GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
/* |
||
2 |
* Copyright (C) 2016 foo86 |
||
3 |
* |
||
4 |
* This file is part of FFmpeg. |
||
5 |
* |
||
6 |
* FFmpeg is free software; you can redistribute it and/or |
||
7 |
* modify it under the terms of the GNU Lesser General Public |
||
8 |
* License as published by the Free Software Foundation; either |
||
9 |
* version 2.1 of the License, or (at your option) any later version. |
||
10 |
* |
||
11 |
* FFmpeg is distributed in the hope that it will be useful, |
||
12 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
13 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||
14 |
* Lesser General Public License for more details. |
||
15 |
* |
||
16 |
* You should have received a copy of the GNU Lesser General Public |
||
17 |
* License along with FFmpeg; if not, write to the Free Software |
||
18 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||
19 |
*/ |
||
20 |
|||
21 |
#include "dcadec.h" |
||
22 |
#include "dcadata.h" |
||
23 |
#include "dcamath.h" |
||
24 |
#include "dca_syncwords.h" |
||
25 |
#include "unary.h" |
||
26 |
|||
27 |
115061 |
static int get_linear(GetBitContext *gb, int n) |
|
28 |
{ |
||
29 |
115061 |
unsigned int v = get_bits_long(gb, n); |
|
30 |
115061 |
return (v >> 1) ^ -(v & 1); |
|
31 |
} |
||
32 |
|||
33 |
4940945 |
static int get_rice_un(GetBitContext *gb, int k) |
|
34 |
{ |
||
35 |
4940945 |
unsigned int v = get_unary(gb, 1, get_bits_left(gb)); |
|
36 |
4940945 |
return (v << k) | get_bits_long(gb, k); |
|
37 |
} |
||
38 |
|||
39 |
4940945 |
static int get_rice(GetBitContext *gb, int k) |
|
40 |
{ |
||
41 |
4940945 |
unsigned int v = get_rice_un(gb, k); |
|
42 |
4940945 |
return (v >> 1) ^ -(v & 1); |
|
43 |
} |
||
44 |
|||
45 |
856 |
static void get_array(GetBitContext *gb, int32_t *array, int size, int n) |
|
46 |
{ |
||
47 |
int i; |
||
48 |
|||
49 |
✓✓ | 70488 |
for (i = 0; i < size; i++) |
50 |
69632 |
array[i] = get_bits(gb, n); |
|
51 |
856 |
} |
|
52 |
|||
53 |
15076 |
static void get_linear_array(GetBitContext *gb, int32_t *array, int size, int n) |
|
54 |
{ |
||
55 |
int i; |
||
56 |
|||
57 |
✓✓ | 15076 |
if (n == 0) |
58 |
14405 |
memset(array, 0, sizeof(*array) * size); |
|
59 |
✓✓ | 66272 |
else for (i = 0; i < size; i++) |
60 |
65601 |
array[i] = get_linear(gb, n); |
|
61 |
15076 |
} |
|
62 |
|||
63 |
47878 |
static void get_rice_array(GetBitContext *gb, int32_t *array, int size, int k) |
|
64 |
{ |
||
65 |
int i; |
||
66 |
|||
67 |
✓✓ | 4854527 |
for (i = 0; i < size; i++) |
68 |
4806649 |
array[i] = get_rice(gb, k); |
|
69 |
47878 |
} |
|
70 |
|||
71 |
147 |
static int parse_dmix_coeffs(DCAXllDecoder *s, DCAXllChSet *c) |
|
72 |
{ |
||
73 |
// Size of downmix coefficient matrix |
||
74 |
✓✓ | 147 |
int m = c->primary_chset ? ff_dca_dmix_primary_nch[c->dmix_type] : c->hier_ofs; |
75 |
147 |
int i, j, *coeff_ptr = c->dmix_coeff; |
|
76 |
|||
77 |
✓✓ | 777 |
for (i = 0; i < m; i++) { |
78 |
630 |
int code, sign, coeff, scale, scale_inv = 0; |
|
79 |
unsigned int index; |
||
80 |
|||
81 |
// Downmix scale (only for non-primary channel sets) |
||
82 |
✓✓ | 630 |
if (!c->primary_chset) { |
83 |
588 |
code = get_bits(&s->gb, 9); |
|
84 |
588 |
sign = (code >> 8) - 1; |
|
85 |
588 |
index = (code & 0xff) - FF_DCA_DMIXTABLE_OFFSET; |
|
86 |
✗✓ | 588 |
if (index >= FF_DCA_INV_DMIXTABLE_SIZE) { |
87 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix scale index\n"); |
||
88 |
return AVERROR_INVALIDDATA; |
||
89 |
} |
||
90 |
588 |
scale = ff_dca_dmixtable[index + FF_DCA_DMIXTABLE_OFFSET]; |
|
91 |
588 |
scale_inv = ff_dca_inv_dmixtable[index]; |
|
92 |
588 |
c->dmix_scale[i] = (scale ^ sign) - sign; |
|
93 |
588 |
c->dmix_scale_inv[i] = (scale_inv ^ sign) - sign; |
|
94 |
} |
||
95 |
|||
96 |
// Downmix coefficients |
||
97 |
✓✓ | 2100 |
for (j = 0; j < c->nchannels; j++) { |
98 |
1470 |
code = get_bits(&s->gb, 9); |
|
99 |
1470 |
sign = (code >> 8) - 1; |
|
100 |
1470 |
index = code & 0xff; |
|
101 |
✗✓ | 1470 |
if (index >= FF_DCA_DMIXTABLE_SIZE) { |
102 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL downmix coefficient index\n"); |
||
103 |
return AVERROR_INVALIDDATA; |
||
104 |
} |
||
105 |
1470 |
coeff = ff_dca_dmixtable[index]; |
|
106 |
✓✓ | 1470 |
if (!c->primary_chset) |
107 |
// Multiply by |InvDmixScale| to get |UndoDmixScale| |
||
108 |
1218 |
coeff = mul16(scale_inv, coeff); |
|
109 |
1470 |
*coeff_ptr++ = (coeff ^ sign) - sign; |
|
110 |
} |
||
111 |
} |
||
112 |
|||
113 |
147 |
return 0; |
|
114 |
} |
||
115 |
|||
116 |
2654 |
static int chs_parse_header(DCAXllDecoder *s, DCAXllChSet *c, DCAExssAsset *asset) |
|
117 |
{ |
||
118 |
2654 |
int i, j, k, ret, band, header_size, header_pos = get_bits_count(&s->gb); |
|
119 |
2654 |
DCAXllChSet *p = &s->chset[0]; |
|
120 |
DCAXllBand *b; |
||
121 |
|||
122 |
// Size of channel set sub-header |
||
123 |
2654 |
header_size = get_bits(&s->gb, 10) + 1; |
|
124 |
|||
125 |
// Check CRC |
||
126 |
✗✓ | 2654 |
if (ff_dca_check_crc(s->avctx, &s->gb, header_pos, header_pos + header_size * 8)) { |
127 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL sub-header checksum\n"); |
||
128 |
return AVERROR_INVALIDDATA; |
||
129 |
} |
||
130 |
|||
131 |
// Number of channels in the channel set |
||
132 |
2654 |
c->nchannels = get_bits(&s->gb, 4) + 1; |
|
133 |
✗✓ | 2654 |
if (c->nchannels > DCA_XLL_CHANNELS_MAX) { |
134 |
avpriv_request_sample(s->avctx, "%d XLL channels", c->nchannels); |
||
135 |
return AVERROR_PATCHWELCOME; |
||
136 |
} |
||
137 |
|||
138 |
// Residual type |
||
139 |
2654 |
c->residual_encode = get_bits(&s->gb, c->nchannels); |
|
140 |
|||
141 |
// PCM bit resolution |
||
142 |
2654 |
c->pcm_bit_res = get_bits(&s->gb, 5) + 1; |
|
143 |
|||
144 |
// Storage unit width |
||
145 |
2654 |
c->storage_bit_res = get_bits(&s->gb, 5) + 1; |
|
146 |
✓✓✓✗ ✗✓ |
2654 |
if (c->storage_bit_res != 16 && c->storage_bit_res != 20 && c->storage_bit_res != 24) { |
147 |
avpriv_request_sample(s->avctx, "%d-bit XLL storage resolution", c->storage_bit_res); |
||
148 |
return AVERROR_PATCHWELCOME; |
||
149 |
} |
||
150 |
|||
151 |
✗✓ | 2654 |
if (c->pcm_bit_res > c->storage_bit_res) { |
152 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid PCM bit resolution for XLL channel set (%d > %d)\n", c->pcm_bit_res, c->storage_bit_res); |
||
153 |
return AVERROR_INVALIDDATA; |
||
154 |
} |
||
155 |
|||
156 |
// Original sampling frequency |
||
157 |
2654 |
c->freq = ff_dca_sampling_freqs[get_bits(&s->gb, 4)]; |
|
158 |
✗✓ | 2654 |
if (c->freq > 192000) { |
159 |
avpriv_request_sample(s->avctx, "%d Hz XLL sampling frequency", c->freq); |
||
160 |
return AVERROR_PATCHWELCOME; |
||
161 |
} |
||
162 |
|||
163 |
// Sampling frequency modifier |
||
164 |
✗✓ | 2654 |
if (get_bits(&s->gb, 2)) { |
165 |
avpriv_request_sample(s->avctx, "XLL sampling frequency modifier"); |
||
166 |
return AVERROR_PATCHWELCOME; |
||
167 |
} |
||
168 |
|||
169 |
// Which replacement set this channel set is member of |
||
170 |
✗✓ | 2654 |
if (get_bits(&s->gb, 2)) { |
171 |
avpriv_request_sample(s->avctx, "XLL replacement set"); |
||
172 |
return AVERROR_PATCHWELCOME; |
||
173 |
} |
||
174 |
|||
175 |
✓✗ | 2654 |
if (asset->one_to_one_map_ch_to_spkr) { |
176 |
// Primary channel set flag |
||
177 |
2654 |
c->primary_chset = get_bits1(&s->gb); |
|
178 |
✗✓ | 2654 |
if (c->primary_chset != (c == p)) { |
179 |
av_log(s->avctx, AV_LOG_ERROR, "The first (and only) XLL channel set must be primary\n"); |
||
180 |
return AVERROR_INVALIDDATA; |
||
181 |
} |
||
182 |
|||
183 |
// Downmix coefficients present in stream |
||
184 |
2654 |
c->dmix_coeffs_present = get_bits1(&s->gb); |
|
185 |
|||
186 |
// Downmix already performed by encoder |
