GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/cook.c Lines: 427 525 81.3 %
Date: 2019-11-22 03:34:36 Branches: 190 267 71.2 %

Line Branch Exec Source
1
/*
2
 * COOK compatible decoder
3
 * Copyright (c) 2003 Sascha Sommer
4
 * Copyright (c) 2005 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
/**
24
 * @file
25
 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26
 * This decoder handles RealNetworks, RealAudio G2 data.
27
 * Cook is identified by the codec name cook in RM files.
28
 *
29
 * To use this decoder, a calling application must supply the extradata
30
 * bytes provided from the RM container; 8+ bytes for mono streams and
31
 * 16+ for stereo streams (maybe more).
32
 *
33
 * Codec technicalities (all this assume a buffer length of 1024):
34
 * Cook works with several different techniques to achieve its compression.
35
 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36
 * two neighboring pieces have different quantization index a smooth
37
 * quantization curve is used to get a smooth overlap between the different
38
 * pieces.
39
 * To get to the transformdomain Cook uses a modulated lapped transform.
40
 * The transform domain has 50 subbands with 20 elements each. This
41
 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42
 * available.
43
 */
44
45
#include "libavutil/channel_layout.h"
46
#include "libavutil/lfg.h"
47
48
#include "audiodsp.h"
49
#include "avcodec.h"
50
#include "get_bits.h"
51
#include "bytestream.h"
52
#include "fft.h"
53
#include "internal.h"
54
#include "sinewin.h"
55
#include "unary.h"
56
57
#include "cookdata.h"
58
59
/* the different Cook versions */
60
#define MONO            0x1000001
61
#define STEREO          0x1000002
62
#define JOINT_STEREO    0x1000003
63
#define MC_COOK         0x2000000
64
65
#define SUBBAND_SIZE    20
66
#define MAX_SUBPACKETS   5
67
68
typedef struct cook_gains {
69
    int *now;
70
    int *previous;
71
} cook_gains;
72
73
typedef struct COOKSubpacket {
74
    int                 ch_idx;
75
    int                 size;
76
    int                 num_channels;
77
    int                 cookversion;
78
    int                 subbands;
79
    int                 js_subband_start;
80
    int                 js_vlc_bits;
81
    int                 samples_per_channel;
82
    int                 log2_numvector_size;
83
    unsigned int        channel_mask;
84
    VLC                 channel_coupling;
85
    int                 joint_stereo;
86
    int                 bits_per_subpacket;
87
    int                 bits_per_subpdiv;
88
    int                 total_subbands;
89
    int                 numvector_size;       // 1 << log2_numvector_size;
90
91
    float               mono_previous_buffer1[1024];
92
    float               mono_previous_buffer2[1024];
93
94
    cook_gains          gains1;
95
    cook_gains          gains2;
96
    int                 gain_1[9];
97
    int                 gain_2[9];
98
    int                 gain_3[9];
99
    int                 gain_4[9];
100
} COOKSubpacket;
101
102
typedef struct cook {
103
    /*
104
     * The following 5 functions provide the lowlevel arithmetic on
105
     * the internal audio buffers.
106
     */
107
    void (*scalar_dequant)(struct cook *q, int index, int quant_index,
108
                           int *subband_coef_index, int *subband_coef_sign,
109
                           float *mlt_p);
110
111
    void (*decouple)(struct cook *q,
112
                     COOKSubpacket *p,
113
                     int subband,
114
                     float f1, float f2,
115
                     float *decode_buffer,
116
                     float *mlt_buffer1, float *mlt_buffer2);
117
118
    void (*imlt_window)(struct cook *q, float *buffer1,
119
                        cook_gains *gains_ptr, float *previous_buffer);
120
121
    void (*interpolate)(struct cook *q, float *buffer,
122
                        int gain_index, int gain_index_next);
123
124
    void (*saturate_output)(struct cook *q, float *out);
125
126
    AVCodecContext*     avctx;
127
    AudioDSPContext     adsp;
128
    GetBitContext       gb;
129
    /* stream data */
130
    int                 num_vectors;
131
    int                 samples_per_channel;
132
    /* states */
133
    AVLFG               random_state;
134
    int                 discarded_packets;
135
136
    /* transform data */
137
    FFTContext          mdct_ctx;
138
    float*              mlt_window;
139
140
    /* VLC data */
141
    VLC                 envelope_quant_index[13];
142
    VLC                 sqvh[7];          // scalar quantization
143
144
    /* generate tables and related variables */
145
    int                 gain_size_factor;
146
    float               gain_table[31];
147
148
    /* data buffers */
149
150
    uint8_t*            decoded_bytes_buffer;
151
    DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
152
    float               decode_buffer_1[1024];
153
    float               decode_buffer_2[1024];
154
    float               decode_buffer_0[1060]; /* static allocation for joint decode */
155
156
    const float         *cplscales[5];
157
    int                 num_subpackets;
158
    COOKSubpacket       subpacket[MAX_SUBPACKETS];
159
} COOKContext;
160
161
static float     pow2tab[127];
162
static float rootpow2tab[127];
163
164
/*************** init functions ***************/
165
166
/* table generator */
167
6
static av_cold void init_pow2table(void)
168
{
169
    /* fast way of computing 2^i and 2^(0.5*i) for -63 <= i < 64 */
170
    int i;
171
    static const float exp2_tab[2] = {1, M_SQRT2};
172
6
    float exp2_val = powf(2, -63);
173
6
    float root_val = powf(2, -32);
174
768
    for (i = -63; i < 64; i++) {
