GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/alsdec.c Lines: 672 1031 65.2 %
Date: 2021-04-18 21:26:34 Branches: 330 638 51.7 %

Line Branch Exec Source
1
/*
2
 * MPEG-4 ALS decoder
3
 * Copyright (c) 2009 Thilo Borgmann <thilo.borgmann _at_ mail.de>
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * MPEG-4 ALS decoder
25
 * @author Thilo Borgmann <thilo.borgmann _at_ mail.de>
26
 */
27
28
#include <inttypes.h>
29
30
#include "avcodec.h"
31
#include "get_bits.h"
32
#include "unary.h"
33
#include "mpeg4audio.h"
34
#include "bgmc.h"
35
#include "bswapdsp.h"
36
#include "internal.h"
37
#include "mlz.h"
38
#include "libavutil/samplefmt.h"
39
#include "libavutil/crc.h"
40
#include "libavutil/softfloat_ieee754.h"
41
#include "libavutil/intfloat.h"
42
#include "libavutil/intreadwrite.h"
43
44
#include <stdint.h>
45
46
/** Rice parameters and corresponding index offsets for decoding the
47
 *  indices of scaled PARCOR values. The table chosen is set globally
48
 *  by the encoder and stored in ALSSpecificConfig.
49
 */
50
static const int8_t parcor_rice_table[3][20][2] = {
51
    { {-52, 4}, {-29, 5}, {-31, 4}, { 19, 4}, {-16, 4},
52
      { 12, 3}, { -7, 3}, {  9, 3}, { -5, 3}, {  6, 3},
53
      { -4, 3}, {  3, 3}, { -3, 2}, {  3, 2}, { -2, 2},
54
      {  3, 2}, { -1, 2}, {  2, 2}, { -1, 2}, {  2, 2} },
55
    { {-58, 3}, {-42, 4}, {-46, 4}, { 37, 5}, {-36, 4},
56
      { 29, 4}, {-29, 4}, { 25, 4}, {-23, 4}, { 20, 4},
57
      {-17, 4}, { 16, 4}, {-12, 4}, { 12, 3}, {-10, 4},
58
      {  7, 3}, { -4, 4}, {  3, 3}, { -1, 3}, {  1, 3} },
59
    { {-59, 3}, {-45, 5}, {-50, 4}, { 38, 4}, {-39, 4},
60
      { 32, 4}, {-30, 4}, { 25, 3}, {-23, 3}, { 20, 3},
61
      {-20, 3}, { 16, 3}, {-13, 3}, { 10, 3}, { -7, 3},
62
      {  3, 3}, {  0, 3}, { -1, 3}, {  2, 3}, { -1, 2} }
63
};
64
65
66
/** Scaled PARCOR values used for the first two PARCOR coefficients.
67
 *  To be indexed by the Rice coded indices.
68
 *  Generated by: parcor_scaled_values[i] = 32 + ((i * (i+1)) << 7) - (1 << 20)
69
 *  Actual values are divided by 32 in order to be stored in 16 bits.
70
 */
71
static const int16_t parcor_scaled_values[] = {
72
    -1048544 / 32, -1048288 / 32, -1047776 / 32, -1047008 / 32,
73
    -1045984 / 32, -1044704 / 32, -1043168 / 32, -1041376 / 32,
74
    -1039328 / 32, -1037024 / 32, -1034464 / 32, -1031648 / 32,
75
    -1028576 / 32, -1025248 / 32, -1021664 / 32, -1017824 / 32,
76
    -1013728 / 32, -1009376 / 32, -1004768 / 32,  -999904 / 32,
77
     -994784 / 32,  -989408 / 32,  -983776 / 32,  -977888 / 32,
78
     -971744 / 32,  -965344 / 32,  -958688 / 32,  -951776 / 32,
79
     -944608 / 32,  -937184 / 32,  -929504 / 32,  -921568 / 32,
80
     -913376 / 32,  -904928 / 32,  -896224 / 32,  -887264 / 32,
81
     -878048 / 32,  -868576 / 32,  -858848 / 32,  -848864 / 32,
82
     -838624 / 32,  -828128 / 32,  -817376 / 32,  -806368 / 32,
83
     -795104 / 32,  -783584 / 32,  -771808 / 32,  -759776 / 32,
84
     -747488 / 32,  -734944 / 32,  -722144 / 32,  -709088 / 32,
85
     -695776 / 32,  -682208 / 32,  -668384 / 32,  -654304 / 32,
86
     -639968 / 32,  -625376 / 32,  -610528 / 32,  -595424 / 32,
87
     -580064 / 32,  -564448 / 32,  -548576 / 32,  -532448 / 32,
88
     -516064 / 32,  -499424 / 32,  -482528 / 32,  -465376 / 32,
89
     -447968 / 32,  -430304 / 32,  -412384 / 32,  -394208 / 32,
90
     -375776 / 32,  -357088 / 32,  -338144 / 32,  -318944 / 32,
91
     -299488 / 32,  -279776 / 32,  -259808 / 32,  -239584 / 32,
92
     -219104 / 32,  -198368 / 32,  -177376 / 32,  -156128 / 32,
93
     -134624 / 32,  -112864 / 32,   -90848 / 32,   -68576 / 32,
94
      -46048 / 32,   -23264 / 32,     -224 / 32,    23072 / 32,
95
       46624 / 32,    70432 / 32,    94496 / 32,   118816 / 32,
96
      143392 / 32,   168224 / 32,   193312 / 32,   218656 / 32,
97
      244256 / 32,   270112 / 32,   296224 / 32,   322592 / 32,
98
      349216 / 32,   376096 / 32,   403232 / 32,   430624 / 32,
99
      458272 / 32,   486176 / 32,   514336 / 32,   542752 / 32,
100
      571424 / 32,   600352 / 32,   629536 / 32,   658976 / 32,
101
      688672 / 32,   718624 / 32,   748832 / 32,   779296 / 32,
102
      810016 / 32,   840992 / 32,   872224 / 32,   903712 / 32,
103
      935456 / 32,   967456 / 32,   999712 / 32,  1032224 / 32
104
};
105
106
107
/** Gain values of p(0) for long-term prediction.
108
 *  To be indexed by the Rice coded indices.
109
 */
110
static const uint8_t ltp_gain_values [4][4] = {
111
    { 0,  8, 16,  24},
112
    {32, 40, 48,  56},
113
    {64, 70, 76,  82},
114
    {88, 92, 96, 100}
115
};
116
117
118
/** Inter-channel weighting factors for multi-channel correlation.
119
 *  To be indexed by the Rice coded indices.
120
 */
121
static const int16_t mcc_weightings[] = {
122
    204,  192,  179,  166,  153,  140,  128,  115,
123
    102,   89,   76,   64,   51,   38,   25,   12,
124
      0,  -12,  -25,  -38,  -51,  -64,  -76,  -89,
125
   -102, -115, -128, -140, -153, -166, -179, -192
126
};
127
128
129
/** Tail codes used in arithmetic coding using block Gilbert-Moore codes.
130
 */
131
static const uint8_t tail_code[16][6] = {
132
    { 74, 44, 25, 13,  7, 3},
133
    { 68, 42, 24, 13,  7, 3},
134
    { 58, 39, 23, 13,  7, 3},
135
    {126, 70, 37, 19, 10, 5},
136
    {132, 70, 37, 20, 10, 5},
137
    {124, 70, 38, 20, 10, 5},
138
    {120, 69, 37, 20, 11, 5},
139
    {116, 67, 37, 20, 11, 5},
140
    {108, 66, 36, 20, 10, 5},
141
    {102, 62, 36, 20, 10, 5},
142
    { 88, 58, 34, 19, 10, 5},
143
    {162, 89, 49, 25, 13, 7},
144
    {156, 87, 49, 26, 14, 7},
145
    {150, 86, 47, 26, 14, 7},
146
    {142, 84, 47, 26, 14, 7},
147
    {131, 79, 46, 26, 14, 7}
148
};
149
150
151
enum RA_Flag {
152
    RA_FLAG_NONE,
153
    RA_FLAG_FRAMES,
154
    RA_FLAG_HEADER
155
};
156
157
158
typedef struct ALSSpecificConfig {
159
    uint32_t samples;         ///< number of samples, 0xFFFFFFFF if unknown
160
    int resolution;           ///< 000 = 8-bit; 001 = 16-bit; 010 = 24-bit; 011 = 32-bit
161
    int floating;             ///< 1 = IEEE 32-bit floating-point, 0 = integer
162
    int msb_first;            ///< 1 = original CRC calculated on big-endian system, 0 = little-endian
163
    int frame_length;         ///< frame length for each frame (last frame may differ)
164
    int ra_distance;          ///< distance between RA frames (in frames, 0...255)
165
    enum RA_Flag ra_flag;     ///< indicates where the size of ra units is stored
166
    int adapt_order;          ///< adaptive order: 1 = on, 0 = off
167
    int coef_table;           ///< table index of Rice code parameters
168
    int long_term_prediction; ///< long term prediction (LTP): 1 = on, 0 = off
169
    int max_order;            ///< maximum prediction order (0..1023)
170
    int block_switching;      ///< number of block switching levels
171
    int bgmc;                 ///< "Block Gilbert-Moore Code": 1 = on, 0 = off (Rice coding only)
172
    int sb_part;              ///< sub-block partition
173
    int joint_stereo;         ///< joint stereo: 1 = on, 0 = off
174
    int mc_coding;            ///< extended inter-channel coding (multi channel coding): 1 = on, 0 = off
175
    int chan_config;          ///< indicates that a chan_config_info field is present
176
    int chan_sort;            ///< channel rearrangement: 1 = on, 0 = off
177
    int rlslms;               ///< use "Recursive Least Square-Least Mean Square" predictor: 1 = on, 0 = off
178
    int chan_config_info;     ///< mapping of channels to loudspeaker locations. Unused until setting channel configuration is implemented.
179
    int *chan_pos;            ///< original channel positions
180
    int crc_enabled;          ///< enable Cyclic Redundancy Checksum
181
} ALSSpecificConfig;
182
183
184
typedef struct ALSChannelData {
185
    int stop_flag;
186
    int master_channel;
187
    int time_diff_flag;
188
    int time_diff_sign;
189
    int time_diff_index;
190
    int weighting[6];
191
} ALSChannelData;
192
193
194
typedef struct ALSDecContext {
195
    AVCodecContext *avctx;
196
    ALSSpecificConfig sconf;
197
    GetBitContext gb;
198
    BswapDSPContext bdsp;
199
    const AVCRC *crc_table;
200
    uint32_t crc_org;               ///< CRC value of the original input data
201
    uint32_t crc;                   ///< CRC value calculated from decoded data
202
    unsigned int cur_frame_length;  ///< length of the current frame to decode
203
    unsigned int frame_id;          ///< the frame ID / number of the current frame
204
    unsigned int js_switch;         ///< if true, joint-stereo decoding is enforced
205
    unsigned int cs_switch;         ///< if true, channel rearrangement is done
206
    unsigned int num_blocks;        ///< number of blocks used in the current frame
207
    unsigned int s_max;             ///< maximum Rice parameter allowed in entropy coding
208
    uint8_t *bgmc_lut;              ///< pointer at lookup tables used for BGMC
209
    int *bgmc_lut_status;           ///< pointer at lookup table status flags used for BGMC
210
    int ltp_lag_length;             ///< number of bits used for ltp lag value
211
    int *const_block;               ///< contains const_block flags for all channels
212
    unsigned int *shift_lsbs;       ///< contains shift_lsbs flags for all channels
213
    unsigned int *opt_order;        ///< contains opt_order flags for all channels
214
    int *store_prev_samples;        ///< contains store_prev_samples flags for all channels
215
    int *use_ltp;                   ///< contains use_ltp flags for all channels
216
    int *ltp_lag;                   ///< contains ltp lag values for all channels
217
    int **ltp_gain;                 ///< gain values for ltp 5-tap filter for a channel
218
    int *ltp_gain_buffer;           ///< contains all gain values for ltp 5-tap filter
219
    int32_t **quant_cof;            ///< quantized parcor coefficients for a channel
220
    int32_t *quant_cof_buffer;      ///< contains all quantized parcor coefficients
221
    int32_t **lpc_cof;              ///< coefficients of the direct form prediction filter for a channel
222
    int32_t *lpc_cof_buffer;        ///< contains all coefficients of the direct form prediction filter
223
    int32_t *lpc_cof_reversed_buffer; ///< temporary buffer to set up a reversed versio of lpc_cof_buffer
224
    ALSChannelData **chan_data;     ///< channel data for multi-channel correlation
225
    ALSChannelData *chan_data_buffer; ///< contains channel data for all channels
226
    int *reverted_channels;         ///< stores a flag for each reverted channel
227
    int32_t *prev_raw_samples;      ///< contains unshifted raw samples from the previous block
228
    int32_t **raw_samples;          ///< decoded raw samples for each channel
229
    int32_t *raw_buffer;            ///< contains all decoded raw samples including carryover samples
230
    uint8_t *crc_buffer;            ///< buffer of byte order corrected samples used for CRC check
231
    MLZ* mlz;                       ///< masked lz decompression structure
232
    SoftFloat_IEEE754 *acf;         ///< contains common multiplier for all channels
233
    int *last_acf_mantissa;         ///< contains the last acf mantissa data of common multiplier for all channels
234
    int *shift_value;               ///< value by which the binary point is to be shifted for all channels
235
    int *last_shift_value;          ///< contains last shift value for all channels
236
    int **raw_mantissa;             ///< decoded mantissa bits of the difference signal
237
    unsigned char *larray;          ///< buffer to store the output of masked lz decompression
238
    int *nbits;                     ///< contains the number of bits to read for masked lz decompression for all samples
239
    int highest_decoded_channel;
240
} ALSDecContext;
241
242
243
typedef struct ALSBlockData {
244
    unsigned int block_length;      ///< number of samples within the block
245
    unsigned int ra_block;          ///< if true, this is a random access block
246
    int          *const_block;      ///< if true, this is a constant value block
247
    int          js_blocks;         ///< true if this block contains a difference signal
248
    unsigned int *shift_lsbs;       ///< shift of values for this block
249
    unsigned int *opt_order;        ///< prediction order of this block
250
    int          *store_prev_samples;///< if true, carryover samples have to be stored
251
    int          *use_ltp;          ///< if true, long-term prediction is used
252
    int          *ltp_lag;          ///< lag value for long-term prediction
253
    int          *ltp_gain;         ///< gain values for ltp 5-tap filter
254
    int32_t      *quant_cof;        ///< quantized parcor coefficients
255
    int32_t      *lpc_cof;          ///< coefficients of the direct form prediction
256
    int32_t      *raw_samples;      ///< decoded raw samples / residuals for this block
257
    int32_t      *prev_raw_samples; ///< contains unshifted raw samples from the previous block
258
    int32_t      *raw_other;        ///< decoded raw samples of the other channel of a channel pair
259
} ALSBlockData;
260
261
262
14
static av_cold void dprint_specific_config(ALSDecContext *ctx)
263
{
264
#ifdef DEBUG
265
    AVCodecContext *avctx    = ctx->avctx;
266
    ALSSpecificConfig *sconf = &ctx->sconf;
267
268
    ff_dlog(avctx, "resolution = %i\n",           sconf->resolution);
269
    ff_dlog(avctx, "floating = %i\n",             sconf->floating);
270
    ff_dlog(avctx, "frame_length = %i\n",         sconf->frame_length);
271
    ff_dlog(avctx, "ra_distance = %i\n",          sconf->ra_distance);
272
    ff_dlog(avctx, "ra_flag = %i\n",              sconf->ra_flag);
273
    ff_dlog(avctx, "adapt_order = %i\n",          sconf->adapt_order);
274
    ff_dlog(avctx, "coef_table = %i\n",           sconf->coef_table);
275
    ff_dlog(avctx, "long_term_prediction = %i\n", sconf->long_term_prediction);
276
    ff_dlog(avctx, "max_order = %i\n",            sconf->max_order);
277
    ff_dlog(avctx, "block_switching = %i\n",      sconf->block_switching);
278
    ff_dlog(avctx, "bgmc = %i\n",                 sconf->bgmc);
279
    ff_dlog(avctx, "sb_part = %i\n",              sconf->sb_part);
280
    ff_dlog(avctx, "joint_stereo = %i\n",         sconf->joint_stereo);
281
    ff_dlog(avctx, "mc_coding = %i\n",            sconf->mc_coding);
282
    ff_dlog(avctx, "chan_config = %i\n",          sconf->chan_config);
283
    ff_dlog(avctx, "chan_sort = %i\n",            sconf->chan_sort);
284
    ff_dlog(avctx, "RLSLMS = %i\n",               sconf->rlslms);
285
    ff_dlog(avctx, "chan_config_info = %i\n",     sconf->chan_config_info);
286
#endif
287
14
}
288
289
290
/** Read an ALSSpecificConfig from a buffer into the output struct.
291
 */
292
14
static av_cold int read_specific_config(ALSDecContext *ctx)
293
{
294
    GetBitContext gb;
295
    uint64_t ht_size;
296
    int i, config_offset;
297
14
    MPEG4AudioConfig m4ac = {0};
298
14
    ALSSpecificConfig *sconf = &ctx->sconf;
299
14
    AVCodecContext *avctx    = ctx->avctx;
300
    uint32_t als_id, header_size, trailer_size;
301
    int ret;
302
303
14
    if ((ret = init_get_bits8(&gb, avctx->extradata, avctx->extradata_size)) < 0)
304
        return ret;
305
306
14
    config_offset = avpriv_mpeg4audio_get_config2(&m4ac, avctx->extradata,
307
                                                  avctx->extradata_size, 1, avctx);
308
309
14
    if (config_offset < 0)
310
        return AVERROR_INVALIDDATA;
311
312
14
    skip_bits_long(&gb, config_offset);
313
314
14
    if (get_bits_left(&gb) < (30 << 3))
315
        return AVERROR_INVALIDDATA;
316
317
    // read the fixed items
318
14
    als_id                      = get_bits_long(&gb, 32);
319
14
    avctx->sample_rate          = m4ac.sample_rate;
320
14
    skip_bits_long(&gb, 32); // sample rate already known
321
14
    sconf->samples              = get_bits_long(&gb, 32);
322
14
    avctx->channels             = m4ac.channels;
323
14
    skip_bits(&gb, 16);      // number of channels already known
324
14
    skip_bits(&gb, 3);       // skip file_type
325
14
    sconf->resolution           = get_bits(&gb, 3);
326
14
    sconf->floating             = get_bits1(&gb);
327
14
    sconf->msb_first            = get_bits1(&gb);
328
14
    sconf->frame_length         = get_bits(&gb, 16) + 1;
329
14
    sconf->ra_distance          = get_bits(&gb, 8);
330
14
    sconf->ra_flag              = get_bits(&gb, 2);
331
14
    sconf->adapt_order          = get_bits1(&gb);
332
14
    sconf->coef_table           = get_bits(&gb, 2);
333
14
    sconf->long_term_prediction = get_bits1(&gb);
334
14
    sconf->max_order            = get_bits(&gb, 10);
335
14
    sconf->block_switching      = get_bits(&gb, 2);
336
14
    sconf->bgmc                 = get_bits1(&gb);
337
14
    sconf->sb_part              = get_bits1(&gb);
338
14
    sconf->joint_stereo         = get_bits1(&gb);
339
14
    sconf->mc_coding            = get_bits1(&gb);
340
14
    sconf->chan_config          = get_bits1(&gb);
341
14
    sconf->chan_sort            = get_bits1(&gb);
342
14
    sconf->crc_enabled          = get_bits1(&gb);
343
14
    sconf->rlslms               = get_bits1(&gb);
344
14
    skip_bits(&gb, 5);       // skip 5 reserved bits
345
14
    skip_bits1(&gb);         // skip aux_data_enabled
346
347
348
    // check for ALSSpecificConfig struct
349
14
    if (als_id != MKBETAG('A','L','S','\0'))
350
        return AVERROR_INVALIDDATA;
351
352
14
    if (avctx->channels > FF_SANE_NB_CHANNELS) {
353
        avpriv_request_sample(avctx, "Huge number of channels");
354
        return AVERROR_PATCHWELCOME;
355
    }
356
357
14
    ctx->cur_frame_length = sconf->frame_length;
358
359
    // read channel config
360
14
    if (sconf->chan_config)
361
        sconf->chan_config_info = get_bits(&gb, 16);
362
    // TODO: use this to set avctx->channel_layout
363
364
365
    // read channel sorting
366

