GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/adpcm.c Lines: 837 1106 75.7 %
Date: 2019-11-20 04:07:19 Branches: 396 564 70.2 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2001-2003 The FFmpeg project
3
 *
4
 * first version by Francois Revol (revol@free.fr)
5
 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6
 *   by Mike Melanson (melanson@pcisys.net)
7
 * CD-ROM XA ADPCM codec by BERO
8
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15
 *
16
 * This file is part of FFmpeg.
17
 *
18
 * FFmpeg is free software; you can redistribute it and/or
19
 * modify it under the terms of the GNU Lesser General Public
20
 * License as published by the Free Software Foundation; either
21
 * version 2.1 of the License, or (at your option) any later version.
22
 *
23
 * FFmpeg is distributed in the hope that it will be useful,
24
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
25
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
26
 * Lesser General Public License for more details.
27
 *
28
 * You should have received a copy of the GNU Lesser General Public
29
 * License along with FFmpeg; if not, write to the Free Software
30
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
31
 */
32
#include "avcodec.h"
33
#include "get_bits.h"
34
#include "bytestream.h"
35
#include "adpcm.h"
36
#include "adpcm_data.h"
37
#include "internal.h"
38
39
/**
40
 * @file
41
 * ADPCM decoders
42
 * Features and limitations:
43
 *
44
 * Reference documents:
45
 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
46
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
47
 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
48
 * http://openquicktime.sourceforge.net/
49
 * XAnim sources (xa_codec.c) http://xanim.polter.net/
50
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
51
 * SoX source code http://sox.sourceforge.net/
52
 *
53
 * CD-ROM XA:
54
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
55
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
56
 * readstr http://www.geocities.co.jp/Playtown/2004/
57
 */
58
59
/* These are for CD-ROM XA ADPCM */
60
static const int8_t xa_adpcm_table[5][2] = {
61
    {   0,   0 },
62
    {  60,   0 },
63
    { 115, -52 },
64
    {  98, -55 },
65
    { 122, -60 }
66
};
67
68
static const int16_t ea_adpcm_table[] = {
69
    0,  240,  460,  392,
70
    0,    0, -208, -220,
71
    0,    1,    3,    4,
72
    7,    8,   10,   11,
73
    0,   -1,   -3,   -4
74
};
75
76
// padded to zero where table size is less then 16
77
static const int8_t swf_index_tables[4][16] = {
78
    /*2*/ { -1, 2 },
79
    /*3*/ { -1, -1, 2, 4 },
80
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
81
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
82
};
83
84
/* end of tables */
85
86
typedef struct ADPCMDecodeContext {
87
    ADPCMChannelStatus status[14];
88
    int vqa_version;                /**< VQA version. Used for ADPCM_IMA_WS */
89
    int has_status;
90
} ADPCMDecodeContext;
91
92
132
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
93
{
94
132
    ADPCMDecodeContext *c = avctx->priv_data;
95
132
    unsigned int min_channels = 1;
96
132
    unsigned int max_channels = 2;
97
98

132
    switch(avctx->codec->id) {
99
8
    case AV_CODEC_ID_ADPCM_DTK:
100
    case AV_CODEC_ID_ADPCM_EA:
101
8
        min_channels = 2;
102
8
        break;
103
23
    case AV_CODEC_ID_ADPCM_AFC:
104
    case AV_CODEC_ID_ADPCM_EA_R1:
105
    case AV_CODEC_ID_ADPCM_EA_R2:
106
    case AV_CODEC_ID_ADPCM_EA_R3:
107
    case AV_CODEC_ID_ADPCM_EA_XAS:
108
    case AV_CODEC_ID_ADPCM_MS:
109
23
        max_channels = 6;
110
23
        break;
111
    case AV_CODEC_ID_ADPCM_MTAF:
112
        min_channels = 2;
113
        max_channels = 8;
114
        if (avctx->channels & 1) {
115
            avpriv_request_sample(avctx, "channel count %d\n", avctx->channels);
116
            return AVERROR_PATCHWELCOME;
117
        }
118
        break;
119
    case AV_CODEC_ID_ADPCM_PSX:
120
        max_channels = 8;
121
        break;
122
8
    case AV_CODEC_ID_ADPCM_IMA_DAT4:
123
    case AV_CODEC_ID_ADPCM_THP:
124
    case AV_CODEC_ID_ADPCM_THP_LE:
125
8
        max_channels = 14;
126
8
        break;
127
    }
128