175
762
        if (!(i & 1))
176
378
            root_val *= 2;
177
762
        pow2tab[63 + i] = exp2_val;
178
762
        rootpow2tab[63 + i] = root_val * exp2_tab[i & 1];
179
762
        exp2_val *= 2;
180
    }
181
6
}
182
183
/* table generator */
184
6
static av_cold void init_gain_table(COOKContext *q)
185
{
186
    int i;
187
6
    q->gain_size_factor = q->samples_per_channel / 8;
188
192
    for (i = 0; i < 31; i++)
189
186
        q->gain_table[i] = pow(pow2tab[i + 48],
190
186
                               (1.0 / (double) q->gain_size_factor));
191
6
}
192
193
194
6
static av_cold int init_cook_vlc_tables(COOKContext *q)
195
{
196
    int i, result;
197
198
6
    result = 0;
199
84
    for (i = 0; i < 13; i++) {
200
78
        result |= init_vlc(&q->envelope_quant_index[i], 9, 24,
201
                           envelope_quant_index_huffbits[i], 1, 1,
202
                           envelope_quant_index_huffcodes[i], 2, 2, 0);
203
    }
204
6
    av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
205
48
    for (i = 0; i < 7; i++) {
206
42
        result |= init_vlc(&q->sqvh[i], vhvlcsize_tab[i], vhsize_tab[i],
207
                           cvh_huffbits[i], 1, 1,
208
                           cvh_huffcodes[i], 2, 2, 0);
209
    }
210
211
12
    for (i = 0; i < q->num_subpackets; i++) {
212
6
        if (q->subpacket[i].joint_stereo == 1) {
213
4
            result |= init_vlc(&q->subpacket[i].channel_coupling, 6,
214
                               (1 << q->subpacket[i].js_vlc_bits) - 1,
215
                               ccpl_huffbits[q->subpacket[i].js_vlc_bits - 2], 1, 1,
216
                               ccpl_huffcodes[q->subpacket[i].js_vlc_bits - 2], 2, 2, 0);
217
4
            av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
218
        }
219
    }
220
221
6
    av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
222
6
    return result;
223
}
224
225
6
static av_cold int init_cook_mlt(COOKContext *q)
226
{
227
    int j, ret;
228
6
    int mlt_size = q->samples_per_channel;
229
230
6
    if ((q->mlt_window = av_malloc_array(mlt_size, sizeof(*q->mlt_window))) == 0)
231
        return AVERROR(ENOMEM);
232
233
    /* Initialize the MLT window: simple sine window. */
234
6
    ff_sine_window_init(q->mlt_window, mlt_size);
235
6150
    for (j = 0; j < mlt_size; j++)
236
6144
        q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
237
238
    /* Initialize the MDCT. */
239
6
    if ((ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0))) {
240
        av_freep(&q->mlt_window);
241
        return ret;
242
    }
243
6
    av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
244
6
           av_log2(mlt_size) + 1);
245
246
6
    return 0;
247
}
248
249
6
static av_cold void init_cplscales_table(COOKContext *q)
250
{
251
    int i;
252
36
    for (i = 0; i < 5; i++)
253
30
        q->cplscales[i] = cplscales[i];
254
6
}
255
256
/*************** init functions end ***********/
257
258
#define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
259
#define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
260
261
/**
262
 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
263
 * Why? No idea, some checksum/error detection method maybe.
264
 *
265
 * Out buffer size: extra bytes are needed to cope with
266
 * padding/misalignment.
267
 * Subpackets passed to the decoder can contain two, consecutive
268
 * half-subpackets, of identical but arbitrary size.
269
 *          1234 1234 1234 1234  extraA extraB
270
 * Case 1:  AAAA BBBB              0      0
271
 * Case 2:  AAAA ABBB BB--         3      3
272
 * Case 3:  AAAA AABB BBBB         2      2
273
 * Case 4:  AAAA AAAB BBBB BB--    1      5
274
 *
275
 * Nice way to waste CPU cycles.
276
 *
277
 * @param inbuffer  pointer to byte array of indata
278
 * @param out       pointer to byte array of outdata
279
 * @param bytes     number of bytes
280
 */
281
240
static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
282
{
283
    static const uint32_t tab[4] = {
284
        AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
285
        AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
286
    };
287
    int i, off;
288
    uint32_t c;
289
    const uint32_t *buf;
290
240
    uint32_t *obuf = (uint32_t *) out;
291
    /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
292
     * I'm too lazy though, should be something like
293
     * for (i = 0; i < bitamount / 64; i++)
294
     *     (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
295
     * Buffer alignment needs to be checked. */
296
297
240
    off = (intptr_t) inbuffer & 3;
298
240
    buf = (const uint32_t *) (inbuffer - off);
299
240
    c = tab[off];
300
240
    bytes += 3 + off;
301
11520
    for (i = 0; i < bytes / 4; i++)
302
11280
        obuf[i] = c ^ buf[i];
303
304
240
    return off;
305
}
306
307
6
static av_cold int cook_decode_close(AVCodecContext *avctx)
308
{
309
    int i;
310
6
    COOKContext *q = avctx->priv_data;
311
6
    av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
312
313
    /* Free allocated memory buffers. */
314
6
    av_freep(&q->mlt_window);
315
6
    av_freep(&q->decoded_bytes_buffer);
316
317
    /* Free the transform. */
318
6
    ff_mdct_end(&q->mdct_ctx);
319
320
    /* Free the VLC tables. */
321
84
    for (i = 0; i < 13; i++)
322
78
        ff_free_vlc(&q->envelope_quant_index[i]);
323
48
    for (i = 0; i < 7; i++)
324
42
        ff_free_vlc(&q->sqvh[i]);
325
12
    for (i = 0; i < q->num_subpackets; i++)
326
6
        ff_free_vlc(&q->subpacket[i].channel_coupling);
327
328
6
    av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
329
330
6
    return 0;
331
}
332
333
/**
334
 * Fill the gain array for the timedomain quantization.