14
    if (sconf->chan_sort && avctx->channels > 1) {
367
        int chan_pos_bits = av_ceil_log2(avctx->channels);
368
        int bits_needed  = avctx->channels * chan_pos_bits + 7;
369
        if (get_bits_left(&gb) < bits_needed)
370
            return AVERROR_INVALIDDATA;
371
372
        if (!(sconf->chan_pos = av_malloc_array(avctx->channels, sizeof(*sconf->chan_pos))))
373
            return AVERROR(ENOMEM);
374
375
        ctx->cs_switch = 1;
376
377
        for (i = 0; i < avctx->channels; i++) {
378
            sconf->chan_pos[i] = -1;
379
        }
380
381
        for (i = 0; i < avctx->channels; i++) {
382
            int idx;
383
384
            idx = get_bits(&gb, chan_pos_bits);
385
            if (idx >= avctx->channels || sconf->chan_pos[idx] != -1) {
386
                av_log(avctx, AV_LOG_WARNING, "Invalid channel reordering.\n");
387
                ctx->cs_switch = 0;
388
                break;
389
            }
390
            sconf->chan_pos[idx] = i;
391
        }
392
393
        align_get_bits(&gb);
394
    }
395
396
397
    // read fixed header and trailer sizes,
398
    // if size = 0xFFFFFFFF then there is no data field!
399
14
    if (get_bits_left(&gb) < 64)
400
        return AVERROR_INVALIDDATA;
401
402
14
    header_size  = get_bits_long(&gb, 32);
403
14
    trailer_size = get_bits_long(&gb, 32);
404
14
    if (header_size  == 0xFFFFFFFF)
405
        header_size  = 0;
406
14
    if (trailer_size == 0xFFFFFFFF)
407
        trailer_size = 0;
408
409
14
    ht_size = ((int64_t)(header_size) + (int64_t)(trailer_size)) << 3;
410
411
412
    // skip the header and trailer data
413
14
    if (get_bits_left(&gb) < ht_size)
414
        return AVERROR_INVALIDDATA;
415
416
14
    if (ht_size > INT32_MAX)
417
        return AVERROR_PATCHWELCOME;
418
419
14
    skip_bits_long(&gb, ht_size);
420
421
422
    // initialize CRC calculation
423
14
    if (sconf->crc_enabled) {
424
14
        if (get_bits_left(&gb) < 32)
425
            return AVERROR_INVALIDDATA;
426
427
14
        if (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL)) {
428
            ctx->crc_table = av_crc_get_table(AV_CRC_32_IEEE_LE);
429
            ctx->crc       = 0xFFFFFFFF;
430
            ctx->crc_org   = ~get_bits_long(&gb, 32);
431
        } else
432
14
            skip_bits_long(&gb, 32);
433
    }
434
435
436
    // no need to read the rest of ALSSpecificConfig (ra_unit_size & aux data)
437
438
14
    dprint_specific_config(ctx);
439
440
14
    return 0;
441
}
442
443
444
/** Check the ALSSpecificConfig for unsupported features.
445
 */
446
14
static int check_specific_config(ALSDecContext *ctx)
447
{
448
14
    ALSSpecificConfig *sconf = &ctx->sconf;
449
14
    int error = 0;
450
451
    // report unsupported feature and set error value
452
    #define MISSING_ERR(cond, str, errval)              \
453
    {                                                   \
454
        if (cond) {                                     \
455
            avpriv_report_missing_feature(ctx->avctx,   \
456
                                          str);         \
457
            error = errval;                             \
458
        }                                               \
459
    }
460
461
14
    MISSING_ERR(sconf->rlslms,    "Adaptive RLS-LMS prediction", AVERROR_PATCHWELCOME);
462
463
14
    return error;
464
}
465
466
467
/** Parse the bs_info field to extract the block partitioning used in
468
 *  block switching mode, refer to ISO/IEC 14496-3, section 11.6.2.
469
 */
470
3146
static void parse_bs_info(const uint32_t bs_info, unsigned int n,
471
                          unsigned int div, unsigned int **div_blocks,
472
                          unsigned int *num_blocks)
473
{
474

