GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/alsdec.c Lines: 671 1029 65.2 %
Date: 2020-04-02 05:41:20 Branches: 329 636 51.7 %

Line Branch Exec Source
1
/*
2
 * MPEG-4 ALS decoder
3
 * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * MPEG-4 ALS decoder
25
 * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26
 */
27
28
#include <inttypes.h>
29
30
#include "avcodec.h"
31
#include "get_bits.h"
32
#include "unary.h"
33
#include "mpeg4audio.h"
34
#include "bgmc.h"
35
#include "bswapdsp.h"
36
#include "internal.h"
37
#include "mlz.h"
38
#include "libavutil/samplefmt.h"
39
#include "libavutil/crc.h"
40
#include "libavutil/softfloat_ieee754.h"
41
#include "libavutil/intfloat.h"
42
#include "libavutil/intreadwrite.h"
43
44
#include <stdint.h>
45
46
/** Rice parameters and corresponding index offsets for decoding the
47
 *  indices of scaled PARCOR values. The table chosen is set globally
48
 *  by the encoder and stored in ALSSpecificConfig.
49
 */
50
static const int8_t parcor_rice_table[3][20][2] = {
51
    { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
52
      { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
53
      { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
54
      {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
55
    { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
56
      { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
57
      {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
58
      {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
59
    { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
60
      { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
61
      {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
62
      {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
63
};
64
65
66
/** Scaled PARCOR values used for the first two PARCOR coefficients.
67
 *  To be indexed by the Rice coded indices.
68
 *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
69
 *  Actual values are divided by 32 in order to be stored in 16 bits.
70
 */
71
static const int16_t parcor_scaled_values[] = {
72
    -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
73
    -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
74
    -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
75
    -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
76
    -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
77
     -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
78
     -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
79
     -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
80
     -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
81
     -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
82
     -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
83
     -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
84
     -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
85
     -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
86
     -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
87
     -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
88
     -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
89
     -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
90
     -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
91
     -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
92
     -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
93
     -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
94
      -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
95
       46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
96
      143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
97
      244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
98
      349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
99
      458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
100
      571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
101
      688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
102
      810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
103
      935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
104
};
105
106
107
/** Gain values of p(0) for long-term prediction.
108
 *  To be indexed by the Rice coded indices.
109
 */
110
static const uint8_t ltp_gain_values [4][4] = {
111
    { 0,  8, 16,  24},
112
    {32, 40, 48,  56},
113
    {64, 70, 76,  82},
114
    {88, 92, 96, 100}
115
};
116
117
118
/** Inter-channel weighting factors for multi-channel correlation.
119
 *  To be indexed by the Rice coded indices.
120
 */
121
static const int16_t mcc_weightings[] = {
122
    204,  192,  179,  166,  153,  140,  128,  115,
123
    102,   89,   76,   64,   51,   38,   25,   12,
124
      0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
125
   -102, -115, -128, -140, -153, -166, -179, -192
126
};
127
128
129
/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
130
 */
131
static const uint8_t tail_code[16][6] = {
132
    { 74, 44, 25, 13,  7, 3},
133
    { 68, 42, 24, 13,  7, 3},
134
    { 58, 39, 23, 13,  7, 3},
135
    {126, 70, 37, 19, 10, 5},
136
    {132, 70, 37, 20, 10, 5},
137
    {124, 70, 38, 20, 10, 5},
138
    {120, 69, 37, 20, 11, 5},
139
    {116, 67, 37, 20, 11, 5},
140
    {108, 66, 36, 20, 10, 5},
141
    {102, 62, 36, 20, 10, 5},
142
    { 88, 58, 34, 19, 10, 5},
143
    {162, 89, 49, 25, 13, 7},
144
    {156, 87, 49, 26, 14, 7},
145
    {150, 86, 47, 26, 14, 7},
146
    {142, 84, 47, 26, 14, 7},
147
    {131, 79, 46, 26, 14, 7}
148
};
149
150
151
enum RA_Flag {
152
    RA_FLAG_NONE,
153
    RA_FLAG_FRAMES,
154
    RA_FLAG_HEADER
155
};
156
157
158
typedef struct ALSSpecificConfig {
159
    uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
160
    int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
161
    int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
162
    int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
163
    int frame_length;         ///< frame length for each frame (last frame may differ)
164
    int ra_distance;          ///< distance between RA frames (in frames, 0...255)
165
    enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
166
    int adapt_order;          ///< adaptive order: 1 = on, 0 = off
167
    int coef_table;           ///< table index of Rice code parameters
168
    int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
169
    int max_order;            ///< maximum prediction order (0..1023)
170
    int block_switching;      ///< number of block switching levels
171
    int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
172
    int sb_part;              ///< sub-block partition
173
    int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
174
    int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
175
    int chan_config;          ///< indicates that a chan_config_info field is present
176
    int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
177
    int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
178
    int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
179
    int *chan_pos;            ///< original channel positions
180
    int crc_enabled;          ///< enable Cyclic Redundancy Checksum
181
} ALSSpecificConfig;
182
183
184
typedef struct ALSChannelData {
185
    int stop_flag;
186
    int master_channel;
187
    int time_diff_flag;
188
    int time_diff_sign;
189
    int time_diff_index;
190
    int weighting[6];
191
} ALSChannelData;
192
193
194
typedef struct ALSDecContext {
195
    AVCodecContext *avctx;
196
    ALSSpecificConfig sconf;
197
    GetBitContext gb;
198
    BswapDSPContext bdsp;
199
    const AVCRC *crc_table;
200
    uint32_t crc_org;               ///< CRC value of the original input data
201
    uint32_t crc;                   ///< CRC value calculated from decoded data
202
    unsigned int cur_frame_length;  ///< length of the current frame to decode
203
    unsigned int frame_id;          ///< the frame ID / number of the current frame
204
    unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
205
    unsigned int cs_switch;         ///< if true, channel rearrangement is done
206
    unsigned int num_blocks;        ///< number of blocks used in the current frame
207
    unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
208
    uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
209
    int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
210
    int ltp_lag_length;             ///< number of bits used for ltp lag value
211
    int *const_block;               ///< contains const_block flags for all channels
212
    unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
213
    unsigned int *opt_order;        ///< contains opt_order flags for all channels
214
    int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
215
    int *use_ltp;                   ///< contains use_ltp flags for all channels
216
    int *ltp_lag;                   ///< contains ltp lag values for all channels
217
    int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
218
    int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
219
    int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
220
    int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
221
    int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
222
    int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
223
    int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
224
    ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
225
    ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
226
    int *reverted_channels;         ///< stores a flag for each reverted channel
227
    int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
228
    int32_t **raw_samples;          ///< decoded raw samples for each channel
229
    int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
230
    uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
231
    MLZ* mlz;                       ///< masked lz decompression structure
232
    SoftFloat_IEEE754 *acf;         ///< contains common multiplier for all channels
233
    int *last_acf_mantissa;         ///< contains the last acf mantissa data of common multiplier for all channels
234
    int *shift_value;               ///< value by which the binary point is to be shifted for all channels
235
    int *last_shift_value;          ///< contains last shift value for all channels
236
    int **raw_mantissa;             ///< decoded mantissa bits of the difference signal
237
    unsigned char *larray;          ///< buffer to store the output of masked lz decompression
238
    int *nbits;                     ///< contains the number of bits to read for masked lz decompression for all samples
239
    int highest_decoded_channel;
240
} ALSDecContext;
241
242
243
typedef struct ALSBlockData {
244
    unsigned int block_length;      ///< number of samples within the block
245
    unsigned int ra_block;          ///< if true, this is a random access block
246
    int          *const_block;      ///< if true, this is a constant value block
247
    int          js_blocks;         ///< true if this block contains a difference signal
248
    unsigned int *shift_lsbs;       ///< shift of values for this block
249
    unsigned int *opt_order;        ///< prediction order of this block
250
    int          *store_prev_samples;///< if true, carryover samples have to be stored
251
    int          *use_ltp;          ///< if true, long-term prediction is used
252
    int          *ltp_lag;          ///< lag value for long-term prediction
253
    int          *ltp_gain;         ///< gain values for ltp 5-tap filter
254
    int32_t      *quant_cof;        ///< quantized parcor coefficients
255
    int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
256
    int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
257
    int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
258
    int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
259
} ALSBlockData;
260
261
262
14
static av_cold void dprint_specific_config(ALSDecContext *ctx)
263
{
264
#ifdef DEBUG
265
    AVCodecContext *avctx    = ctx->avctx;
266
    ALSSpecificConfig *sconf = &ctx->sconf;
267
268
    ff_dlog(avctx, "resolution = %i\n",           sconf->resolution);
269
    ff_dlog(avctx, "floating = %i\n",             sconf->floating);
270
    ff_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
271
    ff_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
272
    ff_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
273
    ff_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
274
    ff_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
275
    ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
276
    ff_dlog(avctx, "max_order = %i\n",            sconf->max_order);
277
    ff_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
278
    ff_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
279
    ff_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
280
    ff_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
281
    ff_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
282
    ff_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
283
    ff_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
284
    ff_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
285
    ff_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
286
#endif
287
14
}
288
289
290
/** Read an ALSSpecificConfig from a buffer into the output struct.
291
 */
292
14
static av_cold int read_specific_config(ALSDecContext *ctx)
293
{
294
    GetBitContext gb;
295
    uint64_t ht_size;
296
    int i, config_offset;
297
14
    MPEG4AudioConfig m4ac = {0};
298
14
    ALSSpecificConfig *sconf = &ctx->sconf;
299
14
    AVCodecContext *avctx    = ctx->avctx;
300
    uint32_t als_id, header_size, trailer_size;
301
    int ret;
302
303
14
    if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
304
        return ret;
305
306
14
    config_offset = avpriv_mpeg4audio_get_config2(&m4ac, avctx->extradata,
307
                                                  avctx->extradata_size, 1, avctx);
308
309
14
    if (config_offset < 0)
310
        return AVERROR_INVALIDDATA;
311
312
14
    skip_bits_long(&gb, config_offset);
313
314
14
    if (get_bits_left(&gb) < (30 << 3))
315
        return AVERROR_INVALIDDATA;
316
317
    // read the fixed items
318
14
    als_id                      = get_bits_long(&gb, 32);
319
14
    avctx->sample_rate          = m4ac.sample_rate;
320
14
    skip_bits_long(&gb, 32); // sample rate already known
321
14
    sconf->samples              = get_bits_long(&gb, 32);
322
14
    avctx->channels             = m4ac.channels;
323
14
    skip_bits(&gb, 16);      // number of channels already known
324
14
    skip_bits(&gb, 3);       // skip file_type
325
14
    sconf->resolution           = get_bits(&gb, 3);
326
14
    sconf->floating             = get_bits1(&gb);
327
14
    sconf->msb_first            = get_bits1(&gb);
328
14
    sconf->frame_length         = get_bits(&gb, 16) + 1;
329
14
    sconf->ra_distance          = get_bits(&gb, 8);
330
14
    sconf->ra_flag              = get_bits(&gb, 2);
331
14
    sconf->adapt_order          = get_bits1(&gb);
332
14
    sconf->coef_table           = get_bits(&gb, 2);
333
14
    sconf->long_term_prediction = get_bits1(&gb);
334
14
    sconf->max_order            = get_bits(&gb, 10);
335
14
    sconf->block_switching      = get_bits(&gb, 2);
336
14
    sconf->bgmc                 = get_bits1(&gb);
337
14
    sconf->sb_part              = get_bits1(&gb);
338
14
    sconf->joint_stereo         = get_bits1(&gb);
339
14
    sconf->mc_coding            = get_bits1(&gb);
340
14
    sconf->chan_config          = get_bits1(&gb);
341
14
    sconf->chan_sort            = get_bits1(&gb);
342
14
    sconf->crc_enabled          = get_bits1(&gb);
343
14
    sconf->rlslms               = get_bits1(&gb);
344
14
    skip_bits(&gb, 5);       // skip 5 reserved bits
345
14
    skip_bits1(&gb);         // skip aux_data_enabled
346
347
348
    // check for ALSSpecificConfig struct
349
14
    if (als_id != MKBETAG('A','L','S','\0'))
350
        return AVERROR_INVALIDDATA;
351
352
14
    if (avctx->channels > FF_SANE_NB_CHANNELS) {
353
        avpriv_request_sample(avctx, "Huge number of channels\n");
354
        return AVERROR_PATCHWELCOME;
355
    }
356
357
14
    ctx->cur_frame_length = sconf->frame_length;
358
359
    // read channel config
360
14
    if (sconf->chan_config)
361
        sconf->chan_config_info = get_bits(&gb, 16);
362
    // TODO: use this to set avctx->channel_layout
363
364
365
    // read channel sorting
366