335
 *
336
 * @param gb          pointer to the GetBitContext
337
 * @param gaininfo    array[9] of gain indexes
338
 */
339
240
static void decode_gain_info(GetBitContext *gb, int *gaininfo)
340
{
341
    int i, n;
342
343
240
    n = get_unary(gb, 0, get_bits_left(gb));     // amount of elements*2 to update
344
345
240
    i = 0;
346
241
    while (n--) {
347
1
        int index = get_bits(gb, 3);
348
1
        int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
349
350
8
        while (i <= index)
351
7
            gaininfo[i++] = gain;
352
    }
353
2393
    while (i <= 8)
354
2153
        gaininfo[i++] = 0;
355
240
}
356
357
/**
358
 * Create the quant index table needed for the envelope.
359
 *
360
 * @param q                 pointer to the COOKContext
361
 * @param quant_index_table pointer to the array
362
 */
363
240
static int decode_envelope(COOKContext *q, COOKSubpacket *p,
364
                           int *quant_index_table)
365
{
366
    int i, j, vlc_index;
367
368
240
    quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
369
370
10320
    for (i = 1; i < p->total_subbands; i++) {
371
10080
        vlc_index = i;
372
10080
        if (i >= p->js_subband_start * 2) {
373
7440
            vlc_index -= p->js_subband_start;
374
        } else {
375
2640
            vlc_index /= 2;
376
2640
            if (vlc_index < 1)
377
240
                vlc_index = 1;
378
        }
379
10080
        if (vlc_index > 13)
380
5520
            vlc_index = 13; // the VLC tables >13 are identical to No. 13
381
382
10080
        j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
383
10080
                     q->envelope_quant_index[vlc_index - 1].bits, 2);
384
10080
        quant_index_table[i] = quant_index_table[i - 1] + j - 12; // differential encoding
385

10080
        if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
386
            av_log(q->avctx, AV_LOG_ERROR,
387
                   "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
388
                   quant_index_table[i], i);
389
            return AVERROR_INVALIDDATA;
390
        }
391
    }
392
393
240
    return 0;
394
}
395
396
/**
397
 * Calculate the category and category_index vector.
398
 *
399
 * @param q                     pointer to the COOKContext
400
 * @param quant_index_table     pointer to the array
401
 * @param category              pointer to the category array
402
 * @param category_index        pointer to the category_index array
403
 */
404
240
static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
405
                       int *category, int *category_index)
406
{
407
    int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
408
240
    int exp_index2[102] = { 0 };
409
240
    int exp_index1[102] = { 0 };
410
411
240
    int tmp_categorize_array[128 * 2] = { 0 };
412
240
    int tmp_categorize_array1_idx = p->numvector_size;
413
240
    int tmp_categorize_array2_idx = p->numvector_size;
414
415
240
    bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
416
417
240
    if (bits_left > q->samples_per_channel)
418
240
        bits_left = q->samples_per_channel +
419
240
                    ((bits_left - q->samples_per_channel) * 5) / 8;
420
421
240
    bias = -32;
422
423
    /* Estimate bias. */
424
1680
    for (i = 32; i > 0; i = i / 2) {
425
1440
        num_bits = 0;
426
1440
        index    = 0;
427
63360
        for (j = p->total_subbands; j > 0; j--) {
428
61920
            exp_idx = av_clip_uintp2((i - quant_index_table[index] + bias) / 2, 3);
429
61920
            index++;
430
61920
            num_bits += expbits_tab[exp_idx];
431
        }
432
1440
        if (num_bits >= bits_left - 32)
433
1333
            bias += i;
434
    }
435
436
    /* Calculate total number of bits. */
437
240
    num_bits = 0;
438
10560
    for (i = 0; i < p->total_subbands; i++) {
439
10320
        exp_idx = av_clip_uintp2((bias - quant_index_table[i]) / 2, 3);
440
10320
        num_bits += expbits_tab[exp_idx];
441
10320
        exp_index1[i] = exp_idx;
442
10320
        exp_index2[i] = exp_idx;
443
    }
444
240
    tmpbias1 = tmpbias2 = num_bits;
445
446
30720
    for (j = 1; j < p->numvector_size; j++) {
447
30480
        if (tmpbias1 + tmpbias2 > 2 * bits_left) {  /* ---> */
448
16408
            int max = -999999;
449
16408
            index = -1;
450
721952
            for (i = 0; i < p->total_subbands; i++) {
451
705544
                if (exp_index1[i] < 7) {
452
543313
                    v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
453
543313
                    if (v >= max) {
454
186262
                        max   = v;
455
186262
                        index = i;
456
                    }
457
                }
458
            }
459
16408
            if (index == -1)
460
                break;
461
16408
            tmp_categorize_array[tmp_categorize_array1_idx++] = index;
462
16408
            tmpbias1 -= expbits_tab[exp_index1[index]] -
463
16408
                        expbits_tab[exp_index1[index] + 1];
464
16408
            ++exp_index1[index];
465
        } else {  /* <--- */
466
14072
            int min = 999999;
467
14072
            index = -1;
468
619168
            for (i = 0; i < p->total_subbands; i++) {
469
605096
                if (exp_index2[i] > 0) {
470
527917
                    v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
471
527917
                    if (v < min) {
472
31097
                        min   = v;
473
31097
                        index = i;
474
                    }
475
                }
476
            }
477
14072
            if (index == -1)
478
                break;
479
14072
            tmp_categorize_array[--tmp_categorize_array2_idx] = index;
480
14072
            tmpbias2 -= expbits_tab[exp_index2[index]] -
481
14072
                        expbits_tab[exp_index2[index] - 1];
482
14072
            --exp_index2[index];
483
        }
484
    }
485
486
10560
    for (i = 0; i < p->total_subbands; i++)
487
10320
        category[i] = exp_index2[i];
488
489
30720
    for (i = 0; i < p->numvector_size - 1; i++)
490
30480
        category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
491
240
}
492
493
494
/**
495
 * Expand the category vector.