3146
    if (n < 31 && ((bs_info << n) & 0x40000000)) {
475
        // if the level is valid and the investigated bit n is set
476
        // then recursively check both children at bits (2n+1) and (2n+2)
477
121
        n   *= 2;
478
121
        div += 1;
479
121
        parse_bs_info(bs_info, n + 1, div, div_blocks, num_blocks);
480
121
        parse_bs_info(bs_info, n + 2, div, div_blocks, num_blocks);
481
    } else {
482
        // else the bit is not set or the last level has been reached
483
        // (bit implicitly not set)
484
3025
        **div_blocks = div;
485
3025
        (*div_blocks)++;
486
3025
        (*num_blocks)++;
487
    }
488
3146
}
489
490
491
/** Read and decode a Rice codeword.
492
 */
493
7307594
static int32_t decode_rice(GetBitContext *gb, unsigned int k)
494
{
495
7307594
    int max = get_bits_left(gb) - k;
496
7307594
    unsigned q = get_unary(gb, 0, max);
497
7307594
    int r   = k ? get_bits1(gb) : !(q & 1);
498
499
7307594
    if (k > 1) {
500
7018473
        q <<= (k - 1);
501
7018473
        q  += get_bits_long(gb, k - 1);
502
289121
    } else if (!k) {
503
231387
        q >>= 1;
504
    }
505
7307594
    return r ? q : ~q;
506
}
507
508
509
/** Convert PARCOR coefficient k to direct filter coefficient.
510
 */
511
137495
static void parcor_to_lpc(unsigned int k, const int32_t *par, int32_t *cof)
512
{
513
    int i, j;
514
515
2584335
    for (i = 0, j = k - 1; i < j; i++, j--) {
516
2446840
        unsigned tmp1 = ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
517
2446840
        cof[j]  += ((MUL64(par[k], cof[i]) + (1 << 19)) >> 20);
518
2446840
        cof[i]  += tmp1;
519
    }
520
137495
    if (i == j)
521
68217
        cof[i] += ((MUL64(par[k], cof[j]) + (1 << 19)) >> 20);
522
523
137495
    cof[k] = par[k];
524
137495
}
525
526
527
/** Read block switching field if necessary and set actual block sizes.
528
 *  Also assure that the block sizes of the last frame correspond to the
529
 *  actual number of samples.
530
 */
531
2904
static void get_block_sizes(ALSDecContext *ctx, unsigned int *div_blocks,
532
                            uint32_t *bs_info)
533
{
534
2904
    ALSSpecificConfig *sconf     = &ctx->sconf;
535
2904
    GetBitContext *gb            = &ctx->gb;
536
2904
    unsigned int *ptr_div_blocks = div_blocks;
537
    unsigned int b;
538
539
2904
    if (sconf->block_switching) {
540
112
        unsigned int bs_info_len = 1 << (sconf->block_switching + 2);
541
112
        *bs_info = get_bits_long(gb, bs_info_len);
542
112
        *bs_info <<= (32 - bs_info_len);
543
    }
544
545
2904
    ctx->num_blocks = 0;
546
2904
    parse_bs_info(*bs_info, 0, 0, &ptr_div_blocks, &ctx->num_blocks);
547
548
    // The last frame may have an overdetermined block structure given in
549
    // the bitstream. In that case the defined block structure would need
550
    // more samples than available to be consistent.
551
    // The block structure is actually used but the block sizes are adapted
552
    // to fit the actual number of available samples.
553
    // Example: 5 samples, 2nd level block sizes: 2 2 2 2.
554
    // This results in the actual block sizes:    2 2 1 0.
555
    // This is not specified in 14496-3 but actually done by the reference
556
    // codec RM22 revision 2.
557
    // This appears to happen in case of an odd number of samples in the last
558
    // frame which is actually not allowed by the block length switching part
559
    // of 14496-3.
560
    // The ALS conformance files feature an odd number of samples in the last
561
    // frame.
562
563
5929
    for (b = 0; b < ctx->num_blocks; b++)
564
3025
        div_blocks[b] = ctx->sconf.frame_length >> div_blocks[b];
565
566
2904
    if (ctx->cur_frame_length != ctx->sconf.frame_length) {
567
12
        unsigned int remaining = ctx->cur_frame_length;
568
569
17
        for (b = 0; b < ctx->num_blocks; b++) {
570
17
            if (remaining <= div_blocks[b]) {
571
12
                div_blocks[b] = remaining;
572
12
                ctx->num_blocks = b + 1;
573
12
                break;
574
            }
575
576
5
            remaining -= div_blocks[b];
577
        }
578
    }
579
2904
}
580
581
582
/** Read the block data for a constant block
583
 */
584
static int read_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
585
{
586
    ALSSpecificConfig *sconf = &ctx->sconf;
587
    AVCodecContext *avctx    = ctx->avctx;
588
    GetBitContext *gb        = &ctx->gb;
589
590
    if (bd->block_length <= 0)
591
        return AVERROR_INVALIDDATA;
592
593
    *bd->raw_samples = 0;
594
    *bd->const_block = get_bits1(gb);    // 1 = constant value, 0 = zero block (silence)
595
    bd->js_blocks    = get_bits1(gb);
596
597
    // skip 5 reserved bits
598
    skip_bits(gb, 5);
599
600
    if (*bd->const_block) {
601
        unsigned int const_val_bits = sconf->floating ? 24 : avctx->bits_per_raw_sample;
602
        *bd->raw_samples = get_sbits_long(gb, const_val_bits);
603
    }
604
605
    // ensure constant block decoding by reusing this field
606
    *bd->const_block = 1;
607
608
    return 0;
609
}
610
611
612
/** Decode the block data for a constant block
613
 */
614
static void decode_const_block_data(ALSDecContext *ctx, ALSBlockData *bd)
615
{
616
    int      smp = bd->block_length - 1;
617
    int32_t  val = *bd->raw_samples;
618
    int32_t *dst = bd->raw_samples + 1;
619
620
    // write raw samples into buffer
621
    for (; smp; smp--)
622
        *dst++ = val;
623
}
624
625
626
/** Read the block data for a non-constant block
627
 */
628
4767
static int read_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
629
{
630
4767
    ALSSpecificConfig *sconf = &ctx->sconf;
631
4767
    AVCodecContext *avctx    = ctx->avctx;
632
4767
    GetBitContext *gb        = &ctx->gb;
633
    unsigned int k;
634
    unsigned int s[8];
635
    unsigned int sx[8];
636
    unsigned int sub_blocks, log2_sub_blocks, sb_length;
637
4767
    unsigned int start      = 0;
638
    unsigned int opt_order;
639
    int          sb;
640
4767
    int32_t      *quant_cof = bd->quant_cof;
641
    int32_t      *current_res;
642
643
644
    // ensure variable block decoding by reusing this field
645
4767
    *bd->const_block = 0;
646
647
4767
    *bd->opt_order  = 1;
648
4767
    bd->js_blocks   = get_bits1(gb);
649
650
4767
    opt_order       = *bd->opt_order;
651
652
    // determine the number of subblocks for entropy decoding
653

4767
    if (!sconf->bgmc && !sconf->sb_part) {
654
        log2_sub_blocks = 0;
655
    } else {
656

4767
        if (sconf->bgmc && sconf->sb_part)
657
1722
            log2_sub_blocks = get_bits(gb, 2);
658
        else
659
3045
            log2_sub_blocks = 2 * get_bits1(gb);
660
    }
661
662
4767
    sub_blocks = 1 << log2_sub_blocks;
663
664
    // do not continue in case of a damaged stream since
665
    // block_length must be evenly divisible by sub_blocks
666

4767
    if (bd->block_length & (sub_blocks - 1) || bd->block_length <= 0) {
667
        av_log(avctx, AV_LOG_WARNING,
668
               "Block length is not evenly divisible by the number of subblocks.\n");
669
        return AVERROR_INVALIDDATA;
670
    }
671
672
4767
    sb_length = bd->block_length >> log2_sub_blocks;
673
674
4767
    if (sconf->bgmc) {
675
1722
        s[0] = get_bits(gb, 8 + (sconf->resolution > 1));
676
3148
        for (k = 1; k < sub_blocks; k++)
677
1426
            s[k] = s[k - 1] + decode_rice(gb, 2);
678
679
4870
        for (k = 0; k < sub_blocks; k++) {
680
3148
            sx[k]   = s[k] & 0x0F;
681
3148
            s [k] >>= 4;
682
        }
683
    } else {
684
3045
        s[0] = get_bits(gb, 4 + (sconf->resolution > 1));
685
5325
        for (k = 1; k < sub_blocks; k++)
686
2280
            s[k] = s[k - 1] + decode_rice(gb, 0);
687
    }
688
8473
    for (k = 1; k < sub_blocks; k++)
689
3706
        if (s[k] > 32) {
690
            av_log(avctx, AV_LOG_ERROR, "k invalid for rice code.\n");
691
            return AVERROR_INVALIDDATA;
692
        }
693
694
4767
    if (get_bits1(gb))
695
        *bd->shift_lsbs = get_bits(gb, 4) + 1;
696
697

4767
    *bd->store_prev_samples = (bd->js_blocks && bd->raw_other) || *bd->shift_lsbs;
698
699
700
4767
    if (!sconf->rlslms) {
701

6742
        if (sconf->adapt_order && sconf->max_order) {
702
1975
            int opt_order_length = av_ceil_log2(av_clip((bd->block_length >> 3) - 1,
703
1975
                                                2, sconf->max_order + 1));
704
1975
            *bd->opt_order       = get_bits(gb, opt_order_length);
705
1975
            if (*bd->opt_order > sconf->max_order) {
706
                *bd->opt_order = sconf->max_order;
707
                av_log(avctx, AV_LOG_ERROR, "Predictor order too large.\n");
708
                return AVERROR_INVALIDDATA;
709
            }
710
        } else {
711
2792
            *bd->opt_order = sconf->max_order;
712
        }
713
4767
        opt_order = *bd->opt_order;
714
715
4767
        if (opt_order) {
716
            int add_base;
717
718
4767
            if (sconf->coef_table == 3) {
719
                add_base = 0x7F;
720
721
                // read coefficient 0
722
                quant_cof[0] = 32 * parcor_scaled_values[get_bits(gb, 7)];
723
724
                // read coefficient 1
725
                if (opt_order > 1)
726
                    quant_cof[1] = -32 * parcor_scaled_values[get_bits(gb, 7)];
727
728
                // read coefficients 2 to opt_order
729
                for (k = 2; k < opt_order; k++)
730
                    quant_cof[k] = get_bits(gb, 7);
731
            } else {
732
                int k_max;
733
4767
                add_base = 1;
734
735
                // read coefficient 0 to 19
736
4767
                k_max = FFMIN(opt_order, 20);
737
70514
                for (k = 0; k < k_max; k++) {
738
65747
                    int rice_param = parcor_rice_table[sconf->coef_table][k][1];
739
65747
                    int offset     = parcor_rice_table[sconf->coef_table][k][0];
740
65747
                    quant_cof[k] = decode_rice(gb, rice_param) + offset;
741