14
    if (sconf->chan_sort && avctx->channels > 1) {
367
        int chan_pos_bits = av_ceil_log2(avctx->channels);
368
        int bits_needed  = avctx->channels * chan_pos_bits + 7;
369
        if (get_bits_left(&gb) < bits_needed)
370
            return AVERROR_INVALIDDATA;
371
372
        if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
373
            return AVERROR(ENOMEM);
374
375
        ctx->cs_switch = 1;
376
377
        for (i = 0; i < avctx->channels; i++) {
378
            sconf->chan_pos[i] = -1;
379
        }
380
381
        for (i = 0; i < avctx->channels; i++) {
382
            int idx;
383
384
            idx = get_bits(&gb, chan_pos_bits);
385
            if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
386
                av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
387
                ctx->cs_switch = 0;
388
                break;
389
            }
390
            sconf->chan_pos[idx] = i;
391
        }
392
393
        align_get_bits(&gb);
394
    }
395
396
397
    // read fixed header and trailer sizes,
398
    // if size = 0xFFFFFFFF then there is no data field!
399
14
    if (get_bits_left(&gb) < 64)
400
        return AVERROR_INVALIDDATA;
401
402
14
    header_size  = get_bits_long(&gb, 32);
403
14
    trailer_size = get_bits_long(&gb, 32);
404
14
    if (header_size  == 0xFFFFFFFF)
405
        header_size  = 0;
406
14
    if (trailer_size == 0xFFFFFFFF)
407
        trailer_size = 0;
408
409
14
    ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
410
411
412
    // skip the header and trailer data
413
14
    if (get_bits_left(&gb) < ht_size)
414
        return AVERROR_INVALIDDATA;
415
416
14
    if (ht_size > INT32_MAX)
417
        return AVERROR_PATCHWELCOME;
418
419
14
    skip_bits_long(&gb, ht_size);
420
421
422
    // initialize CRC calculation
423
14
    if (sconf->crc_enabled) {
424
14
        if (get_bits_left(&gb) < 32)
425
            return AVERROR_INVALIDDATA;
426
427
14
        if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
428
            ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
429
            ctx->crc       = 0xFFFFFFFF;
430
            ctx->crc_org   = ~get_bits_long(&gb, 32);
431
        } else
432
14
            skip_bits_long(&gb, 32);
433
    }
434
435
436
    // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
437
438
14
    dprint_specific_config(ctx);
439
440
14
    return 0;
441
}
442
443
444
/** Check the ALSSpecificConfig for unsupported features.
445
 */
446
14
static int check_specific_config(ALSDecContext *ctx)
447
{
448
14
    ALSSpecificConfig *sconf = &ctx->sconf;
449
14
    int error = 0;
450
451
    // report unsupported feature and set error value
452
    #define MISSING_ERR(cond, str, errval)              \
453
    {                                                   \
454
        if (cond) {                                     \
455
            avpriv_report_missing_feature(ctx->avctx,   \
456
                                          str);         \
457
            error = errval;                             \
458
        }                                               \
459
    }
460
461
14
    MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
462
463
14
    return error;
464
}
465
466
467
/** Parse the bs_info field to extract the block partitioning used in
468
 *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
469
 */
470
3086
static void parse_bs_info(const uint32_t bs_info, unsigned int n,
471
                          unsigned int div, unsigned int **div_blocks,
472
                          unsigned int *num_blocks)
473
{
474

3086
    if (n < 31 && ((bs_info << n) & 0x40000000)) {
475
        // if the level is valid and the investigated bit n is set
476
        // then recursively check both children at bits (2n+1) and (2n+2)
477
96
        n   *= 2;
478
96
        div += 1;
479
96
        parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
480
96
        parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
481
    } else {
482
        // else the bit is not set or the last level has been reached
483
        // (bit implicitly not set)
484
2990
        **div_blocks = div;
485
2990
        (*div_blocks)++;
486
2990
        (*num_blocks)++;
487
    }
488
3086
}
489
490
491
/** Read and decode a Rice codeword.
492
 */
493
7251051
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
494
{
495
7251051
    int max = get_bits_left(gb) - k;
496
7251051
    unsigned q = get_unary(gb, 0, max);
497
7251051
    int r   = k ? get_bits1(gb) : !(q & 1);
498
499
7251051
    if (k > 1) {
500
6998213
        q <<= (k - 1);
501
6998213
        q  += get_bits_long(gb, k - 1);
502
252838
    } else if (!k) {
503
198288
        q >>= 1;
504
    }
505
7251051
    return r ? q : ~q;
506
}
507
508
509
/** Convert PARCOR coefficient k to direct filter coefficient.
510
 */
511
121719
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
512
{
513
    int i, j;
514
515
2385493
    for (i = 0, j = k - 1; i < j; i++, j--) {
516
2263774
        unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
517
2263774
        cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
518
2263774
        cof[i]  += tmp1;
519
    }
520
121719
    if (i == j)
521
60463
        cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
522
523
121719
    cof[k] = par[k];
524
121719
}
525
526
527
/** Read block switching field if necessary and set actual block sizes.
528
 *  Also assure that the block sizes of the last frame correspond to the
529
 *  actual number of samples.
530
 */
531
2894
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
532
                            uint32_t *bs_info)
533
{
534
2894
    ALSSpecificConfig *sconf     = &ctx->sconf;
535
2894
    GetBitContext *gb            = &ctx->gb;
536
2894
    unsigned int *ptr_div_blocks = div_blocks;
537
    unsigned int b;
538
539
2894
    if (sconf->block_switching) {
540
110
        unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
541
110
        *bs_info = get_bits_long(gb, bs_info_len);
542
110
        *bs_info <<= (32 - bs_info_len);
543
    }
544
545
2894
    ctx->num_blocks = 0;
546
2894
    parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
547
548
    // The last frame may have an overdetermined block structure given in
549
    // the bitstream. In that case the defined block structure would need
550
    // more samples than available to be consistent.
551
    // The block structure is actually used but the block sizes are adapted
552
    // to fit the actual number of available samples.
553
    // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
554
    // This results in the actual block sizes:    2 2 1 0.
555
    // This is not specified in 14496-3 but actually done by the reference
556
    // codec RM22 revision 2.
557
    // This appears to happen in case of an odd number of samples in the last
558
    // frame which is actually not allowed by the block length switching part
559
    // of 14496-3.
560
    // The ALS conformance files feature an odd number of samples in the last
561
    // frame.
562
563
5884
    for (b = 0; b < ctx->num_blocks; b++)
564
2990
        div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
565
566
2894
    if (ctx->cur_frame_length != ctx->sconf.frame_length) {
567
11
        unsigned int remaining = ctx->cur_frame_length;
568
569
16
        for (b = 0; b < ctx->num_blocks; b++) {
570
16
            if (remaining <= div_blocks[b]) {
571
11
                div_blocks[b] = remaining;
572
11
                ctx->num_blocks = b + 1;
573
11
                break;
574
            }
575
576
5
            remaining -= div_blocks[b];
577
        }
578
    }
579
2894
}
580
581
582
/** Read the block data for a constant block
583
 */
584
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
585
{
586
    ALSSpecificConfig *sconf = &ctx->sconf;
587
    AVCodecContext *avctx    = ctx->avctx;
588
    GetBitContext *gb        = &ctx->gb;
589
590
    if (bd->block_length <= 0)
591
        return AVERROR_INVALIDDATA;
592
593
    *bd->raw_samples = 0;
594
    *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
595
    bd->js_blocks    = get_bits1(gb);
596
597
    // skip 5 reserved bits
598
    skip_bits(gb, 5);
599
600
    if (*bd->const_block) {
601
        unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
602
        *bd->raw_samples = get_sbits_long(gb, const_val_bits);
603
    }
604
605
    // ensure constant block decoding by reusing this field
606
    *bd->const_block = 1;
607
608
    return 0;
609
}
610
611
612
/** Decode the block data for a constant block
613
 */
614
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
615
{
616
    int      smp = bd->block_length - 1;
617
    int32_t  val = *bd->raw_samples;
618
    int32_t *dst = bd->raw_samples + 1;
619
620
    // write raw samples into buffer
621
    for (; smp; smp--)
622
        *dst++ = val;
623
}
624
625
626
/** Read the block data for a non-constant block
627
 */
628
4241
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
629
{
630
4241
    ALSSpecificConfig *sconf = &ctx->sconf;
631
4241
    AVCodecContext *avctx    = ctx->avctx;
632
4241
    GetBitContext *gb        = &ctx->gb;
633
    unsigned int k;
634
    unsigned int s[8];
635
    unsigned int sx[8];
636
    unsigned int sub_blocks, log2_sub_blocks, sb_length;
637
4241
    unsigned int start      = 0;
638
    unsigned int opt_order;
639
    int          sb;
640
4241
    int32_t      *quant_cof = bd->quant_cof;
641
    int32_t      *current_res;
642
643
644
    // ensure variable block decoding by reusing this field
645
4241
    *bd->const_block = 0;
646
647
4241
    *bd->opt_order  = 1;
648
4241
    bd->js_blocks   = get_bits1(gb);
649
650
4241
    opt_order       = *bd->opt_order;
651
652
    // determine the number of subblocks for entropy decoding
653