496
 *
497
 * @param q                     pointer to the COOKContext
498
 * @param category              pointer to the category array
499
 * @param category_index        pointer to the category_index array
500
 */
501
240
static inline void expand_category(COOKContext *q, int *category,
502
                                   int *category_index)
503
{
504
    int i;
505
15141
    for (i = 0; i < q->num_vectors; i++)
506
    {
507
14901
        int idx = category_index[i];
508
14901
        if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
509
            --category[idx];
510
    }
511
240
}
512
513
/**
514
 * The real requantization of the mltcoefs
515
 *
516
 * @param q                     pointer to the COOKContext
517
 * @param index                 index
518
 * @param quant_index           quantisation index
519
 * @param subband_coef_index    array of indexes to quant_centroid_tab
520
 * @param subband_coef_sign     signs of coefficients
521
 * @param mlt_p                 pointer into the mlt buffer
522
 */
523
10320
static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
524
                                 int *subband_coef_index, int *subband_coef_sign,
525
                                 float *mlt_p)
526
{
527
    int i;
528
    float f1;
529
530
216720
    for (i = 0; i < SUBBAND_SIZE; i++) {
531
206400
        if (subband_coef_index[i]) {
532
67248
            f1 = quant_centroid_tab[index][subband_coef_index[i]];
533
67248
            if (subband_coef_sign[i])
534
33713
                f1 = -f1;
535
        } else {
536
            /* noise coding if subband_coef_index[i] == 0 */
537
139152
            f1 = dither_tab[index];
538
139152
            if (av_lfg_get(&q->random_state) < 0x80000000)
539
69511
                f1 = -f1;
540
        }
541
206400
        mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
542
    }
543
10320
}
544
/**
545
 * Unpack the subband_coef_index and subband_coef_sign vectors.
546
 *
547
 * @param q                     pointer to the COOKContext
548
 * @param category              pointer to the category array
549
 * @param subband_coef_index    array of indexes to quant_centroid_tab
550
 * @param subband_coef_sign     signs of coefficients
551
 */
552
8969
static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
553
                       int *subband_coef_index, int *subband_coef_sign)
554
{
555
    int i, j;
556
    int vlc, vd, tmp, result;
557
558
8969
    vd = vd_tab[category];
559
8969
    result = 0;
560
65444
    for (i = 0; i < vpr_tab[category]; i++) {
561
56475
        vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
562
56475
        if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
563
            vlc = 0;
564
            result = 1;
565
        }
566
235855
        for (j = vd - 1; j >= 0; j--) {
567
179380
            tmp = (vlc * invradix_tab[category]) / 0x100000;
568
179380
            subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
569
179380
            vlc = tmp;
570
        }
571
235855
        for (j = 0; j < vd; j++) {
572
179380
            if (subband_coef_index[i * vd + j]) {
573
67248
                if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
574
67248
                    subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
575
                } else {
576
                    result = 1;
577
                    subband_coef_sign[i * vd + j] = 0;
578
                }
579
            } else {
580
112132
                subband_coef_sign[i * vd + j] = 0;
581
            }
582
        }
583
    }
584
8969
    return result;
585
}
586
587
588
/**
589
 * Fill the mlt_buffer with mlt coefficients.
590
 *
591
 * @param q                 pointer to the COOKContext
592
 * @param category          pointer to the category array
593
 * @param quant_index_table pointer to the array
594
 * @param mlt_buffer        pointer to mlt coefficients
595
 */
596
240
static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
597
                           int *quant_index_table, float *mlt_buffer)
598
{
599
    /* A zero in this table means that the subband coefficient is
600
       random noise coded. */
601
    int subband_coef_index[SUBBAND_SIZE];
602
    /* A zero in this table means that the subband coefficient is a
603
       positive multiplicator. */
604
    int subband_coef_sign[SUBBAND_SIZE];
605
    int band, j;
606
240
    int index = 0;
607
608
10560
    for (band = 0; band < p->total_subbands; band++) {
609
10320
        index = category[band];
610
10320
        if (category[band] < 7) {
611
8969
            if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
612
                index = 7;
613
                for (j = 0; j < p->total_subbands; j++)
614
                    category[band + j] = 7;
615
            }
616
        }
617
10320
        if (index >= 7) {
618
1351
            memset(subband_coef_index, 0, sizeof(subband_coef_index));
619
1351
            memset(subband_coef_sign,  0, sizeof(subband_coef_sign));
620
        }
621
10320
        q->scalar_dequant(q, index, quant_index_table[band],
622
                          subband_coef_index, subband_coef_sign,
623
10320
                          &mlt_buffer[band * SUBBAND_SIZE]);
624
    }
625
626
    /* FIXME: should this be removed, or moved into loop above? */
627
240
    if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
628
        return;
629
}
630
631
632
240
static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
633
{
634
240
    int category_index[128] = { 0 };
635
240
    int category[128]       = { 0 };
636
    int quant_index_table[102];
637
    int res, i;
638
639
240
    if ((res = decode_envelope(q, p, quant_index_table)) < 0)
640
        return res;
641
240
    q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
642
240
    categorize(q, p, quant_index_table, category, category_index);
643
240
    expand_category(q, category, category_index);
644
10560
    for (i=0; i<p->total_subbands; i++) {
645
10320
        if (category[i] > 7)
646
            return AVERROR_INVALIDDATA;
647
    }
648
240
    decode_vectors(q, p, category, quant_index_table, mlt_buffer);
649
650
240
    return 0;
651
}
652
653
654
/**
655
 * the actual requantization of the timedomain samples
656
 *
657
 * @param q                 pointer to the COOKContext
658
 * @param buffer            pointer to the timedomain buffer
659
 * @param gain_index        index for the block multiplier
660
 * @param gain_index_next   index for the next block multiplier
661
 */
662
14
static void interpolate_float(COOKContext *q, float *buffer,
663
                              int gain_index, int gain_index_next)
664
{
665
    int i;
666
    float fc1, fc2;
667
14
    fc1 = pow2tab[gain_index + 63];
668
669
14
    if (gain_index == gain_index_next) {             // static gain
670
1548
        for (i = 0; i < q->gain_size_factor; i++)
671
1536
            buffer[i] *= fc1;
672
    } else {                                        // smooth gain
673
2
        fc2 = q->gain_table[15 + (gain_index_next - gain_index)];
674
258
        for (i = 0; i < q->gain_size_factor; i++) {
675
256
            buffer[i] *= fc1;
676
256
            fc1       *= fc2;
677
        }
678
    }
679
14
}
680
681
/**
682
 * Apply transform window, overlap buffers.