65747
                    if (quant_cof[k] < -64 || quant_cof[k] > 63) {
742
                        av_log(avctx, AV_LOG_ERROR,
743
                               "quant_cof %"PRId32" is out of range.\n",
744
                               quant_cof[k]);
745
                        return AVERROR_INVALIDDATA;
746
                    }
747
                }
748
749
                // read coefficients 20 to 126
750
4767
                k_max = FFMIN(opt_order, 127);
751
75239
                for (; k < k_max; k++)
752
70472
                    quant_cof[k] = decode_rice(gb, 2) + (k & 1);
753
754
                // read coefficients 127 to opt_order
755
6043
                for (; k < opt_order; k++)
756
1276
                    quant_cof[k] = decode_rice(gb, 1);
757
758
4767
                quant_cof[0] = 32 * parcor_scaled_values[quant_cof[0] + 64];
759
760
4767
                if (opt_order > 1)
761
4767
                    quant_cof[1] = -32 * parcor_scaled_values[quant_cof[1] + 64];
762
            }
763
764
132728
            for (k = 2; k < opt_order; k++)
765
127961
                quant_cof[k] = (quant_cof[k] * (1U << 14)) + (add_base << 13);
766
        }
767
    }
768
769
    // read LTP gain and lag values
770
4767
    if (sconf->long_term_prediction) {
771
1722
        *bd->use_ltp = get_bits1(gb);
772
773
1722
        if (*bd->use_ltp) {
774
            int r, c;
775
776
1558
            bd->ltp_gain[0]   = decode_rice(gb, 1) * 8;
777
1558
            bd->ltp_gain[1]   = decode_rice(gb, 2) * 8;
778
779
1558
            r                 = get_unary(gb, 0, 4);
780
1558
            c                 = get_bits(gb, 2);
781
1558
            if (r >= 4) {
782
                av_log(avctx, AV_LOG_ERROR, "r overflow\n");
783
                return AVERROR_INVALIDDATA;
784
            }
785
786
1558
            bd->ltp_gain[2]   = ltp_gain_values[r][c];
787
788
1558
            bd->ltp_gain[3]   = decode_rice(gb, 2) * 8;
789
1558
            bd->ltp_gain[4]   = decode_rice(gb, 1) * 8;
790
791
1558
            *bd->ltp_lag      = get_bits(gb, ctx->ltp_lag_length);
792
1558
            *bd->ltp_lag     += FFMAX(4, opt_order + 1);
793
        }
794
    }
795
796
    // read first value and residuals in case of a random access block
797
4767
    if (bd->ra_block) {
798
698
        start = FFMIN(opt_order, 3);
799
698
        av_assert0(sb_length <= sconf->frame_length);
800
698
        if (sb_length <= start) {
801
            // opt_order or sb_length may be corrupted, either way this is unsupported and not well defined in the specification
802
            av_log(avctx, AV_LOG_ERROR, "Sub block length smaller or equal start\n");
803
            return AVERROR_PATCHWELCOME;
804
        }
805
806
698
        if (opt_order)
807
698
            bd->raw_samples[0] = decode_rice(gb, avctx->bits_per_raw_sample - 4);
808
698
        if (opt_order > 1)
809
698
            bd->raw_samples[1] = decode_rice(gb, FFMIN(s[0] + 3, ctx->s_max));
810
698
        if (opt_order > 2)
811
697
            bd->raw_samples[2] = decode_rice(gb, FFMIN(s[0] + 1, ctx->s_max));
812
    }
813
814
    // read all residuals
815
4767
    if (sconf->bgmc) {
816
        int          delta[8];
817
        unsigned int k    [8];
818
1722
        unsigned int b = av_clip((av_ceil_log2(bd->block_length) - 3) >> 1, 0, 5);
819
820
        // read most significant bits
821
        unsigned int high;
822
        unsigned int low;
823
        unsigned int value;
824
825
1722
        int ret = ff_bgmc_decode_init(gb, &high, &low, &value);
826
1722
        if (ret < 0)
827
            return ret;
828
829
1722
        current_res = bd->raw_samples + start;
830
831
4870
        for (sb = 0; sb < sub_blocks; sb++) {
832
3148
            unsigned int sb_len  = sb_length - (sb ? 0 : start);
833
834
3148
            k    [sb] = s[sb] > b ? s[sb] - b : 0;
835
3148
            delta[sb] = 5 - s[sb] + k[sb];
836
837
3148
            if (k[sb] >= 32)
838
                return AVERROR_INVALIDDATA;
839
840
3148
            ff_bgmc_decode(gb, sb_len, current_res,
841
                        delta[sb], sx[sb], &high, &low, &value, ctx->bgmc_lut, ctx->bgmc_lut_status);
842
843
3148
            current_res += sb_len;
844
        }
845
846
1722
        ff_bgmc_decode_end(gb);
847
848
849
        // read least significant bits and tails
850
1722
        current_res = bd->raw_samples + start;
851
852
4870
        for (sb = 0; sb < sub_blocks; sb++, start = 0) {
853
3148
            unsigned int cur_tail_code = tail_code[sx[sb]][delta[sb]];
854
3148
            unsigned int cur_k         = k[sb];
855
3148
            unsigned int cur_s         = s[sb];
856
857
4584006
            for (; start < sb_length; start++) {
858
4580858
                int32_t res = *current_res;
859
860
4580858
                if (res == cur_tail_code) {
861
12582
                    unsigned int max_msb =   (2 + (sx[sb] > 2) + (sx[sb] > 10))
862
12582
                                          << (5 - delta[sb]);
863
864
12582
                    res = decode_rice(gb, cur_s);
865
866
12582
                    if (res >= 0) {
867
6332
                        res += (max_msb    ) << cur_k;
868
                    } else {
869
6250
                        res -= (max_msb - 1) << cur_k;
870
                    }
871
                } else {
872
4568276
                    if (res > cur_tail_code)
873
94057
                        res--;
874
875
4568276
                    if (res & 1)
876
2023961
                        res = -res;
877
878
4568276
                    res >>= 1;
879
880
4568276
                    if (cur_k) {
881
866509
                        res  *= 1U << cur_k;
882
866509
                        res  |= get_bits_long(gb, cur_k);
883
                    }
884
                }
885
886
4580858
                *current_res++ = res;
887
            }
888
        }
889
    } else {
890
3045
        current_res = bd->raw_samples + start;
891
892
8370
        for (sb = 0; sb < sub_blocks; sb++, start = 0)
893
7145090
            for (; start < sb_length; start++)
894
7139765
                *current_res++ = decode_rice(gb, s[sb]);
895
     }
896
897
4767
    return 0;
898
}
899
900
901
/** Decode the block data for a non-constant block
902
 */
903
4767
static int decode_var_block_data(ALSDecContext *ctx, ALSBlockData *bd)
904
{
905
4767
    ALSSpecificConfig *sconf = &ctx->sconf;
906
4767
    unsigned int block_length = bd->block_length;
907
4767
    unsigned int smp = 0;
908
    unsigned int k;
909
4767
    int opt_order             = *bd->opt_order;
910
    int sb;
911
    int64_t y;
912
4767
    int32_t *quant_cof        = bd->quant_cof;
913
4767
    int32_t *lpc_cof          = bd->lpc_cof;
914
4767
    int32_t *raw_samples      = bd->raw_samples;
915
4767
    int32_t *raw_samples_end  = bd->raw_samples + bd->block_length;
916
4767
    int32_t *lpc_cof_reversed = ctx->lpc_cof_reversed_buffer;
917
918
    // reverse long-term prediction
919
4767
    if (*bd->use_ltp) {
920
        int ltp_smp;
921
922
3839287
        for (ltp_smp = FFMAX(*bd->ltp_lag - 2, 0); ltp_smp < block_length; ltp_smp++) {
923
3837729
            int center = ltp_smp - *bd->ltp_lag;
924
3837729
            int begin  = FFMAX(0, center - 2);
925
3837729
            int end    = center + 3;
926
3837729
            int tab    = 5 - (end - begin);
927
            int base;
928
929
3837729
            y = 1 << 6;
930
931
23010794
            for (base = begin; base < end; base++, tab++)
932
19173065
                y += (uint64_t)MUL64(bd->ltp_gain[tab], raw_samples[base]);
933
934
3837729
            raw_samples[ltp_smp] += y >> 7;
935
        }
936
    }
937
938
    // reconstruct all samples from residuals
939
4767
    if (bd->ra_block) {
940
53993
        for (smp = 0; smp < FFMIN(opt_order, block_length); smp++) {
941
53295
            y = 1 << 19;
942
943
2692325
            for (sb = 0; sb < smp; sb++)
944
2639030
                y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[-(sb + 1)]);
945
946
53295
            *raw_samples++ -= y >> 20;
947
53295
            parcor_to_lpc(smp, quant_cof, lpc_cof);
948
        }
949
    } else {
950
88269
        for (k = 0; k < opt_order; k++)
951
84200
            parcor_to_lpc(k, quant_cof, lpc_cof);
952
953
        // store previous samples in case that they have to be altered
954
4069
        if (*bd->store_prev_samples)
955
9
            memcpy(bd->prev_raw_samples, raw_samples - sconf->max_order,
956
9
                   sizeof(*bd->prev_raw_samples) * sconf->max_order);
957
958
        // reconstruct difference signal for prediction (joint-stereo)
959

4069
        if (bd->js_blocks && bd->raw_other) {
960
            uint32_t *left, *right;
961
962
9
            if (bd->raw_other > raw_samples) {  // D = R - L
963
4
                left  = raw_samples;
964
4
                right = bd->raw_other;
965
            } else {                                // D = R - L
966
5
                left  = bd->raw_other;
967
5
                right = raw_samples;
968
            }
969
970
333
            for (sb = -1; sb >= -sconf->max_order; sb--)
971
324
                raw_samples[sb] = right[sb] - left[sb];
972
        }
973
974
        // reconstruct shifted signal
975
4069
        if (*bd->shift_lsbs)
976
            for (sb = -1; sb >= -sconf->max_order; sb--)
977
                raw_samples[sb] >>= *bd->shift_lsbs;
978
    }
979
980
    // reverse linear prediction coefficients for efficiency
981
4767
    lpc_cof = lpc_cof + opt_order;
982
983
142262
    for (sb = 0; sb < opt_order; sb++)
984
137495
        lpc_cof_reversed[sb] = lpc_cof[-(sb + 1)];
985
986
    // reconstruct raw samples
987
4767
    raw_samples = bd->raw_samples + smp;
988
4767
    lpc_cof     = lpc_cof_reversed + opt_order;
989
990
11674188
    for (; raw_samples < raw_samples_end; raw_samples++) {
991
11669421
        y = 1 << 19;
992
993
429242414
        for (sb = -opt_order; sb < 0; sb++)
994
417572993
            y += (uint64_t)MUL64(lpc_cof[sb], raw_samples[sb]);
995
996
11669421
        *raw_samples -= y >> 20;
997
    }
998
999
4767
    raw_samples = bd->raw_samples;
1000
1001
    // restore previous samples in case that they have been altered
1002
4767
    if (*bd->store_prev_samples)
1003
9
        memcpy(raw_samples - sconf->max_order, bd->prev_raw_samples,
1004
9
               sizeof(*raw_samples) * sconf->max_order);
1005
1006
4767
    return 0;
1007
}
1008
1009
1010
/** Read the block data.
1011
 */
1012
4767
static int read_block(ALSDecContext *ctx, ALSBlockData *bd)
1013
{
1014
    int ret;
1015
4767
    GetBitContext *gb        = &ctx->gb;
1016
4767
    ALSSpecificConfig *sconf = &ctx->sconf;
1017
1018
4767
    *bd->shift_lsbs = 0;
1019
1020
4767
    if (get_bits_left(gb) < 1)
1021
        return AVERROR_INVALIDDATA;
1022
1023
    // read block type flag and read the samples accordingly
1024
4767
    if (get_bits1(gb)) {
1025
4767
        ret = read_var_block_data(ctx, bd);
1026
    } else {
1027
        ret = read_const_block_data(ctx, bd);
1028
    }
1029
1030

4767
    if (!sconf->mc_coding || ctx->js_switch)
1031
3045
        align_get_bits(gb);
1032
1033
4767
    return ret;
1034
}
1035
1036
1037
/** Decode the block data.
1038
 */
1039
4767
static int decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1040
{
1041
    unsigned int smp;
1042
4767
    int ret = 0;
1043
1044
    // read block type flag and read the samples accordingly
1045
4767
    if (*bd->const_block)
1046
        decode_const_block_data(ctx, bd);
1047
    else
1048
4767
        ret = decode_var_block_data(ctx, bd); // always return 0
1049
1050
4767
    if (ret < 0)
1051
        return ret;
1052
1053
    // TODO: read RLSLMS extension data
1054
1055
4767
    if (*bd->shift_lsbs)
1056
        for (smp = 0; smp < bd->block_length; smp++)
1057
            bd->raw_samples[smp] = (unsigned)bd->raw_samples[smp] << *bd->shift_lsbs;
1058
1059
4767
    return 0;
1060
}
1061
1062
1063
/** Read and decode block data successively.
1064
 */
1065
3045
static int read_decode_block(ALSDecContext *ctx, ALSBlockData *bd)
1066
{
1067
    int ret;
1068
1069
3045
    if ((ret = read_block(ctx, bd)) < 0)
1070
        return ret;
1071
1072
3045
    return decode_block(ctx, bd);
1073
}
1074
1075
1076
/** Compute the number of samples left to decode for the current frame and
1077
 *  sets these samples to zero.
1078
 */
1079
static void zero_remaining(unsigned int b, unsigned int b_max,
1080
                           const unsigned int *div_blocks, int32_t *buf)
1081
{
1082
    unsigned int count = 0;
1083
1084
    while (b < b_max)
1085
        count += div_blocks[b++];
1086
1087
    if (count)
1088
        memset(buf, 0, sizeof(*buf) * count);
1089
}
1090
1091
1092
/** Decode blocks independently.
1093
 */
1094
2138
static int decode_blocks_ind(ALSDecContext *ctx, unsigned int ra_frame,
1095
                             unsigned int c, const unsigned int *div_blocks,
1096
                             unsigned int *js_blocks)
1097
{
1098
    int ret;
1099
    unsigned int b;
1100
2138
    ALSBlockData bd = { 0 };
1101
1102
2138
    bd.ra_block         = ra_frame;
1103
2138
    bd.const_block      = ctx->const_block;
1104
2138
    bd.shift_lsbs       = ctx->shift_lsbs;
1105
2138
    bd.opt_order        = ctx->opt_order;
1106
2138
    bd.store_prev_samples = ctx->store_prev_samples;
1107
2138
    bd.use_ltp          = ctx->use_ltp;
1108
2138
    bd.ltp_lag          = ctx->ltp_lag;
1109
2138
    bd.ltp_gain         = ctx->ltp_gain[0];
1110
2138
    bd.quant_cof        = ctx->quant_cof[0];
1111
2138
    bd.lpc_cof          = ctx->lpc_cof[0];
1112
2138
    bd.prev_raw_samples = ctx->prev_raw_samples;
1113
2138
    bd.raw_samples      = ctx->raw_samples[c];
1114
1115
1116
4317
    for (b = 0; b < ctx->num_blocks; b++) {
1117
2179
        bd.block_length     = div_blocks[b];
1118
1119
2179
        if ((ret = read_decode_block(ctx, &bd)) < 0) {
1120
            // damaged block, write zero for the rest of the frame
1121
            zero_remaining(b, ctx->num_blocks, div_blocks, bd.raw_samples);
1122
            return ret;
1123
        }
1124
2179
        bd.raw_samples += div_blocks[b];
1125
2179
        bd.ra_block     = 0;
1126
    }
1127
1128
2138
    return 0;
1129
}
1130
1131
1132
/** Decode blocks dependently.
1133
 */
1134
415
static int decode_blocks(ALSDecContext *ctx, unsigned int ra_frame,
1135
                         unsigned int c, const unsigned int *div_blocks,
1136
                         unsigned int *js_blocks)
1137
{
1138
415
    ALSSpecificConfig *sconf = &ctx->sconf;
1139
415
    unsigned int offset = 0;
1140
    unsigned int b;
1141
    int ret;
1142
415
    ALSBlockData bd[2] = { { 0 } };
1143
1144
415
    bd[0].ra_block         = ra_frame;
1145
415
    bd[0].const_block      = ctx->const_block;
1146
415
    bd[0].shift_lsbs       = ctx->shift_lsbs;
1147
415
    bd[0].opt_order        = ctx->opt_order;
1148
415
    bd[0].store_prev_samples = ctx->store_prev_samples;
1149
415
    bd[0].use_ltp          = ctx->use_ltp;
1150
415
    bd[0].ltp_lag          = ctx->ltp_lag;
1151
415
    bd[0].ltp_gain         = ctx->ltp_gain[0];
1152
415
    bd[0].quant_cof        = ctx->quant_cof[0];
1153
415
    bd[0].lpc_cof          = ctx->lpc_cof[0];
1154
415
    bd[0].prev_raw_samples = ctx->prev_raw_samples;
1155
415
    bd[0].js_blocks        = *js_blocks;
1156
1157
415
    bd[1].ra_block         = ra_frame;
1158
415
    bd[1].const_block      = ctx->const_block;
1159
415
    bd[1].shift_lsbs       = ctx->shift_lsbs;
1160
415
    bd[1].opt_order        = ctx->opt_order;
1161
415
    bd[1].store_prev_samples = ctx->store_prev_samples;
1162
415
    bd[1].use_ltp          = ctx->use_ltp;
1163
415
    bd[1].ltp_lag          = ctx->ltp_lag;
1164
415
    bd[1].ltp_gain         = ctx->ltp_gain[0];
1165
415
    bd[1].quant_cof        = ctx->quant_cof[0];
1166
415
    bd[1].lpc_cof          = ctx->lpc_cof[0];
1167
415
    bd[1].prev_raw_samples = ctx->prev_raw_samples;
1168
415
    bd[1].js_blocks        = *(js_blocks + 1);
1169
1170
    // decode all blocks
1171
848
    for (b = 0; b < ctx->num_blocks; b++) {
1172
        unsigned int s;
1173
1174
433
        bd[0].block_length = div_blocks[b];
1175
433
        bd[1].block_length = div_blocks[b];
1176
1177
433
        bd[0].raw_samples  = ctx->raw_samples[c    ] + offset;
1178
433
        bd[1].raw_samples  = ctx->raw_samples[c + 1] + offset;
1179
1180
433
        bd[0].raw_other    = bd[1].raw_samples;
1181
433
        bd[1].raw_other    = bd[0].raw_samples;
1182
1183