4241
    if (!sconf->bgmc && !sconf->sb_part) {
654
        log2_sub_blocks = 0;
655
    } else {
656

4241
        if (sconf->bgmc && sconf->sb_part)
657
1208
            log2_sub_blocks = get_bits(gb, 2);
658
        else
659
3033
            log2_sub_blocks = 2 * get_bits1(gb);
660
    }
661
662
4241
    sub_blocks = 1 << log2_sub_blocks;
663
664
    // do not continue in case of a damaged stream since
665
    // block_length must be evenly divisible by sub_blocks
666

4241
    if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
667
        av_log(avctx, AV_LOG_WARNING,
668
               "Block length is not evenly divisible by the number of subblocks.\n");
669
        return AVERROR_INVALIDDATA;
670
    }
671
672
4241
    sb_length = bd->block_length >> log2_sub_blocks;
673
674
4241
    if (sconf->bgmc) {
675
1208
        s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
676
2633
        for (k = 1; k < sub_blocks; k++)
677
1425
            s[k] = s[k - 1] + decode_rice(gb, 2);
678
679
3841
        for (k = 0; k < sub_blocks; k++) {
680
2633
            sx[k]   = s[k] & 0x0F;
681
2633
            s [k] >>= 4;
682
        }
683
    } else {
684
3033
        s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
685
5313
        for (k = 1; k < sub_blocks; k++)
686
2280
            s[k] = s[k - 1] + decode_rice(gb, 0);
687
    }
688
7946
    for (k = 1; k < sub_blocks; k++)
689
3705
        if (s[k] > 32) {
690
            av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
691
            return AVERROR_INVALIDDATA;
692
        }
693
694
4241
    if (get_bits1(gb))
695
        *bd->shift_lsbs = get_bits(gb, 4) + 1;
696
697

4241
    *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
698
699
700
4241
    if (!sconf->rlslms) {
701

5698
        if (sconf->adapt_order && sconf->max_order) {
702
1457
            int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
703
1457
                                                2, sconf->max_order + 1));
704
1457
            *bd->opt_order       = get_bits(gb, opt_order_length);
705
1457
            if (*bd->opt_order > sconf->max_order) {
706
                *bd->opt_order = sconf->max_order;
707
                av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
708
                return AVERROR_INVALIDDATA;
709
            }
710
        } else {
711
2784
            *bd->opt_order = sconf->max_order;
712
        }
713
4241
        opt_order = *bd->opt_order;
714
715
4241
        if (opt_order) {
716
            int add_base;
717
718
4241
            if (sconf->coef_table == 3) {
719
                add_base = 0x7F;
720
721
                // read coefficient 0
722
                quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
723
724
                // read coefficient 1
725
                if (opt_order > 1)
726
                    quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
727
728
                // read coefficients 2 to opt_order
729
                for (k = 2; k < opt_order; k++)
730
                    quant_cof[k] = get_bits(gb, 7);
731
            } else {
732
                int k_max;
733
4241
                add_base = 1;
734
735
                // read coefficient 0 to 19
736
4241
                k_max = FFMIN(opt_order, 20);
737
59945
                for (k = 0; k < k_max; k++) {
738
55704
                    int rice_param = parcor_rice_table[sconf->coef_table][k][1];
739
55704
                    int offset     = parcor_rice_table[sconf->coef_table][k][0];
740
55704
                    quant_cof[k] = decode_rice(gb, rice_param) + offset;
741

55704
                    if (quant_cof[k] < -64 || quant_cof[k] > 63) {
742
                        av_log(avctx, AV_LOG_ERROR,
743
                               "quant_cof %"PRId32" is out of range.\n",
744
                               quant_cof[k]);
745
                        return AVERROR_INVALIDDATA;
746
                    }
747
                }
748
749
                // read coefficients 20 to 126
750
4241
                k_max = FFMIN(opt_order, 127);
751
69618
                for (; k < k_max; k++)
752
65377
                    quant_cof[k] = decode_rice(gb, 2) + (k & 1);
753
754
                // read coefficients 127 to opt_order
755
4879
                for (; k < opt_order; k++)
756
638
                    quant_cof[k] = decode_rice(gb, 1);
757
758
4241
                quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
759
760
4241
                if (opt_order > 1)
761
4241
                    quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
762
            }
763
764
117478
            for (k = 2; k < opt_order; k++)
765
113237
                quant_cof[k] = (quant_cof[k] * (1 << 14)) + (add_base << 13);
766
        }
767
    }
768
769
    // read LTP gain and lag values
770
4241
    if (sconf->long_term_prediction) {
771
1208
        *bd->use_ltp = get_bits1(gb);
772
773
1208
        if (*bd->use_ltp) {
774
            int r, c;
775
776
1116
            bd->ltp_gain[0]   = decode_rice(gb, 1) * 8;
777
1116
            bd->ltp_gain[1]   = decode_rice(gb, 2) * 8;
778
779
1116
            r                 = get_unary(gb, 0, 4);
780
1116
            c                 = get_bits(gb, 2);
781
1116
            if (r >= 4) {
782
                av_log(avctx, AV_LOG_ERROR, "r overflow\n");
783
                return AVERROR_INVALIDDATA;
784
            }
785
786
1116
            bd->ltp_gain[2]   = ltp_gain_values[r][c];
787
788
1116
            bd->ltp_gain[3]   = decode_rice(gb, 2) * 8;
789
1116
            bd->ltp_gain[4]   = decode_rice(gb, 1) * 8;
790
791
1116
            *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
792
1116
            *bd->ltp_lag     += FFMAX(4, opt_order + 1);
793
        }
794
    }
795
796
    // read first value and residuals in case of a random access block
797
4241
    if (bd->ra_block) {
798
696
        start = FFMIN(opt_order, 3);
799
696
        av_assert0(sb_length <= sconf->frame_length);
800
696
        if (sb_length <= start) {
801
            // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
802
            av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
803
            return AVERROR_PATCHWELCOME;
804
        }
805
806
696
        if (opt_order)
807
696
            bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
808
696
        if (opt_order > 1)
809
696
            bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
810
696
        if (opt_order > 2)
811
695
            bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
812
    }
813
814
    // read all residuals
815
4241
    if (sconf->bgmc) {
816
        int          delta[8];
817
        unsigned int k    [8];
818
1208
        unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
819
820
        // read most significant bits
821
        unsigned int high;
822
        unsigned int low;
823
        unsigned int value;
824
825
1208
        int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
826
1208
        if (ret < 0)
827
            return ret;
828
829
1208
        current_res = bd->raw_samples + start;
830
831
3841
        for (sb = 0; sb < sub_blocks; sb++) {
832
2633
            unsigned int sb_len  = sb_length - (sb ? 0 : start);
833
834
2633
            k    [sb] = s[sb] > b ? s[sb] - b : 0;
835
2633
            delta[sb] = 5 - s[sb] + k[sb];
836
837
2633
            if (k[sb] >= 32)
838
                return AVERROR_INVALIDDATA;
839
840
2633
            ff_bgmc_decode(gb, sb_len, current_res,
841
                        delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
842
843
2633
            current_res += sb_len;
844
        }
845
846
1208
        ff_bgmc_decode_end(gb);
847
848
849
        // read least significant bits and tails
850
1208
        current_res = bd->raw_samples + start;
851
852
3841
        for (sb = 0; sb < sub_blocks; sb++, start = 0) {
853
2633
            unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
854
2633
            unsigned int cur_k         = k[sb];
855
2633
            unsigned int cur_s         = s[sb];
856
857
3001923
            for (; start < sb_length; start++) {
858
2999290
                int32_t res = *current_res;
859
860
2999290
                if (res == cur_tail_code) {
861
8344
                    unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
862
8344
                                          << (5 - delta[sb]);
863
864
8344
                    res = decode_rice(gb, cur_s);
865
866
8344
                    if (res >= 0) {
867
4174
                        res += (max_msb    ) << cur_k;
868
                    } else {
869
4170
                        res -= (max_msb - 1) << cur_k;
870
                    }
871
                } else {
872
2990946
                    if (res > cur_tail_code)
873
55640
                        res--;
874
875
2990946
                    if (res & 1)
876
1336670
                        res = -res;
877
878
2990946
                    res >>= 1;
879
880
2990946
                    if (cur_k) {
881
433637
                        res  *= 1U << cur_k;
882
433637
                        res  |= get_bits_long(gb, cur_k);
883
                    }
884
                }
885
886
2999290
                *current_res++ = res;
887
            }
888
        }
889
    } else {
890
3033
        current_res = bd->raw_samples + start;
891
892
8346
        for (sb = 0; sb < sub_blocks; sb++, start = 0)
893
7112316
            for (; start < sb_length; start++)
894
7107003
                *current_res++ = decode_rice(gb, s[sb]);
895
     }
896
897
4241
    return 0;
898
}
899
900
901
/** Decode the block data for a non-constant block
902
 */
903
4241
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
904
{
905
4241
    ALSSpecificConfig *sconf = &ctx->sconf;
906
4241
    unsigned int block_length = bd->block_length;
907
4241
    unsigned int smp = 0;
908
    unsigned int k;
909
4241
    int opt_order             = *bd->opt_order;
910
    int sb;
911
    int64_t y;
912
4241
    int32_t *quant_cof        = bd->quant_cof;
913
4241
    int32_t *lpc_cof          = bd->lpc_cof;
914
4241
    int32_t *raw_samples      = bd->raw_samples;
915
4241
    int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
916
4241
    int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
917
918
    // reverse long-term prediction
919
4241
    if (*bd->use_ltp) {
920
        int ltp_smp;
921
922
2559842
        for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
923
2558726
            int center = ltp_smp - *bd->ltp_lag;
924
2558726
            int begin  = FFMAX(0, center - 2);
925
2558726
            int end    = center + 3;
926
2558726
            int tab    = 5 - (end - begin);
927
            int base;
928
929
2558726
            y = 1 << 6;
930
931
15341196
            for (base = begin; base < end; base++, tab++)
932
12782470
                y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
933
934
2558726
            raw_samples[ltp_smp] += y >> 7;
935
        }
936
    }
937
938
    // reconstruct all samples from residuals
939
4241
    if (bd->ra_block) {
940
53974
        for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
941
53278
            y = 1 << 19;
942
943
2692244
            for (sb = 0; sb < smp; sb++)
944
2638966
                y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
945
946
53278
            *raw_samples++ -= y >> 20;
947
53278
            parcor_to_lpc(smp, quant_cof, lpc_cof);
948
        }
949
    } else {
950
71986
        for (k = 0; k < opt_order; k++)
951
68441
            parcor_to_lpc(k, quant_cof, lpc_cof);
952
953
        // store previous samples in case that they have to be altered
954
3545
        if (*bd->store_prev_samples)
955
9
            memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
956
9
                   sizeof(*bd->prev_raw_samples) * sconf->max_order);
957
958
        // reconstruct difference signal for prediction (joint-stereo)
959