683
 *
684
 * @param q                 pointer to the COOKContext
685
 * @param inbuffer          pointer to the mltcoefficients
686
 * @param gains_ptr         current and previous gains
687
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
688
 */
689
480
static void imlt_window_float(COOKContext *q, float *inbuffer,
690
                              cook_gains *gains_ptr, float *previous_buffer)
691
{
692
480
    const float fc = pow2tab[gains_ptr->previous[0] + 63];
693
    int i;
694
    /* The weird thing here, is that the two halves of the time domain
695
     * buffer are swapped. Also, the newest data, that we save away for
696
     * next frame, has the wrong sign. Hence the subtraction below.
697
     * Almost sounds like a complex conjugate/reverse data/FFT effect.
698
     */
699
700
    /* Apply window and overlap */
701
492000
    for (i = 0; i < q->samples_per_channel; i++)
702
491520
        inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
703
491520
                      previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
704
480
}
705
706
/**
707
 * The modulated lapped transform, this takes transform coefficients
708
 * and transforms them into timedomain samples.
709
 * Apply transform window, overlap buffers, apply gain profile
710
 * and buffer management.
711
 *
712
 * @param q                 pointer to the COOKContext
713
 * @param inbuffer          pointer to the mltcoefficients
714
 * @param gains_ptr         current and previous gains
715
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
716
 */
717
480
static void imlt_gain(COOKContext *q, float *inbuffer,
718
                      cook_gains *gains_ptr, float *previous_buffer)
719
{
720
480
    float *buffer0 = q->mono_mdct_output;
721
480
    float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
722
    int i;
723
724
    /* Inverse modified discrete cosine transform */
725
480
    q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
726
727
480
    q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
728
729
    /* Apply gain profile */
730
4320
    for (i = 0; i < 8; i++)
731

3840
        if (gains_ptr->now[i] || gains_ptr->now[i + 1])
732
14
            q->interpolate(q, &buffer1[q->gain_size_factor * i],
733
14
                           gains_ptr->now[i], gains_ptr->now[i + 1]);
734
735
    /* Save away the current to be previous block. */
736
480
    memcpy(previous_buffer, buffer0,
737
480
           q->samples_per_channel * sizeof(*previous_buffer));
738
480
}
739
740
741
/**
742
 * function for getting the jointstereo coupling information
743
 *
744
 * @param q                 pointer to the COOKContext
745
 * @param decouple_tab      decoupling array
746
 */
747
240
static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
748
{
749
    int i;
750
240
    int vlc    = get_bits1(&q->gb);
751
240
    int start  = cplband[p->js_subband_start];
752
240
    int end    = cplband[p->subbands - 1];
753
240
    int length = end - start + 1;
754
755
240
    if (start > end)
756
        return 0;
757
758
240
    if (vlc)
759
1806
        for (i = 0; i < length; i++)
760
1677
            decouple_tab[start + i] = get_vlc2(&q->gb,
761
                                               p->channel_coupling.table,
762
                                               p->channel_coupling.bits, 2);
763
    else
764
1554
        for (i = 0; i < length; i++) {
765
1443
            int v = get_bits(&q->gb, p->js_vlc_bits);
766
1443
            if (v == (1<<p->js_vlc_bits)-1) {
767
                av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
768
                return AVERROR_INVALIDDATA;
769
            }
770
1443
            decouple_tab[start + i] = v;
771
        }
772
240
    return 0;
773
}
774
775
/**
776
 * function decouples a pair of signals from a single signal via multiplication.
777
 *
778
 * @param q                 pointer to the COOKContext
779
 * @param subband           index of the current subband
780
 * @param f1                multiplier for channel 1 extraction
781
 * @param f2                multiplier for channel 2 extraction
782
 * @param decode_buffer     input buffer
783
 * @param mlt_buffer1       pointer to left channel mlt coefficients
784
 * @param mlt_buffer2       pointer to right channel mlt coefficients
785
 */
786
7440
static void decouple_float(COOKContext *q,
787
                           COOKSubpacket *p,
788
                           int subband,
789
                           float f1, float f2,
790
                           float *decode_buffer,
791
                           float *mlt_buffer1, float *mlt_buffer2)
792
{
793
    int j, tmp_idx;
794
156240
    for (j = 0; j < SUBBAND_SIZE; j++) {
795
148800
        tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
796
148800
        mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
797
148800
        mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
798
    }
799
7440
}
800
801
/**
802
 * function for decoding joint stereo data
803
 *
804
 * @param q                 pointer to the COOKContext
805
 * @param mlt_buffer1       pointer to left channel mlt coefficients
806
 * @param mlt_buffer2       pointer to right channel mlt coefficients
807
 */
808
240
static int joint_decode(COOKContext *q, COOKSubpacket *p,
809
                        float *mlt_buffer_left, float *mlt_buffer_right)
810
{
811
    int i, j, res;
812
240
    int decouple_tab[SUBBAND_SIZE] = { 0 };
813
240
    float *decode_buffer = q->decode_buffer_0;
814
    int idx, cpl_tmp;
815
    float f1, f2;
816
    const float *cplscale;
817
818
240
    memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
819
820
    /* Make sure the buffers are zeroed out. */
821
240
    memset(mlt_buffer_left,  0, 1024 * sizeof(*mlt_buffer_left));
822
240
    memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
823
240
    if ((res = decouple_info(q, p, decouple_tab)) < 0)
824
        return res;
825
240
    if ((res = mono_decode(q, p, decode_buffer)) < 0)
826
        return res;
827
    /* The two channels are stored interleaved in decode_buffer. */
828
1680
    for (i = 0; i < p->js_subband_start; i++) {
829
30240
        for (j = 0; j < SUBBAND_SIZE; j++) {
830
28800
            mlt_buffer_left[i  * 20 + j] = decode_buffer[i * 40 + j];
831
28800
            mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
832
        }
833
    }
834
835
    /* When we reach js_subband_start (the higher frequencies)
836
       the coefficients are stored in a coupling scheme. */
837
240
    idx = (1 << p->js_vlc_bits) - 1;
838
7680
    for (i = p->js_subband_start; i < p->subbands; i++) {
839
7440
        cpl_tmp = cplband[i];
840
7440
        idx -= decouple_tab[cpl_tmp];
841
7440
        cplscale = q->cplscales[p->js_vlc_bits - 2];  // choose decoupler table
842
7440
        f1 = cplscale[decouple_tab[cpl_tmp] + 1];
843
7440
        f2 = cplscale[idx];
844
7440
        q->decouple(q, p, i, f1, f2, decode_buffer,
845
                    mlt_buffer_left, mlt_buffer_right);
846
7440
        idx = (1 << p->js_vlc_bits) - 1;
847
    }
848
849
240
    return 0;
850
}
851
852
/**
853
 * First part of subpacket decoding:
854
 *  decode raw stream bytes and read gain info.