866
        if ((ret = read_decode_block(ctx, &bd[0])) < 0 ||
1184
433
            (ret = read_decode_block(ctx, &bd[1])) < 0)
1185
            goto fail;
1186
1187
        // reconstruct joint-stereo blocks
1188
433
        if (bd[0].js_blocks) {
1189
4
            if (bd[1].js_blocks)
1190
                av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel pair.\n");
1191
1192
16388
            for (s = 0; s < div_blocks[b]; s++)
1193
16384
                bd[0].raw_samples[s] = bd[1].raw_samples[s] - (unsigned)bd[0].raw_samples[s];
1194
429
        } else if (bd[1].js_blocks) {
1195
10245
            for (s = 0; s < div_blocks[b]; s++)
1196
10240
                bd[1].raw_samples[s] = bd[1].raw_samples[s] + (unsigned)bd[0].raw_samples[s];
1197
        }
1198
1199
433
        offset  += div_blocks[b];
1200
433
        bd[0].ra_block = 0;
1201
433
        bd[1].ra_block = 0;
1202
    }
1203
1204
    // store carryover raw samples,
1205
    // the others channel raw samples are stored by the calling function.
1206
415
    memmove(ctx->raw_samples[c] - sconf->max_order,
1207
415
            ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1208
415
            sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1209
1210
415
    return 0;
1211
fail:
1212
    // damaged block, write zero for the rest of the frame
1213
    zero_remaining(b, ctx->num_blocks, div_blocks, bd[0].raw_samples);
1214
    zero_remaining(b, ctx->num_blocks, div_blocks, bd[1].raw_samples);
1215
    return ret;
1216
}
1217
1218
5721
static inline int als_weighting(GetBitContext *gb, int k, int off)
1219
{
1220
5721
    int idx = av_clip(decode_rice(gb, k) + off,
1221
                      0, FF_ARRAY_ELEMS(mcc_weightings) - 1);
1222
5721
    return mcc_weightings[idx];
1223
}
1224
1225
/** Read the channel data.
1226
  */
1227
1722
static int read_channel_data(ALSDecContext *ctx, ALSChannelData *cd, int c)
1228
{
1229
1722
    GetBitContext *gb       = &ctx->gb;
1230
1722
    ALSChannelData *current = cd;
1231
1722
    unsigned int channels   = ctx->avctx->channels;
1232
1722
    int entries             = 0;
1233
1234

2948
    while (entries < channels && !(current->stop_flag = get_bits1(gb))) {
1235
1226
        current->master_channel = get_bits_long(gb, av_ceil_log2(channels));
1236
1237
1226
        if (current->master_channel >= channels) {
1238
            av_log(ctx->avctx, AV_LOG_ERROR, "Invalid master channel.\n");
1239
            return AVERROR_INVALIDDATA;
1240
        }
1241
1242
1226
        if (current->master_channel != c) {
1243
1226
            current->time_diff_flag = get_bits1(gb);
1244
1226
            current->weighting[0]   = als_weighting(gb, 1, 16);
1245
1226
            current->weighting[1]   = als_weighting(gb, 2, 14);
1246
1226
            current->weighting[2]   = als_weighting(gb, 1, 16);
1247
1248
1226
            if (current->time_diff_flag) {
1249
681
                current->weighting[3] = als_weighting(gb, 1, 16);
1250
681
                current->weighting[4] = als_weighting(gb, 1, 16);
1251
681
                current->weighting[5] = als_weighting(gb, 1, 16);
1252
1253
681
                current->time_diff_sign  = get_bits1(gb);
1254
681
                current->time_diff_index = get_bits(gb, ctx->ltp_lag_length - 3) + 3;
1255
            }
1256
        }
1257
1258
1226
        current++;
1259
1226
        entries++;
1260
    }
1261
1262
1722
    if (entries == channels) {
1263
        av_log(ctx->avctx, AV_LOG_ERROR, "Damaged channel data.\n");
1264
        return AVERROR_INVALIDDATA;
1265
    }
1266
1267
1722
    align_get_bits(gb);
1268
1722
    return 0;
1269
}
1270
1271
1272
/** Recursively reverts the inter-channel correlation for a block.
1273
 */
1274
2948
static int revert_channel_correlation(ALSDecContext *ctx, ALSBlockData *bd,
1275
                                       ALSChannelData **cd, int *reverted,
1276
                                       unsigned int offset, int c)
1277
{
1278
2948
    ALSChannelData *ch = cd[c];
1279
2948
    unsigned int   dep = 0;
1280
2948
    unsigned int channels = ctx->avctx->channels;
1281
2948
    unsigned int channel_size = ctx->sconf.frame_length + ctx->sconf.max_order;
1282
1283
2948
    if (reverted[c])
1284
1226
        return 0;
1285
1286
1722
    reverted[c] = 1;
1287
1288

2948
    while (dep < channels && !ch[dep].stop_flag) {
1289
1226
        revert_channel_correlation(ctx, bd, cd, reverted, offset,
1290
1226
                                   ch[dep].master_channel);
1291
1292
1226
        dep++;
1293
    }
1294
1295
1722
    if (dep == channels) {
1296
        av_log(ctx->avctx, AV_LOG_WARNING, "Invalid channel correlation.\n");
1297
        return AVERROR_INVALIDDATA;
1298
    }
1299
1300
1722
    bd->const_block = ctx->const_block + c;
1301
1722
    bd->shift_lsbs  = ctx->shift_lsbs + c;
1302
1722
    bd->opt_order   = ctx->opt_order + c;
1303
1722
    bd->store_prev_samples = ctx->store_prev_samples + c;
1304
1722
    bd->use_ltp     = ctx->use_ltp + c;
1305
1722
    bd->ltp_lag     = ctx->ltp_lag + c;
1306
1722
    bd->ltp_gain    = ctx->ltp_gain[c];
1307
1722
    bd->lpc_cof     = ctx->lpc_cof[c];
1308
1722
    bd->quant_cof   = ctx->quant_cof[c];
1309
1722
    bd->raw_samples = ctx->raw_samples[c] + offset;
1310
1311
2948
    for (dep = 0; !ch[dep].stop_flag; dep++) {
1312
        ptrdiff_t smp;
1313
1226
        ptrdiff_t begin = 1;
1314
1226
        ptrdiff_t end   = bd->block_length - 1;
1315
        int64_t y;
1316
1226
        int32_t *master = ctx->raw_samples[ch[dep].master_channel] + offset;
1317
1318
1226
        if (ch[dep].master_channel == c)
1319
            continue;
1320
1321
1226
        if (ch[dep].time_diff_flag) {
1322
681
            int t = ch[dep].time_diff_index;
1323
1324
681
            if (ch[dep].time_diff_sign) {
1325
313
                t      = -t;
1326
313
                if (begin < t) {
1327
                    av_log(ctx->avctx, AV_LOG_ERROR, "begin %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", begin, t);
1328
                    return AVERROR_INVALIDDATA;
1329
                }
1330
313
                begin -= t;
1331
            } else {
1332
368
                if (end < t) {
1333
                    av_log(ctx->avctx, AV_LOG_ERROR, "end %"PTRDIFF_SPECIFIER" smaller than time diff index %d.\n", end, t);
1334
                    return AVERROR_INVALIDDATA;
1335
                }
1336
368
                end   -= t;
1337
            }
1338
1339

681
            if (FFMIN(begin - 1, begin - 1 + t) < ctx->raw_buffer - master ||
1340