||
187 |
✓✓✓✗ |
2654 |
c->dmix_embedded = c->dmix_coeffs_present && get_bits1(&s->gb); |
188 |
|||
189 |
// Downmix type |
||
190 |
✓✓✓✓ |
2654 |
if (c->dmix_coeffs_present && c->primary_chset) { |
191 |
21 |
c->dmix_type = get_bits(&s->gb, 3); |
|
192 |
✗✓ | 21 |
if (c->dmix_type >= DCA_DMIX_TYPE_COUNT) { |
193 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL primary channel set downmix type\n"); |
||
194 |
return AVERROR_INVALIDDATA; |
||
195 |
} |
||
196 |
} |
||
197 |
|||
198 |
// Whether the channel set is part of a hierarchy |
||
199 |
2654 |
c->hier_chset = get_bits1(&s->gb); |
|
200 |
✗✓✗✗ |
2654 |
if (!c->hier_chset && s->nchsets != 1) { |
201 |
avpriv_request_sample(s->avctx, "XLL channel set outside of hierarchy"); |
||
202 |
return AVERROR_PATCHWELCOME; |
||
203 |
} |
||
204 |
|||
205 |
// Downmix coefficients |
||
206 |
✓✓✗✓ |
2654 |
if (c->dmix_coeffs_present && (ret = parse_dmix_coeffs(s, c)) < 0) |
207 |
return ret; |
||
208 |
|||
209 |
// Channel mask enabled |
||
210 |
✗✓ | 2654 |
if (!get_bits1(&s->gb)) { |
211 |
avpriv_request_sample(s->avctx, "Disabled XLL channel mask"); |
||
212 |
return AVERROR_PATCHWELCOME; |
||
213 |
} |
||
214 |
|||
215 |
// Channel mask for set |
||
216 |
2654 |
c->ch_mask = get_bits_long(&s->gb, s->ch_mask_nbits); |
|
217 |
✗✓ | 2654 |
if (av_popcount(c->ch_mask) != c->nchannels) { |
218 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL channel mask\n"); |
||
219 |
return AVERROR_INVALIDDATA; |
||
220 |
} |
||
221 |
|||
222 |
// Build the channel to speaker map |
||
223 |
✓✓ | 49879 |
for (i = 0, j = 0; i < s->ch_mask_nbits; i++) |
224 |
✓✓ | 47225 |
if (c->ch_mask & (1U << i)) |
225 |
10619 |
c->ch_remap[j++] = i; |
|
226 |
} else { |
||
227 |
// Mapping coeffs present flag |
||
228 |
if (c->nchannels != 2 || s->nchsets != 1 || get_bits1(&s->gb)) { |
||
229 |
avpriv_request_sample(s->avctx, "Custom XLL channel to speaker mapping"); |
||
230 |
return AVERROR_PATCHWELCOME; |
||
231 |
} |
||
232 |
|||
233 |
// Setup for LtRt decoding |
||
234 |
c->primary_chset = 1; |
||
235 |
c->dmix_coeffs_present = 0; |
||
236 |
c->dmix_embedded = 0; |
||
237 |
c->hier_chset = 0; |
||
238 |
c->ch_mask = DCA_SPEAKER_LAYOUT_STEREO; |
||
239 |
c->ch_remap[0] = DCA_SPEAKER_L; |
||
240 |
c->ch_remap[1] = DCA_SPEAKER_R; |
||
241 |
} |
||
242 |
|||
243 |
✓✓ | 2654 |
if (c->freq > 96000) { |
244 |
// Extra frequency bands flag |
||
245 |
✗✓ | 63 |
if (get_bits1(&s->gb)) { |
246 |
avpriv_request_sample(s->avctx, "Extra XLL frequency bands"); |
||
247 |
return AVERROR_PATCHWELCOME; |
||
248 |
} |
||
249 |
63 |
c->nfreqbands = 2; |
|
250 |
} else { |
||
251 |
2591 |
c->nfreqbands = 1; |
|
252 |
} |
||
253 |
|||
254 |
// Set the sampling frequency to that of the first frequency band. |
||
255 |
// Frequency will be doubled again after bands assembly. |
||
256 |
2654 |
c->freq >>= c->nfreqbands - 1; |
|
257 |
|||
258 |
// Verify that all channel sets have the same audio characteristics |
||
259 |
✓✓✓✗ ✓✗ |
2654 |
if (c != p && (c->nfreqbands != p->nfreqbands || c->freq != p->freq |
260 |
✓✗ | 1300 |
|| c->pcm_bit_res != p->pcm_bit_res |
261 |
✗✓ | 1300 |
|| c->storage_bit_res != p->storage_bit_res)) { |
262 |
avpriv_request_sample(s->avctx, "Different XLL audio characteristics"); |
||
263 |
return AVERROR_PATCHWELCOME; |
||
264 |
} |
||
265 |
|||
266 |
// Determine number of bits to read bit allocation coding parameter |
||
267 |
✓✓ | 2654 |
if (c->storage_bit_res > 16) |
268 |
2591 |
c->nabits = 5; |
|
269 |
✓✗ | 63 |
else if (c->storage_bit_res > 8) |
270 |
63 |
c->nabits = 4; |
|
271 |
else |
||
272 |
c->nabits = 3; |
||
273 |
|||
274 |
// Account for embedded downmix and decimator saturation |
||
275 |
✓✓✓✓ ✓✓ |
2654 |
if ((s->nchsets > 1 || c->nfreqbands > 1) && c->nabits < 5) |
276 |
63 |
c->nabits++; |
|
277 |
|||
278 |
✓✓ | 5371 |
for (band = 0, b = c->bands; band < c->nfreqbands; band++, b++) { |
279 |
// Pairwise channel decorrelation |
||
280 |
✓✓✓✗ |
5413 |
if ((b->decor_enabled = get_bits1(&s->gb)) && c->nchannels > 1) { |
281 |
2696 |
int ch_nbits = av_ceil_log2(c->nchannels); |
|
282 |
|||
283 |
// Original channel order |
||
284 |
✓✓ | 13546 |
for (i = 0; i < c->nchannels; i++) { |
285 |
10850 |
b->orig_order[i] = get_bits(&s->gb, ch_nbits); |
|
286 |
✗✓ | 10850 |
if (b->orig_order[i] >= c->nchannels) { |
287 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL original channel order\n"); |
||
288 |
return AVERROR_INVALIDDATA; |
||
289 |
} |
||
290 |
} |
||
291 |
|||
292 |
// Pairwise channel coefficients |
||
293 |
✓✓ | 8121 |
for (i = 0; i < c->nchannels / 2; i++) |
294 |
✓✓ | 5425 |
b->decor_coeff[i] = get_bits1(&s->gb) ? get_linear(&s->gb, 7) : 0; |
295 |
} else { |
||
296 |
✓✓ | 42 |
for (i = 0; i < c->nchannels; i++) |
297 |
21 |
b->orig_order[i] = i; |
|
298 |
✗✓ | 21 |
for (i = 0; i < c->nchannels / 2; i++) |
299 |
b->decor_coeff[i] = 0; |
||
300 |
} |
||
301 |
|||
302 |
// Adaptive predictor order |
||
303 |
2717 |
b->highest_pred_order = 0; |
|
304 |
✓✓ | 13588 |
for (i = 0; i < c->nchannels; i++) { |
305 |
10871 |
b->adapt_pred_order[i] = get_bits(&s->gb, 4); |
|
306 |
✓✓ | 10871 |
if (b->adapt_pred_order[i] > b->highest_pred_order) |
307 |
4074 |
b->highest_pred_order = b->adapt_pred_order[i]; |
|
308 |
} |
||
309 |
✗✓ | 2717 |
if (b->highest_pred_order > s->nsegsamples) { |
310 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL adaptive predicition order\n"); |
||
311 |
return AVERROR_INVALIDDATA; |
||
312 |
} |
||
313 |
|||
314 |
// Fixed predictor order |
||
315 |
✓✓ | 13588 |
for (i = 0; i < c->nchannels; i++) |
316 |
✓✓ | 10871 |
b->fixed_pred_order[i] = b->adapt_pred_order[i] ? 0 : get_bits(&s->gb, 2); |
317 |
|||
318 |
// Adaptive predictor quantized reflection coefficients |
||
319 |
✓✓ | 13588 |
for (i = 0; i < c->nchannels; i++) { |
320 |
✓✓ | 53128 |
for (j = 0; j < b->adapt_pred_order[i]; j++) { |
321 |
42257 |
k = get_linear(&s->gb, 8); |
|
322 |
✗✓ | 42257 |
if (k == -128) { |
323 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL reflection coefficient index\n"); |
||
324 |
return AVERROR_INVALIDDATA; |
||
325 |
} |
||
326 |
✓✓ | 42257 |
if (k < 0) |
327 |
15112 |
b->adapt_refl_coeff[i][j] = -(int)ff_dca_xll_refl_coeff[-k]; |
|
328 |
else |
||
329 |
27145 |
b->adapt_refl_coeff[i][j] = (int)ff_dca_xll_refl_coeff[ k]; |
|
330 |
} |
||
331 |
} |
||
332 |
|||
333 |
// Downmix performed by encoder in extension frequency band |
||
334 |
✓✓✓✓ ✓✗ |
2717 |
b->dmix_embedded = c->dmix_embedded && (band == 0 || get_bits1(&s->gb)); |
335 |
|||
336 |
// MSB/LSB split flag in extension frequency band |
||
337 |
✓✓✓✓ ✓✓✗✓ |
2717 |
if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) { |
338 |
// Size of LSB section in any segment |
||
339 |
252 |
b->lsb_section_size = get_bits_long(&s->gb, s->seg_size_nbits); |
|
340 |
✓✗✗✓ |
252 |
if (b->lsb_section_size < 0 || b->lsb_section_size > s->frame_size) { |
341 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid LSB section size\n"); |
||
342 |
return AVERROR_INVALIDDATA; |
||
343 |
} |
||
344 |
|||
345 |
// Account for optional CRC bytes after LSB section |
||
346 |
✓✓✓✗ ✓✗ |
252 |
if (b->lsb_section_size && (s->band_crc_present > 2 || |
347 |
✗✓ | 60 |
(band == 0 && s->band_crc_present > 1))) |
348 |
b->lsb_section_size += 2; |
||
349 |
|||
350 |
// Number of bits to represent the samples in LSB part |
||
351 |
✓✓ | 1155 |
for (i = 0; i < c->nchannels; i++) { |
352 |
903 |
b->nscalablelsbs[i] = get_bits(&s->gb, 4); |
|
353 |
✓✓✗✓ |
903 |
if (b->nscalablelsbs[i] && !b->lsb_section_size) { |
354 |
av_log(s->avctx, AV_LOG_ERROR, "LSB section missing with non-zero LSB width\n"); |
||
355 |