855
 *
856
 * @param q                 pointer to the COOKContext
857
 * @param inbuffer          pointer to raw stream data
858
 * @param gains_ptr         array of current/prev gain pointers
859
 */
860
240
static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
861
                                         const uint8_t *inbuffer,
862
                                         cook_gains *gains_ptr)
863
{
864
    int offset;
865
866
240
    offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
867
240
                          p->bits_per_subpacket / 8);
868
240
    init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
869
                  p->bits_per_subpacket);
870
240
    decode_gain_info(&q->gb, gains_ptr->now);
871
872
    /* Swap current and previous gains */
873
240
    FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
874
240
}
875
876
/**
877
 * Saturate the output signal and interleave.
878
 *
879
 * @param q                 pointer to the COOKContext
880
 * @param out               pointer to the output vector
881
 */
882
476
static void saturate_output_float(COOKContext *q, float *out)
883
{
884
476
    q->adsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
885
476
                         FFALIGN(q->samples_per_channel, 8), -1.0f, 1.0f);
886
476
}
887
888
889
/**
890
 * Final part of subpacket decoding:
891
 *  Apply modulated lapped transform, gain compensation,
892
 *  clip and convert to integer.
893
 *
894
 * @param q                 pointer to the COOKContext
895
 * @param decode_buffer     pointer to the mlt coefficients
896
 * @param gains_ptr         array of current/prev gain pointers
897
 * @param previous_buffer   pointer to the previous buffer to be used for overlapping
898
 * @param out               pointer to the output buffer
899
 */
900
480
static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
901
                                         cook_gains *gains_ptr, float *previous_buffer,
902
                                         float *out)
903
{
904
480
    imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
905
480
    if (out)
906
476
        q->saturate_output(q, out);
907
480
}
908
909
910
/**
911
 * Cook subpacket decoding. This function returns one decoded subpacket,
912
 * usually 1024 samples per channel.
913
 *
914
 * @param q                 pointer to the COOKContext
915
 * @param inbuffer          pointer to the inbuffer
916
 * @param outbuffer         pointer to the outbuffer
917
 */
918
240
static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
919
                            const uint8_t *inbuffer, float **outbuffer)
920
{
921
240
    int sub_packet_size = p->size;
922
    int res;
923
924
240
    memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
925
240
    decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
926
927
240
    if (p->joint_stereo) {
928
240
        if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
929
            return res;
930
    } else {
931
        if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
932
            return res;
933
934
        if (p->num_channels == 2) {
935
            decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
936
            if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
937
                return res;
938
        }
939
    }
940
941
240
    mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
942
240
                          p->mono_previous_buffer1,
943
238
                          outbuffer ? outbuffer[p->ch_idx] : NULL);
944
945
240
    if (p->num_channels == 2) {
946
240
        if (p->joint_stereo)
947
240
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
948
240
                                  p->mono_previous_buffer2,
949
238
                                  outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
950
        else
951
            mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
952
                                  p->mono_previous_buffer2,
953
                                  outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
954
    }
955
956
240
    return 0;
957
}
958
959
960
240
static int cook_decode_frame(AVCodecContext *avctx, void *data,
961
                             int *got_frame_ptr, AVPacket *avpkt)
962
{
963
240
    AVFrame *frame     = data;
964
240
    const uint8_t *buf = avpkt->data;
965
240
    int buf_size = avpkt->size;
966
240
    COOKContext *q = avctx->priv_data;
967
240
    float **samples = NULL;
968
    int i, ret;
969
240
    int offset = 0;
970
240
    int chidx = 0;
971
972
240
    if (buf_size < avctx->block_align)
973
        return buf_size;
974
975
    /* get output buffer */
976
240
    if (q->discarded_packets >= 2) {
977
238
        frame->nb_samples = q->samples_per_channel;
978
238
        if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
979
            return ret;
980
238
        samples = (float **)frame->extended_data;
981
    }
982
983
    /* estimate subpacket sizes */
984
240
    q->subpacket[0].size = avctx->block_align;
985
986
240
    for (i = 1; i < q->num_subpackets; i++) {
987
        q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
988
        q->subpacket[0].size -= q->subpacket[i].size + 1;
989
        if (q->subpacket[0].size < 0) {
990
            av_log(avctx, AV_LOG_DEBUG,
991
                   "frame subpacket size total > avctx->block_align!\n");
992
            return AVERROR_INVALIDDATA;
993
        }
994
    }
995
996
    /* decode supbackets */
997
480
    for (i = 0; i < q->num_subpackets; i++) {
998
240
        q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
999
240
                                              q->subpacket[i].bits_per_subpdiv;
1000
240
        q->subpacket[i].ch_idx = chidx;
1001
240
        av_log(avctx, AV_LOG_DEBUG,
1002
               "subpacket[%i] size %i js %i %i block_align %i\n",
1003
               i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
1004
               avctx->block_align);
1005
1006
240
