GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/atrac1.c Lines: 125 140 89.3 %
Date: 2021-01-26 01:16:58 Branches: 54 70 77.1 %

Line Branch Exec Source
1
/*
2
 * ATRAC1 compatible decoder
3
 * Copyright (c) 2009 Maxim Poliakovski
4
 * Copyright (c) 2009 Benjamin Larsson
5
 *
6
 * This file is part of FFmpeg.
7
 *
8
 * FFmpeg is free software; you can redistribute it and/or
9
 * modify it under the terms of the GNU Lesser General Public
10
 * License as published by the Free Software Foundation; either
11
 * version 2.1 of the License, or (at your option) any later version.
12
 *
13
 * FFmpeg is distributed in the hope that it will be useful,
14
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16
 * Lesser General Public License for more details.
17
 *
18
 * You should have received a copy of the GNU Lesser General Public
19
 * License along with FFmpeg; if not, write to the Free Software
20
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21
 */
22
23
/**
24
 * @file
25
 * ATRAC1 compatible decoder.
26
 * This decoder handles raw ATRAC1 data and probably SDDS data.
27
 */
28
29
/* Many thanks to Tim Craig for all the help! */
30
31
#include <math.h>
32
#include <stddef.h>
33
#include <stdio.h>
34
35
#include "libavutil/float_dsp.h"
36
#include "libavutil/mem_internal.h"
37
38
#include "avcodec.h"
39
#include "get_bits.h"
40
#include "fft.h"
41
#include "internal.h"
42
#include "sinewin.h"
43
44
#include "atrac.h"
45
#include "atrac1data.h"
46
47
#define AT1_MAX_BFU      52                 ///< max number of block floating units in a sound unit
48
#define AT1_SU_SIZE      212                ///< number of bytes in a sound unit
49
#define AT1_SU_SAMPLES   512                ///< number of samples in a sound unit
50
#define AT1_FRAME_SIZE   AT1_SU_SIZE * 2
51
#define AT1_SU_MAX_BITS  AT1_SU_SIZE * 8
52
#define AT1_MAX_CHANNELS 2
53
54
#define AT1_QMF_BANDS    3
55
#define IDX_LOW_BAND     0
56
#define IDX_MID_BAND     1
57
#define IDX_HIGH_BAND    2
58
59
/**
60
 * Sound unit struct, one unit is used per channel
61
 */
62
typedef struct AT1SUCtx {
63
    int                 log2_block_count[AT1_QMF_BANDS];    ///< log2 number of blocks in a band
64
    int                 num_bfus;                           ///< number of Block Floating Units
65
    float*              spectrum[2];
66
    DECLARE_ALIGNED(32, float, spec1)[AT1_SU_SAMPLES];     ///< mdct buffer
67
    DECLARE_ALIGNED(32, float, spec2)[AT1_SU_SAMPLES];     ///< mdct buffer
68
    DECLARE_ALIGNED(32, float, fst_qmf_delay)[46];         ///< delay line for the 1st stacked QMF filter
69
    DECLARE_ALIGNED(32, float, snd_qmf_delay)[46];         ///< delay line for the 2nd stacked QMF filter
70
    DECLARE_ALIGNED(32, float, last_qmf_delay)[256+39];    ///< delay line for the last stacked QMF filter
71
} AT1SUCtx;
72
73
/**
74
 * The atrac1 context, holds all needed parameters for decoding
75
 */
76
typedef struct AT1Ctx {
77
    AT1SUCtx            SUs[AT1_MAX_CHANNELS];              ///< channel sound unit
78
    DECLARE_ALIGNED(32, float, spec)[AT1_SU_SAMPLES];      ///< the mdct spectrum buffer
79
80
    DECLARE_ALIGNED(32, float,  low)[256];
81
    DECLARE_ALIGNED(32, float,  mid)[256];
82
    DECLARE_ALIGNED(32, float, high)[512];
83
    float*              bands[3];
84
    FFTContext          mdct_ctx[3];
85
    void (*vector_fmul_window)(float *dst, const float *src0,
86
                               const float *src1, const float *win, int len);
87
} AT1Ctx;
88
89
/** size of the transform in samples in the long mode for each QMF band */
90
static const uint16_t samples_per_band[3] = {128, 128, 256};
91
static const uint8_t   mdct_long_nbits[3] = {7, 7, 8};
92
93
94
7157
static void at1_imdct(AT1Ctx *q, float *spec, float *out, int nbits,
95
                      int rev_spec)
96
{
97
7157