681
                FFMAX(end   + 1,   end + 1 + t) > ctx->raw_buffer + channels * channel_size - master) {
1341
                av_log(ctx->avctx, AV_LOG_ERROR,
1342
                       "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1343
                       master + FFMIN(begin - 1, begin - 1 + t), master + FFMAX(end + 1,   end + 1 + t),
1344
                       ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1345
                return AVERROR_INVALIDDATA;
1346
            }
1347
1348
1845643
            for (smp = begin; smp < end; smp++) {
1349
1844962
                y  = (1 << 6) +
1350
1844962
                     MUL64(ch[dep].weighting[0], master[smp - 1    ]) +
1351
1844962
                     MUL64(ch[dep].weighting[1], master[smp        ]) +
1352
1844962
                     MUL64(ch[dep].weighting[2], master[smp + 1    ]) +
1353
1844962
                     MUL64(ch[dep].weighting[3], master[smp - 1 + t]) +
1354
1844962
                     MUL64(ch[dep].weighting[4], master[smp     + t]) +
1355
1844962
                     MUL64(ch[dep].weighting[5], master[smp + 1 + t]);
1356
1357
1844962
                bd->raw_samples[smp] += y >> 7;
1358
            }
1359
        } else {
1360
1361
545
            if (begin - 1 < ctx->raw_buffer - master ||
1362
545
                end   + 1 > ctx->raw_buffer + channels * channel_size - master) {
1363
                av_log(ctx->avctx, AV_LOG_ERROR,
1364
                       "sample pointer range [%p, %p] not contained in raw_buffer [%p, %p].\n",
1365
                       master + begin - 1, master + end + 1,
1366
                       ctx->raw_buffer, ctx->raw_buffer + channels * channel_size);
1367
                return AVERROR_INVALIDDATA;
1368
            }
1369
1370
1568069
            for (smp = begin; smp < end; smp++) {
1371
1567524
                y  = (1 << 6) +
1372
1567524
                     MUL64(ch[dep].weighting[0], master[smp - 1]) +
1373
1567524
                     MUL64(ch[dep].weighting[1], master[smp    ]) +
1374
1567524
                     MUL64(ch[dep].weighting[2], master[smp + 1]);
1375
1376
1567524
                bd->raw_samples[smp] += y >> 7;
1377
            }
1378
        }
1379
    }
1380
1381
1722
    return 0;
1382
}
1383
1384
1385
/** multiply two softfloats and handle the rounding off
1386
 */
1387
static SoftFloat_IEEE754 multiply(SoftFloat_IEEE754 a, SoftFloat_IEEE754 b) {
1388
    uint64_t mantissa_temp;
1389
    uint64_t mask_64;
1390
    int cutoff_bit_count;
1391
    unsigned char last_2_bits;
1392
    unsigned int mantissa;
1393
    int32_t sign;
1394
    uint32_t return_val = 0;
1395
    int bit_count       = 48;
1396
1397
    sign = a.sign ^ b.sign;
1398
1399
    // Multiply mantissa bits in a 64-bit register
1400
    mantissa_temp = (uint64_t)a.mant * (uint64_t)b.mant;
1401
    mask_64       = (uint64_t)0x1 << 47;
1402
1403
    if (!mantissa_temp)
1404
        return FLOAT_0;
1405
1406
    // Count the valid bit count
1407
    while (!(mantissa_temp & mask_64) && mask_64) {
1408
        bit_count--;
1409
        mask_64 >>= 1;
1410
    }
1411
1412
    // Round off
1413
    cutoff_bit_count = bit_count - 24;
1414
    if (cutoff_bit_count > 0) {
1415
        last_2_bits = (unsigned char)(((unsigned int)mantissa_temp >> (cutoff_bit_count - 1)) & 0x3 );
1416
        if ((last_2_bits == 0x3) || ((last_2_bits == 0x1) && ((unsigned int)mantissa_temp & ((0x1UL << (cutoff_bit_count - 1)) - 1)))) {
1417
            // Need to round up
1418
            mantissa_temp += (uint64_t)0x1 << cutoff_bit_count;
1419
        }
1420
    }
1421
1422
    if (cutoff_bit_count >= 0) {
1423
        mantissa = (unsigned int)(mantissa_temp >> cutoff_bit_count);
1424
    } else {
1425
        mantissa = (unsigned int)(mantissa_temp <<-cutoff_bit_count);
1426
    }
1427
1428
    // Need one more shift?
1429
    if (mantissa & 0x01000000ul) {
1430
        bit_count++;
1431
        mantissa >>= 1;
1432
    }
1433
1434
    if (!sign) {
1435
        return_val = 0x80000000U;
1436
    }
1437
1438
    return_val |= ((unsigned)av_clip(a.exp + b.exp + bit_count - 47, -126, 127) << 23) & 0x7F800000;
1439
    return_val |= mantissa;
1440
    return av_bits2sf_ieee754(return_val);
1441
}
1442
1443
1444
/** Read and decode the floating point sample data
1445
 */
1446
static int read_diff_float_data(ALSDecContext *ctx, unsigned int ra_frame) {
1447
    AVCodecContext *avctx   = ctx->avctx;
1448
    GetBitContext *gb       = &ctx->gb;
1449
    SoftFloat_IEEE754 *acf  = ctx->acf;
1450
    int *shift_value        = ctx->shift_value;
1451
    int *last_shift_value   = ctx->last_shift_value;
1452
    int *last_acf_mantissa  = ctx->last_acf_mantissa;
1453
    int **raw_mantissa      = ctx->raw_mantissa;
1454
    int *nbits              = ctx->nbits;
1455
    unsigned char *larray   = ctx->larray;
1456
    int frame_length        = ctx->cur_frame_length;
1457
    SoftFloat_IEEE754 scale = av_int2sf_ieee754(0x1u, 23);
1458
    unsigned int partA_flag;
1459
    unsigned int highest_byte;
1460
    unsigned int shift_amp;
1461
    uint32_t tmp_32;
1462
    int use_acf;
1463
    int nchars;
1464
    int i;
1465
    int c;
1466
    long k;
1467
    long nbits_aligned;
1468
    unsigned long acc;
1469
    unsigned long j;
1470
    uint32_t sign;
1471
    uint32_t e;
1472
    uint32_t mantissa;
1473
1474
    skip_bits_long(gb, 32); //num_bytes_diff_float
1475
    use_acf = get_bits1(gb);
1476
1477
    if (ra_frame) {
1478
        memset(last_acf_mantissa, 0, avctx->channels * sizeof(*last_acf_mantissa));
1479
        memset(last_shift_value,  0, avctx->channels * sizeof(*last_shift_value) );
1480
        ff_mlz_flush_dict(ctx->mlz);
1481
    }
1482
1483
    if (avctx->channels * 8 > get_bits_left(gb))
1484
        return AVERROR_INVALIDDATA;
1485
1486
    for (c = 0; c < avctx->channels; ++c) {
1487
        if (use_acf) {
1488
            //acf_flag
1489
            if (get_bits1(gb)) {
1490
                tmp_32 = get_bits(gb, 23);
1491
                last_acf_mantissa[c] = tmp_32;
1492
            } else {
1493
                tmp_32 = last_acf_mantissa[c];
1494
            }
1495
            acf[c] = av_bits2sf_ieee754(tmp_32);
1496
        } else {
1497
            acf[c] = FLOAT_1;
1498
        }
1499
1500
        highest_byte = get_bits(gb, 2);
1501
        partA_flag   = get_bits1(gb);
1502
        shift_amp    = get_bits1(gb);
1503
1504
        if (shift_amp) {
1505
            shift_value[c] = get_bits(gb, 8);
1506
            last_shift_value[c] = shift_value[c];
1507
        } else {
1508
            shift_value[c] = last_shift_value[c];
1509
        }
1510
1511
        if (partA_flag) {
1512
            if (!get_bits1(gb)) { //uncompressed
1513
                for (i = 0; i < frame_length; ++i) {
1514
                    if (ctx->raw_samples[c][i] == 0) {
1515
                        ctx->raw_mantissa[c][i] = get_bits_long(gb, 32);
1516
                    }
1517
                }
1518
            } else { //compressed
1519
                nchars = 0;
1520
                for (i = 0; i < frame_length; ++i) {
1521
                    if (ctx->raw_samples[c][i] == 0) {
1522
                        nchars += 4;
1523
                    }
1524
                }
1525
1526
                tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1527
                if(tmp_32 != nchars) {
1528
                    av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1529
                    return AVERROR_INVALIDDATA;
1530
                }
1531
1532
                for (i = 0; i < frame_length; ++i) {
1533
                    ctx->raw_mantissa[c][i] = AV_RB32(larray);
1534
                }
1535
            }
1536
        }
1537
1538
        //decode part B
1539
        if (highest_byte) {
1540
            for (i = 0; i < frame_length; ++i) {
1541
                if (ctx->raw_samples[c][i] != 0) {
1542
                    //The following logic is taken from Tabel 14.45 and 14.46 from the ISO spec
1543
                    if (av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1544
                        nbits[i] = 23 - av_log2(abs(ctx->raw_samples[c][i]));
1545
                    } else {
1546
                        nbits[i] = 23;
1547
                    }
1548
                    nbits[i] = FFMIN(nbits[i], highest_byte*8);
1549
                }
1550
            }
1551
1552
            if (!get_bits1(gb)) { //uncompressed
1553
                for (i = 0; i < frame_length; ++i) {
1554
                    if (ctx->raw_samples[c][i] != 0) {
1555
                        raw_mantissa[c][i] = get_bitsz(gb, nbits[i]);
1556
                    }
1557
                }
1558
            } else { //compressed
1559
                nchars = 0;
1560
                for (i = 0; i < frame_length; ++i) {
1561
                    if (ctx->raw_samples[c][i]) {
1562
                        nchars += (int) nbits[i] / 8;
1563
                        if (nbits[i] & 7) {
1564
                            ++nchars;
1565
                        }
1566
                    }
1567
                }
1568
1569
                tmp_32 = ff_mlz_decompression(ctx->mlz, gb, nchars, larray);
1570
                if(tmp_32 != nchars) {
1571
                    av_log(ctx->avctx, AV_LOG_ERROR, "Error in MLZ decompression (%"PRId32", %d).\n", tmp_32, nchars);
1572
                    return AVERROR_INVALIDDATA;
1573
                }
1574
1575
                j = 0;
1576
                for (i = 0; i < frame_length; ++i) {
1577
                    if (ctx->raw_samples[c][i]) {
1578
                        if (nbits[i] & 7) {
1579
                            nbits_aligned = 8 * ((unsigned int)(nbits[i] / 8) + 1);
1580
                        } else {
1581
                            nbits_aligned = nbits[i];
1582
                        }
1583
                        acc = 0;
1584
                        for (k = 0; k < nbits_aligned/8; ++k) {
1585
                            acc = (acc << 8) + larray[j++];
1586
                        }
1587
                        acc >>= (nbits_aligned - nbits[i]);
1588
                        raw_mantissa[c][i] = acc;
1589
                    }
1590
                }
1591
            }
1592
        }
1593
1594
        for (i = 0; i < frame_length; ++i) {
1595
            SoftFloat_IEEE754 pcm_sf = av_int2sf_ieee754(ctx->raw_samples[c][i], 0);
1596
            pcm_sf = av_div_sf_ieee754(pcm_sf, scale);
1597
1598
            if (ctx->raw_samples[c][i] != 0) {
1599
                if (!av_cmp_sf_ieee754(acf[c], FLOAT_1)) {
1600
                    pcm_sf = multiply(acf[c], pcm_sf);
1601
                }
1602
1603
                sign = pcm_sf.sign;
1604
                e = pcm_sf.exp;
1605
                mantissa = (pcm_sf.mant | 0x800000) + raw_mantissa[c][i];
1606
1607
                while(mantissa >= 0x1000000) {
1608
                    e++;
1609
                    mantissa >>= 1;
1610
                }
1611
1612
                if (mantissa) e += (shift_value[c] - 127);
1613
                mantissa &= 0x007fffffUL;
1614
1615
                tmp_32 = (sign << 31) | ((e + EXP_BIAS) << 23) | (mantissa);
1616
                ctx->raw_samples[c][i] = tmp_32;
1617
            } else {
1618
                ctx->raw_samples[c][i] = raw_mantissa[c][i] & 0x007fffffUL;
1619
            }
1620
        }
1621
        align_get_bits(gb);
1622
    }
1623
    return 0;
1624
}
1625
1626
1627
/** Read the frame data.
1628
 */
1629
1835
static int read_frame_data(ALSDecContext *ctx, unsigned int ra_frame)
1630
{
1631
1835
    ALSSpecificConfig *sconf = &ctx->sconf;
1632
1835
    AVCodecContext *avctx    = ctx->avctx;
1633
1835
    GetBitContext *gb = &ctx->gb;
1634
    unsigned int div_blocks[32];                ///< block sizes.
1635
    unsigned int c;
1636
    unsigned int js_blocks[2];
1637
1835
    uint32_t bs_info = 0;
1638
    int ret;
1639
1640
    // skip the size of the ra unit if present in the frame
1641

1835
    if (sconf->ra_flag == RA_FLAG_FRAMES && ra_frame)
1642
        skip_bits_long(gb, 32);
1643
1644

1835
    if (sconf->mc_coding && sconf->joint_stereo) {
1645
2
        ctx->js_switch = get_bits1(gb);
1646
2
        align_get_bits(gb);
1647
    }
1648
1649

3319
    if (!sconf->mc_coding || ctx->js_switch) {
1650
1484
        int independent_bs = !sconf->joint_stereo;
1651
1652
4037
        for (c = 0; c < avctx->channels; c++) {
1653
2553
            js_blocks[0] = 0;
1654
2553
            js_blocks[1] = 0;
1655
1656
2553
            get_block_sizes(ctx, div_blocks, &bs_info);
1657
1658
            // if joint_stereo and block_switching is set, independent decoding
1659
            // is signaled via the first bit of bs_info
1660

2553
            if (sconf->joint_stereo && sconf->block_switching)
1661
110
                if (bs_info >> 31)
1662
22
                    independent_bs = 2;
1663
1664
            // if this is the last channel, it has to be decoded independently
1665

