1034 |
low = high = c->worst_quantization_noise; |
855 |
✓✓ |
1034 |
if (c->consumed_bits > c->frame_bits) { |
856 |
✓✓ |
1118 |
while (c->consumed_bits > c->frame_bits) { |
857 |
✗✓✗✗
|
580 |
if (used_abits == USED_1ABITS && forbid_zero) { |
858 |
|
|
forbid_zero = 0; |
859 |
|
|
goto restart; |
860 |
|
|
} |
861 |
|
580 |
low = high; |
862 |
|
580 |
high += snr_fudge; |
863 |
|
580 |
used_abits = init_quantization_noise(c, high, forbid_zero); |
864 |
|
|
} |
865 |
|
|
} else { |
866 |
✓✓ |
1028 |
while (c->consumed_bits <= c->frame_bits) { |
867 |
|
532 |
high = low; |
868 |
✗✓ |
532 |
if (used_abits == USED_26ABITS) |
869 |
|
|
goto out; /* The requested bitrate is too high, pad with zeros */ |
870 |
|
532 |
low -= snr_fudge; |
871 |
|
532 |
used_abits = init_quantization_noise(c, low, forbid_zero); |
872 |
|
|
} |
873 |
|
|
} |
874 |
|
|
|
875 |
|
|
/* Now do a binary search between low and high to see what fits */ |
876 |
✓✓ |
8272 |
for (down = snr_fudge >> 1; down; down >>= 1) { |
877 |
|
7238 |
init_quantization_noise(c, high - down, forbid_zero); |
878 |
✓✓ |
7238 |
if (c->consumed_bits <= c->frame_bits) |
879 |
|
3724 |
high -= down; |
880 |
|
|
} |
881 |
|
1034 |
init_quantization_noise(c, high, forbid_zero); |
882 |
|
1034 |
out: |
883 |
|
1034 |
c->worst_quantization_noise = high; |
884 |
✓✓ |
1034 |
if (high > c->worst_noise_ever) |
885 |
|
2 |
c->worst_noise_ever = high; |
886 |
|
1034 |
} |
887 |
|
|
|
888 |
|
1034 |
static void shift_history(DCAEncContext *c, const int32_t *input) |
889 |
|
|
{ |
890 |
|
|
int k, ch; |
891 |
|
|
|
892 |
✓✓ |
530442 |
for (k = 0; k < 512; k++) |
893 |
✓✓ |
1588224 |
for (ch = 0; ch < c->channels; ch++) { |
894 |
|
1058816 |
const int chi = c->channel_order_tab[ch]; |
895 |
|
|
|
896 |
|
1058816 |
c->history[ch][k] = input[k * c->channels + chi]; |
897 |
|
|
} |
898 |
|
1034 |
} |
899 |
|
|
|
900 |
|
1034 |
static void fill_in_adpcm_bufer(DCAEncContext *c) |
901 |
|
|
{ |
902 |
|
|
int ch, band; |
903 |
|
|
int32_t step_size; |
904 |
|
|
/* We fill in ADPCM work buffer for subbands which hasn't been ADPCM coded |
905 |
|
|
* in current frame - we need this data if subband of next frame is |
906 |
|
|
* ADPCM |
907 |
|
|
*/ |
908 |
✓✓ |
3102 |
for (ch = 0; ch < c->channels; ch++) { |
909 |
✓✓ |
68244 |
for (band = 0; band < 32; band++) { |
910 |
|
66176 |
int32_t *samples = c->subband[ch][band] - DCA_ADPCM_COEFFS; |
911 |
✓✗ |
66176 |
if (c->prediction_mode[ch][band] == -1) { |
912 |
|
66176 |
step_size = get_step_size(c, ch, band); |
913 |
|
|
|
914 |
|
66176 |
ff_dca_core_dequantize(c->adpcm_history[ch][band], |
915 |
|
66176 |
c->quantized[ch][band]+12, step_size, |
916 |
|
66176 |
ff_dca_scale_factor_quant7[c->scale_factor[ch][band]], 0, 4); |
917 |
|
|
} else { |
918 |
|
|
AV_COPY128U(c->adpcm_history[ch][band], c->adpcm_history[ch][band]+4); |
919 |
|
|
} |
920 |
|
|
/* Copy dequantized values for LPC analysis. |
921 |