return AVERROR_INVALIDDATA; |
||
356 |
} |
||
357 |
} |
||
358 |
} else { |
||
359 |
2465 |
b->lsb_section_size = 0; |
|
360 |
✓✓ | 12433 |
for (i = 0; i < c->nchannels; i++) |
361 |
9968 |
b->nscalablelsbs[i] = 0; |
|
362 |
} |
||
363 |
|||
364 |
// Scalable resolution flag in extension frequency band |
||
365 |
✓✓✓✓ ✓✓✗✓ |
2717 |
if ((band == 0 && s->scalable_lsbs) || (band != 0 && get_bits1(&s->gb))) { |
366 |
// Number of bits discarded by authoring |
||
367 |
✓✓ | 1155 |
for (i = 0; i < c->nchannels; i++) |
368 |
903 |
b->bit_width_adjust[i] = get_bits(&s->gb, 4); |
|
369 |
} else { |
||
370 |
✓✓ | 12433 |
for (i = 0; i < c->nchannels; i++) |
371 |
9968 |
b->bit_width_adjust[i] = 0; |
|
372 |
} |
||
373 |
} |
||
374 |
|||
375 |
// Reserved |
||
376 |
// Byte align |
||
377 |
// CRC16 of channel set sub-header |
||
378 |
✗✓ | 2654 |
if (ff_dca_seek_bits(&s->gb, header_pos + header_size * 8)) { |
379 |
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL sub-header\n"); |
||
380 |
return AVERROR_INVALIDDATA; |
||
381 |
} |
||
382 |
|||
383 |
2654 |
return 0; |
|
384 |
} |
||
385 |
|||
386 |
2584 |
static int chs_alloc_msb_band_data(DCAXllDecoder *s, DCAXllChSet *c) |
|
387 |
{ |
||
388 |
✓✓ | 2584 |
int ndecisamples = c->nfreqbands > 1 ? DCA_XLL_DECI_HISTORY_MAX : 0; |
389 |
2584 |
int nchsamples = s->nframesamples + ndecisamples; |
|
390 |
2584 |
int i, j, nsamples = nchsamples * c->nchannels * c->nfreqbands; |
|
391 |
int32_t *ptr; |
||
392 |
|||
393 |
// Reallocate MSB sample buffer |
||
394 |
2584 |
av_fast_malloc(&c->sample_buffer[0], &c->sample_size[0], nsamples * sizeof(int32_t)); |
|
395 |
✗✓ | 2584 |
if (!c->sample_buffer[0]) |
396 |
return AVERROR(ENOMEM); |
||
397 |
|||
398 |
2584 |
ptr = c->sample_buffer[0] + ndecisamples; |
|
399 |
✓✓ | 5224 |
for (i = 0; i < c->nfreqbands; i++) { |
400 |
✓✓ | 13329 |
for (j = 0; j < c->nchannels; j++) { |
401 |
10689 |
c->bands[i].msb_sample_buffer[j] = ptr; |
|
402 |
10689 |
ptr += nchsamples; |
|
403 |
} |
||
404 |
} |
||
405 |
|||
406 |
2584 |
return 0; |
|
407 |
} |
||
408 |
|||
409 |
2584 |
static int chs_alloc_lsb_band_data(DCAXllDecoder *s, DCAXllChSet *c) |
|
410 |
{ |
||
411 |
2584 |
int i, j, nsamples = 0; |
|
412 |
int32_t *ptr; |
||
413 |
|||
414 |
// Determine number of frequency bands that have MSB/LSB split |
||
415 |
✓✓ | 5224 |
for (i = 0; i < c->nfreqbands; i++) |
416 |
✓✓ | 2640 |
if (c->bands[i].lsb_section_size) |
417 |
56 |
nsamples += s->nframesamples * c->nchannels; |
|
418 |
✓✓ | 2584 |
if (!nsamples) |
419 |
2528 |
return 0; |
|
420 |
|||
421 |
// Reallocate LSB sample buffer |
||
422 |
56 |
av_fast_malloc(&c->sample_buffer[1], &c->sample_size[1], nsamples * sizeof(int32_t)); |
|
423 |
✗✓ | 56 |
if (!c->sample_buffer[1]) |
424 |
return AVERROR(ENOMEM); |
||
425 |
|||
426 |
56 |
ptr = c->sample_buffer[1]; |
|
427 |
✓✓ | 112 |
for (i = 0; i < c->nfreqbands; i++) { |
428 |
✓✗ | 56 |
if (c->bands[i].lsb_section_size) { |
429 |
✓✓ | 328 |
for (j = 0; j < c->nchannels; j++) { |
430 |
272 |
c->bands[i].lsb_sample_buffer[j] = ptr; |
|
431 |
272 |
ptr += s->nframesamples; |
|
432 |
} |
||
433 |
} else { |
||
434 |
for (j = 0; j < c->nchannels; j++) |
||
435 |
c->bands[i].lsb_sample_buffer[j] = NULL; |
||
436 |
} |
||
437 |
} |
||
438 |
|||
439 |
56 |
return 0; |
|
440 |
} |
||
441 |
|||
442 |
7808 |
static int chs_parse_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg, int band_data_end) |
|
443 |
{ |
||
444 |
7808 |
DCAXllBand *b = &c->bands[band]; |
|
445 |
int i, j, k; |
||
446 |
|||
447 |
// Start unpacking MSB portion of the segment |
||
448 |
✓✓✓✗ |
7808 |
if (!(seg && get_bits1(&s->gb))) { |
449 |
// Unpack segment type |
||
450 |
// 0 - distinct coding parameters for each channel |
||
451 |
// 1 - common coding parameters for all channels |
||
452 |
7808 |
c->seg_common = get_bits1(&s->gb); |
|
453 |
|||
454 |
// Determine number of coding parameters encoded in segment |
||
455 |
✓✓ | 7808 |
k = c->seg_common ? 1 : c->nchannels; |
456 |
|||
457 |
// Unpack Rice coding parameters |
||
458 |
✓✓ | 33264 |
for (i = 0; i < k; i++) { |
459 |
// Unpack Rice coding flag |
||
460 |
// 0 - linear code, 1 - Rice code |
||
461 |
25456 |
c->rice_code_flag[i] = get_bits1(&s->gb); |
|
462 |
// Unpack Hybrid Rice coding flag |
||
463 |
// 0 - Rice code, 1 - Hybrid Rice code |
||
464 |
✓✓✓✓ ✓✓ |
25456 |
if (!c->seg_common && c->rice_code_flag[i] && get_bits1(&s->gb)) |
465 |
// Unpack binary code length for isolated samples |
||
466 |
906 |
c->bitalloc_hybrid_linear[i] = get_bits(&s->gb, c->nabits) + 1; |
|
467 |
else |
||
468 |
// 0 indicates no Hybrid Rice coding |
||
469 |
24550 |
c->bitalloc_hybrid_linear[i] = 0; |
|
470 |
} |
||
471 |
|||
472 |
// Unpack coding parameters |
||
473 |
✓✓ | 33264 |
for (i = 0; i < k; i++) { |
474 |
✓✓ | 25456 |
if (seg == 0) { |
475 |
// Unpack coding parameter for part A of segment 0 |
||
476 |
8664 |
c->bitalloc_part_a[i] = get_bits(&s->gb, c->nabits); |
|
477 |
|||
478 |
// Adjust for the linear code |
||
479 |
✓✓✓✓ |
8664 |
if (!c->rice_code_flag[i] && c->bitalloc_part_a[i]) |
480 |
72 |
c->bitalloc_part_a[i]++; |
|
481 |
|||
482 |
✓✓ | 8664 |
if (!c->seg_common) |
483 |
7976 |
c->nsamples_part_a[i] = b->adapt_pred_order[i]; |
|
484 |
else |
||
485 |
688 |
c->nsamples_part_a[i] = b->highest_pred_order; |
|
486 |
} else { |
||
487 |
16792 |
c->bitalloc_part_a[i] = 0; |
|
488 |
16792 |
c->nsamples_part_a[i] = 0; |
|
489 |
} |
||
490 |
|||
491 |
// Unpack coding parameter for part B of segment |
||
492 |
25456 |
c->bitalloc_part_b[i] = get_bits(&s->gb, c->nabits); |
|
493 |
|||
494 |
// Adjust for the linear code |
||
495 |
✓✓✓✓ |
25456 |
if (!c->rice_code_flag[i] && c->bitalloc_part_b[i]) |
496 |
599 |
c->bitalloc_part_b[i]++; |
|
497 |
} |
||
498 |
} |
||
499 |
|||
500 |
// Unpack entropy codes |
||
501 |
✓✓ | 39738 |
for (i = 0; i < c->nchannels; i++) { |
502 |
int32_t *part_a, *part_b; |
||
503 |
int nsamples_part_b; |
||
504 |
|||
505 |
// Select index of coding parameters |
||
506 |
✓✓ | 31930 |
k = c->seg_common ? 0 : i; |
507 |
|||
508 |
// Slice the segment into parts A and B |
||
509 |
31930 |
part_a = b->msb_sample_buffer[i] + seg * s->nsegsamples; |
|
510 |
31930 |
part_b = part_a + c->nsamples_part_a[k]; |
|
511 |
31930 |
nsamples_part_b = s->nsegsamples - c->nsamples_part_a[k]; |
|
512 |
|||
513 |
✗✓ | 31930 |
if (get_bits_left(&s->gb) < 0) |
514 |
return AVERROR_INVALIDDATA; |
||
515 |
|||
516 |
✓✓ | 31930 |
if (!c->rice_code_flag[k]) { |
517 |
// Linear codes |
||
518 |
// Unpack all residuals of part A of segment 0 |
||
519 |
7538 |
get_linear_array(&s->gb, part_a, c->nsamples_part_a[k], |
|
520 |
c->bitalloc_part_a[k]); |
||
521 |
|||
522 |
// Unpack all residuals of part B of segment 0 and others |
||
523 |
7538 |
get_linear_array(&s->gb, part_b, nsamples_part_b, |
|
524 |
c->bitalloc_part_b[k]); |
||
525 |
} else { |
||
526 |
// Rice codes |
||
527 |
// Unpack all residuals of part A of segment 0 |
||
528 |
24392 |
get_rice_array(&s->gb, part_a, c->nsamples_part_a[k], |
|
529 |
c->bitalloc_part_a[k]); |
||
530 |
|||
531 |
✓✓ | 24392 |
if (c->bitalloc_hybrid_linear[k]) { |
532 |
// Hybrid Rice codes |
||
533 |
// Unpack the number of isolated samples |
||
534 |
906 |
int nisosamples = get_bits(&s->gb, s->nsegsamples_log2); |
|
535 |
|||
536 |
// Set all locations to 0 |
||
537 |
906 |
memset(part_b, 0, sizeof(*part_b) * nsamples_part_b); |
|
538 |
|||
539 |
// Extract the locations of isolated samples and flag by -1 |
||
540 |
✓✓ | 6137 |
for (j = 0; j < nisosamples; j++) { |
541 |
5231 |
int loc = get_bits(&s->gb, s->nsegsamples_log2); |
|
542 |
✗✓ | 5231 |
if (loc >= nsamples_part_b) { |