        if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
1007
            return ret;
1008
240
        offset += q->subpacket[i].size;
1009
240
        chidx += q->subpacket[i].num_channels;
1010
480
        av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
1011
240
               i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
1012
    }
1013
1014
    /* Discard the first two frames: no valid audio. */
1015
240
    if (q->discarded_packets < 2) {
1016
2
        q->discarded_packets++;
1017
2
        *got_frame_ptr = 0;
1018
2
        return avctx->block_align;
1019
    }
1020
1021
238
    *got_frame_ptr = 1;
1022
1023
238
    return avctx->block_align;
1024
}
1025
1026
6
static void dump_cook_context(COOKContext *q)
1027
{
1028
    //int i=0;
1029
#define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b);
1030
    ff_dlog(q->avctx, "COOKextradata\n");
1031
    ff_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
1032
6
    if (q->subpacket[0].cookversion > STEREO) {
1033
        PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1034
        PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1035
    }
1036
    ff_dlog(q->avctx, "COOKContext\n");
1037
    PRINT("nb_channels", q->avctx->channels);
1038
    PRINT("bit_rate", (int)q->avctx->bit_rate);
1039
    PRINT("sample_rate", q->avctx->sample_rate);
1040
    PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
1041
    PRINT("subbands", q->subpacket[0].subbands);
1042
    PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1043
    PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
1044
    PRINT("numvector_size", q->subpacket[0].numvector_size);
1045
    PRINT("total_subbands", q->subpacket[0].total_subbands);
1046
6
}
1047
1048
/**
1049
 * Cook initialization
1050
 *
1051
 * @param avctx     pointer to the AVCodecContext
1052
 */
1053
6
static av_cold int cook_decode_init(AVCodecContext *avctx)
1054
{
1055
6
    COOKContext *q = avctx->priv_data;
1056
    GetByteContext gb;
1057
6
    int s = 0;
1058
6
    unsigned int channel_mask = 0;
1059
6
    int samples_per_frame = 0;
1060
    int ret;
1061
6
    q->avctx = avctx;
1062
1063
    /* Take care of the codec specific extradata. */
1064
6
    if (avctx->extradata_size < 8) {
1065
        av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1066
        return AVERROR_INVALIDDATA;
1067
    }
1068
6
    av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1069
1070
6
    bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
1071
1072
    /* Take data from the AVCodecContext (RM container). */
1073
6
    if (!avctx->channels) {
1074
        av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
1075
        return AVERROR_INVALIDDATA;
1076
    }
1077
1078
6
    if (avctx->block_align >= INT_MAX / 8)
1079
        return AVERROR(EINVAL);
1080
1081
    /* Initialize RNG. */
1082
6
    av_lfg_init(&q->random_state, 0);
1083
1084
6
    ff_audiodsp_init(&q->adsp);
1085
1086
12
    while (bytestream2_get_bytes_left(&gb)) {
1087
        /* 8 for mono, 16 for stereo, ? for multichannel
1088
           Swap to right endianness so we don't need to care later on. */
1089
6
        q->subpacket[s].cookversion      = bytestream2_get_be32(&gb);
1090
6
        samples_per_frame                = bytestream2_get_be16(&gb);
1091
6
        q->subpacket[s].subbands         = bytestream2_get_be16(&gb);
1092
6
        bytestream2_get_be32(&gb);    // Unknown unused
1093
6
        q->subpacket[s].js_subband_start = bytestream2_get_be16(&gb);
1094
6
        if (q->subpacket[s].js_subband_start >= 51) {
1095
            av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
1096
            return AVERROR_INVALIDDATA;
1097
        }
1098
6
        q->subpacket[s].js_vlc_bits      = bytestream2_get_be16(&gb);
1099
1100
        /* Initialize extradata related variables. */
1101
6
        q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
1102
6
        q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1103
1104
        /* Initialize default data states. */
1105
6
        q->subpacket[s].log2_numvector_size = 5;
1106
6
        q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1107
6
        q->subpacket[s].num_channels = 1;
1108
1109
        /* Initialize version-dependent variables */
1110
1111
6
        av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
1112
               q->subpacket[s].cookversion);
1113
6
        q->subpacket[s].joint_stereo = 0;
1114

6
        switch (q->subpacket[s].cookversion) {
1115
        case MONO:
1116
            if (avctx->channels != 1) {
1117
                avpriv_request_sample(avctx, "Container channels != 1");
1118
                return AVERROR_PATCHWELCOME;
1119
            }
1120
            av_log(avctx, AV_LOG_DEBUG, "MONO\n");
1121
            break;
1122
2
        case STEREO:
1123
2
            if (avctx->channels != 1) {
1124
                q->subpacket[s].bits_per_subpdiv = 1;
1125
                q->subpacket[s].num_channels = 2;
1126
            }
1127
2
            av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
1128
2
            break;
1129
4
        case JOINT_STEREO:
1130
4
            if (avctx->channels != 2) {
1131
                avpriv_request_sample(avctx, "Container channels != 2");
1132
                return AVERROR_PATCHWELCOME;
1133
            }
1134
4
            av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
1135
4
            if (avctx->extradata_size >= 16) {
1136
4
                q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1137
4
                                                 q->subpacket[s].js_subband_start;
1138
4
                q->subpacket[s].joint_stereo = 1;
1139
4
                q->subpacket[s].num_channels = 2;
1140
            }
1141
4
            if (q->subpacket[s].samples_per_channel > 256) {
1142
4
                q->subpacket[s].log2_numvector_size = 6;
1143
            }
1144
4
            if (q->subpacket[s].samples_per_channel > 512) {
1145
4
                q->subpacket[s].log2_numvector_size = 7;