|
|
* It reduces artifacts in case of extreme quantization, |
922 |
|
|
* example: in current frame abits is 1 and has no prediction flag, |
923 |
|
|
* but end of this frame is sine like signal. In this case, if LPC analysis uses |
924 |
|
|
* original values, likely LPC analysis returns good prediction gain, and sets prediction flag. |
925 |
|
|
* But there are no proper value in decoder history, so likely result will be no good. |
926 |
|
|
* Bitstream has "Predictor history flag switch", but this flag disables history for all subbands |
927 |
|
|
*/ |
928 |
|
66176 |
samples[0] = c->adpcm_history[ch][band][0] << 7; |
929 |
|
66176 |
samples[1] = c->adpcm_history[ch][band][1] << 7; |
930 |
|
66176 |
samples[2] = c->adpcm_history[ch][band][2] << 7; |
931 |
|
66176 |
samples[3] = c->adpcm_history[ch][band][3] << 7; |
932 |
|
|
} |
933 |
|
|
} |
934 |
|
1034 |
} |
935 |
|
|
|
936 |
|
1034 |
static void calc_lfe_scales(DCAEncContext *c) |
937 |
|
|
{ |
938 |
✗✓ |
1034 |
if (c->lfe_channel) |
939 |
|
|
c->lfe_scale_factor = calc_one_scale(c, c->lfe_peak_cb, 11, &c->lfe_quant); |
940 |
|
1034 |
} |
941 |
|
|
|
942 |
|
1034 |
static void put_frame_header(DCAEncContext *c) |
943 |
|
|
{ |
944 |
|
|
/* SYNC */ |
945 |
|
1034 |
put_bits(&c->pb, 16, 0x7ffe); |
946 |
|
1034 |
put_bits(&c->pb, 16, 0x8001); |
947 |
|
|
|
948 |
|
|
/* Frame type: normal */ |
949 |
|
1034 |
put_bits(&c->pb, 1, 1); |
950 |
|
|
|
951 |
|
|
/* Deficit sample count: none */ |
952 |
|
1034 |
put_bits(&c->pb, 5, 31); |
953 |
|
|
|
954 |
|
|
/* CRC is not present */ |
955 |
|
1034 |
put_bits(&c->pb, 1, 0); |
956 |
|
|
|
957 |
|
|
/* Number of PCM sample blocks */ |
958 |
|
1034 |
put_bits(&c->pb, 7, SUBBAND_SAMPLES - 1); |
959 |
|
|
|
960 |
|
|
/* Primary frame byte size */ |
961 |
|
1034 |
put_bits(&c->pb, 14, c->frame_size - 1); |
962 |
|
|
|
963 |
|
|
/* Audio channel arrangement */ |
964 |
|
1034 |
put_bits(&c->pb, 6, c->channel_config); |
965 |
|
|
|
966 |
|
|
/* Core audio sampling frequency */ |
967 |
|
1034 |
put_bits(&c->pb, 4, bitstream_sfreq[c->samplerate_index]); |
968 |
|
|
|
969 |
|
|
/* Transmission bit rate */ |
970 |
|
1034 |
put_bits(&c->pb, 5, c->bitrate_index); |
971 |
|
|
|
972 |
|
|
/* Embedded down mix: disabled */ |
973 |
|
1034 |
put_bits(&c->pb, 1, 0); |
974 |
|
|
|
975 |
|
|
/* Embedded dynamic range flag: not present */ |
976 |
|
1034 |
put_bits(&c->pb, 1, 0); |
977 |
|
|
|
978 |
|
|
/* Embedded time stamp flag: not present */ |
979 |
|
1034 |
put_bits(&c->pb, 1, 0); |
980 |
|
|
|
981 |
|
|
/* Auxiliary data flag: not present */ |
982 |
|
1034 |
put_bits(&c->pb, 1, 0); |
983 |
|
|
|
984 |
|
|
/* HDCD source: no */ |
985 |
|
1034 |
put_bits(&c->pb, 1, 0); |
986 |
|
|
|
987 |
|
|
/* Extension audio ID: N/A */ |
988 |
|
1034 |
put_bits(&c->pb, 3, 0); |
989 |
|
|
|
990 |
|
|
/* Extended audio data: not present */ |
991 |
|
1034 |
put_bits(&c->pb, 1, 0); |
992 |
|
|
|
993 |
|
|