2553
            if (c == avctx->channels - 1 || (c & 1))
1666
1069
                independent_bs = 1;
1667
1668
2553
            if (independent_bs) {
1669
2138
                ret = decode_blocks_ind(ctx, ra_frame, c,
1670
                                        div_blocks, js_blocks);
1671
2138
                if (ret < 0)
1672
                    return ret;
1673
2138
                independent_bs--;
1674
            } else {
1675
415
                ret = decode_blocks(ctx, ra_frame, c, div_blocks, js_blocks);
1676
415
                if (ret < 0)
1677
                    return ret;
1678
1679
415
                c++;
1680
            }
1681
1682
            // store carryover raw samples
1683
2553
            memmove(ctx->raw_samples[c] - sconf->max_order,
1684
2553
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1685
2553
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1686
2553
            ctx->highest_decoded_channel = c;
1687
        }
1688
    } else { // multi-channel coding
1689
351
        ALSBlockData   bd = { 0 };
1690
        int            b, ret;
1691
351
        int            *reverted_channels = ctx->reverted_channels;
1692
351
        unsigned int   offset             = 0;
1693
1694
2073
        for (c = 0; c < avctx->channels; c++)
1695
1722
            if (ctx->chan_data[c] < ctx->chan_data_buffer) {
1696
                av_log(ctx->avctx, AV_LOG_ERROR, "Invalid channel data.\n");
1697
                return AVERROR_INVALIDDATA;
1698
            }
1699
1700
351
        memset(reverted_channels, 0, sizeof(*reverted_channels) * avctx->channels);
1701
1702
351
        bd.ra_block         = ra_frame;
1703
351
        bd.prev_raw_samples = ctx->prev_raw_samples;
1704
1705
351
        get_block_sizes(ctx, div_blocks, &bs_info);
1706
1707
702
        for (b = 0; b < ctx->num_blocks; b++) {
1708
351
            bd.block_length = div_blocks[b];
1709
351
            if (bd.block_length <= 0) {
1710
                av_log(ctx->avctx, AV_LOG_WARNING,
1711
                       "Invalid block length %u in channel data!\n",
1712
                       bd.block_length);
1713
                continue;
1714
            }
1715
1716
2073
            for (c = 0; c < avctx->channels; c++) {
1717
1722
                bd.const_block = ctx->const_block + c;
1718
1722
                bd.shift_lsbs  = ctx->shift_lsbs + c;
1719
1722
                bd.opt_order   = ctx->opt_order + c;
1720
1722
                bd.store_prev_samples = ctx->store_prev_samples + c;
1721
1722
                bd.use_ltp     = ctx->use_ltp + c;
1722
1722
                bd.ltp_lag     = ctx->ltp_lag + c;
1723
1722
                bd.ltp_gain    = ctx->ltp_gain[c];
1724
1722
                bd.lpc_cof     = ctx->lpc_cof[c];
1725
1722
                bd.quant_cof   = ctx->quant_cof[c];
1726
1722
                bd.raw_samples = ctx->raw_samples[c] + offset;
1727
1722
                bd.raw_other   = NULL;
1728
1729
1722
                if ((ret = read_block(ctx, &bd)) < 0)
1730
                    return ret;
1731
1722
                if ((ret = read_channel_data(ctx, ctx->chan_data[c], c)) < 0)
1732
                    return ret;
1733
            }
1734
1735
2073
            for (c = 0; c < avctx->channels; c++) {
1736
1722
                ret = revert_channel_correlation(ctx, &bd, ctx->chan_data,
1737
                                                 reverted_channels, offset, c);
1738
1722
                if (ret < 0)
1739
                    return ret;
1740
            }
1741
2073
            for (c = 0; c < avctx->channels; c++) {
1742
1722
                bd.const_block = ctx->const_block + c;
1743
1722
                bd.shift_lsbs  = ctx->shift_lsbs + c;
1744
1722
                bd.opt_order   = ctx->opt_order + c;
1745
1722
                bd.store_prev_samples = ctx->store_prev_samples + c;
1746
1722
                bd.use_ltp     = ctx->use_ltp + c;
1747
1722
                bd.ltp_lag     = ctx->ltp_lag + c;
1748
1722
                bd.ltp_gain    = ctx->ltp_gain[c];
1749
1722
                bd.lpc_cof     = ctx->lpc_cof[c];
1750
1722
                bd.quant_cof   = ctx->quant_cof[c];
1751
1722
                bd.raw_samples = ctx->raw_samples[c] + offset;
1752
1753
1722
                if ((ret = decode_block(ctx, &bd)) < 0)
1754
                    return ret;
1755
1756
1722
                ctx->highest_decoded_channel = FFMAX(ctx->highest_decoded_channel, c);
1757
            }
1758
1759
351
            memset(reverted_channels, 0, avctx->channels * sizeof(*reverted_channels));
1760
351
            offset      += div_blocks[b];
1761
351
            bd.ra_block  = 0;
1762
        }
1763
1764
        // store carryover raw samples
1765
2073
        for (c = 0; c < avctx->channels; c++)
1766
1722
            memmove(ctx->raw_samples[c] - sconf->max_order,
1767
1722
                    ctx->raw_samples[c] - sconf->max_order + sconf->frame_length,
1768
1722
                    sizeof(*ctx->raw_samples[c]) * sconf->max_order);
1769
    }
1770
1771
1835
    if (sconf->floating) {
1772
        read_diff_float_data(ctx, ra_frame);
1773
    }
1774
1775
1835
    if (get_bits_left(gb) < 0) {
1776
        av_log(ctx->avctx, AV_LOG_ERROR, "Overread %d\n", -get_bits_left(gb));
1777
        return AVERROR_INVALIDDATA;
1778
    }
1779
1780
1835
    return 0;
1781
}
1782
1783
1784
/** Decode an ALS frame.
1785
 */
1786
1835
static int decode_frame(AVCodecContext *avctx, void *data, int *got_frame_ptr,
1787
                        AVPacket *avpkt)
1788
{
1789
1835
    ALSDecContext *ctx       = avctx->priv_data;
1790
1835
    AVFrame *frame           = data;
1791
1835
    ALSSpecificConfig *sconf = &ctx->sconf;
1792
1835
    const uint8_t *buffer    = avpkt->data;
1793
1835
    int buffer_size          = avpkt->size;
1794
    int invalid_frame, ret;
1795
    unsigned int c, sample, ra_frame, bytes_read, shift;
1796
1797
1835
    if ((ret = init_get_bits8(&ctx->gb, buffer, buffer_size)) < 0)
1798
        return ret;
1799
1800
    // In the case that the distance between random access frames is set to zero
1801
    // (sconf->ra_distance == 0) no frame is treated as a random access frame.
1802
    // For the first frame, if prediction is used, all samples used from the
1803
    // previous frame are assumed to be zero.
1804

1835
    ra_frame = sconf->ra_distance && !(ctx->frame_id % sconf->ra_distance);
1805
1806
    // the last frame to decode might have a different length
1807
1835
    if (sconf->samples != 0xFFFFFFFF)
1808
1835
        ctx->cur_frame_length = FFMIN(sconf->samples - ctx->frame_id * (uint64_t) sconf->frame_length,
1809
                                      sconf->frame_length);
1810
    else
1811
        ctx->cur_frame_length = sconf->frame_length;
1812
1813
1835
    ctx->highest_decoded_channel = 0;
1814
    // decode the frame data
1815
1835
    if ((invalid_frame = read_frame_data(ctx, ra_frame)) < 0)
1816
        av_log(ctx->avctx, AV_LOG_WARNING,
1817
               "Reading frame data failed. Skipping RA unit.\n");
1818
1819
1835
    if (ctx->highest_decoded_channel == 0)
1820
        return AVERROR_INVALIDDATA;
1821
1822
1835
    ctx->frame_id++;
1823
1824
    /* get output buffer */
1825
1835
    frame->nb_samples = ctx->cur_frame_length;
1826
1835
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
1827
        return ret;
1828
1829
    // transform decoded frame into output format
1830
    #define INTERLEAVE_OUTPUT(bps)                                                   \
1831
    {                                                                                \
1832
        int##bps##_t *dest = (int##bps##_t*)frame->data[0];                          \
1833
        int channels = avctx->channels;                                              \
1834
        int32_t *raw_samples = ctx->raw_samples[0];                                  \
1835
        int raw_step = channels > 1 ? ctx->raw_samples[1] - raw_samples : 1;         \
1836
        shift = bps - ctx->avctx->bits_per_raw_sample;                               \
1837
        if (!ctx->cs_switch) {                                                       \
1838
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1839
                for (c = 0; c < channels; c++)                                       \
1840
                    *dest++ = raw_samples[c*raw_step + sample] * (1U << shift);      \
1841
        } else {                                                                     \
1842
            for (sample = 0; sample < ctx->cur_frame_length; sample++)               \
1843
                for (c = 0; c < channels; c++)                                       \
1844
                    *dest++ = raw_samples[sconf->chan_pos[c]*raw_step + sample] * (1U << shift);\
1845
        }                                                                            \
1846
    }
1847
1848
1835
    if (ctx->avctx->bits_per_raw_sample <= 16) {
1849



16014599
        INTERLEAVE_OUTPUT(16)
1850
    } else {
1851
        INTERLEAVE_OUTPUT(32)
1852
    }
1853
1854
    // update CRC
1855