543 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid isolated sample location\n"); |
||
544 |
return AVERROR_INVALIDDATA; |
||
545 |
} |
||
546 |
5231 |
part_b[loc] = -1; |
|
547 |
} |
||
548 |
|||
549 |
// Unpack all residuals of part B of segment 0 and others |
||
550 |
✓✓ | 140433 |
for (j = 0; j < nsamples_part_b; j++) { |
551 |
✓✓ | 139527 |
if (part_b[j]) |
552 |
5231 |
part_b[j] = get_linear(&s->gb, c->bitalloc_hybrid_linear[k]); |
|
553 |
else |
||
554 |
134296 |
part_b[j] = get_rice(&s->gb, c->bitalloc_part_b[k]); |
|
555 |
} |
||
556 |
} else { |
||
557 |
// Rice codes |
||
558 |
// Unpack all residuals of part B of segment 0 and others |
||
559 |
23486 |
get_rice_array(&s->gb, part_b, nsamples_part_b, c->bitalloc_part_b[k]); |
|
560 |
} |
||
561 |
} |
||
562 |
} |
||
563 |
|||
564 |
// Unpack decimator history for frequency band 1 |
||
565 |
✓✓✓✓ |
7808 |
if (seg == 0 && band == 1) { |
566 |
56 |
int nbits = get_bits(&s->gb, 5) + 1; |
|
567 |
✓✓ | 280 |
for (i = 0; i < c->nchannels; i++) |
568 |
✓✓ | 1792 |
for (j = 1; j < DCA_XLL_DECI_HISTORY_MAX; j++) |
569 |
1568 |
c->deci_history[i][j] = get_sbits_long(&s->gb, nbits); |
|
570 |
} |
||
571 |
|||
572 |
// Start unpacking LSB portion of the segment |
||
573 |
✓✓ | 7808 |
if (b->lsb_section_size) { |
574 |
// Skip to the start of LSB portion |
||
575 |
✗✓ | 428 |
if (ff_dca_seek_bits(&s->gb, band_data_end - b->lsb_section_size * 8)) { |
576 |
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n"); |
||
577 |
return AVERROR_INVALIDDATA; |
||
578 |
} |
||
579 |
|||
580 |
// Unpack all LSB parts of residuals of this segment |
||
581 |
✓✓ | 2548 |
for (i = 0; i < c->nchannels; i++) { |
582 |
✓✓ | 2120 |
if (b->nscalablelsbs[i]) { |
583 |
856 |
get_array(&s->gb, |
|
584 |
856 |
b->lsb_sample_buffer[i] + seg * s->nsegsamples, |
|
585 |
s->nsegsamples, b->nscalablelsbs[i]); |
||
586 |
} |
||
587 |
} |
||
588 |
} |
||
589 |
|||
590 |
// Skip to the end of band data |
||
591 |
✗✓ | 7808 |
if (ff_dca_seek_bits(&s->gb, band_data_end)) { |
592 |
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL band data\n"); |
||
593 |
return AVERROR_INVALIDDATA; |
||
594 |
} |
||
595 |
|||
596 |
7808 |
return 0; |
|
597 |
} |
||
598 |
|||
599 |
62 |
static av_cold void chs_clear_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band, int seg) |
|
600 |
{ |
||
601 |
62 |
DCAXllBand *b = &c->bands[band]; |
|
602 |
int i, offset, nsamples; |
||
603 |
|||
604 |
✓✗ | 62 |
if (seg < 0) { |
605 |
62 |
offset = 0; |
|
606 |
62 |
nsamples = s->nframesamples; |
|
607 |
} else { |
||
608 |
offset = seg * s->nsegsamples; |
||
609 |
nsamples = s->nsegsamples; |
||
610 |
} |
||
611 |
|||
612 |
✓✓ | 292 |
for (i = 0; i < c->nchannels; i++) { |
613 |
230 |
memset(b->msb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t)); |
|
614 |
✗✓ | 230 |
if (b->lsb_section_size) |
615 |
memset(b->lsb_sample_buffer[i] + offset, 0, nsamples * sizeof(int32_t)); |
||
616 |
} |
||
617 |
|||
618 |
✓✗✓✓ |
62 |
if (seg <= 0 && band) |
619 |
10 |
memset(c->deci_history, 0, sizeof(c->deci_history)); |
|
620 |
|||
621 |
✓✗ | 62 |
if (seg < 0) { |
622 |
62 |
memset(b->nscalablelsbs, 0, sizeof(b->nscalablelsbs)); |
|
623 |
62 |
memset(b->bit_width_adjust, 0, sizeof(b->bit_width_adjust)); |
|
624 |
} |
||
625 |
62 |
} |
|
626 |
|||
627 |
2640 |
static void chs_filter_band_data(DCAXllDecoder *s, DCAXllChSet *c, int band) |
|
628 |
{ |
||
629 |
2640 |
DCAXllBand *b = &c->bands[band]; |
|
630 |
2640 |
int nsamples = s->nframesamples; |
|
631 |
int i, j, k; |
||
632 |
|||
633 |
// Inverse adaptive or fixed prediction |
||
634 |
✓✓ | 13329 |
for (i = 0; i < c->nchannels; i++) { |
635 |
10689 |
int32_t *buf = b->msb_sample_buffer[i]; |
|
636 |
10689 |
int order = b->adapt_pred_order[i]; |
|
637 |
✓✓ | 10689 |
if (order > 0) { |
638 |
int coeff[DCA_XLL_ADAPT_PRED_ORDER_MAX]; |
||
639 |
// Conversion from reflection coefficients to direct form coefficients |
||
640 |
✓✓ | 50598 |
for (j = 0; j < order; j++) { |
641 |
41701 |
int rc = b->adapt_refl_coeff[i][j]; |
|
642 |
✓✓ | 108626 |
for (k = 0; k < (j + 1) / 2; k++) { |
643 |
66925 |
int tmp1 = coeff[ k ]; |
|
644 |
66925 |
int tmp2 = coeff[j - k - 1]; |
|
645 |
66925 |
coeff[ k ] = tmp1 + mul16(rc, tmp2); |
|
646 |
66925 |
coeff[j - k - 1] = tmp2 + mul16(rc, tmp1); |
|
647 |
} |
||
648 |
41701 |
coeff[j] = rc; |
|
649 |
} |
||
650 |
// Inverse adaptive prediction |
||
651 |
✓✓ | 4671452 |
for (j = 0; j < nsamples - order; j++) { |
652 |
4662555 |
int64_t err = 0; |
|
653 |
✓✓ | 26912560 |
for (k = 0; k < order; k++) |
654 |
22250005 |
err += (int64_t)buf[j + k] * coeff[order - k - 1]; |
|
655 |
4662555 |
buf[j + k] -= (SUINT)clip23(norm16(err)); |
|
656 |
} |
||
657 |
} else { |
||
658 |
// Inverse fixed coefficient prediction |
||
659 |
✓✓ | 2352 |
for (j = 0; j < b->fixed_pred_order[i]; j++) |
660 |
✓✓ | 303616 |
for (k = 1; k < nsamples; k++) |
661 |
303056 |
buf[k] += (unsigned)buf[k - 1]; |
|
662 |
} |
||
663 |
} |
||
664 |
|||
665 |
// Inverse pairwise channel decorrellation |
||
666 |
✓✓ | 2640 |
if (b->decor_enabled) { |
667 |
int32_t *tmp[DCA_XLL_CHANNELS_MAX]; |
||
668 |
|||
669 |
✓✓ | 7974 |
for (i = 0; i < c->nchannels / 2; i++) { |
670 |
5341 |
int coeff = b->decor_coeff[i]; |
|
671 |
✓✓ | 5341 |
if (coeff) { |
672 |
1803 |
s->dcadsp->decor(b->msb_sample_buffer[i * 2 + 1], |
|
673 |
1803 |
b->msb_sample_buffer[i * 2 ], |
|
674 |
coeff, nsamples); |
||
675 |
} |
||
676 |
} |
||
677 |
|||
678 |
// Reorder channel pointers to the original order |
||
679 |
✓✓ | 13315 |
for (i = 0; i < c->nchannels; i++) |
680 |
10682 |
tmp[i] = b->msb_sample_buffer[i]; |
|
681 |
|||
682 |
✓✓ | 13315 |
for (i = 0; i < c->nchannels; i++) |
683 |
10682 |
b->msb_sample_buffer[b->orig_order[i]] = tmp[i]; |
|
684 |
} |
||
685 |
|||
686 |
// Map output channel pointers for frequency band 0 |
||
687 |
✓✓ | 2640 |
if (c->nfreqbands == 1) |
688 |
✓✓ | 12769 |
for (i = 0; i < c->nchannels; i++) |
689 |
10241 |
s->output_samples[c->ch_remap[i]] = b->msb_sample_buffer[i]; |
|
690 |
2640 |
} |
|
691 |
|||
692 |
8482 |
static int chs_get_lsb_width(DCAXllDecoder *s, DCAXllChSet *c, int band, int ch) |
|
693 |
{ |
||
694 |
8482 |
int adj = c->bands[band].bit_width_adjust[ch]; |
|
695 |
8482 |
int shift = c->bands[band].nscalablelsbs[ch]; |
|
696 |
|||
697 |
✗✓ | 8482 |
if (s->fixed_lsb_width) |
698 |
shift = s->fixed_lsb_width; |
||
699 |
✓✓✗✓ |
8482 |
else if (shift && adj) |
700 |
shift += adj - 1; |
||
701 |
else |
||
702 |
8482 |
shift += adj; |
|
703 |
|||
704 |
8482 |
return shift; |
|
705 |
} |
||
706 |
|||
707 |
192 |
static void chs_assemble_msbs_lsbs(DCAXllDecoder *s, DCAXllChSet *c, int band) |
|
708 |
{ |
||
709 |
192 |
DCAXllBand *b = &c->bands[band]; |
|
710 |
192 |
int n, ch, nsamples = s->nframesamples; |
|
711 |
|||
712 |
✓✓ | 987 |
for (ch = 0; ch < c->nchannels; ch++) { |
713 |
795 |
int shift = chs_get_lsb_width(s, c, band, ch); |
|
714 |
✓✓ | 795 |
if (shift) { |
715 |
112 |
int32_t *msb = b->msb_sample_buffer[ch]; |
|
716 |
✓✗ | 112 |
if (b->nscalablelsbs[ch]) { |
717 |
112 |
int32_t *lsb = b->lsb_sample_buffer[ch]; |
|
718 |
112 |
int adj = b->bit_width_adjust[ch]; |
|
719 |
✓✓ | 69744 |
for (n = 0; n < nsamples; n++) |
720 |
69632 |
msb[n] = msb[n] * (SUINT)(1 << shift) + (lsb[n] << adj); |
|
721 |
} else { |
||
722 |
for (n = 0; n < nsamples; n++) |
||
723 |
msb[n] = msb[n] * (SUINT)(1 << shift); |
||
724 |
} |
||
725 |
} |
||
726 |
} |
||
727 |
192 |
} |
|
728 |
|||
729 |
56 |
static int chs_assemble_freq_bands(DCAXllDecoder *s, DCAXllChSet *c) |
|
730 |
{ |
||
731 |
56 |
int ch, nsamples = s->nframesamples; |
|
732 |
int32_t *ptr; |
||
733 |
|||
734 |
av_assert1(c->nfreqbands > 1); |
||
735 |
|||
736 |