/* Audio sync word insertion flag: after each sub-frame */ |
994 |
|
1034 |
put_bits(&c->pb, 1, 0); |
995 |
|
|
|
996 |
|
|
/* Low frequency effects flag: not present or 64x subsampling */ |
997 |
✗✓ |
1034 |
put_bits(&c->pb, 2, c->lfe_channel ? 2 : 0); |
998 |
|
|
|
999 |
|
|
/* Predictor history switch flag: on */ |
1000 |
|
1034 |
put_bits(&c->pb, 1, 1); |
1001 |
|
|
|
1002 |
|
|
/* No CRC */ |
1003 |
|
|
/* Multirate interpolator switch: non-perfect reconstruction */ |
1004 |
|
1034 |
put_bits(&c->pb, 1, 0); |
1005 |
|
|
|
1006 |
|
|
/* Encoder software revision: 7 */ |
1007 |
|
1034 |
put_bits(&c->pb, 4, 7); |
1008 |
|
|
|
1009 |
|
|
/* Copy history: 0 */ |
1010 |
|
1034 |
put_bits(&c->pb, 2, 0); |
1011 |
|
|
|
1012 |
|
|
/* Source PCM resolution: 16 bits, not DTS ES */ |
1013 |
|
1034 |
put_bits(&c->pb, 3, 0); |
1014 |
|
|
|
1015 |
|
|
/* Front sum/difference coding: no */ |
1016 |
|
1034 |
put_bits(&c->pb, 1, 0); |
1017 |
|
|
|
1018 |
|
|
/* Surrounds sum/difference coding: no */ |
1019 |
|
1034 |
put_bits(&c->pb, 1, 0); |
1020 |
|
|
|
1021 |
|
|
/* Dialog normalization: 0 dB */ |
1022 |
|
1034 |
put_bits(&c->pb, 4, 0); |
1023 |
|
1034 |
} |
1024 |
|
|
|
1025 |
|
1034 |
static void put_primary_audio_header(DCAEncContext *c) |
1026 |
|
|
{ |
1027 |
|
|
int ch, i; |
1028 |
|
|
/* Number of subframes */ |
1029 |
|
1034 |
put_bits(&c->pb, 4, SUBFRAMES - 1); |
1030 |
|
|
|
1031 |
|
|
/* Number of primary audio channels */ |
1032 |
|
1034 |
put_bits(&c->pb, 3, c->fullband_channels - 1); |
1033 |
|
|
|
1034 |
|
|
/* Subband activity count */ |
1035 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1036 |
|
2068 |
put_bits(&c->pb, 5, DCAENC_SUBBANDS - 2); |
1037 |
|
|
|
1038 |
|
|
/* High frequency VQ start subband */ |
1039 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1040 |
|
2068 |
put_bits(&c->pb, 5, DCAENC_SUBBANDS - 1); |
1041 |
|
|
|
1042 |
|
|
/* Joint intensity coding index: 0, 0 */ |
1043 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1044 |
|
2068 |
put_bits(&c->pb, 3, 0); |
1045 |
|
|
|
1046 |
|
|
/* Transient mode codebook: A4, A4 (arbitrary) */ |
1047 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1048 |
|
2068 |
put_bits(&c->pb, 2, 0); |
1049 |
|
|
|
1050 |
|
|
/* Scale factor code book: 7 bit linear, 7-bit sqrt table (for each channel) */ |
1051 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1052 |
|
2068 |
put_bits(&c->pb, 3, 6); |
1053 |
|
|
|
1054 |
|
|
/* Bit allocation quantizer select: linear 5-bit */ |
1055 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1056 |
|
2068 |
put_bits(&c->pb, 3, c->bit_allocation_sel[ch]); |
1057 |
|
|
|
1058 |
|
|
/* Quantization index codebook select */ |
1059 |
✓✓ |
11374 |
for (i = 0; i < DCA_CODE_BOOKS; i++) |
1060 |
✓✓ |
31020 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1061 |
|
20680 |
put_bits(&c->pb, ff_dca_quant_index_sel_nbits[i], c->quant_index_sel[ch][i]); |
1062 |
|
|