1146
            }
1147
4
            break;
1148
        case MC_COOK:
1149
            av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
1150
            channel_mask |= q->subpacket[s].channel_mask = bytestream2_get_be32(&gb);
1151
1152
            if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
1153
                q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1154
                                                 q->subpacket[s].js_subband_start;
1155
                q->subpacket[s].joint_stereo = 1;
1156
                q->subpacket[s].num_channels = 2;
1157
                q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
1158
1159
                if (q->subpacket[s].samples_per_channel > 256) {
1160
                    q->subpacket[s].log2_numvector_size = 6;
1161
                }
1162
                if (q->subpacket[s].samples_per_channel > 512) {
1163
                    q->subpacket[s].log2_numvector_size = 7;
1164
                }
1165
            } else
1166
                q->subpacket[s].samples_per_channel = samples_per_frame;
1167
1168
            break;
1169
        default:
1170
            avpriv_request_sample(avctx, "Cook version %d",
1171
                                  q->subpacket[s].cookversion);
1172
            return AVERROR_PATCHWELCOME;
1173
        }
1174
1175

6
        if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1176
            av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1177
            return AVERROR_INVALIDDATA;
1178
        } else
1179
6
            q->samples_per_channel = q->subpacket[0].samples_per_channel;
1180
1181
1182
        /* Initialize variable relations */
1183
6
        q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1184
1185
        /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
1186
6
        if (q->subpacket[s].total_subbands > 53) {
1187
            avpriv_request_sample(avctx, "total_subbands > 53");
1188
            return AVERROR_PATCHWELCOME;
1189
        }
1190
1191
6
        if ((q->subpacket[s].js_vlc_bits > 6) ||
1192
6
            (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
1193
            av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1194
                   q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1195
            return AVERROR_INVALIDDATA;
1196
        }
1197
1198
6
        if (q->subpacket[s].subbands > 50) {
1199
            avpriv_request_sample(avctx, "subbands > 50");
1200
            return AVERROR_PATCHWELCOME;
1201
        }
1202
6
        if (q->subpacket[s].subbands == 0) {
1203
            avpriv_request_sample(avctx, "subbands = 0");
1204
            return AVERROR_PATCHWELCOME;
1205
        }
1206
6
        q->subpacket[s].gains1.now      = q->subpacket[s].gain_1;
1207
6
        q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1208
6
        q->subpacket[s].gains2.now      = q->subpacket[s].gain_3;
1209
6
        q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1210
1211
6
        if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) {
1212
            av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
1213
            return AVERROR_INVALIDDATA;
1214
        }
1215
1216
6
        q->num_subpackets++;
1217
6
        s++;
1218
6
        if (s > FFMIN(MAX_SUBPACKETS, avctx->block_align)) {
1219
            avpriv_request_sample(avctx, "subpackets > %d", FFMIN(MAX_SUBPACKETS, avctx->block_align));
1220
            return AVERROR_PATCHWELCOME;
1221
        }
1222
    }
1223
1224
    /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
1225

6
    if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
1226
6
        q->samples_per_channel != 1024) {
1227
        avpriv_request_sample(avctx, "samples_per_channel = %d",
1228
                              q->samples_per_channel);
1229
        return AVERROR_PATCHWELCOME;
1230
    }
1231
1232
    /* Generate tables */
1233
6
    init_pow2table();
1234
6
    init_gain_table(q);
1235
6
    init_cplscales_table(q);
1236
1237
6
    if ((ret = init_cook_vlc_tables(q)))
1238
        return ret;
1239
1240
    /* Pad the databuffer with:
1241
       DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1242
       AV_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1243
6
    q->decoded_bytes_buffer =
1244
6
        av_mallocz(avctx->block_align
1245
6
                   + DECODE_BYTES_PAD1(avctx->block_align)
1246
6
                   + AV_INPUT_BUFFER_PADDING_SIZE);
1247
6
    if (!q->decoded_bytes_buffer)
1248
        return AVERROR(ENOMEM);
1249
1250
    /* Initialize transform. */
1251
6
    if ((ret = init_cook_mlt(q)))
1252
        return ret;
1253
1254
    /* Initialize COOK signal arithmetic handling */
1255
    if (1) {
1256
6
        q->scalar_dequant  = scalar_dequant_float;
1257
6
        q->decouple        = decouple_float;
1258
6
        q->imlt_window     = imlt_window_float;
1259
6
        q->interpolate     = interpolate_float;
1260
6
        q->saturate_output = saturate_output_float;
1261
    }
1262
1263
6
    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
1264
6
    if (channel_mask)
1265
        avctx->channel_layout = channel_mask;
1266
    else
1267
6
        avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1268
1269
1270
6
    dump_cook_context(q);
1271
1272
6
    return 0;
1273
}
1274
1275
AVCodec ff_cook_decoder = {
1276
    .name           = "cook",
1277
    .long_name      = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
1278
    .type           = AVMEDIA_TYPE_AUDIO,
1279
    .id             = AV_CODEC_ID_COOK,
1280
    .priv_data_size = sizeof(COOKContext),
1281
    .init           = cook_decode_init,
1282
    .close          = cook_decode_close,
1283
    .decode         = cook_decode_frame,
1284
    .capabilities   = AV_CODEC_CAP_DR1,
1285
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
1286
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1287
                                                      AV_SAMPLE_FMT_NONE },
1288
};