    FFTContext* mdct_context = &q->mdct_ctx[nbits - 5 - (nbits > 6)];
98
7157
    int transf_size = 1 << nbits;
99
100
7157
    if (rev_spec) {
101
        int i;
102
459048
        for (i = 0; i < transf_size / 2; i++)
103
454272
            FFSWAP(float, spec[i], spec[transf_size - 1 - i]);
104
    }
105
7157
    mdct_context->imdct_half(mdct_context, out, spec);
106
7157
}
107
108
109
2366
static int at1_imdct_block(AT1SUCtx* su, AT1Ctx *q)
110
{
111
    int          band_num, band_samples, log2_block_count, nbits, num_blocks, block_size;
112
2366
    unsigned int start_pos, ref_pos = 0, pos = 0;
113
114
9464
    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
115
        float *prev_buf;
116
        int j;
117
118
7098
        band_samples = samples_per_band[band_num];
119
7098
        log2_block_count = su->log2_block_count[band_num];
120
121
        /* number of mdct blocks in the current QMF band: 1 - for long mode */
122
        /* 4 for short mode(low/middle bands) and 8 for short mode(high band)*/
123
7098
        num_blocks = 1 << log2_block_count;
124
125
7098
        if (num_blocks == 1) {
126
            /* mdct block size in samples: 128 (long mode, low & mid bands), */
127
            /* 256 (long mode, high band) and 32 (short mode, all bands) */
128
7085
            block_size = band_samples >> log2_block_count;
129
130
            /* calc transform size in bits according to the block_size_mode */
131
7085
            nbits = mdct_long_nbits[band_num] - log2_block_count;
132
133

7085
            if (nbits != 5 && nbits != 7 && nbits != 8)
134
                return AVERROR_INVALIDDATA;
135
        } else {
136
13
            block_size = 32;
137
13
            nbits = 5;
138
        }
139
140
7098
        start_pos = 0;
141
7098
        prev_buf = &su->spectrum[1][ref_pos + band_samples - 16];
142
14255
        for (j=0; j < num_blocks; j++) {
143
7157
            at1_imdct(q, &q->spec[pos], &su->spectrum[0][ref_pos + start_pos], nbits, band_num);
144
145
            /* overlap and window */
146
7157
            q->vector_fmul_window(&q->bands[band_num][start_pos], prev_buf,
147
7157
                                  &su->spectrum[0][ref_pos + start_pos], ff_sine_32, 16);
148
149
7157
            prev_buf = &su->spectrum[0][ref_pos+start_pos + 16];
150
7157
            start_pos += block_size;
151
7157
            pos += block_size;
152
        }
153
154
7098
        if (num_blocks == 1)
155
7085
            memcpy(q->bands[band_num] + 32, &su->spectrum[0][ref_pos + 16], 240 * sizeof(float));
156
157
7098
        ref_pos += band_samples;
158
    }
159
160
    /* Swap buffers so the mdct overlap works */
161
2366
    FFSWAP(float*, su->spectrum[0], su->spectrum[1]);
162
163
2366
    return 0;
164
}
165
166
/**
167
 * Parse the block size mode byte
168
 */
169
170
2366
static int at1_parse_bsm(GetBitContext* gb, int log2_block_cnt[AT1_QMF_BANDS])
171
{
172
    int log2_block_count_tmp, i;
173
174
7098
    for (i = 0; i < 2; i++) {
175
        /* low and mid band */
176
4732
        log2_block_count_tmp = get_bits(gb, 2);
177
4732
        if (log2_block_count_tmp & 1)
178
            return AVERROR_INVALIDDATA;
179
4732
        log2_block_cnt[i] = 2 - log2_block_count_tmp;
180
    }
181
182
    /* high band */
183
2366
    log2_block_count_tmp = get_bits(gb, 2);
184

2366
    if (log2_block_count_tmp != 0 && log2_block_count_tmp != 3)
185
        return AVERROR_INVALIDDATA;
186
2366
    log2_block_cnt[IDX_HIGH_BAND] = 3 - log2_block_count_tmp;
187
188
2366
    skip_bits(gb, 2);
189
2366
    return 0;
190
}
191
192
193
2366
static int at1_unpack_dequant(GetBitContext* gb, AT1SUCtx* su,
194
                              float spec[AT1_SU_SAMPLES])
195
{
196
    int bits_used, band_num, bfu_num, i;
197
    uint8_t idwls[AT1_MAX_BFU];                 ///< the word length indexes for each BFU
198