132
    if (avctx->channels < min_channels || avctx->channels > max_channels) {
129
        av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
130
        return AVERROR(EINVAL);
131
    }
132
133

132
    switch(avctx->codec->id) {
134
2
    case AV_CODEC_ID_ADPCM_CT:
135
2
        c->status[0].step = c->status[1].step = 511;
136
2
        break;
137
10
    case AV_CODEC_ID_ADPCM_IMA_WAV:
138

10
        if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
139
            return AVERROR_INVALIDDATA;
140
10
        break;
141
3
    case AV_CODEC_ID_ADPCM_IMA_APC:
142

3
        if (avctx->extradata && avctx->extradata_size >= 8) {
143
2
            c->status[0].predictor = AV_RL32(avctx->extradata);
144
2
            c->status[1].predictor = AV_RL32(avctx->extradata + 4);
145
        }
146
3
        break;
147
4
    case AV_CODEC_ID_ADPCM_IMA_WS:
148

4
        if (avctx->extradata && avctx->extradata_size >= 2)
149
3
            c->vqa_version = AV_RL16(avctx->extradata);
150
4
        break;
151
113
    default:
152
113
        break;
153
    }
154
155

132
    switch(avctx->codec->id) {
156
56
        case AV_CODEC_ID_ADPCM_AICA:
157
        case AV_CODEC_ID_ADPCM_IMA_DAT4:
158
        case AV_CODEC_ID_ADPCM_IMA_QT:
159
        case AV_CODEC_ID_ADPCM_IMA_WAV:
160
        case AV_CODEC_ID_ADPCM_4XM:
161
        case AV_CODEC_ID_ADPCM_XA:
162
        case AV_CODEC_ID_ADPCM_EA_R1:
163
        case AV_CODEC_ID_ADPCM_EA_R2:
164
        case AV_CODEC_ID_ADPCM_EA_R3:
165
        case AV_CODEC_ID_ADPCM_EA_XAS:
166
        case AV_CODEC_ID_ADPCM_THP:
167
        case AV_CODEC_ID_ADPCM_THP_LE:
168
        case AV_CODEC_ID_ADPCM_AFC:
169
        case AV_CODEC_ID_ADPCM_DTK:
170
        case AV_CODEC_ID_ADPCM_PSX:
171
        case AV_CODEC_ID_ADPCM_MTAF:
172
56
            avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
173
56
            break;
174
4
        case AV_CODEC_ID_ADPCM_IMA_WS:
175
4
            avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
176
                                                      AV_SAMPLE_FMT_S16;
177
4
            break;
178
11
        case AV_CODEC_ID_ADPCM_MS:
179
11
            avctx->sample_fmt = avctx->channels > 2 ? AV_SAMPLE_FMT_S16P :
180
                                                      AV_SAMPLE_FMT_S16;
181
11
            break;
182
61
        default:
183
61
            avctx->sample_fmt = AV_SAMPLE_FMT_S16;
184
    }
185
186
132
    return 0;
187
}
188
189
static inline int16_t adpcm_agm_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
190
{
191
    int delta, pred, step, add;
192
193
    pred = c->predictor;
194
    delta = nibble & 7;
195
    step = c->step;
196
    add = (delta * 2 + 1) * step;
197
    if (add < 0)
198
        add = add + 7;
199
200
    if ((nibble & 8) == 0)
201
        pred = av_clip(pred + (add >> 3), -32767, 32767);
202
    else
203
        pred = av_clip(pred - (add >> 3), -32767, 32767);
204
205
    switch (delta) {
206
    case 7:
207
        step *= 0x99;
208
        break;
209
    case 6:
210
        c->step = av_clip(c->step * 2, 127, 24576);
211
        c->predictor = pred;
212
        return pred;
213
    case 5:
214
        step *= 0x66;
215
        break;
216
    case 4:
217
        step *= 0x4d;
218
        break;
219
    default:
220
        step *= 0x39;
221
        break;
222
    }
223
224
    if (step < 0)
225
        step += 0x3f;
226
227
    c->step = step >> 6;
228
    c->step = av_clip(c->step, 127, 24576);
229
    c->predictor = pred;
230
    return pred;
231
}
232
233
9768100
static inline int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
234
{
235
    int step_index;
236
    int predictor;
237
    int sign, delta, diff, step;
238
239
9768100
    step = ff_adpcm_step_table[c->step_index];
240
9768100
    step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
241
9768100
    step_index = av_clip(step_index, 0, 88);
242
243
9768100
    sign = nibble & 8;
244
9768100
    delta = nibble & 7;
245
    /* perform direct multiplication instead of series of jumps proposed by
246
     * the reference ADPCM implementation since modern CPUs can do the mults
247
     * quickly enough */
248
9768100
    diff = ((2 * delta + 1) * step) >> shift;
249
9768100
    predictor = c->predictor;
250
9768100
    if (sign) predictor -= diff;
251
4930690
    else predictor += diff;
252
253
9768100
    c->predictor = av_clip_int16(predictor);
254
9768100