// Reallocate frequency band assembly buffer |
||
737 |
56 |
av_fast_malloc(&c->sample_buffer[2], &c->sample_size[2], |
|
738 |
56 |
2 * nsamples * c->nchannels * sizeof(int32_t)); |
|
739 |
✗✓ | 56 |
if (!c->sample_buffer[2]) |
740 |
return AVERROR(ENOMEM); |
||
741 |
|||
742 |
// Assemble frequency bands 0 and 1 |
||
743 |
56 |
ptr = c->sample_buffer[2]; |
|
744 |
✓✓ | 280 |
for (ch = 0; ch < c->nchannels; ch++) { |
745 |
224 |
int32_t *band0 = c->bands[0].msb_sample_buffer[ch]; |
|
746 |
224 |
int32_t *band1 = c->bands[1].msb_sample_buffer[ch]; |
|
747 |
|||
748 |
// Copy decimator history |
||
749 |
224 |
memcpy(band0 - DCA_XLL_DECI_HISTORY_MAX, |
|
750 |
224 |
c->deci_history[ch], sizeof(c->deci_history[0])); |
|
751 |
|||
752 |
// Filter |
||
753 |
224 |
s->dcadsp->assemble_freq_bands(ptr, band0, band1, |
|
754 |
ff_dca_xll_band_coeff, |
||
755 |
nsamples); |
||
756 |
|||
757 |
// Remap output channel pointer to assembly buffer |
||
758 |
224 |
s->output_samples[c->ch_remap[ch]] = ptr; |
|
759 |
224 |
ptr += nsamples * 2; |
|
760 |
} |
||
761 |
|||
762 |
56 |
return 0; |
|
763 |
} |
||
764 |
|||
765 |
1354 |
static int parse_common_header(DCAXllDecoder *s) |
|
766 |
{ |
||
767 |
int stream_ver, header_size, frame_size_nbits, nframesegs_log2; |
||
768 |
|||
769 |
// XLL extension sync word |
||
770 |
✗✓ | 1354 |
if (get_bits_long(&s->gb, 32) != DCA_SYNCWORD_XLL) { |
771 |
av_log(s->avctx, AV_LOG_VERBOSE, "Invalid XLL sync word\n"); |
||
772 |
return AVERROR(EAGAIN); |
||
773 |
} |
||
774 |
|||
775 |
// Version number |
||
776 |
1354 |
stream_ver = get_bits(&s->gb, 4) + 1; |
|
777 |
✗✓ | 1354 |
if (stream_ver > 1) { |
778 |
avpriv_request_sample(s->avctx, "XLL stream version %d", stream_ver); |
||
779 |
return AVERROR_PATCHWELCOME; |
||
780 |
} |
||
781 |
|||
782 |
// Lossless frame header length |
||
783 |
1354 |
header_size = get_bits(&s->gb, 8) + 1; |
|
784 |
|||
785 |
// Check CRC |
||
786 |
✗✓ | 1354 |
if (ff_dca_check_crc(s->avctx, &s->gb, 32, header_size * 8)) { |
787 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL common header checksum\n"); |
||
788 |
return AVERROR_INVALIDDATA; |
||
789 |
} |
||
790 |
|||
791 |
// Number of bits used to read frame size |
||
792 |
1354 |
frame_size_nbits = get_bits(&s->gb, 5) + 1; |
|
793 |
|||
794 |
// Number of bytes in a lossless frame |
||
795 |
1354 |
s->frame_size = get_bits_long(&s->gb, frame_size_nbits); |
|
796 |
✓✗✗✓ |
1354 |
if (s->frame_size < 0 || s->frame_size >= DCA_XLL_PBR_BUFFER_MAX) { |
797 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid XLL frame size (%d bytes)\n", s->frame_size); |
||
798 |
return AVERROR_INVALIDDATA; |
||
799 |
} |
||
800 |
1354 |
s->frame_size++; |
|
801 |
|||
802 |
// Number of channels sets per frame |
||
803 |
1354 |
s->nchsets = get_bits(&s->gb, 4) + 1; |
|
804 |
✗✓ | 1354 |
if (s->nchsets > DCA_XLL_CHSETS_MAX) { |
805 |
avpriv_request_sample(s->avctx, "%d XLL channel sets", s->nchsets); |
||
806 |
return AVERROR_PATCHWELCOME; |
||
807 |
} |
||
808 |
|||
809 |
// Number of segments per frame |
||
810 |
1354 |
nframesegs_log2 = get_bits(&s->gb, 4); |
|
811 |
1354 |
s->nframesegs = 1 << nframesegs_log2; |
|
812 |
✗✓ | 1354 |
if (s->nframesegs > 1024) { |
813 |
av_log(s->avctx, AV_LOG_ERROR, "Too many segments per XLL frame\n"); |
||
814 |
return AVERROR_INVALIDDATA; |
||
815 |
} |
||
816 |
|||
817 |
// Samples in segment per one frequency band for the first channel set |
||
818 |
// Maximum value is 256 for sampling frequencies <= 48 kHz |
||
819 |
// Maximum value is 512 for sampling frequencies > 48 kHz |
||
820 |
1354 |
s->nsegsamples_log2 = get_bits(&s->gb, 4); |
|
821 |
✗✓ | 1354 |
if (!s->nsegsamples_log2) { |
822 |
av_log(s->avctx, AV_LOG_ERROR, "Too few samples per XLL segment\n"); |
||
823 |
return AVERROR_INVALIDDATA; |
||
824 |
} |
||
825 |
1354 |
s->nsegsamples = 1 << s->nsegsamples_log2; |
|
826 |
✗✓ | 1354 |
if (s->nsegsamples > 512) { |
827 |
av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL segment\n"); |
||
828 |
return AVERROR_INVALIDDATA; |
||
829 |
} |
||
830 |
|||
831 |
// Samples in frame per one frequency band for the first channel set |
||
832 |
1354 |
s->nframesamples_log2 = s->nsegsamples_log2 + nframesegs_log2; |
|
833 |
1354 |
s->nframesamples = 1 << s->nframesamples_log2; |
|
834 |
✗✓ | 1354 |
if (s->nframesamples > 65536) { |
835 |
av_log(s->avctx, AV_LOG_ERROR, "Too many samples per XLL frame\n"); |
||
836 |
return AVERROR_INVALIDDATA; |
||
837 |
} |
||
838 |
|||
839 |
// Number of bits used to read segment size |
||
840 |
1354 |
s->seg_size_nbits = get_bits(&s->gb, 5) + 1; |
|
841 |
|||
842 |
// Presence of CRC16 within each frequency band |
||
843 |
// 0 - No CRC16 within band |
||
844 |
// 1 - CRC16 placed at the end of MSB0 |
||
845 |
// 2 - CRC16 placed at the end of MSB0 and LSB0 |
||
846 |
// 3 - CRC16 placed at the end of MSB0 and LSB0 and other frequency bands |
||
847 |
1354 |
s->band_crc_present = get_bits(&s->gb, 2); |
|
848 |
|||
849 |
// MSB/LSB split flag |
||
850 |
1354 |
s->scalable_lsbs = get_bits1(&s->gb); |
|
851 |
|||
852 |
// Channel position mask |
||
853 |
1354 |
s->ch_mask_nbits = get_bits(&s->gb, 5) + 1; |
|
854 |
|||
855 |
// Fixed LSB width |
||
856 |
✓✓ | 1354 |
if (s->scalable_lsbs) |
857 |
126 |
s->fixed_lsb_width = get_bits(&s->gb, 4); |
|
858 |
else |
||
859 |
1228 |
s->fixed_lsb_width = 0; |
|
860 |
|||
861 |
// Reserved |
||
862 |
// Byte align |
||
863 |
// Header CRC16 protection |
||
864 |
✗✓ | 1354 |
if (ff_dca_seek_bits(&s->gb, header_size * 8)) { |
865 |
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL common header\n"); |
||
866 |
return AVERROR_INVALIDDATA; |
||
867 |
} |
||
868 |
|||
869 |
1354 |
return 0; |
|
870 |
} |
||
871 |
|||
872 |
3874 |
static int is_hier_dmix_chset(DCAXllChSet *c) |
|
873 |
{ |
||
874 |
✓✗✓✓ ✓✗ |
3874 |
return !c->primary_chset && c->dmix_embedded && c->hier_chset; |
875 |
} |
||
876 |
|||
877 |
1455 |
static DCAXllChSet *find_next_hier_dmix_chset(DCAXllDecoder *s, DCAXllChSet *c) |
|
878 |
{ |
||
879 |
✓✗ | 1455 |
if (c->hier_chset) |
880 |
✓✓ | 2669 |
while (++c < &s->chset[s->nchsets]) |
881 |
✓✓ | 1279 |
if (is_hier_dmix_chset(c)) |
882 |
65 |
return c; |
|
883 |
|||
884 |
1390 |
return NULL; |
|
885 |
} |
||
886 |
|||
887 |
21 |
static void prescale_down_mix(DCAXllChSet *c, DCAXllChSet *o) |
|
888 |
{ |
||
889 |
21 |
int i, j, *coeff_ptr = c->dmix_coeff; |
|
890 |
|||
891 |
✓✓ | 63 |
for (i = 0; i < c->hier_ofs; i++) { |
892 |
42 |
int scale = o->dmix_scale[i]; |
|
893 |
42 |
int scale_inv = o->dmix_scale_inv[i]; |
|
894 |
42 |
c->dmix_scale[i] = mul15(c->dmix_scale[i], scale); |
|
895 |
42 |
c->dmix_scale_inv[i] = mul16(c->dmix_scale_inv[i], scale_inv); |
|
896 |
✓✓ | 210 |
for (j = 0; j < c->nchannels; j++) { |
897 |
168 |
int coeff = mul16(*coeff_ptr, scale_inv); |
|
898 |
168 |
*coeff_ptr++ = mul15(coeff, o->dmix_scale[c->hier_ofs + j]); |
|
899 |
} |
||
900 |
} |
||
901 |
21 |
} |
|
902 |
|||
903 |
1354 |
static int parse_sub_headers(DCAXllDecoder *s, DCAExssAsset *asset) |
|
904 |
{ |
||
905 |
1354 |
DCAContext *dca = s->avctx->priv_data; |
|
906 |
DCAXllChSet *c; |
||
907 |
int i, ret; |
||
908 |
|||
909 |
// Parse channel set headers |
||
910 |
1354 |
s->nfreqbands = 0; |
|
911 |
1354 |
s->nchannels = 0; |
|
912 |
1354 |
s->nreschsets = 0; |
|
913 |
✓✓ | 4008 |
for (i = 0, c = s->chset; i < s->nchsets; i++, c++) { |
914 |
2654 |
c->hier_ofs = s->nchannels; |
|
915 |
✗✓ | 2654 |
if ((ret = chs_parse_header(s, c, asset)) < 0) |
916 |
return ret; |
||
917 |
✓✓ | 2654 |
if (c->nfreqbands > s->nfreqbands) |
918 |
1354 |
s->nfreqbands = c->nfreqbands; |
|
919 |
✓✗ | 2654 |
if (c->hier_chset) |
920 |
2654 |
s->nchannels += c->nchannels; |