3545
        if (bd->js_blocks && bd->raw_other) {
960
            uint32_t *left, *right;
961
962
9
            if (bd->raw_other > raw_samples) {  // D = R - L
963
4
                left  = raw_samples;
964
4
                right = bd->raw_other;
965
            } else {                                // D = R - L
966
5
                left  = bd->raw_other;
967
5
                right = raw_samples;
968
            }
969
970
333
            for (sb = -1; sb >= -sconf->max_order; sb--)
971
324
                raw_samples[sb] = right[sb] - left[sb];
972
        }
973
974
        // reconstruct shifted signal
975
3545
        if (*bd->shift_lsbs)
976
            for (sb = -1; sb >= -sconf->max_order; sb--)
977
                raw_samples[sb] >>= *bd->shift_lsbs;
978
    }
979
980
    // reverse linear prediction coefficients for efficiency
981
4241
    lpc_cof = lpc_cof + opt_order;
982
983
125960
    for (sb = 0; sb < opt_order; sb++)
984
121719
        lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
985
986
    // reconstruct raw samples
987
4241
    raw_samples = bd->raw_samples + smp;
988
4241
    lpc_cof     = lpc_cof_reversed + opt_order;
989
990
10059343
    for (; raw_samples < raw_samples_end; raw_samples++) {
991
10055102
        y = 1 << 19;
992
993
379063715
        for (sb = -opt_order; sb < 0; sb++)
994
369008613
            y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
995
996
10055102
        *raw_samples -= y >> 20;
997
    }
998
999
4241
    raw_samples = bd->raw_samples;
1000
1001
    // restore previous samples in case that they have been altered
1002
4241
    if (*bd->store_prev_samples)
1003
9
        memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
1004
9
               sizeof(*raw_samples) * sconf->max_order);
1005
1006
4241
    return 0;
1007
}
1008
1009
1010
/** Read the block data.
1011
 */
1012
4241
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
1013
{
1014
    int ret;
1015
4241
    GetBitContext *gb        = &ctx->gb;
1016
4241
    ALSSpecificConfig *sconf = &ctx->sconf;
1017
1018
4241
    *bd->shift_lsbs = 0;
1019
    // read block type flag and read the samples accordingly
1020
4241
    if (get_bits1(gb)) {
1021
4241
        ret = read_var_block_data(ctx, bd);
1022
    } else {
1023
        ret = read_const_block_data(ctx, bd);
1024
    }
1025
1026

4241
    if (!sconf->mc_coding || ctx->js_switch)
1027
3033
        align_get_bits(gb);
1028
1029
4241
    return ret;
1030
}
1031
1032
1033
/** Decode the block data.
1034
 */
1035
4241
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1036
{
1037
    unsigned int smp;
1038
4241
    int ret = 0;
1039
1040
    // read block type flag and read the samples accordingly
1041
4241
    if (*bd->const_block)
1042
        decode_const_block_data(ctx, bd);
1043
    else
1044
4241
        ret = decode_var_block_data(ctx, bd); // always return 0
1045
1046
4241
    if (ret < 0)
1047
        return ret;
1048
1049
    // TODO: read RLSLMS extension data
1050
1051
4241
    if (*bd->shift_lsbs)
1052
        for (smp = 0; smp < bd->block_length; smp++)
1053
            bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
1054
1055
4241
    return 0;
1056
}
1057
1058
1059
/** Read and decode block data successively.
1060
 */
1061
3033
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1062
{
1063
    int ret;
1064
1065
3033
    if ((ret = read_block(ctx, bd)) < 0)
1066
        return ret;
1067
1068
3033
    return decode_block(ctx, bd);
1069
}
1070
1071
1072
/** Compute the number of samples left to decode for the current frame and
1073
 *  sets these samples to zero.
1074
 */
1075
static void zero_remaining(unsigned int b, unsigned int b_max,
1076
                           const unsigned int *div_blocks, int32_t *buf)
1077
{
1078
    unsigned int count = 0;
1079
1080
    while (b < b_max)
1081
        count += div_blocks[b++];
1082
1083
    if (count)
1084
        memset(buf, 0, sizeof(*buf) * count);
1085
}
1086
1087
1088
/** Decode blocks independently.
1089
 */
1090
2132
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1091
                             unsigned int c, const unsigned int *div_blocks,
1092
                             unsigned int *js_blocks)
1093
{
1094
    int ret;
1095
    unsigned int b;
1096
2132
    ALSBlockData bd = { 0 };
1097
1098
2132
    bd.ra_block         = ra_frame;
1099
2132
    bd.const_block      = ctx->const_block;
1100
2132
    bd.shift_lsbs       = ctx->shift_lsbs;
1101
2132
    bd.opt_order        = ctx->opt_order;
1102
2132
    bd.store_prev_samples = ctx->store_prev_samples;
1103
2132
    bd.use_ltp          = ctx->use_ltp;
1104
2132
    bd.ltp_lag          = ctx->ltp_lag;
1105
2132
    bd.ltp_gain         = ctx->ltp_gain[0];
1106
2132
    bd.quant_cof        = ctx->quant_cof[0];
1107
2132
    bd.lpc_cof          = ctx->lpc_cof[0];
1108
2132
    bd.prev_raw_samples = ctx->prev_raw_samples;
1109
2132
    bd.raw_samples      = ctx->raw_samples[c];
1110
1111
1112
4305
    for (b = 0; b < ctx->num_blocks; b++) {
1113
2173
        bd.block_length     = div_blocks[b];
1114
1115
2173
        if ((ret = read_decode_block(ctx, &bd)) < 0) {
1116
            // damaged block, write zero for the rest of the frame
1117
            zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1118
            return ret;
1119
        }
1120
2173
        bd.raw_samples += div_blocks[b];
1121
2173
        bd.ra_block     = 0;
1122
    }
1123
1124
2132
    return 0;
1125
}
1126
1127
1128
/** Decode blocks dependently.
1129
 */
1130
413
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1131
                         unsigned int c, const unsigned int *div_blocks,
1132
                         unsigned int *js_blocks)
1133
{
1134
413
    ALSSpecificConfig *sconf = &ctx->sconf;
1135
413
    unsigned int offset = 0;
1136
    unsigned int b;
1137
    int ret;
1138
413
    ALSBlockData bd[2] = { { 0 } };
1139
1140
413
    bd[0].ra_block         = ra_frame;
1141
413
    bd[0].const_block      = ctx->const_block;
1142
413
    bd[0].shift_lsbs       = ctx->shift_lsbs;
1143
413
    bd[0].opt_order        = ctx->opt_order;
1144
413
    bd[0].store_prev_samples = ctx->store_prev_samples;
1145
413
    bd[0].use_ltp          = ctx->use_ltp;
1146
413
    bd[0].ltp_lag          = ctx->ltp_lag;
1147
413
    bd[0].ltp_gain         = ctx->ltp_gain[0];
1148
413
    bd[0].quant_cof        = ctx->quant_cof[0];
1149
413
    bd[0].lpc_cof          = ctx->lpc_cof[0];
1150
413
    bd[0].prev_raw_samples = ctx->prev_raw_samples;
1151
413
    bd[0].js_blocks        = *js_blocks;
1152
1153
413
    bd[1].ra_block         = ra_frame;
1154
413
    bd[1].const_block      = ctx->const_block;
1155
413
    bd[1].shift_lsbs       = ctx->shift_lsbs;
1156
413
    bd[1].opt_order        = ctx->opt_order;
1157
413
    bd[1].store_prev_samples = ctx->store_prev_samples;
1158
413
    bd[1].use_ltp          = ctx->use_ltp;
1159
413
    bd[1].ltp_lag          = ctx->ltp_lag;
1160
413
    bd[1].ltp_gain         = ctx->ltp_gain[0];
1161
413
    bd[1].quant_cof        = ctx->quant_cof[0];
1162
413
    bd[1].lpc_cof          = ctx->lpc_cof[0];
1163
413
    bd[1].prev_raw_samples = ctx->prev_raw_samples;
1164
413
    bd[1].js_blocks        = *(js_blocks + 1);
1165
1166
    // decode all blocks
1167
843
    for (b = 0; b < ctx->num_blocks; b++) {
1168
        unsigned int s;
1169
1170
430
        bd[0].block_length = div_blocks[b];
1171
430
        bd[1].block_length = div_blocks[b];
1172
1173
430
        bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
1174
430
        bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
1175
1176
430
        bd[0].raw_other    = bd[1].raw_samples;
1177
430
        bd[1].raw_other    = bd[0].raw_samples;
1178
1179