    c->step_index = step_index;
255
256
9768100
    return (int16_t)c->predictor;
257
}
258
259
static inline int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
260
{
261
    int nibble, step_index, predictor, sign, delta, diff, step, shift;
262
263
    shift = bps - 1;
264
    nibble = get_bits_le(gb, bps),
265
    step = ff_adpcm_step_table[c->step_index];
266
    step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
267
    step_index = av_clip(step_index, 0, 88);
268
269
    sign = nibble & (1 << shift);
270
    delta = av_mod_uintp2(nibble, shift);
271
    diff = ((2 * delta + 1) * step) >> shift;
272
    predictor = c->predictor;
273
    if (sign) predictor -= diff;
274
    else predictor += diff;
275
276
    c->predictor = av_clip_int16(predictor);
277
    c->step_index = step_index;
278
279
    return (int16_t)c->predictor;
280
}
281
282
2972672
static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
283
{
284
    int step_index;
285
    int predictor;
286
    int diff, step;
287
288
2972672
    step = ff_adpcm_step_table[c->step_index];
289
2972672
    step_index = c->step_index + ff_adpcm_index_table[nibble];
290
2972672
    step_index = av_clip(step_index, 0, 88);
291
292
2972672
    diff = step >> 3;
293
2972672
    if (nibble & 4) diff += step;
294
2972672
    if (nibble & 2) diff += step >> 1;
295
2972672
    if (nibble & 1) diff += step >> 2;
296
297
2972672
    if (nibble & 8)
298
1480232
        predictor = c->predictor - diff;
299
    else
300
1492440
        predictor = c->predictor + diff;
301
302
2972672
    c->predictor = av_clip_int16(predictor);
303
2972672
    c->step_index = step_index;
304
305
2972672
    return c->predictor;
306
}
307
308
2229948
static inline int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
309
{
310
    int predictor;
311
312
2229948
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
313
2229948
    predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
314
315
2229948
    c->sample2 = c->sample1;
316
2229948
    c->sample1 = av_clip_int16(predictor);
317
2229948
    c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
318
2229948
    if (c->idelta < 16) c->idelta = 16;
319
2229948
    if (c->idelta > INT_MAX/768) {
320
        av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
321
        c->idelta = INT_MAX/768;
322
    }
323
324
2229948
    return c->sample1;
325
}
326
327
55124
static inline int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
328
{
329
    int step_index, predictor, sign, delta, diff, step;
330
331
55124
    step = ff_adpcm_oki_step_table[c->step_index];
332
55124
    step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
333
55124
    step_index = av_clip(step_index, 0, 48);
334
335
55124
    sign = nibble & 8;
336
55124
    delta = nibble & 7;
337
55124
    diff = ((2 * delta + 1) * step) >> 3;
338
55124
    predictor = c->predictor;
339
55124
    if (sign) predictor -= diff;
340
29772
    else predictor += diff;
341
342
55124
    c->predictor = av_clip_intp2(predictor, 11);
343
55124
    c->step_index = step_index;
344
345
55124
    return c->predictor * 16;
346
}
347
348
524192
static inline int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
349
{
350
    int sign, delta, diff;
351
    int new_step;
352
353
524192
    sign = nibble & 8;
354
524192
    delta = nibble & 7;
355
    /* perform direct multiplication instead of series of jumps proposed by
356
     * the reference ADPCM implementation since modern CPUs can do the mults
357
     * quickly enough */
358
524192
    diff = ((2 * delta + 1) * c->step) >> 3;
359
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
360
524192
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
361
524192
    c->predictor = av_clip_int16(c->predictor);
362
    /* calculate new step and clamp it to range 511..32767 */
363
524192
    new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
364
524192
    c->step = av_clip(new_step, 511, 32767);
365
366
524192
    return (int16_t)c->predictor;
367
}
368
369
313380
static inline int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
370
{
371
    int sign, delta, diff;
372
373
313380
    sign = nibble & (1<<(size-1));
374
313380
    delta = nibble & ((1<<(size-1))-1);
375
313380
    diff = delta << (7 + c->step + shift);
376
377
    /* clamp result */
378
313380
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
379
380
    /* calculate new step */
381