|
1063 |
|
|
/* Scale factor adjustment index: transmitted in case of Huffman coding */ |
1064 |
✓✓ |
11374 |
for (i = 0; i < DCA_CODE_BOOKS; i++) |
1065 |
✓✓ |
31020 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1066 |
✓✓ |
20680 |
if (c->quant_index_sel[ch][i] < ff_dca_quant_index_group_size[i]) |
1067 |
|
5828 |
put_bits(&c->pb, 2, 0); |
1068 |
|
|
|
1069 |
|
|
/* Audio header CRC check word: not transmitted */ |
1070 |
|
1034 |
} |
1071 |
|
|
|
1072 |
|
132352 |
static void put_subframe_samples(DCAEncContext *c, int ss, int band, int ch) |
1073 |
|
|
{ |
1074 |
|
|
int i, j, sum, bits, sel; |
1075 |
✓✓ |
132352 |
if (c->abits[ch][band] <= DCA_CODE_BOOKS) { |
1076 |
✗✓ |
20216 |
av_assert0(c->abits[ch][band] > 0); |
1077 |
|
20216 |
sel = c->quant_index_sel[ch][c->abits[ch][band] - 1]; |
1078 |
|
|
// Huffman codes |
1079 |
✓✓ |
20216 |
if (sel < ff_dca_quant_index_group_size[c->abits[ch][band] - 1]) { |
1080 |
|
16068 |
ff_dca_vlc_enc_quant(&c->pb, &c->quantized[ch][band][ss * 8], 8, |
1081 |
|
16068 |
sel, c->abits[ch][band] - 1); |
1082 |
|
16068 |
return; |
1083 |
|
|
} |
1084 |
|
|
|
1085 |
|
|
// Block codes |
1086 |
✓✓ |
4148 |
if (c->abits[ch][band] <= 7) { |
1087 |
✓✓ |
5724 |
for (i = 0; i < 8; i += 4) { |
1088 |
|
3816 |
sum = 0; |
1089 |
✓✓ |
19080 |
for (j = 3; j >= 0; j--) { |
1090 |
|
15264 |
sum *= ff_dca_quant_levels[c->abits[ch][band]]; |
1091 |
|
15264 |
sum += c->quantized[ch][band][ss * 8 + i + j]; |
1092 |
|
15264 |
sum += (ff_dca_quant_levels[c->abits[ch][band]] - 1) / 2; |
1093 |
|
|
} |
1094 |
|
3816 |
put_bits(&c->pb, bit_consumption[c->abits[ch][band]] / 4, sum); |
1095 |
|
|
} |
1096 |
|
1908 |
return; |
1097 |
|
|
} |
1098 |
|
|
} |
1099 |
|
|
|
1100 |
✓✓ |
1029384 |
for (i = 0; i < 8; i++) { |
1101 |
|
915008 |
bits = bit_consumption[c->abits[ch][band]] / 16; |
1102 |
|
915008 |
put_sbits(&c->pb, bits, c->quantized[ch][band][ss * 8 + i]); |
1103 |
|
|
} |
1104 |
|
|
} |
1105 |
|
|
|
1106 |
|
1034 |
static void put_subframe(DCAEncContext *c, int subframe) |
1107 |
|
|
{ |
1108 |
|
|
int i, band, ss, ch; |
1109 |
|
|
|
1110 |
|
|
/* Subsubframes count */ |
1111 |
|
1034 |
put_bits(&c->pb, 2, SUBSUBFRAMES -1); |
1112 |
|
|
|
1113 |
|
|
/* Partial subsubframe sample count: dummy */ |
1114 |
|
1034 |
put_bits(&c->pb, 3, 0); |
1115 |
|
|
|
1116 |
|
|
/* Prediction mode: no ADPCM, in each channel and subband */ |
1117 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1118 |
✓✓ |
68244 |
for (band = 0; band < DCAENC_SUBBANDS; band++) |
1119 |
|
66176 |
put_bits(&c->pb, 1, !(c->prediction_mode[ch][band] == -1)); |
1120 |
|
|
|
1121 |
|
|
/* Prediction VQ address */ |
1122 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1123 |
✓✓ |
68244 |
for (band = 0; band < DCAENC_SUBBANDS; band++) |
1124 |
✗✓ |
66176 |
if (c->prediction_mode[ch][band] >= 0) |
1125 |
|
|
put_bits(&c->pb, 12, c->prediction_mode[ch][band]); |
1126 |
|
|
|
1127 |
|