|
921 |
✓✓ | 2654 |
if (c->residual_encode != (1 << c->nchannels) - 1) |
922 |
1342 |
s->nreschsets++; |
|
923 |
} |
||
924 |
|||
925 |
// Pre-scale downmixing coefficients for all non-primary channel sets |
||
926 |
✓✓ | 2654 |
for (i = s->nchsets - 1, c = &s->chset[i]; i > 0; i--, c--) { |
927 |
✓✓ | 1300 |
if (is_hier_dmix_chset(c)) { |
928 |
126 |
DCAXllChSet *o = find_next_hier_dmix_chset(s, c); |
|
929 |
✓✓ | 126 |
if (o) |
930 |
21 |
prescale_down_mix(c, o); |
|
931 |
} |
||
932 |
} |
||
933 |
|||
934 |
// Determine number of active channel sets to decode |
||
935 |
✓✓✓ | 1354 |
switch (dca->request_channel_layout) { |
936 |
60 |
case DCA_SPEAKER_LAYOUT_STEREO: |
|
937 |
60 |
s->nactivechsets = 1; |
|
938 |
60 |
break; |
|
939 |
60 |
case DCA_SPEAKER_LAYOUT_5POINT0: |
|
940 |
case DCA_SPEAKER_LAYOUT_5POINT1: |
||
941 |
✓✓✓✗ |
60 |
s->nactivechsets = (s->chset[0].nchannels < 5 && s->nchsets > 1) ? 2 : 1; |
942 |
60 |
break; |
|
943 |
1234 |
default: |
|
944 |
1234 |
s->nactivechsets = s->nchsets; |
|
945 |
1234 |
break; |
|
946 |
} |
||
947 |
|||
948 |
1354 |
return 0; |
|
949 |
} |
||
950 |
|||
951 |
1354 |
static int parse_navi_table(DCAXllDecoder *s) |
|
952 |
{ |
||
953 |
int chs, seg, band, navi_nb, navi_pos, *navi_ptr; |
||
954 |
DCAXllChSet *c; |
||
955 |
|||
956 |
// Determine size of NAVI table |
||
957 |
1354 |
navi_nb = s->nfreqbands * s->nframesegs * s->nchsets; |
|
958 |
✗✓ | 1354 |
if (navi_nb > 1024) { |
959 |
av_log(s->avctx, AV_LOG_ERROR, "Too many NAVI entries (%d)\n", navi_nb); |
||
960 |
return AVERROR_INVALIDDATA; |
||
961 |
} |
||
962 |
|||
963 |
// Reallocate NAVI table |
||
964 |
1354 |
av_fast_malloc(&s->navi, &s->navi_size, navi_nb * sizeof(*s->navi)); |
|
965 |
✗✓ | 1354 |
if (!s->navi) |
966 |
return AVERROR(ENOMEM); |
||
967 |
|||
968 |
// Parse NAVI |
||
969 |
1354 |
navi_pos = get_bits_count(&s->gb); |
|
970 |
1354 |
navi_ptr = s->navi; |
|
971 |
✓✓ | 2750 |
for (band = 0; band < s->nfreqbands; band++) { |
972 |
✓✓ | 5728 |
for (seg = 0; seg < s->nframesegs; seg++) { |
973 |
✓✓ | 12558 |
for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) { |
974 |
8226 |
int size = 0; |
|
975 |
✓✗ | 8226 |
if (c->nfreqbands > band) { |
976 |
8226 |
size = get_bits_long(&s->gb, s->seg_size_nbits); |
|
977 |
✓✗✗✓ |
8226 |
if (size < 0 || size >= s->frame_size) { |
978 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI segment size (%d bytes)\n", size); |
||
979 |
return AVERROR_INVALIDDATA; |
||
980 |
} |
||
981 |
8226 |
size++; |
|
982 |
} |
||
983 |
8226 |
*navi_ptr++ = size; |
|
984 |
} |
||
985 |
} |
||
986 |
} |
||
987 |
|||
988 |
// Byte align |
||
989 |
// CRC16 |
||
990 |
1354 |
skip_bits(&s->gb, -get_bits_count(&s->gb) & 7); |
|
991 |
1354 |
skip_bits(&s->gb, 16); |
|
992 |
|||
993 |
// Check CRC |
||
994 |
✗✓ | 1354 |
if (ff_dca_check_crc(s->avctx, &s->gb, navi_pos, get_bits_count(&s->gb))) { |
995 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI checksum\n"); |
||
996 |
return AVERROR_INVALIDDATA; |
||
997 |
} |
||
998 |
|||
999 |
1354 |
return 0; |
|
1000 |
} |
||
1001 |
|||
1002 |
1354 |
static int parse_band_data(DCAXllDecoder *s) |
|
1003 |
{ |
||
1004 |
int ret, chs, seg, band, navi_pos, *navi_ptr; |
||
1005 |
DCAXllChSet *c; |
||
1006 |
|||
1007 |
✓✓ | 3938 |
for (chs = 0, c = s->chset; chs < s->nactivechsets; chs++, c++) { |
1008 |
✗✓ | 2584 |
if ((ret = chs_alloc_msb_band_data(s, c)) < 0) |
1009 |
return ret; |
||
1010 |
✗✓ | 2584 |
if ((ret = chs_alloc_lsb_band_data(s, c)) < 0) |
1011 |
return ret; |
||
1012 |
} |
||
1013 |
|||
1014 |
1354 |
navi_pos = get_bits_count(&s->gb); |
|
1015 |
1354 |
navi_ptr = s->navi; |
|
1016 |
✓✓ | 2750 |
for (band = 0; band < s->nfreqbands; band++) { |
1017 |
✓✓ | 5728 |
for (seg = 0; seg < s->nframesegs; seg++) { |
1018 |
✓✓ | 12558 |
for (chs = 0, c = s->chset; chs < s->nchsets; chs++, c++) { |
1019 |
✓✗ | 8226 |
if (c->nfreqbands > band) { |
1020 |
8226 |
navi_pos += *navi_ptr * 8; |
|
1021 |
✗✓ | 8226 |
if (navi_pos > s->gb.size_in_bits) { |
1022 |
av_log(s->avctx, AV_LOG_ERROR, "Invalid NAVI position\n"); |
||
1023 |
return AVERROR_INVALIDDATA; |
||
1024 |
} |
||
1025 |
✓✓✗✓ |
16034 |
if (chs < s->nactivechsets && |
1026 |
7808 |
(ret = chs_parse_band_data(s, c, band, seg, navi_pos)) < 0) { |
|
1027 |
if (s->avctx->err_recognition & AV_EF_EXPLODE) |
||
1028 |
return ret; |
||
1029 |
chs_clear_band_data(s, c, band, seg); |
||
1030 |
} |
||
1031 |
8226 |
skip_bits_long(&s->gb, navi_pos - get_bits_count(&s->gb)); |
|
1032 |
} |
||
1033 |
8226 |
navi_ptr++; |
|
1034 |
} |
||
1035 |
} |
||
1036 |
} |
||
1037 |
|||
1038 |
1354 |
return 0; |
|
1039 |
} |
||
1040 |
|||
1041 |
1354 |
static int parse_frame(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset) |
|
1042 |
{ |
||
1043 |
int ret; |
||
1044 |
|||
1045 |
✗✓ | 1354 |
if ((ret = init_get_bits8(&s->gb, data, size)) < 0) |
1046 |
return ret; |
||
1047 |
✗✓ | 1354 |
if ((ret = parse_common_header(s)) < 0) |
1048 |
return ret; |
||
1049 |
✗✓ | 1354 |
if ((ret = parse_sub_headers(s, asset)) < 0) |
1050 |
return ret; |
||
1051 |
✗✓ | 1354 |
if ((ret = parse_navi_table(s)) < 0) |
1052 |
return ret; |
||
1053 |
✗✓ | 1354 |
if ((ret = parse_band_data(s)) < 0) |
1054 |
return ret; |
||
1055 |
✗✓ | 1354 |
if (ff_dca_seek_bits(&s->gb, s->frame_size * 8)) { |
1056 |
av_log(s->avctx, AV_LOG_ERROR, "Read past end of XLL frame\n"); |
||
1057 |
return AVERROR_INVALIDDATA; |
||
1058 |
} |
||
1059 |
1354 |
return ret; |
|
1060 |
} |
||
1061 |
|||
1062 |
92 |
static void clear_pbr(DCAXllDecoder *s) |
|
1063 |
{ |
||
1064 |
92 |
s->pbr_length = 0; |
|
1065 |
92 |
s->pbr_delay = 0; |
|
1066 |
92 |
} |
|
1067 |
|||
1068 |
static int copy_to_pbr(DCAXllDecoder *s, uint8_t *data, int size, int delay) |
||
1069 |
{ |
||
1070 |
if (size > DCA_XLL_PBR_BUFFER_MAX) |
||
1071 |
return AVERROR(ENOSPC); |
||
1072 |
|||
1073 |
if (!s->pbr_buffer && !(s->pbr_buffer = av_malloc(DCA_XLL_PBR_BUFFER_MAX + AV_INPUT_BUFFER_PADDING_SIZE))) |
||
1074 |
return AVERROR(ENOMEM); |
||
1075 |
|||
1076 |
memcpy(s->pbr_buffer, data, size); |
||
1077 |
s->pbr_length = size; |
||
1078 |
s->pbr_delay = delay; |
||
1079 |
return 0; |
||
1080 |
} |
||
1081 |
|||
1082 |
1354 |
static int parse_frame_no_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset) |
|
1083 |
{ |
||
1084 |
1354 |
int ret = parse_frame(s, data, size, asset); |
|
1085 |
|||
1086 |
// If XLL packet data didn't start with a sync word, we must have jumped |
||
1087 |
// right into the middle of PBR smoothing period |
||
1088 |
✗✓✗✗ ✗✗ |
1354 |
if (ret == AVERROR(EAGAIN) && asset->xll_sync_present && asset->xll_sync_offset < size) { |
1089 |
// Skip to the next sync word in this packet |
||
1090 |
data += asset->xll_sync_offset; |
||
1091 |
size -= asset->xll_sync_offset; |
||
1092 |
|||
1093 |
// If decoding delay is set, put the frame into PBR buffer and return |
||
1094 |
// failure code. Higher level decoder is expected to switch to lossy |
||
1095 |
// core decoding or mute its output until decoding delay expires. |
||
1096 |
if (asset->xll_delay_nframes > 0) { |
||
1097 |
if ((ret = copy_to_pbr(s, data, size, asset->xll_delay_nframes)) < 0) |
||
1098 |
return ret; |
||
1099 |
return AVERROR(EAGAIN); |
||
1100 |
} |
||
1101 |
|||
1102 |
// No decoding delay, just parse the frame in place |
||
1103 |
ret = parse_frame(s, data, size, asset); |
||
1104 |
} |
||
1105 |
|||
1106 |
✗✓ | 1354 |
if (ret < 0) |
1107 |
return ret; |
||
1108 |
|||
1109 |
✗✓ | 1354 |
if (s->frame_size > size) |
1110 |
return AVERROR(EINVAL); |
||
1111 |
|||
1112 |
// If the XLL decoder didn't consume full packet, start PBR smoothing period |
||
1113 |
✗✓ | 1354 |
if (s->frame_size < size) |
1114 |