    uint8_t idsfs[AT1_MAX_BFU];                 ///< the scalefactor indexes for each BFU
199
200
    /* parse the info byte (2nd byte) telling how much BFUs were coded */
201
2366
    su->num_bfus = bfu_amount_tab1[get_bits(gb, 3)];
202
203
    /* calc number of consumed bits:
204
        num_BFUs * (idwl(4bits) + idsf(6bits)) + log2_block_count(8bits) + info_byte(8bits)
205
        + info_byte_copy(8bits) + log2_block_count_copy(8bits) */
206
7098
    bits_used = su->num_bfus * 10 + 32 +
207
2366
                bfu_amount_tab2[get_bits(gb, 2)] +
208
2366
                (bfu_amount_tab3[get_bits(gb, 3)] << 1);
209
210
    /* get word length index (idwl) for each BFU */
211
107674
    for (i = 0; i < su->num_bfus; i++)
212
105308
        idwls[i] = get_bits(gb, 4);
213
214
    /* get scalefactor index (idsf) for each BFU */
215
107674
    for (i = 0; i < su->num_bfus; i++)
216
105308
        idsfs[i] = get_bits(gb, 6);
217
218
    /* zero idwl/idsf for empty BFUs */
219
20090
    for (i = su->num_bfus; i < AT1_MAX_BFU; i++)
220
17724
        idwls[i] = idsfs[i] = 0;
221
222
    /* read in the spectral data and reconstruct MDCT spectrum of this channel */
223
9464
    for (band_num = 0; band_num < AT1_QMF_BANDS; band_num++) {
224
130130
        for (bfu_num = bfu_bands_t[band_num]; bfu_num < bfu_bands_t[band_num+1]; bfu_num++) {
225
            int pos;
226
227
123032
            int num_specs = specs_per_bfu[bfu_num];
228
123032
            int word_len  = !!idwls[bfu_num] + idwls[bfu_num];
229
123032
            float scale_factor = ff_atrac_sf_table[idsfs[bfu_num]];
230
123032
            bits_used += word_len * num_specs; /* add number of bits consumed by current BFU */
231
232
            /* check for bitstream overflow */
233
123032
            if (bits_used > AT1_SU_MAX_BITS)
234
                return AVERROR_INVALIDDATA;
235
236
            /* get the position of the 1st spec according to the block size mode */
237
123032
            pos = su->log2_block_count[band_num] ? bfu_start_short[bfu_num] : bfu_start_long[bfu_num];
238
239
123032
            if (word_len) {
240
57252
                float   max_quant = 1.0 / (float)((1 << (word_len - 1)) - 1);
241
242
555280
                for (i = 0; i < num_specs; i++) {
243
                    /* read in a quantized spec and convert it to
244
                     * signed int and then inverse quantization
245
                     */
246
498028
                    spec[pos+i] = get_sbits(gb, word_len) * scale_factor * max_quant;
247
                }
248
            } else { /* word_len = 0 -> empty BFU, zero all specs in the empty BFU */
249
65780
                memset(&spec[pos], 0, num_specs * sizeof(float));
250
            }
251
        }
252
    }
253
254
2366
    return 0;
255
}
256
257
258
2366
static void at1_subband_synthesis(AT1Ctx *q, AT1SUCtx* su, float *pOut)
259
{
260
    float temp[256];
261
    float iqmf_temp[512 + 46];
262
263
    /* combine low and middle bands */
264
2366
    ff_atrac_iqmf(q->bands[0], q->bands[1], 128, temp, su->fst_qmf_delay, iqmf_temp);
265
266
    /* delay the signal of the high band by 39 samples */
267
2366
    memcpy( su->last_qmf_delay,    &su->last_qmf_delay[256], sizeof(float) *  39);
268
2366
    memcpy(&su->last_qmf_delay[39], q->bands[2],             sizeof(float) * 256);
269
270
    /* combine (low + middle) and high bands */
271
2366
    ff_atrac_iqmf(temp, su->last_qmf_delay, 256, pOut, su->snd_qmf_delay, iqmf_temp);
272
2366
}
273
274
275
1184
static int atrac1_decode_frame(AVCodecContext *avctx, void *data,
276
                               int *got_frame_ptr, AVPacket *avpkt)
277
{
278
1184
    AVFrame *frame     = data;
279
1184
    const uint8_t *buf = avpkt->data;
280
1184
    int buf_size       = avpkt->size;
281
1184
    AT1Ctx *q          = avctx->priv_data;
282
    int ch, ret;
283