|
/* Bit allocation index */ |
1128 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) { |
1129 |
✓✗ |
2068 |
if (c->bit_allocation_sel[ch] == 6) { |
1130 |
✓✓ |
68244 |
for (band = 0; band < DCAENC_SUBBANDS; band++) { |
1131 |
|
66176 |
put_bits(&c->pb, 5, c->abits[ch][band]); |
1132 |
|
|
} |
1133 |
|
|
} else { |
1134 |
|
|
ff_dca_vlc_enc_alloc(&c->pb, c->abits[ch], DCAENC_SUBBANDS, |
1135 |
|
|
c->bit_allocation_sel[ch]); |
1136 |
|
|
} |
1137 |
|
|
} |
1138 |
|
|
|
1139 |
|
|
if (SUBSUBFRAMES > 1) { |
1140 |
|
|
/* Transition mode: none for each channel and subband */ |
1141 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1142 |
✓✓ |
68244 |
for (band = 0; band < DCAENC_SUBBANDS; band++) |
1143 |
✓✗ |
66176 |
if (c->abits[ch][band]) |
1144 |
|
66176 |
put_bits(&c->pb, 1, 0); /* codebook A4 */ |
1145 |
|
|
} |
1146 |
|
|
|
1147 |
|
|
/* Scale factors */ |
1148 |
✓✓ |
3102 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1149 |
✓✓ |
68244 |
for (band = 0; band < DCAENC_SUBBANDS; band++) |
1150 |
✓✗ |
66176 |
if (c->abits[ch][band]) |
1151 |
|
66176 |
put_bits(&c->pb, 7, c->scale_factor[ch][band]); |
1152 |
|
|
|
1153 |
|
|
/* Joint subband scale factor codebook select: not transmitted */ |
1154 |
|
|
/* Scale factors for joint subband coding: not transmitted */ |
1155 |
|
|
/* Stereo down-mix coefficients: not transmitted */ |
1156 |
|
|
/* Dynamic range coefficient: not transmitted */ |
1157 |
|
|
/* Stde information CRC check word: not transmitted */ |
1158 |
|
|
/* VQ encoded high frequency subbands: not transmitted */ |
1159 |
|
|
|
1160 |
|
|
/* LFE data: 8 samples and scalefactor */ |
1161 |
✗✓ |
1034 |
if (c->lfe_channel) { |
1162 |
|
|
for (i = 0; i < DCA_LFE_SAMPLES; i++) |
1163 |
|
|
put_bits(&c->pb, 8, quantize_value(c->downsampled_lfe[i], c->lfe_quant) & 0xff); |
1164 |
|
|
put_bits(&c->pb, 8, c->lfe_scale_factor); |
1165 |
|
|
} |
1166 |
|
|
|
1167 |
|
|
/* Audio data (subsubframes) */ |
1168 |
✓✓ |
3102 |
for (ss = 0; ss < SUBSUBFRAMES ; ss++) |
1169 |
✓✓ |
6204 |
for (ch = 0; ch < c->fullband_channels; ch++) |
1170 |
✓✓ |
136488 |
for (band = 0; band < DCAENC_SUBBANDS; band++) |
1171 |
✓✗ |
132352 |
if (c->abits[ch][band]) |
1172 |
|
132352 |
put_subframe_samples(c, ss, band, ch); |
1173 |
|
|
|
1174 |
|
|
/* DSYNC */ |
1175 |
|
1034 |
put_bits(&c->pb, 16, 0xffff); |
1176 |
|
1034 |
} |
1177 |
|
|
|
1178 |
|
1034 |
static int encode_frame(AVCodecContext *avctx, AVPacket *avpkt, |
1179 |
|
|
const AVFrame *frame, int *got_packet_ptr) |
1180 |
|
|
{ |
1181 |
|
1034 |
DCAEncContext *c = avctx->priv_data; |
1182 |
|
|
const int32_t *samples; |
1183 |
|
|
int ret, i; |
1184 |
|
|
|
1185 |
✗✓ |
1034 |
if ((ret = ff_alloc_packet2(avctx, avpkt, c->frame_size, 0)) < 0) |
1186 |
|
|
return ret; |
1187 |
|
|
|
1188 |
|
1034 |
samples = (const int32_t *)frame->data[0]; |
1189 |
|
|
|
1190 |
|
1034 |
subband_transform(c, samples); |
1191 |
✗✓ |
1034 |