860
        if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1180
430
            (ret = read_decode_block(ctx, &bd[1])) < 0)
1181
            goto fail;
1182
1183
        // reconstruct joint-stereo blocks
1184
430
        if (bd[0].js_blocks) {
1185
4
            if (bd[1].js_blocks)
1186
                av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1187
1188
16388
            for (s = 0; s < div_blocks[b]; s++)
1189
16384
                bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
1190
426
        } else if (bd[1].js_blocks) {
1191
10245
            for (s = 0; s < div_blocks[b]; s++)
1192
10240
                bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
1193
        }
1194
1195
430
        offset  += div_blocks[b];
1196
430
        bd[0].ra_block = 0;
1197
430
        bd[1].ra_block = 0;
1198
    }
1199
1200
    // store carryover raw samples,
1201
    // the others channel raw samples are stored by the calling function.
1202
413
    memmove(ctx->raw_samples[c] - sconf->max_order,
1203
413
            ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1204
413
            sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1205
1206
413
    return 0;
1207
fail:
1208
    // damaged block, write zero for the rest of the frame
1209
    zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1210
    zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1211
    return ret;
1212
}
1213
1214
3729
static inline int als_weighting(GetBitContext *gb, int k, int off)
1215
{
1216
3729
    int idx = av_clip(decode_rice(gb, k) + off,
1217
                      0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1218
3729
    return mcc_weightings[idx];
1219
}
1220
1221
/** Read the channel data.
1222
  */
1223
1208
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
1224
{
1225
1208
    GetBitContext *gb       = &ctx->gb;
1226
1208
    ALSChannelData *current = cd;
1227
1208
    unsigned int channels   = ctx->avctx->channels;
1228
1208
    int entries             = 0;
1229
1230

1992
    while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1231
784
        current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1232
1233
784
        if (current->master_channel >= channels) {
1234
            av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1235
            return AVERROR_INVALIDDATA;
1236
        }
1237
1238
784
        if (current->master_channel != c) {
1239
784
            current->time_diff_flag = get_bits1(gb);
1240
784
            current->weighting[0]   = als_weighting(gb, 1, 16);
1241
784
            current->weighting[1]   = als_weighting(gb, 2, 14);
1242
784
            current->weighting[2]   = als_weighting(gb, 1, 16);
1243
1244
784
            if (current->time_diff_flag) {
1245
459
                current->weighting[3] = als_weighting(gb, 1, 16);
1246
459
                current->weighting[4] = als_weighting(gb, 1, 16);
1247
459
                current->weighting[5] = als_weighting(gb, 1, 16);
1248
1249
459
                current->time_diff_sign  = get_bits1(gb);
1250
459
                current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1251
            }
1252
        }
1253
1254
784
        current++;
1255
784
        entries++;
1256
    }
1257
1258
1208
    if (entries == channels) {
1259
        av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1260
        return AVERROR_INVALIDDATA;
1261
    }
1262
1263
1208
    align_get_bits(gb);
1264
1208
    return 0;
1265
}
1266
1267
1268
/** Recursively reverts the inter-channel correlation for a block.
1269
 */
1270
1992
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
1271
                                       ALSChannelData **cd, int *reverted,
1272
                                       unsigned int offset, int c)
1273
{
1274
1992
    ALSChannelData *ch = cd[c];
1275
1992
    unsigned int   dep = 0;
1276
1992
    unsigned int channels = ctx->avctx->channels;
1277
1992
    unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1278
1279
1992
    if (reverted[c])
1280
784
        return 0;
1281
1282
1208
    reverted[c] = 1;
1283
1284

1992
    while (dep < channels && !ch[dep].stop_flag) {
1285
784
        revert_channel_correlation(ctx, bd, cd, reverted, offset,
1286
784
                                   ch[dep].master_channel);
1287
1288
784
        dep++;
1289
    }
1290
1291
1208
    if (dep == channels) {
1292
        av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1293
        return AVERROR_INVALIDDATA;
1294
    }
1295
1296
1208
    bd->const_block = ctx->const_block + c;
1297
1208
    bd->shift_lsbs  = ctx->shift_lsbs + c;
1298
1208
    bd->opt_order   = ctx->opt_order + c;
1299
1208
    bd->store_prev_samples = ctx->store_prev_samples + c;
1300
1208
    bd->use_ltp     = ctx->use_ltp + c;
1301
1208
    bd->ltp_lag     = ctx->ltp_lag + c;
1302
1208
    bd->ltp_gain    = ctx->ltp_gain[c];
1303
1208
    bd->lpc_cof     = ctx->lpc_cof[c];
1304
1208
    bd->quant_cof   = ctx->quant_cof[c];
1305
1208
    bd->raw_samples = ctx->raw_samples[c] + offset;
1306
1307
1992
    for (dep = 0; !ch[dep].stop_flag; dep++) {
1308
        ptrdiff_t smp;
1309
784
        ptrdiff_t begin = 1;
1310
784
        ptrdiff_t end   = bd->block_length - 1;
1311
        int64_t y;
1312
784
        int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1313
1314
784
        if (ch[dep].master_channel == c)
1315
            continue;
1316
1317
784
        if (ch[dep].time_diff_flag) {
1318
459
            int t = ch[dep].time_diff_index;
1319
1320
459
            if (ch[dep].time_diff_sign) {
1321
202
                t      = -t;
1322
202
                if (begin < t) {
1323
                    av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1324
                    return AVERROR_INVALIDDATA;
1325
                }
1326
202
                begin -= t;
1327
            } else {
1328
257
                if (end < t) {
1329
                    av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1330
                    return AVERROR_INVALIDDATA;
1331
                }
1332
257
                end   -= t;
1333
            }
1334
1335