if ((ret = copy_to_pbr(s, data + s->frame_size, size - s->frame_size, 0)) < 0) |
||
1115 |
return ret; |
||
1116 |
|||
1117 |
1354 |
return 0; |
|
1118 |
} |
||
1119 |
|||
1120 |
static int parse_frame_pbr(DCAXllDecoder *s, uint8_t *data, int size, DCAExssAsset *asset) |
||
1121 |
{ |
||
1122 |
int ret; |
||
1123 |
|||
1124 |
if (size > DCA_XLL_PBR_BUFFER_MAX - s->pbr_length) { |
||
1125 |
ret = AVERROR(ENOSPC); |
||
1126 |
goto fail; |
||
1127 |
} |
||
1128 |
|||
1129 |
memcpy(s->pbr_buffer + s->pbr_length, data, size); |
||
1130 |
s->pbr_length += size; |
||
1131 |
|||
1132 |
// Respect decoding delay after synchronization error |
||
1133 |
if (s->pbr_delay > 0 && --s->pbr_delay) |
||
1134 |
return AVERROR(EAGAIN); |
||
1135 |
|||
1136 |
if ((ret = parse_frame(s, s->pbr_buffer, s->pbr_length, asset)) < 0) |
||
1137 |
goto fail; |
||
1138 |
|||
1139 |
if (s->frame_size > s->pbr_length) { |
||
1140 |
ret = AVERROR(EINVAL); |
||
1141 |
goto fail; |
||
1142 |
} |
||
1143 |
|||
1144 |
if (s->frame_size == s->pbr_length) { |
||
1145 |
// End of PBR smoothing period |
||
1146 |
clear_pbr(s); |
||
1147 |
} else { |
||
1148 |
s->pbr_length -= s->frame_size; |
||
1149 |
memmove(s->pbr_buffer, s->pbr_buffer + s->frame_size, s->pbr_length); |
||
1150 |
} |
||
1151 |
|||
1152 |
return 0; |
||
1153 |
|||
1154 |
fail: |
||
1155 |
// For now, throw out all PBR state on failure. |
||
1156 |
// Perhaps we can be smarter and try to resync somehow. |
||
1157 |
clear_pbr(s); |
||
1158 |
return ret; |
||
1159 |
} |
||
1160 |
|||
1161 |
1354 |
int ff_dca_xll_parse(DCAXllDecoder *s, uint8_t *data, DCAExssAsset *asset) |
|
1162 |
{ |
||
1163 |
int ret; |
||
1164 |
|||
1165 |
✗✓ | 1354 |
if (s->hd_stream_id != asset->hd_stream_id) { |
1166 |
clear_pbr(s); |
||
1167 |
s->hd_stream_id = asset->hd_stream_id; |
||
1168 |
} |
||
1169 |
|||
1170 |
✗✓ | 1354 |
if (s->pbr_length) |
1171 |
ret = parse_frame_pbr(s, data + asset->xll_offset, asset->xll_size, asset); |
||
1172 |
else |
||
1173 |
1354 |
ret = parse_frame_no_pbr(s, data + asset->xll_offset, asset->xll_size, asset); |
|
1174 |
|||
1175 |
1354 |
return ret; |
|
1176 |
} |
||
1177 |
|||
1178 |
50 |
static void undo_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band) |
|
1179 |
{ |
||
1180 |
50 |
int i, j, k, nchannels = 0, *coeff_ptr = o->dmix_coeff; |
|
1181 |
DCAXllChSet *c; |
||
1182 |
|||
1183 |
✓✗ | 55 |
for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) { |
1184 |
✗✓ | 55 |
if (!c->hier_chset) |
1185 |
continue; |
||
1186 |
|||
1187 |
av_assert1(band < c->nfreqbands); |
||
1188 |
✓✓ | 235 |
for (j = 0; j < c->nchannels; j++) { |
1189 |
✓✓ | 630 |
for (k = 0; k < o->nchannels; k++) { |
1190 |
450 |
int coeff = *coeff_ptr++; |
|
1191 |
✓✓ | 450 |
if (coeff) { |
1192 |
100 |
s->dcadsp->dmix_sub(c->bands[band].msb_sample_buffer[j], |
|
1193 |
100 |
o->bands[band].msb_sample_buffer[k], |
|
1194 |
100 |
coeff, s->nframesamples); |
|
1195 |
✓✓ | 100 |
if (band) |
1196 |
20 |
s->dcadsp->dmix_sub(c->deci_history[j], |
|
1197 |
20 |
o->deci_history[k], |
|
1198 |
coeff, DCA_XLL_DECI_HISTORY_MAX); |
||
1199 |
} |
||
1200 |
} |
||
1201 |
} |
||
1202 |
|||
1203 |
55 |
nchannels += c->nchannels; |
|
1204 |
✓✓ | 55 |
if (nchannels >= o->hier_ofs) |
1205 |
50 |
break; |
|
1206 |
} |
||
1207 |
50 |
} |
|
1208 |
|||
1209 |
50 |
static void scale_down_mix(DCAXllDecoder *s, DCAXllChSet *o, int band) |
|
1210 |
{ |
||
1211 |
50 |
int i, j, nchannels = 0; |
|
1212 |
DCAXllChSet *c; |
||
1213 |
|||
1214 |
✓✗ | 55 |
for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) { |
1215 |
✗✓ | 55 |
if (!c->hier_chset) |
1216 |
continue; |
||
1217 |
|||
1218 |
av_assert1(band < c->nfreqbands); |
||
1219 |
✓✓ | 295 |
for (j = 0; j < c->nchannels; j++) { |
1220 |
240 |
int scale = o->dmix_scale[nchannels++]; |
|
1221 |
✓✓ | 240 |
if (scale != (1 << 15)) { |
1222 |
180 |
s->dcadsp->dmix_scale(c->bands[band].msb_sample_buffer[j], |
|
1223 |
180 |
scale, s->nframesamples); |
|
1224 |
✓✓ | 180 |
if (band) |
1225 |
10 |
s->dcadsp->dmix_scale(c->deci_history[j], |
|
1226 |
scale, DCA_XLL_DECI_HISTORY_MAX); |
||
1227 |
} |
||
1228 |
} |
||
1229 |
|||
1230 |
✓✓ | 55 |
if (nchannels >= o->hier_ofs) |
1231 |
50 |
break; |
|
1232 |
} |
||
1233 |
50 |
} |
|
1234 |
|||
1235 |
// Clear all band data and replace non-residual encoded channels with lossy |
||
1236 |
// counterparts |
||
1237 |
52 |
static av_cold void force_lossy_output(DCAXllDecoder *s, DCAXllChSet *c) |
|
1238 |
{ |
||
1239 |
52 |
DCAContext *dca = s->avctx->priv_data; |
|
1240 |
int band, ch; |
||
1241 |
|||
1242 |
✓✓ | 114 |
for (band = 0; band < c->nfreqbands; band++) |
1243 |
62 |
chs_clear_band_data(s, c, band, -1); |
|
1244 |
|||
1245 |
✓✓ | 254 |
for (ch = 0; ch < c->nchannels; ch++) { |
1246 |
✓✓ | 202 |
if (!(c->residual_encode & (1 << ch))) |
1247 |
138 |
continue; |
|
1248 |
✓✓ | 64 |
if (ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]) < 0) |
1249 |
18 |
continue; |
|
1250 |
46 |
c->residual_encode &= ~(1 << ch); |
|
1251 |
} |
||
1252 |
52 |
} |
|
1253 |
|||
1254 |
1329 |
static int combine_residual_frame(DCAXllDecoder *s, DCAXllChSet *c) |
|
1255 |
{ |
||
1256 |
1329 |
DCAContext *dca = s->avctx->priv_data; |
|
1257 |
1329 |
int ch, nsamples = s->nframesamples; |
|
1258 |
DCAXllChSet *o; |
||
1259 |
|||
1260 |
// Verify that core is compatible |
||
1261 |
✗✓ | 1329 |
if (!(dca->packet & DCA_PACKET_CORE)) { |
1262 |
av_log(s->avctx, AV_LOG_ERROR, "Residual encoded channels are present without core\n"); |
||
1263 |
return AVERROR(EINVAL); |
||
1264 |
} |
||
1265 |
|||
1266 |
✗✓ | 1329 |
if (c->freq != dca->core.output_rate) { |
1267 |
av_log(s->avctx, AV_LOG_WARNING, "Sample rate mismatch between core (%d Hz) and XLL (%d Hz)\n", dca->core.output_rate, c->freq); |
||
1268 |
return AVERROR_INVALIDDATA; |
||
1269 |
} |
||
1270 |
|||
1271 |
✗✓ | 1329 |
if (nsamples != dca->core.npcmsamples) { |
1272 |
av_log(s->avctx, AV_LOG_WARNING, "Number of samples per frame mismatch between core (%d) and XLL (%d)\n", dca->core.npcmsamples, nsamples); |
||
1273 |
return AVERROR_INVALIDDATA; |
||
1274 |
} |
||
1275 |
|||
1276 |
// See if this channel set is downmixed and find the next channel set in |
||
1277 |
// hierarchy. If downmixed, undo core pre-scaling before combining with |
||
1278 |
// residual (residual is not scaled). |
||
1279 |
1329 |
o = find_next_hier_dmix_chset(s, c); |
|
1280 |
|||
1281 |
// Reduce core bit width and combine with residual |
||
1282 |
✓✓ | 9173 |
for (ch = 0; ch < c->nchannels; ch++) { |
1283 |
int n, spkr, shift, round; |
||
1284 |
int32_t *src, *dst; |
||
1285 |
|||
1286 |
✓✓ | 7844 |
if (c->residual_encode & (1 << ch)) |
1287 |
157 |
continue; |
|
1288 |
|||
1289 |
// Map this channel to core speaker |
||
1290 |
7687 |
spkr = ff_dca_core_map_spkr(&dca->core, c->ch_remap[ch]); |
|
1291 |
✗✓ | 7687 |
if (spkr < 0) { |
1292 |
av_log(s->avctx, AV_LOG_WARNING, "Residual encoded channel (%d) references unavailable core channel\n", c->ch_remap[ch]); |
||
1293 |
return AVERROR_INVALIDDATA; |
||
1294 |
} |
||
1295 |
|||
1296 |
// Account for LSB width |
||
1297 |
7687 |
shift = 24 - c->pcm_bit_res + chs_get_lsb_width(s, c, 0, ch); |
|
1298 |
✗✓ | 7687 |
if (shift > 24) { |
1299 |
av_log(s->avctx, AV_LOG_WARNING, "Invalid core shift (%d bits)\n", shift); |
||
1300 |
return AVERROR_INVALIDDATA; |
||
1301 |
} |
||
1302 |
|||
1303 |
✓✓ | 7687 |
round = shift > 0 ? 1 << (shift - 1) : 0; |
1304 |
|||
1305 |
7687 |
src = dca->core.output_samples[spkr]; |
|
1306 |
7687 |
dst = c->bands[0].msb_sample_buffer[ch]; |
|
1307 |
✓✓ | 7687 |
if (o) { |
1308 |
// Undo embedded core downmix pre-scaling |
||
1309 |
187 |
int scale_inv = o->dmix_scale_inv[c->hier_ofs + ch]; |