if (c->lfe_channel) |
1192 |
|
|
lfe_downsample(c, samples); |
1193 |
|
|
|
1194 |
|
1034 |
calc_masking(c, samples); |
1195 |
✗✓ |
1034 |
if (c->options.adpcm_mode) |
1196 |
|
|
adpcm_analysis(c); |
1197 |
|
1034 |
find_peaks(c); |
1198 |
|
1034 |
assign_bits(c); |
1199 |
|
1034 |
calc_lfe_scales(c); |
1200 |
|
1034 |
shift_history(c, samples); |
1201 |
|
|
|
1202 |
|
1034 |
init_put_bits(&c->pb, avpkt->data, avpkt->size); |
1203 |
|
1034 |
fill_in_adpcm_bufer(c); |
1204 |
|
1034 |
put_frame_header(c); |
1205 |
|
1034 |
put_primary_audio_header(c); |
1206 |
✓✓ |
2068 |
for (i = 0; i < SUBFRAMES; i++) |
1207 |
|
1034 |
put_subframe(c, i); |
1208 |
|
|
|
1209 |
|
|
|
1210 |
✓✓ |
18532 |
for (i = put_bits_count(&c->pb); i < 8*c->frame_size; i++) |
1211 |
|
17498 |
put_bits(&c->pb, 1, 0); |
1212 |
|
|
|
1213 |
|
1034 |
flush_put_bits(&c->pb); |
1214 |
|
|
|
1215 |
|
1034 |
avpkt->pts = frame->pts; |
1216 |
|
1034 |
avpkt->duration = ff_samples_to_time_base(avctx, frame->nb_samples); |
1217 |
|
1034 |
avpkt->size = put_bits_count(&c->pb) >> 3; |
1218 |
|
1034 |
*got_packet_ptr = 1; |
1219 |
|
1034 |
return 0; |
1220 |
|
|
} |
1221 |
|
|
|
1222 |
|
|
#define DCAENC_FLAGS AV_OPT_FLAG_ENCODING_PARAM | AV_OPT_FLAG_AUDIO_PARAM |
1223 |
|
|
|
1224 |
|
|
static const AVOption options[] = { |
1225 |
|
|
{ "dca_adpcm", "Use ADPCM encoding", offsetof(DCAEncContext, options.adpcm_mode), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, DCAENC_FLAGS }, |
1226 |
|
|
{ NULL }, |
1227 |
|
|
}; |
1228 |
|
|
|
1229 |
|
|
static const AVClass dcaenc_class = { |
1230 |
|
|
.class_name = "DCA (DTS Coherent Acoustics)", |
1231 |
|
|
.item_name = av_default_item_name, |
1232 |
|
|
.option = options, |
1233 |
|
|
.version = LIBAVUTIL_VERSION_INT, |
1234 |
|
|
}; |
1235 |
|
|
|
1236 |
|
|
static const AVCodecDefault defaults[] = { |
1237 |
|
|
{ "b", "1411200" }, |
1238 |
|
|
{ NULL }, |
1239 |
|
|
}; |
1240 |
|
|
|
1241 |
|
|
AVCodec ff_dca_encoder = { |
1242 |
|
|
.name = "dca", |
1243 |
|
|
.long_name = NULL_IF_CONFIG_SMALL("DCA (DTS Coherent Acoustics)"), |
1244 |
|
|
.type = AVMEDIA_TYPE_AUDIO, |
1245 |
|
|
.id = AV_CODEC_ID_DTS, |
1246 |
|
|
.priv_data_size = sizeof(DCAEncContext), |
1247 |
|
|
.init = encode_init, |
1248 |
|
|
.close = encode_close, |
1249 |
|
|
.encode2 = encode_frame, |
1250 |
|
|
.capabilities = AV_CODEC_CAP_EXPERIMENTAL, |
1251 |
|
|
.caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP, |
1252 |
|
|
.sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S32, |
1253 |
|
|
AV_SAMPLE_FMT_NONE }, |
1254 |
|
|
.supported_samplerates = sample_rates, |
1255 |
|
|
.channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_MONO, |
1256 |
|
|
AV_CH_LAYOUT_STEREO, |
1257 |
|
|
AV_CH_LAYOUT_2_2, |
1258 |
|
|
AV_CH_LAYOUT_5POINT0, |
1259 |
|
|
AV_CH_LAYOUT_5POINT1, |
1260 |
|
|
0 }, |
1261 |
|
|
.defaults = defaults, |
1262 |
|
|
.priv_class = &dcaenc_class, |
1263 |
|
|
}; |