459
            if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1336

459
                FFMAX(end   + 1,   end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1337
                av_log(ctx->avctx, AV_LOG_ERROR,
1338
                       "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1339
                       master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1,   end + 1 + t),
1340
                       ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1341
                return AVERROR_INVALIDDATA;
1342
            }
1343
1344
1163420
            for (smp = begin; smp < end; smp++) {
1345
1162961
                y  = (1 << 6) +
1346
1162961
                     MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
1347
1162961
                     MUL64(ch[dep].weighting[1], master[smp        ]) +
1348
1162961
                     MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
1349
1162961
                     MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1350
1162961
                     MUL64(ch[dep].weighting[4], master[smp     + t]) +
1351
1162961
                     MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1352
1353
1162961
                bd->raw_samples[smp] += y >> 7;
1354
            }
1355
        } else {
1356
1357
325
            if (begin - 1 < ctx->raw_buffer - master ||
1358
325
                end   + 1 > ctx->raw_buffer + channels * channel_size - master) {
1359
                av_log(ctx->avctx, AV_LOG_ERROR,
1360
                       "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1361
                       master + begin - 1, master + end + 1,
1362
                       ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1363
                return AVERROR_INVALIDDATA;
1364
            }
1365
1366
891502
            for (smp = begin; smp < end; smp++) {
1367
891177
                y  = (1 << 6) +
1368
891177
                     MUL64(ch[dep].weighting[0], master[smp - 1]) +
1369
891177
                     MUL64(ch[dep].weighting[1], master[smp    ]) +
1370
891177
                     MUL64(ch[dep].weighting[2], master[smp + 1]);
1371
1372
891177
                bd->raw_samples[smp] += y >> 7;
1373
            }
1374
        }
1375
    }
1376
1377
1208
    return 0;
1378
}
1379
1380
1381
/** multiply two softfloats and handle the rounding off
1382
 */
1383
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
1384
    uint64_t mantissa_temp;
1385
    uint64_t mask_64;
1386
    int cutoff_bit_count;
1387
    unsigned char last_2_bits;
1388
    unsigned int mantissa;
1389
    int32_t sign;
1390
    uint32_t return_val = 0;
1391
    int bit_count       = 48;
1392
1393
    sign = a.sign ^ b.sign;
1394
1395
    // Multiply mantissa bits in a 64-bit register
1396
    mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1397
    mask_64       = (uint64_t)0x1 << 47;
1398
1399
    if (!mantissa_temp)
1400
        return FLOAT_0;
1401
1402
    // Count the valid bit count
1403
    while (!(mantissa_temp & mask_64) && mask_64) {
1404
        bit_count--;
1405
        mask_64 >>= 1;
1406
    }
1407
1408
    // Round off
1409
    cutoff_bit_count = bit_count - 24;
1410
    if (cutoff_bit_count > 0) {
1411
        last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1412
        if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1413
            // Need to round up
1414
            mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1415
        }
1416
    }
1417
1418
    if (cutoff_bit_count >= 0) {
1419
        mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1420
    } else {
1421
        mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
1422
    }
1423
1424
    // Need one more shift?
1425
    if (mantissa & 0x01000000ul) {
1426
        bit_count++;
1427
        mantissa >>= 1;
1428
    }
1429
1430
    if (!sign) {
1431
        return_val = 0x80000000U;
1432
    }
1433
1434
    return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
1435
    return_val |= mantissa;
1436
    return av_bits2sf_ieee754(return_val);
1437
}
1438
1439
1440
/** Read and decode the floating point sample data
1441
 */
1442
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1443
    AVCodecContext *avctx   = ctx->avctx;
1444
    GetBitContext *gb       = &ctx->gb;
1445
    SoftFloat_IEEE754 *acf  = ctx->acf;
1446
    int *shift_value        = ctx->shift_value;
1447
    int *last_shift_value   = ctx->last_shift_value;
1448
    int *last_acf_mantissa  = ctx->last_acf_mantissa;
1449
    int **raw_mantissa      = ctx->raw_mantissa;
1450
    int *nbits              = ctx->nbits;
1451
    unsigned char *larray   = ctx->larray;
1452
    int frame_length        = ctx->cur_frame_length;
1453
    SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1454
    unsigned int partA_flag;
1455
    unsigned int highest_byte;
1456
    unsigned int shift_amp;
1457
    uint32_t tmp_32;
1458
    int use_acf;
1459
    int nchars;
1460
    int i;
1461
    int c;
1462
    long k;
1463
    long nbits_aligned;
1464
    unsigned long acc;
1465
    unsigned long j;
1466
    uint32_t sign;
1467
    uint32_t e;
1468
    uint32_t mantissa;
1469
1470
    skip_bits_long(gb, 32); //num_bytes_diff_float
1471
    use_acf = get_bits1(gb);
1472
1473
    if (ra_frame) {
1474
        memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1475
        memset(last_shift_value,  0, avctx->channels * sizeof(*last_shift_value) );
1476
        ff_mlz_flush_dict(ctx->mlz);
1477
    }
1478
1479
    if (avctx->channels * 8 > get_bits_left(gb))
1480
        return AVERROR_INVALIDDATA;
1481
1482
    for (c = 0; c < avctx->channels; ++c) {
1483
        if (use_acf) {
1484
            //acf_flag
1485
            if (get_bits1(gb)) {
1486
                tmp_32 = get_bits(gb, 23);
1487
                last_acf_mantissa[c] = tmp_32;
1488
            } else {
1489
                tmp_32 = last_acf_mantissa[c];
1490
            }
1491
            acf[c] = av_bits2sf_ieee754(tmp_32);
1492
        } else {
1493
            acf[c] = FLOAT_1;
1494
        }
1495
1496
        highest_byte = get_bits(gb, 2);
1497
        partA_flag   = get_bits1(gb);
1498
        shift_amp    = get_bits1(gb);
1499
1500
        if (shift_amp) {
1501
            shift_value[c] = get_bits(gb, 8);
1502
            last_shift_value[c] = shift_value[c];
1503
        } else {
1504
            shift_value[c] = last_shift_value[c];
1505
        }
1506
1507
        if (partA_flag) {
1508
            if (!get_bits1(gb)) { //uncompressed
1509
                for (i = 0; i < frame_length; ++i) {
1510
                    if (ctx->raw_samples[c][i] == 0) {
1511
                        ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1512
                    }
1513
                }
1514
            } else { //compressed
1515
                nchars = 0;
1516
                for (i = 0; i < frame_length; ++i) {
1517
                    if (ctx->raw_samples[c][i] == 0) {
1518
                        nchars += 4;
1519
                    }
1520
                }
1521
1522
                tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1523
                if(tmp_32 != nchars) {
1524
                    av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1525
                    return AVERROR_INVALIDDATA;
1526
                }
1527
1528
                for (i = 0; i < frame_length; ++i) {
1529
                    ctx->raw_mantissa[c][i] = AV_RB32(larray);
1530
                }
1531
            }
1532
        }
1533
1534
        //decode part B
1535
        if (highest_byte) {
1536
            for (i = 0; i < frame_length; ++i) {
1537
                if (ctx->raw_samples[c][i] != 0) {
1538
                    //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1539
                    if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1540
                        nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1541
                    } else {
1542
                        nbits[i] = 23;
1543
                    }
1544
                    nbits[i] = FFMIN(nbits[i], highest_byte*8);
1545
                }
1546
            }
1547
1548
            if (!get_bits1(gb)) { //uncompressed
1549
                for (i = 0; i < frame_length; ++i) {
1550
                    if (ctx->raw_samples[c][i] != 0) {
1551
                        raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1552
                    }
1553
                }
1554
            } else { //compressed
1555
                nchars = 0;
1556
                for (i = 0; i < frame_length; ++i) {
1557
                    if (ctx->raw_samples[c][i]) {
1558
                        nchars += (int) nbits[i] / 8;
1559
                        if (nbits[i] & 7) {
1560
                            ++nchars;
1561
                        }
1562
                    }
1563
                }
1564
1565
                tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1566
                if(tmp_32 != nchars) {
1567
                    av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1568
                    return AVERROR_INVALIDDATA;
1569
                }
1570
1571
                j = 0;
1572
                for (i = 0; i < frame_length; ++i) {
1573
                    if (ctx->raw_samples[c][i]) {
1574
                        if (nbits[i] & 7) {
1575
                            nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1576
                        } else {
1577
                            nbits_aligned = nbits[i];
1578
                        }
1579
                        acc = 0;
1580
                        for (k = 0; k < nbits_aligned/8; ++k) {
1581
                            acc = (acc << 8) + larray[j++];
1582
                        }
1583
                        acc >>= (nbits_aligned - nbits[i]);
1584
                        raw_mantissa[c][i] = acc;
1585
                    }
1586
                }
1587
            }
1588
        }
1589
1590
        for (i = 0; i < frame_length; ++i) {
1591
            SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1592
            pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1593
1594
            if (ctx->raw_samples[c][i] != 0) {
1595
                if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1596
                    pcm_sf = multiply(acf[c], pcm_sf);
1597
                }
1598
1599
                sign = pcm_sf.sign;
1600
                e = pcm_sf.exp;
1601
                mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1602
1603
                while(mantissa >= 0x1000000) {
1604
                    e++;
1605
                    mantissa >>= 1;
1606
                }
1607
1608
                if (mantissa) e += (shift_value[c] - 127);
1609
                mantissa &= 0x007fffffUL;
1610
1611
                tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1612
                ctx->raw_samples[c][i] = tmp_32;
1613
            } else {
1614
                ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1615
            }
1616
        }
1617
        align_get_bits(gb);
1618
    }
1619
    return 0;
1620
}
1621
1622
1623
/** Read the frame data.
1624
 */
1625
1828
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1626
{
1627
1828
    ALSSpecificConfig *sconf = &ctx->sconf;
1628
1828
    AVCodecContext *avctx    = ctx->avctx;
1629
1828
    GetBitContext *gb = &ctx->gb;
1630
    unsigned int div_blocks[32];                ///< block sizes.
1631
    unsigned int c;
1632
    unsigned int js_blocks[2];
1633
1828
    uint32_t bs_info = 0;
1634
    int ret;
1635
1636
    // skip the size of the ra unit if present in the frame
1637

1828
    if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1638
        skip_bits_long(gb, 32);
1639
1640

1828
    if (sconf->mc_coding && sconf->joint_stereo) {
1641
1
        ctx->js_switch = get_bits1(gb);
1642
1
        align_get_bits(gb);
1643
    }
1644
1645

3307
    if (!sconf->mc_coding || ctx->js_switch) {
1646
1479
        int independent_bs = !sconf->joint_stereo;
1647
1648
4024
        for (c = 0; c < avctx->channels; c++) {
1649
2545
            js_blocks[0] = 0;
1650
2545
            js_blocks[1] = 0;
1651
1652
2545
            get_block_sizes(ctx, div_blocks, &bs_info);
1653
1654
            // if joint_stereo and block_switching is set, independent decoding
1655
            // is signaled via the first bit of bs_info
1656

2545
            if (sconf->joint_stereo && sconf->block_switching)
1657
109
                if (bs_info >> 31)
1658
22
                    independent_bs = 2;
1659
1660
            // if this is the last channel, it has to be decoded independently
1661