    GetBitContext gb;
284
285
286
1184
    if (buf_size < 212 * avctx->channels) {
287
1
        av_log(avctx, AV_LOG_ERROR, "Not enough data to decode!\n");
288
1
        return AVERROR_INVALIDDATA;
289
    }
290
291
    /* get output buffer */
292
1183
    frame->nb_samples = AT1_SU_SAMPLES;
293
1183
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
294
        return ret;
295
296
3549
    for (ch = 0; ch < avctx->channels; ch++) {
297
2366
        AT1SUCtx* su = &q->SUs[ch];
298
299
2366
        init_get_bits(&gb, &buf[212 * ch], 212 * 8);
300
301
        /* parse block_size_mode, 1st byte */
302
2366
        ret = at1_parse_bsm(&gb, su->log2_block_count);
303
2366
        if (ret < 0)
304
            return ret;
305
306
2366
        ret = at1_unpack_dequant(&gb, su, q->spec);
307
2366
        if (ret < 0)
308
            return ret;
309
310
2366
        ret = at1_imdct_block(su, q);
311
2366
        if (ret < 0)
312
            return ret;
313
2366
        at1_subband_synthesis(q, su, (float *)frame->extended_data[ch]);
314
    }
315
316
1183
    *got_frame_ptr = 1;
317
318
1183
    return avctx->block_align;
319
}
320
321
322
5
static av_cold int atrac1_decode_end(AVCodecContext * avctx)
323
{
324
5
    AT1Ctx *q = avctx->priv_data;
325
326
5
    ff_mdct_end(&q->mdct_ctx[0]);
327
5
    ff_mdct_end(&q->mdct_ctx[1]);
328
5
    ff_mdct_end(&q->mdct_ctx[2]);
329
330
5
    return 0;
331
}
332
333
334
5
static av_cold int atrac1_decode_init(AVCodecContext *avctx)
335
{
336
5
    AT1Ctx *q = avctx->priv_data;
337
    AVFloatDSPContext *fdsp;
338
    int ret;
339
340
5
    avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
341
342

5
    if (avctx->channels < 1 || avctx->channels > AT1_MAX_CHANNELS) {
343
        av_log(avctx, AV_LOG_ERROR, "Unsupported number of channels: %d\n",
344
               avctx->channels);
345
        return AVERROR(EINVAL);
346
    }
347
348
5
    if (avctx->block_align <= 0) {
349
        av_log(avctx, AV_LOG_ERROR, "Unsupported block align.");
350
        return AVERROR_PATCHWELCOME;
351
    }
352
353
    /* Init the mdct transforms */
354

10
    if ((ret = ff_mdct_init(&q->mdct_ctx[0], 6, 1, -1.0/ (1 << 15))) ||
355
10
        (ret = ff_mdct_init(&q->mdct_ctx[1], 8, 1, -1.0/ (1 << 15))) ||
356
5
        (ret = ff_mdct_init(&q->mdct_ctx[2], 9, 1, -1.0/ (1 << 15)))) {
357
        av_log(avctx, AV_LOG_ERROR, "Error initializing MDCT\n");
358
        return ret;
359
    }
360
361
5
    ff_init_ff_sine_windows(5);
362
363
5
    ff_atrac_generate_tables();
364
365
5
    fdsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
366
5
    if (!fdsp)
367
        return AVERROR(ENOMEM);
368
5
    q->vector_fmul_window = fdsp->vector_fmul_window;
369
5
    av_free(fdsp);
370
371
5
    q->bands[0] = q->low;
372
5
    q->bands[1] = q->mid;
373
5
    q->bands[2] = q->high;
374
375
    /* Prepare the mdct overlap buffers */
376
5
    q->SUs[0].spectrum[0] = q->SUs[0].spec1;
377
5
    q->SUs[0].spectrum[1] = q->SUs[0].spec2;
378
5
    q->SUs[1].spectrum[0] = q->SUs[1].spec1;
379
5
    q->SUs[1].spectrum[1] = q->SUs[1].spec2;
380
381
5
    return 0;
382
}
383
384
385
AVCodec ff_atrac1_decoder = {
386
    .name           = "atrac1",
387
    .long_name      = NULL_IF_CONFIG_SMALL("ATRAC1 (Adaptive TRansform Acoustic Coding)"),
388
    .type           = AVMEDIA_TYPE_AUDIO,
389
    .id             = AV_CODEC_ID_ATRAC1,
390
    .priv_data_size = sizeof(AT1Ctx),
391
    .init           = atrac1_decode_init,
392
    .close          = atrac1_decode_end,
393
    .decode         = atrac1_decode_frame,
394
    .capabilities   = AV_CODEC_CAP_DR1,
395
    .sample_fmts    = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
396
                                                      AV_SAMPLE_FMT_NONE },
397
    .caps_internal  = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
398
};