|
1310 |
✓✓ | 122043 |
for (n = 0; n < nsamples; n++) |
1311 |
121856 |
dst[n] += (SUINT)clip23((mul16(src[n], scale_inv) + round) >> shift); |
|
1312 |
} else { |
||
1313 |
// No downmix scaling |
||
1314 |
✓✓ | 3986764 |
for (n = 0; n < nsamples; n++) |
1315 |
3979264 |
dst[n] += (unsigned)((src[n] + round) >> shift); |
|
1316 |
} |
||
1317 |
} |
||
1318 |
|||
1319 |
1329 |
return 0; |
|
1320 |
} |
||
1321 |
|||
1322 |
1354 |
int ff_dca_xll_filter_frame(DCAXllDecoder *s, AVFrame *frame) |
|
1323 |
{ |
||
1324 |
1354 |
AVCodecContext *avctx = s->avctx; |
|
1325 |
1354 |
DCAContext *dca = avctx->priv_data; |
|
1326 |
1354 |
DCAExssAsset *asset = &dca->exss.assets[0]; |
|
1327 |
1354 |
DCAXllChSet *p = &s->chset[0], *c; |
|
1328 |
1354 |
enum AVMatrixEncoding matrix_encoding = AV_MATRIX_ENCODING_NONE; |
|
1329 |
int i, j, k, ret, shift, nsamples, request_mask; |
||
1330 |
int ch_remap[DCA_SPEAKER_COUNT]; |
||
1331 |
|||
1332 |
// Force lossy downmixed output during recovery |
||
1333 |
✓✓ | 1354 |
if (dca->packet & DCA_PACKET_RECOVERY) { |
1334 |
✓✓ | 105 |
for (i = 0, c = s->chset; i < s->nchsets; i++, c++) { |
1335 |
✓✓ | 72 |
if (i < s->nactivechsets) |
1336 |
52 |
force_lossy_output(s, c); |
|
1337 |
|||
1338 |
✓✓ | 72 |
if (!c->primary_chset) |
1339 |
39 |
c->dmix_embedded = 0; |
|
1340 |
} |
||
1341 |
|||
1342 |
33 |
s->scalable_lsbs = 0; |
|
1343 |
33 |
s->fixed_lsb_width = 0; |
|
1344 |
} |
||
1345 |
|||
1346 |
// Filter frequency bands for active channel sets |
||
1347 |
1354 |
s->output_mask = 0; |
|
1348 |
✓✓ | 3938 |
for (i = 0, c = s->chset; i < s->nactivechsets; i++, c++) { |
1349 |
2584 |
chs_filter_band_data(s, c, 0); |
|
1350 |
|||
1351 |
✓✓ | 2584 |
if (c->residual_encode != (1 << c->nchannels) - 1 |
1352 |
✗✓ | 1329 |
&& (ret = combine_residual_frame(s, c)) < 0) |
1353 |
return ret; |
||
1354 |
|||
1355 |
✓✓ | 2584 |
if (s->scalable_lsbs) |
1356 |
136 |
chs_assemble_msbs_lsbs(s, c, 0); |
|
1357 |
|||
1358 |
✓✓ | 2584 |
if (c->nfreqbands > 1) { |
1359 |
56 |
chs_filter_band_data(s, c, 1); |
|
1360 |
56 |
chs_assemble_msbs_lsbs(s, c, 1); |
|
1361 |
} |
||
1362 |
|||
1363 |
2584 |
s->output_mask |= c->ch_mask; |
|
1364 |
} |
||
1365 |
|||
1366 |
// Undo hierarchial downmix and/or apply scaling |
||
1367 |
✓✓ | 2604 |
for (i = 1, c = &s->chset[1]; i < s->nchsets; i++, c++) { |
1368 |
✓✓ | 1295 |
if (!is_hier_dmix_chset(c)) |
1369 |
1210 |
continue; |
|
1370 |
|||
1371 |
✓✓ | 85 |
if (i >= s->nactivechsets) { |
1372 |
✓✓ | 95 |
for (j = 0; j < c->nfreqbands; j++) |
1373 |
✓✗ | 50 |
if (c->bands[j].dmix_embedded) |
1374 |
50 |
scale_down_mix(s, c, j); |
|
1375 |
45 |
break; |
|
1376 |
} |
||
1377 |
|||
1378 |
✓✓ | 90 |
for (j = 0; j < c->nfreqbands; j++) |
1379 |
✓✗ | 50 |
if (c->bands[j].dmix_embedded) |
1380 |
50 |
undo_down_mix(s, c, j); |
|
1381 |
} |
||
1382 |
|||
1383 |
// Assemble frequency bands for active channel sets |
||
1384 |
✓✓ | 1354 |
if (s->nfreqbands > 1) { |
1385 |
✓✓ | 98 |
for (i = 0; i < s->nactivechsets; i++) |
1386 |
✗✓ | 56 |
if ((ret = chs_assemble_freq_bands(s, &s->chset[i])) < 0) |
1387 |
return ret; |
||
1388 |
} |
||
1389 |
|||
1390 |
// Normalize to regular 5.1 layout if downmixing |
||
1391 |
✓✓ | 1354 |
if (dca->request_channel_layout) { |
1392 |
✓✓ | 120 |
if (s->output_mask & DCA_SPEAKER_MASK_Lss) { |
1393 |
35 |
s->output_samples[DCA_SPEAKER_Ls] = s->output_samples[DCA_SPEAKER_Lss]; |
|
1394 |
35 |
s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Lss) | DCA_SPEAKER_MASK_Ls; |
|
1395 |
} |
||
1396 |
✓✓ | 120 |
if (s->output_mask & DCA_SPEAKER_MASK_Rss) { |
1397 |
35 |
s->output_samples[DCA_SPEAKER_Rs] = s->output_samples[DCA_SPEAKER_Rss]; |
|
1398 |
35 |
s->output_mask = (s->output_mask & ~DCA_SPEAKER_MASK_Rss) | DCA_SPEAKER_MASK_Rs; |
|
1399 |
} |
||
1400 |
} |
||
1401 |
|||
1402 |
// Handle downmixing to stereo request |
||
1403 |
✓✓ | 1354 |
if (dca->request_channel_layout == DCA_SPEAKER_LAYOUT_STEREO |
1404 |
✓✗✓✓ |
60 |
&& DCA_HAS_STEREO(s->output_mask) && p->dmix_embedded |
1405 |
✗✓ | 7 |
&& (p->dmix_type == DCA_DMIX_TYPE_LoRo || |
1406 |
p->dmix_type == DCA_DMIX_TYPE_LtRt)) |
||
1407 |
7 |
request_mask = DCA_SPEAKER_LAYOUT_STEREO; |
|
1408 |
else |
||
1409 |
1347 |
request_mask = s->output_mask; |
|
1410 |
✗✓ | 1354 |
if (!ff_dca_set_channel_layout(avctx, ch_remap, request_mask)) |
1411 |
return AVERROR(EINVAL); |
||
1412 |
|||
1413 |
1354 |
avctx->sample_rate = p->freq << (s->nfreqbands - 1); |
|
1414 |
|||
1415 |
✓✓✗ | 1354 |
switch (p->storage_bit_res) { |
1416 |
42 |
case 16: |
|
1417 |
42 |
avctx->sample_fmt = AV_SAMPLE_FMT_S16P; |
|
1418 |
42 |
shift = 16 - p->pcm_bit_res; |
|
1419 |
42 |
break; |
|
1420 |
1312 |
case 20: |
|
1421 |
case 24: |
||
1422 |
1312 |
avctx->sample_fmt = AV_SAMPLE_FMT_S32P; |
|
1423 |
1312 |
shift = 24 - p->pcm_bit_res; |
|
1424 |
1312 |
break; |
|
1425 |
default: |
||
1426 |
return AVERROR(EINVAL); |
||
1427 |
} |
||
1428 |
|||
1429 |
1354 |
avctx->bits_per_raw_sample = p->storage_bit_res; |
|
1430 |
1354 |
avctx->profile = FF_PROFILE_DTS_HD_MA; |
|
1431 |
1354 |
avctx->bit_rate = 0; |
|
1432 |
|||
1433 |
1354 |
frame->nb_samples = nsamples = s->nframesamples << (s->nfreqbands - 1); |
|
1434 |
✗✓ | 1354 |
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
1435 |
return ret; |
||
1436 |
|||
1437 |
// Downmix primary channel set to stereo |
||
1438 |
✓✓ | 1354 |
if (request_mask != s->output_mask) { |
1439 |
7 |
ff_dca_downmix_to_stereo_fixed(s->dcadsp, s->output_samples, |
|
1440 |
7 |
p->dmix_coeff, nsamples, |
|
1441 |
s->output_mask); |
||
1442 |
} |
||
1443 |
|||
1444 |
✓✓ | 11791 |
for (i = 0; i < avctx->channels; i++) { |
1445 |
10437 |
int32_t *samples = s->output_samples[ch_remap[i]]; |
|
1446 |
✓✓ | 10437 |
if (frame->format == AV_SAMPLE_FMT_S16P) { |
1447 |
224 |
int16_t *plane = (int16_t *)frame->extended_data[i]; |
|
1448 |
✓✓ | 458976 |
for (k = 0; k < nsamples; k++) |
1449 |
458752 |
plane[k] = av_clip_int16(samples[k] * (SUINT)(1 << shift)); |
|
1450 |
} else { |
||
1451 |
10213 |
int32_t *plane = (int32_t *)frame->extended_data[i]; |
|
1452 |
✓✓ | 5412325 |
for (k = 0; k < nsamples; k++) |
1453 |
5402112 |
plane[k] = clip23(samples[k] * (SUINT)(1 << shift)) * (1 << 8); |
|
1454 |
} |
||
1455 |
} |
||
1456 |
|||
1457 |
✗✓ | 1354 |
if (!asset->one_to_one_map_ch_to_spkr) { |
1458 |
if (asset->representation_type == DCA_REPR_TYPE_LtRt) |
||
1459 |
matrix_encoding = AV_MATRIX_ENCODING_DOLBY; |
||
1460 |
else if (asset->representation_type == DCA_REPR_TYPE_LhRh) |
||
1461 |
matrix_encoding = AV_MATRIX_ENCODING_DOLBYHEADPHONE; |
||
1462 |
✓✓✗✓ |
1354 |
} else if (request_mask != s->output_mask && p->dmix_type == DCA_DMIX_TYPE_LtRt) { |
1463 |
matrix_encoding = AV_MATRIX_ENCODING_DOLBY; |
||
1464 |
} |
||
1465 |
✗✓ | 1354 |
if ((ret = ff_side_data_update_matrix_encoding(frame, matrix_encoding)) < 0) |
1466 |
return ret; |
||
1467 |
|||
1468 |
1354 |
return 0; |
|
1469 |
} |
||
1470 |
|||
1471 |
av_cold void ff_dca_xll_flush(DCAXllDecoder *s) |
||
1472 |
{ |
||
1473 |
clear_pbr(s); |
||
1474 |
} |
||
1475 |
|||
1476 |
92 |
av_cold void ff_dca_xll_close(DCAXllDecoder *s) |
|
1477 |
{ |
||
1478 |
DCAXllChSet *c; |
||
1479 |
int i, j; |
||
1480 |
|||
1481 |
✓✓ | 368 |
for (i = 0, c = s->chset; i < DCA_XLL_CHSETS_MAX; i++, c++) { |
1482 |
✓✓ | 1104 |
for (j = 0; j < DCA_XLL_SAMPLE_BUFFERS_MAX; j++) { |
1483 |
828 |
av_freep(&c->sample_buffer[j]); |
|
1484 |
828 |
c->sample_size[j] = 0; |
|
1485 |
} |
||
1486 |
} |
||
1487 |
|||
1488 |
92 |
av_freep(&s->navi); |
|
1489 |
92 |
s->navi_size = 0; |
|
1490 |
|||
1491 |
92 |
av_freep(&s->pbr_buffer); |
|
1492 |
92 |
clear_pbr(s); |
|
1493 |
92 |
} |
Generated by: GCOVR (Version 4.2) |