2545
            if (c == avctx->channels - 1 || (c & 1))
1662
1066
                independent_bs = 1;
1663
1664
2545
            if (independent_bs) {
1665
2132
                ret = decode_blocks_ind(ctx, ra_frame, c,
1666
                                        div_blocks, js_blocks);
1667
2132
                if (ret < 0)
1668
                    return ret;
1669
2132
                independent_bs--;
1670
            } else {
1671
413
                ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1672
413
                if (ret < 0)
1673
                    return ret;
1674
1675
413
                c++;
1676
            }
1677
1678
            // store carryover raw samples
1679
2545
            memmove(ctx->raw_samples[c] - sconf->max_order,
1680
2545
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1681
2545
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1682
2545
            ctx->highest_decoded_channel = c;
1683
        }
1684
    } else { // multi-channel coding
1685
349
        ALSBlockData   bd = { 0 };
1686
        int            b, ret;
1687
349
        int            *reverted_channels = ctx->reverted_channels;
1688
349
        unsigned int   offset             = 0;
1689
1690
1557
        for (c = 0; c < avctx->channels; c++)
1691
1208
            if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1692
                av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1693
                return AVERROR_INVALIDDATA;
1694
            }
1695
1696
349
        memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1697
1698
349
        bd.ra_block         = ra_frame;
1699
349
        bd.prev_raw_samples = ctx->prev_raw_samples;
1700
1701
349
        get_block_sizes(ctx, div_blocks, &bs_info);
1702
1703
698
        for (b = 0; b < ctx->num_blocks; b++) {
1704
349
            bd.block_length = div_blocks[b];
1705
349
            if (bd.block_length <= 0) {
1706
                av_log(ctx->avctx, AV_LOG_WARNING,
1707
                       "Invalid block length %u in channel data!\n",
1708
                       bd.block_length);
1709
                continue;
1710
            }
1711
1712
1557
            for (c = 0; c < avctx->channels; c++) {
1713
1208
                bd.const_block = ctx->const_block + c;
1714
1208
                bd.shift_lsbs  = ctx->shift_lsbs + c;
1715
1208
                bd.opt_order   = ctx->opt_order + c;
1716
1208
                bd.store_prev_samples = ctx->store_prev_samples + c;
1717
1208
                bd.use_ltp     = ctx->use_ltp + c;
1718
1208
                bd.ltp_lag     = ctx->ltp_lag + c;
1719
1208
                bd.ltp_gain    = ctx->ltp_gain[c];
1720
1208
                bd.lpc_cof     = ctx->lpc_cof[c];
1721
1208
                bd.quant_cof   = ctx->quant_cof[c];
1722
1208
                bd.raw_samples = ctx->raw_samples[c] + offset;
1723
1208
                bd.raw_other   = NULL;
1724
1725
1208
                if ((ret = read_block(ctx, &bd)) < 0)
1726
                    return ret;
1727
1208
                if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1728
                    return ret;
1729
            }
1730
1731
1557
            for (c = 0; c < avctx->channels; c++) {
1732
1208
                ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1733
                                                 reverted_channels, offset, c);
1734
1208
                if (ret < 0)
1735
                    return ret;
1736
            }
1737
1557
            for (c = 0; c < avctx->channels; c++) {
1738
1208
                bd.const_block = ctx->const_block + c;
1739
1208
                bd.shift_lsbs  = ctx->shift_lsbs + c;
1740
1208
                bd.opt_order   = ctx->opt_order + c;
1741
1208
                bd.store_prev_samples = ctx->store_prev_samples + c;
1742
1208
                bd.use_ltp     = ctx->use_ltp + c;
1743
1208
                bd.ltp_lag     = ctx->ltp_lag + c;
1744
1208
                bd.ltp_gain    = ctx->ltp_gain[c];
1745
1208
                bd.lpc_cof     = ctx->lpc_cof[c];
1746
1208
                bd.quant_cof   = ctx->quant_cof[c];
1747
1208
                bd.raw_samples = ctx->raw_samples[c] + offset;
1748
1749
1208
                if ((ret = decode_block(ctx, &bd)) < 0)
1750
                    return ret;
1751
1752
1208
                ctx->highest_decoded_channel = FFMAX(ctx->highest_decoded_channel, c);
1753
            }
1754
1755
349
            memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1756
349
            offset      += div_blocks[b];
1757
349
            bd.ra_block  = 0;
1758
        }
1759
1760
        // store carryover raw samples
1761
1557
        for (c = 0; c < avctx->channels; c++)
1762
1208
            memmove(ctx->raw_samples[c] - sconf->max_order,
1763
1208
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1764
1208
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1765
    }
1766
1767
1828
    if (sconf->floating) {
1768
        read_diff_float_data(ctx, ra_frame);
1769
    }
1770
1771
1828
    if (get_bits_left(gb) < 0) {
1772
        av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1773
        return AVERROR_INVALIDDATA;
1774
    }
1775
1776
1828
    return 0;
1777
}
1778
1779
1780
/** Decode an ALS frame.
1781
 */
1782
1828
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1783
                        AVPacket *avpkt)
1784
{
1785
1828
    ALSDecContext *ctx       = avctx->priv_data;
1786
1828
    AVFrame *frame           = data;
1787
1828
    ALSSpecificConfig *sconf = &ctx->sconf;
1788
1828
    const uint8_t *buffer    = avpkt->data;
1789
1828
    int buffer_size          = avpkt->size;
1790
    int invalid_frame, ret;
1791
    unsigned int c, sample, ra_frame, bytes_read, shift;
1792
1793
1828
    if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1794
        return ret;
1795
1796
    // In the case that the distance between random access frames is set to zero
1797
    // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1798
    // For the first frame, if prediction is used, all samples used from the
1799
    // previous frame are assumed to be zero.
1800

1828
    ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1801
1802
    // the last frame to decode might have a different length
1803
1828
    if (sconf->samples != 0xFFFFFFFF)
1804
1828
        ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1805
                                      sconf->frame_length);
1806
    else
1807
        ctx->cur_frame_length = sconf->frame_length;
1808
1809
1828
    ctx->highest_decoded_channel = 0;
1810
    // decode the frame data
1811
1828
    if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1812
        av_log(ctx->avctx, AV_LOG_WARNING,
1813
               "Reading frame data failed. Skipping RA unit.\n");
1814
1815
1828
    if (ctx->highest_decoded_channel == 0)
1816
        return AVERROR_INVALIDDATA;
1817
1818
1828
    ctx->frame_id++;
1819
1820
    /* get output buffer */
1821
1828
    frame->nb_samples = ctx->cur_frame_length;
1822
1828
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1823
        return ret;
1824
1825
    // transform decoded frame into output format
1826
    #define INTERLEAVE_OUTPUT(bps)                                                   \
1827
    {                                                                                \
1828
        int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
1829
        int channels = avctx->channels;                                              \
1830
        int32_t *raw_samples = ctx->raw_samples[0];                                  \
1831
        int raw_step = channels > 1 ? ctx->raw_samples[1] - raw_samples : 1;         \
1832
        shift = bps - ctx->avctx->bits_per_raw_sample;                               \
1833
        if (!ctx->cs_switch) {                                                       \
1834
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1835
                for (c = 0; c < channels; c++)                                       \
1836
                    *dest++ = raw_samples[c*raw_step + sample] * (1U << shift);      \
1837
        } else {                                                                     \
1838
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1839
                for (c = 0; c < channels; c++)                                       \
1840
                    *dest++ = raw_samples[sconf->chan_pos[c]*raw_step + sample] * (1U << shift);\
1841
        }                                                                            \
1842
    }
1843
1844
1828
    if (ctx->avctx->bits_per_raw_sample <= 16) {
1845



14378743
        INTERLEAVE_OUTPUT(16)
1846
    } else {
1847
        INTERLEAVE_OUTPUT(32)
1848
    }
1849
1850
    // update CRC
1851