1835
    if (sconf->crc_enabled && (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
1856
        int swap = HAVE_BIGENDIAN != sconf->msb_first;
1857
1858
        if (ctx->avctx->bits_per_raw_sample == 24) {
1859
            int32_t *src = (int32_t *)frame->data[0];
1860
1861
            for (sample = 0;
1862
                 sample < ctx->cur_frame_length * avctx->channels;
1863
                 sample++) {
1864
                int32_t v;
1865
1866
                if (swap)
1867
                    v = av_bswap32(src[sample]);
1868
                else
1869
                    v = src[sample];
1870
                if (!HAVE_BIGENDIAN)
1871
                    v >>= 8;
1872
1873
                ctx->crc = av_crc(ctx->crc_table, ctx->crc, (uint8_t*)(&v), 3);
1874
            }
1875
        } else {
1876
            uint8_t *crc_source;
1877
1878
            if (swap) {
1879
                if (ctx->avctx->bits_per_raw_sample <= 16) {
1880
                    int16_t *src  = (int16_t*) frame->data[0];
1881
                    int16_t *dest = (int16_t*) ctx->crc_buffer;
1882
                    for (sample = 0;
1883
                         sample < ctx->cur_frame_length * avctx->channels;
1884
                         sample++)
1885
                        *dest++ = av_bswap16(src[sample]);
1886
                } else {
1887
                    ctx->bdsp.bswap_buf((uint32_t *) ctx->crc_buffer,
1888
                                        (uint32_t *) frame->data[0],
1889
                                        ctx->cur_frame_length * avctx->channels);
1890
                }
1891
                crc_source = ctx->crc_buffer;
1892
            } else {
1893
                crc_source = frame->data[0];
1894
            }
1895
1896
            ctx->crc = av_crc(ctx->crc_table, ctx->crc, crc_source,
1897
                              ctx->cur_frame_length * avctx->channels *
1898
                              av_get_bytes_per_sample(avctx->sample_fmt));
1899
        }
1900
1901
1902
        // check CRC sums if this is the last frame
1903
        if (ctx->cur_frame_length != sconf->frame_length &&
1904
            ctx->crc_org != ctx->crc) {
1905
            av_log(avctx, AV_LOG_ERROR, "CRC error.\n");
1906
            if (avctx->err_recognition & AV_EF_EXPLODE)
1907
                return AVERROR_INVALIDDATA;
1908
        }
1909
    }
1910
1911
1835
    *got_frame_ptr = 1;
1912
1913
1835
    bytes_read = invalid_frame ? buffer_size :
1914
1835
                                 (get_bits_count(&ctx->gb) + 7) >> 3;
1915
1916
1835
    return bytes_read;
1917
}
1918
1919
1920
/** Uninitialize the ALS decoder.
1921
 */
1922
14
static av_cold int decode_end(AVCodecContext *avctx)
1923
{
1924
14
    ALSDecContext *ctx = avctx->priv_data;
1925
    int i;
1926
1927
14
    av_freep(&ctx->sconf.chan_pos);
1928
1929
14
    ff_bgmc_end(&ctx->bgmc_lut, &ctx->bgmc_lut_status);
1930
1931
14
    av_freep(&ctx->const_block);
1932
14
    av_freep(&ctx->shift_lsbs);
1933
14
    av_freep(&ctx->opt_order);
1934
14
    av_freep(&ctx->store_prev_samples);
1935
14
    av_freep(&ctx->use_ltp);
1936
14
    av_freep(&ctx->ltp_lag);
1937
14
    av_freep(&ctx->ltp_gain);
1938
14
    av_freep(&ctx->ltp_gain_buffer);
1939
14
    av_freep(&ctx->quant_cof);
1940
14
    av_freep(&ctx->lpc_cof);
1941
14
    av_freep(&ctx->quant_cof_buffer);
1942
14
    av_freep(&ctx->lpc_cof_buffer);
1943
14
    av_freep(&ctx->lpc_cof_reversed_buffer);
1944
14
    av_freep(&ctx->prev_raw_samples);
1945
14
    av_freep(&ctx->raw_samples);
1946
14
    av_freep(&ctx->raw_buffer);
1947
14
    av_freep(&ctx->chan_data);
1948
14
    av_freep(&ctx->chan_data_buffer);
1949
14
    av_freep(&ctx->reverted_channels);
1950
14
    av_freep(&ctx->crc_buffer);
1951
14
    if (ctx->mlz) {
1952
        av_freep(&ctx->mlz->dict);
1953
        av_freep(&ctx->mlz);
1954
    }
1955
14
    av_freep(&ctx->acf);
1956
14
    av_freep(&ctx->last_acf_mantissa);
1957
14
    av_freep(&ctx->shift_value);
1958
14
    av_freep(&ctx->last_shift_value);
1959
14
    if (ctx->raw_mantissa) {
1960
        for (i = 0; i < avctx->channels; i++) {
1961
            av_freep(&ctx->raw_mantissa[i]);
1962
        }
1963
        av_freep(&ctx->raw_mantissa);
1964
    }
1965
14
    av_freep(&ctx->larray);
1966
14
    av_freep(&ctx->nbits);
1967
1968
14
    return 0;
1969
}
1970
1971
1972
/** Initialize the ALS decoder.
1973
 */
1974
14
static av_cold int decode_init(AVCodecContext *avctx)
1975
{
1976
    unsigned int c;
1977
    unsigned int channel_size;
1978
    int num_buffers, ret;
1979
14
    ALSDecContext *ctx = avctx->priv_data;
1980
14
    ALSSpecificConfig *sconf = &ctx->sconf;
1981
14
    ctx->avctx = avctx;
1982
1983
14
    if (!avctx->extradata) {
1984
        av_log(avctx, AV_LOG_ERROR, "Missing required ALS extradata.\n");
1985
        return AVERROR_INVALIDDATA;
1986
    }
1987
1988
14
    if ((ret = read_specific_config(ctx)) < 0) {
1989
        av_log(avctx, AV_LOG_ERROR, "Reading ALSSpecificConfig failed.\n");
1990
        goto fail;
1991
    }
1992
1993
14
    if ((ret = check_specific_config(ctx)) < 0) {
1994
        goto fail;
1995
    }
1996
1997
14
    if (sconf->bgmc) {
1998
4
        ret = ff_bgmc_init(avctx, &ctx->bgmc_lut, &ctx->bgmc_lut_status);
1999
4
        if (ret < 0)
2000
            goto fail;
2001
    }
2002
14
    if (sconf->floating) {
2003
        avctx->sample_fmt          = AV_SAMPLE_FMT_FLT;
2004
        avctx->bits_per_raw_sample = 32;
2005
    } else {
2006
28
        avctx->sample_fmt          = sconf->resolution > 1
2007
14
                                     ? AV_SAMPLE_FMT_S32 : AV_SAMPLE_FMT_S16;
2008
14
        avctx->bits_per_raw_sample = (sconf->resolution + 1) * 8;
2009
14
        if (avctx->bits_per_raw_sample > 32) {
2010
            av_log(avctx, AV_LOG_ERROR, "Bits per raw sample %d larger than 32.\n",
2011
                   avctx->bits_per_raw_sample);
2012
            ret = AVERROR_INVALIDDATA;
2013
            goto fail;
2014
        }
2015
    }
2016
2017
    // set maximum Rice parameter for progressive decoding based on resolution
2018
    // This is not specified in 14496-3 but actually done by the reference
2019
    // codec RM22 revision 2.
2020
14
    ctx->s_max = sconf->resolution > 1 ? 31 : 15;
2021
2022
    // set lag value for long-term prediction
2023
14
    ctx->ltp_lag_length = 8 + (avctx->sample_rate >=  96000) +
2024
14
                              (avctx->sample_rate >= 192000);
2025
2026
    // allocate quantized parcor coefficient buffer
2027
14
    num_buffers = sconf->mc_coding ? avctx->channels : 1;
2028
14
    if (num_buffers * (uint64_t)num_buffers > INT_MAX) // protect chan_data_buffer allocation
2029
        return AVERROR_INVALIDDATA;
2030
2031
14
    ctx->quant_cof        = av_malloc_array(num_buffers, sizeof(*ctx->quant_cof));
2032
14
    ctx->lpc_cof          = av_malloc_array(num_buffers, sizeof(*ctx->lpc_cof));
2033
14
    ctx->quant_cof_buffer = av_malloc_array(num_buffers * sconf->max_order,
2034
                                            sizeof(*ctx->quant_cof_buffer));
2035
14
    ctx->lpc_cof_buffer   = av_malloc_array(num_buffers * sconf->max_order,
2036
                                            sizeof(*ctx->lpc_cof_buffer));
2037
14
    ctx->lpc_cof_reversed_buffer = av_malloc_array(sconf->max_order,
2038
                                                   sizeof(*ctx->lpc_cof_buffer));
2039
2040

14
    if (!ctx->quant_cof              || !ctx->lpc_cof        ||
2041

14
        !ctx->quant_cof_buffer       || !ctx->lpc_cof_buffer ||
2042
14
        !ctx->lpc_cof_reversed_buffer) {
2043
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2044
        ret = AVERROR(ENOMEM);
2045
        goto fail;
2046
    }
2047
2048
    // assign quantized parcor coefficient buffers
2049
1052
    for (c = 0; c < num_buffers; c++) {
2050
1038
        ctx->quant_cof[c] = ctx->quant_cof_buffer + c * sconf->max_order;
2051
1038
        ctx->lpc_cof[c]   = ctx->lpc_cof_buffer   + c * sconf->max_order;
2052
    }
2053
2054
    // allocate and assign lag and gain data buffer for ltp mode
2055
14
    ctx->const_block     = av_malloc_array(num_buffers, sizeof(*ctx->const_block));
2056
14
    ctx->shift_lsbs      = av_malloc_array(num_buffers, sizeof(*ctx->shift_lsbs));
2057
14
    ctx->opt_order       = av_malloc_array(num_buffers, sizeof(*ctx->opt_order));
2058
14
    ctx->store_prev_samples = av_malloc_array(num_buffers, sizeof(*ctx->store_prev_samples));
2059
14
    ctx->use_ltp         = av_mallocz_array(num_buffers, sizeof(*ctx->use_ltp));
2060
14
    ctx->ltp_lag         = av_malloc_array(num_buffers, sizeof(*ctx->ltp_lag));
2061
14
    ctx->ltp_gain        = av_malloc_array(num_buffers, sizeof(*ctx->ltp_gain));
2062
14
    ctx->ltp_gain_buffer = av_malloc_array(num_buffers * 5, sizeof(*ctx->ltp_gain_buffer));
2063
2064

14
    if (!ctx->const_block || !ctx->shift_lsbs ||
2065

14
        !ctx->opt_order || !ctx->store_prev_samples ||
2066

14
        !ctx->use_ltp  || !ctx->ltp_lag ||
2067

14
        !ctx->ltp_gain || !ctx->ltp_gain_buffer) {
2068
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2069
        ret = AVERROR(ENOMEM);
2070
        goto fail;
2071
    }
2072
2073
1052
    for (c = 0; c < num_buffers; c++)
2074
1038
        ctx->ltp_gain[c] = ctx->ltp_gain_buffer + c * 5;
2075
2076
    // allocate and assign channel data buffer for mcc mode
2077
14
    if (sconf->mc_coding) {
2078
4
        ctx->chan_data_buffer  = av_mallocz_array(num_buffers * num_buffers,
2079
                                                 sizeof(*ctx->chan_data_buffer));
2080
4
        ctx->chan_data         = av_mallocz_array(num_buffers,
2081
                                                 sizeof(*ctx->chan_data));
2082
4
        ctx->reverted_channels = av_malloc_array(num_buffers,
2083
                                                 sizeof(*ctx->reverted_channels));
2084
2085

4
        if (!ctx->chan_data_buffer || !ctx->chan_data || !ctx->reverted_channels) {
2086
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2087
            ret = AVERROR(ENOMEM);
2088
            goto fail;
2089
        }
2090
2091
1032
        for (c = 0; c < num_buffers; c++)
2092
1028
            ctx->chan_data[c] = ctx->chan_data_buffer + c * num_buffers;
2093
    } else {
2094
10
        ctx->chan_data         = NULL;
2095
10
        ctx->chan_data_buffer  = NULL;
2096
10
        ctx->reverted_channels = NULL;
2097
    }
2098
2099
14
    channel_size      = sconf->frame_length + sconf->max_order;
2100
2101
14
    ctx->prev_raw_samples = av_malloc_array(sconf->max_order, sizeof(*ctx->prev_raw_samples));
2102
14
    ctx->raw_buffer       = av_mallocz_array(avctx->channels * channel_size, sizeof(*ctx->raw_buffer));
2103
14
    ctx->raw_samples      = av_malloc_array(avctx->channels, sizeof(*ctx->raw_samples));
2104
2105
14
    if (sconf->floating) {
2106
        ctx->acf               = av_malloc_array(avctx->channels, sizeof(*ctx->acf));
2107
        ctx->shift_value       = av_malloc_array(avctx->channels, sizeof(*ctx->shift_value));
2108
        ctx->last_shift_value  = av_malloc_array(avctx->channels, sizeof(*ctx->last_shift_value));
2109
        ctx->last_acf_mantissa = av_malloc_array(avctx->channels, sizeof(*ctx->last_acf_mantissa));
2110
        ctx->raw_mantissa      = av_mallocz_array(avctx->channels, sizeof(*ctx->raw_mantissa));
2111
2112
        ctx->larray = av_malloc_array(ctx->cur_frame_length * 4, sizeof(*ctx->larray));
2113
        ctx->nbits  = av_malloc_array(ctx->cur_frame_length, sizeof(*ctx->nbits));
2114
        ctx->mlz    = av_mallocz(sizeof(*ctx->mlz));
2115
2116
        if (!ctx->mlz || !ctx->acf || !ctx->shift_value || !ctx->last_shift_value
2117
            || !ctx->last_acf_mantissa || !ctx->raw_mantissa) {
2118
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2119
            ret = AVERROR(ENOMEM);
2120
            goto fail;
2121
        }
2122
2123
        ff_mlz_init_dict(avctx, ctx->mlz);
2124
        ff_mlz_flush_dict(ctx->mlz);
2125
2126
        for (c = 0; c < avctx->channels; ++c) {
2127
            ctx->raw_mantissa[c] = av_mallocz_array(ctx->cur_frame_length, sizeof(**ctx->raw_mantissa));
2128
        }
2129
    }
2130
2131
    // allocate previous raw sample buffer
2132

14
    if (!ctx->prev_raw_samples || !ctx->raw_buffer|| !ctx->raw_samples) {
2133
        av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2134
        ret = AVERROR(ENOMEM);
2135
        goto fail;
2136
    }
2137
2138
    // assign raw samples buffers
2139
14
    ctx->raw_samples[0] = ctx->raw_buffer + sconf->max_order;
2140
1048
    for (c = 1; c < avctx->channels; c++)
2141
1034
        ctx->raw_samples[c] = ctx->raw_samples[c - 1] + channel_size;
2142
2143
    // allocate crc buffer
2144

14
    if (HAVE_BIGENDIAN != sconf->msb_first && sconf->crc_enabled &&
2145
        (avctx->err_recognition & (AV_EF_CRCCHECK|AV_EF_CAREFUL))) {
2146
        ctx->crc_buffer = av_malloc_array(ctx->cur_frame_length *
2147
                                          avctx->channels *
2148
                                          av_get_bytes_per_sample(avctx->sample_fmt),
2149
                                          sizeof(*ctx->crc_buffer));
2150
        if (!ctx->crc_buffer) {
2151
            av_log(avctx, AV_LOG_ERROR, "Allocating buffer memory failed.\n");
2152
            ret = AVERROR(ENOMEM);
2153
            goto fail;
2154
        }
2155
    }
2156
2157
14
    ff_bswapdsp_init(&ctx->bdsp);
2158
2159
14
    return 0;
2160
2161
fail:
2162
    return ret;
2163
}
2164
2165
2166
/** Flush (reset) the frame ID after seeking.
2167
 */
2168
static av_cold void flush(AVCodecContext *avctx)
2169
{
2170
    ALSDecContext *ctx = avctx->priv_data;
2171
2172
    ctx->frame_id = 0;
2173
}
2174
2175
2176
AVCodec ff_als_decoder = {
2177
    .name           = "als",
2178
    .long_name      = NULL_IF_CONFIG_SMALL("MPEG-4 Audio Lossless Coding (ALS)"),
2179
    .type           = AVMEDIA_TYPE_AUDIO,
2180
    .id             = AV_CODEC_ID_MP4ALS,
2181
    .priv_data_size = sizeof(ALSDecContext),
2182
    .init           = decode_init,
2183
    .close          = decode_end,
2184
    .decode         = decode_frame,
2185
    .flush          = flush,
2186
    .capabilities   = AV_CODEC_CAP_SUBFRAMES | AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
2187
    .caps_internal  = FF_CODEC_CAP_INIT_CLEANUP,
2188
};