1828
    if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1852
        int swap = HAVE_BIGENDIAN != sconf->msb_first;
1853
1854
        if (ctx->avctx->bits_per_raw_sample == 24) {
1855
            int32_t *src = (int32_t *)frame->data[0];
1856
1857
            for (sample = 0;
1858
                 sample < ctx->cur_frame_length * avctx->channels;
1859
                 sample++) {
1860
                int32_t v;
1861
1862
                if (swap)
1863
                    v = av_bswap32(src[sample]);
1864
                else
1865
                    v = src[sample];
1866
                if (!HAVE_BIGENDIAN)
1867
                    v >>= 8;
1868
1869
                ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1870
            }
1871
        } else {
1872
            uint8_t *crc_source;
1873
1874
            if (swap) {
1875
                if (ctx->avctx->bits_per_raw_sample <= 16) {
1876
                    int16_t *src  = (int16_t*) frame->data[0];
1877
                    int16_t *dest = (int16_t*) ctx->crc_buffer;
1878
                    for (sample = 0;
1879
                         sample < ctx->cur_frame_length * avctx->channels;
1880
                         sample++)
1881
                        *dest++ = av_bswap16(src[sample]);
1882
                } else {
1883
                    ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1884
                                        (uint32_t *) frame->data[0],
1885
                                        ctx->cur_frame_length * avctx->channels);
1886
                }
1887
                crc_source = ctx->crc_buffer;
1888
            } else {
1889
                crc_source = frame->data[0];
1890
            }
1891
1892
            ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1893
                              ctx->cur_frame_length * avctx->channels *
1894
                              av_get_bytes_per_sample(avctx->sample_fmt));
1895
        }
1896
1897
1898
        // check CRC sums if this is the last frame
1899
        if (ctx->cur_frame_length != sconf->frame_length &&
1900
            ctx->crc_org != ctx->crc) {
1901
            av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1902
            if (avctx->err_recognition & AV_EF_EXPLODE)
1903
                return AVERROR_INVALIDDATA;
1904
        }
1905
    }
1906
1907
1828
    *got_frame_ptr = 1;
1908
1909
1828
    bytes_read = invalid_frame ? buffer_size :
1910
1828
                                 (get_bits_count(&ctx->gb) + 7) >> 3;
1911
1912
1828
    return bytes_read;
1913
}
1914
1915
1916
/** Uninitialize the ALS decoder.
1917
 */
1918
14
static av_cold int decode_end(AVCodecContext *avctx)
1919
{
1920
14
    ALSDecContext *ctx = avctx->priv_data;
1921
    int i;
1922
1923
14
    av_freep(&ctx->sconf.chan_pos);
1924
1925
14
    ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1926
1927
14
    av_freep(&ctx->const_block);
1928
14
    av_freep(&ctx->shift_lsbs);
1929
14
    av_freep(&ctx->opt_order);
1930
14
    av_freep(&ctx->store_prev_samples);
1931
14
    av_freep(&ctx->use_ltp);
1932
14
    av_freep(&ctx->ltp_lag);
1933
14
    av_freep(&ctx->ltp_gain);
1934
14
    av_freep(&ctx->ltp_gain_buffer);
1935
14
    av_freep(&ctx->quant_cof);
1936
14
    av_freep(&ctx->lpc_cof);
1937
14
    av_freep(&ctx->quant_cof_buffer);
1938
14
    av_freep(&ctx->lpc_cof_buffer);
1939
14
    av_freep(&ctx->lpc_cof_reversed_buffer);
1940
14
    av_freep(&ctx->prev_raw_samples);
1941
14
    av_freep(&ctx->raw_samples);
1942
14
    av_freep(&ctx->raw_buffer);
1943
14
    av_freep(&ctx->chan_data);
1944
14
    av_freep(&ctx->chan_data_buffer);
1945
14
    av_freep(&ctx->reverted_channels);
1946
14
    av_freep(&ctx->crc_buffer);
1947
14
    if (ctx->mlz) {
1948
        av_freep(&ctx->mlz->dict);
1949
        av_freep(&ctx->mlz);
1950
    }
1951
14
    av_freep(&ctx->acf);
1952
14
    av_freep(&ctx->last_acf_mantissa);
1953
14
    av_freep(&ctx->shift_value);
1954
14
    av_freep(&ctx->last_shift_value);
1955
14
    if (ctx->raw_mantissa) {
1956
        for (i = 0; i < avctx->channels; i++) {
1957
            av_freep(&ctx->raw_mantissa[i]);
1958
        }
1959
        av_freep(&ctx->raw_mantissa);
1960
    }
1961
14
    av_freep(&ctx->larray);
1962
14
    av_freep(&ctx->nbits);
1963
1964
14
    return 0;
1965
}
1966
1967
1968
/** Initialize the ALS decoder.
1969
 */
1970
14
static av_cold int decode_init(AVCodecContext *avctx)
1971
{
1972
    unsigned int c;
1973
    unsigned int channel_size;
1974
    int num_buffers, ret;
1975
14
    ALSDecContext *ctx = avctx->priv_data;
1976
14
    ALSSpecificConfig *sconf = &ctx->sconf;
1977
14
    ctx->avctx = avctx;
1978
1979
14
    if (!avctx->extradata) {
1980
        av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1981
        return AVERROR_INVALIDDATA;
1982
    }
1983
1984
14
    if ((ret = read_specific_config(ctx)) < 0) {
1985
        av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1986
        goto fail;
1987
    }
1988
1989
14
    if ((ret = check_specific_config(ctx)) < 0) {
1990
        goto fail;
1991
    }
1992
1993
14
    if (sconf->bgmc) {
1994
4
        ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1995
4
        if (ret < 0)
1996
            goto fail;
1997
    }
1998
14
    if (sconf->floating) {
1999
        avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
2000
        avctx->bits_per_raw_sample = 32;
2001
    } else {
2002
28
        avctx->sample_fmt          = sconf->resolution > 1
2003
14
                                     ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
2004
14
        avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
2005
14
        if (avctx->bits_per_raw_sample > 32) {
2006
            av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
2007
                   avctx->bits_per_raw_sample);
2008
            ret = AVERROR_INVALIDDATA;
2009
            goto fail;
2010
        }
2011
    }
2012
2013
    // set maximum Rice parameter for progressive decoding based on resolution
2014
    // This is not specified in 14496-3 but actually done by the reference
2015
    // codec RM22 revision 2.
2016
14
    ctx->s_max = sconf->resolution > 1 ? 31 : 15;
2017
2018
    // set lag value for long-term prediction
2019
14
    ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
2020
14
                              (avctx->sample_rate >= 192000);
2021
2022
    // allocate quantized parcor coefficient buffer
2023
14
    num_buffers = sconf->mc_coding ? avctx->channels : 1;
2024
14
    if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
2025
        return AVERROR_INVALIDDATA;
2026
2027
14
    ctx->quant_cof        = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
2028
14
    ctx->lpc_cof          = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
2029
14
    ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2030
                                            sizeof(*ctx->quant_cof_buffer));
2031
14
    ctx->lpc_cof_buffer   = av_malloc_array(num_buffers * sconf->max_order,
2032
                                            sizeof(*ctx->lpc_cof_buffer));
2033
14
    ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
2034
                                                   sizeof(*ctx->lpc_cof_buffer));
2035
2036

14
    if (!ctx->quant_cof              || !ctx->lpc_cof        ||
2037

14
        !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
2038
14
        !ctx->lpc_cof_reversed_buffer) {
2039
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2040
        ret = AVERROR(ENOMEM);
2041
        goto fail;
2042
    }
2043
2044
    // assign quantized parcor coefficient buffers
2045
1052
    for (c = 0; c < num_buffers; c++) {
2046
1038
        ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2047
1038
        ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
2048
    }
2049
2050
    // allocate and assign lag and gain data buffer for ltp mode
2051
14
    ctx->const_block     = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2052
14
    ctx->shift_lsbs      = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2053
14
    ctx->opt_order       = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2054
14
    ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2055
14
    ctx->use_ltp         = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2056
14
    ctx->ltp_lag         = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2057
14
    ctx->ltp_gain        = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2058
14
    ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2059
2060

14
    if (!ctx->const_block || !ctx->shift_lsbs ||
2061

14
        !ctx->opt_order || !ctx->store_prev_samples ||
2062

14
        !ctx->use_ltp  || !ctx->ltp_lag ||
2063

14
        !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2064
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2065
        ret = AVERROR(ENOMEM);
2066
        goto fail;
2067
    }
2068
2069
1052
    for (c = 0; c < num_buffers; c++)
2070
1038
        ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2071
2072
    // allocate and assign channel data buffer for mcc mode
2073
14
    if (sconf->mc_coding) {
2074
4
        ctx->chan_data_buffer  = av_mallocz_array(num_buffers * num_buffers,
2075
                                                 sizeof(*ctx->chan_data_buffer));
2076
4
        ctx->chan_data         = av_mallocz_array(num_buffers,
2077
                                                 sizeof(*ctx->chan_data));
2078
4
        ctx->reverted_channels = av_malloc_array(num_buffers,
2079
                                                 sizeof(*ctx->reverted_channels));
2080
2081

4
        if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2082
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2083
            ret = AVERROR(ENOMEM);
2084
            goto fail;
2085
        }
2086
2087
1032
        for (c = 0; c < num_buffers; c++)
2088
1028
            ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2089
    } else {
2090
10
        ctx->chan_data         = NULL;
2091
10
        ctx->chan_data_buffer  = NULL;
2092
10
        ctx->reverted_channels = NULL;
2093
    }
2094
2095
14
    channel_size      = sconf->frame_length + sconf->max_order;
2096
2097
14
    ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2098
14
    ctx->raw_buffer       = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2099
14
    ctx->raw_samples      = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2100
2101
14
    if (sconf->floating) {
2102
        ctx->acf               = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2103
        ctx->shift_value       = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2104
        ctx->last_shift_value  = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2105
        ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2106
        ctx->raw_mantissa      = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2107
2108
        ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2109
        ctx->nbits  = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2110
        ctx->mlz    = av_mallocz(sizeof(*ctx->mlz));
2111
2112
        if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2113
            || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2114
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2115
            ret = AVERROR(ENOMEM);
2116
            goto fail;
2117
        }
2118
2119
        ff_mlz_init_dict(avctx, ctx->mlz);
2120
        ff_mlz_flush_dict(ctx->mlz);
2121
2122
        for (c = 0; c < avctx->channels; ++c) {
2123
            ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2124
        }
2125
    }
2126
2127
    // allocate previous raw sample buffer
2128

14
    if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2129
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2130
        ret = AVERROR(ENOMEM);
2131
        goto fail;
2132
    }
2133
2134
    // assign raw samples buffers
2135
14
    ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2136
1048
    for (c = 1; c < avctx->channels; c++)
2137
1034
        ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2138
2139
    // allocate crc buffer
2140

14
    if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2141
        (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
2142
        ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
2143
                                          avctx->channels *
2144
                                          av_get_bytes_per_sample(avctx->sample_fmt),
2145
                                          sizeof(*ctx->crc_buffer));
2146
        if (!ctx->crc_buffer) {
2147
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2148
            ret = AVERROR(ENOMEM);
2149
            goto fail;
2150
        }
2151
    }
2152
2153
14
    ff_bswapdsp_init(&ctx->bdsp);
2154
2155
14
    return 0;
2156
2157
fail:
2158
    return ret;
2159
}
2160
2161
2162
/** Flush (reset) the frame ID after seeking.
2163
 */
2164
static av_cold void flush(AVCodecContext *avctx)
2165
{
2166
    ALSDecContext *ctx = avctx->priv_data;
2167
2168
    ctx->frame_id = 0;
2169
}
2170
2171
2172
AVCodec ff_als_decoder = {
2173
    .name           = "als",
2174
    .long_name      = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2175
    .type           = AVMEDIA_TYPE_AUDIO,
2176
    .id             = AV_CODEC_ID_MP4ALS,
2177
    .priv_data_size = sizeof(ALSDecContext),
2178
    .init           = decode_init,
2179
    .close          = decode_end,
2180
    .decode         = decode_frame,
2181
    .flush          = flush,
2182
    .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1,
2183
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
2184
};