313380
    if (delta >= (2*size - 3) && c->step < 3)
382
75080
        c->step++;
383

238300
    else if (delta == 0 && c->step > 0)
384
75080
        c->step--;
385
386
313380
    return (int16_t) c->predictor;
387
}
388
389
1105920
static inline int16_t adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
390
{
391
1105920
    if(!c->step) {
392
5
        c->predictor = 0;
393
5
        c->step = 127;
394
    }
395
396
1105920
    c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
397
1105920
    c->predictor = av_clip_int16(c->predictor);
398
1105920
    c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
399
1105920
    c->step = av_clip(c->step, 127, 24576);
400
1105920
    return c->predictor;
401
}
402
403
static inline int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
404
{
405
    c->predictor += ff_adpcm_mtaf_stepsize[c->step][nibble];
406
    c->predictor = av_clip_int16(c->predictor);
407
    c->step += ff_adpcm_index_table[nibble];
408
    c->step = av_clip_uintp2(c->step, 5);
409
    return c->predictor;
410
}
411
412
666
static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
413
                     const uint8_t *in, ADPCMChannelStatus *left,
414
                     ADPCMChannelStatus *right, int channels, int sample_offset)
415
{
416
    int i, j;
417
    int shift,filter,f0,f1;
418
    int s_1,s_2;
419
    int d,s,t;
420
421
666
    out0 += sample_offset;
422
666
    if (channels == 1)
423
        out1 = out0 + 28;
424
    else
425
666
        out1 += sample_offset;
426
427
3330
    for(i=0;i<4;i++) {
428
2664
        shift  = 12 - (in[4+i*2] & 15);
429
2664
        filter = in[4+i*2] >> 4;
430
2664
        if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
431
            avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
432
            filter=0;
433
        }
434
2664
        f0 = xa_adpcm_table[filter][0];
435
2664
        f1 = xa_adpcm_table[filter][1];
436
437
2664
        s_1 = left->sample1;
438
2664
        s_2 = left->sample2;
439
440
77256
        for(j=0;j<28;j++) {
441
74592
            d = in[16+i+j*4];
442
443
74592
            t = sign_extend(d, 4);
444
74592
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
445
74592
            s_2 = s_1;
446
74592
            s_1 = av_clip_int16(s);
447
74592
            out0[j] = s_1;
448
        }
449
450
2664
        if (channels == 2) {
451
2664
            left->sample1 = s_1;
452
2664
            left->sample2 = s_2;
453
2664
            s_1 = right->sample1;
454
2664
            s_2 = right->sample2;
455
        }
456
457
2664
        shift  = 12 - (in[5+i*2] & 15);
458
2664
        filter = in[5+i*2] >> 4;
459
2664
        if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
460
            avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
461
            filter=0;
462
        }
463
464
2664
        f0 = xa_adpcm_table[filter][0];
465
2664
        f1 = xa_adpcm_table[filter][1];
466
467
77256
        for(j=0;j<28;j++) {
468
74592
            d = in[16+i+j*4];
469
470
74592
            t = sign_extend(d >> 4, 4);
471
74592
            s = ( t<<shift ) + ((s_1*f0 + s_2*f1+32)>>6);
472
74592
            s_2 = s_1;
473
74592
            s_1 = av_clip_int16(s);
474
74592
            out1[j] = s_1;
475
        }
476
477
2664
        if (channels == 2) {
478
2664
            right->sample1 = s_1;
479
2664
            right->sample2 = s_2;
480
        } else {
481
            left->sample1 = s_1;
482
            left->sample2 = s_2;
483
        }
484
485
2664
        out0 += 28 * (3 - channels);
486
2664
        out1 += 28 * (3 - channels);
487
    }
488
489
666
    return 0;
490
}
491
492
260
static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
493
{
494
260
    ADPCMDecodeContext *c = avctx->priv_data;
495
    GetBitContext gb;
496
    const int8_t *table;
497
    int k0, signmask, nb_bits, count;
498
260
    int size = buf_size*8;
499
    int i;
500
501
260
    init_get_bits(&gb, buf, size);
502
503
    //read bits & initial values
504
260
    nb_bits = get_bits(&gb, 2)+2;
505
260
    table = swf_index_tables[nb_bits-2];
506
260
    k0 = 1 << (nb_bits-2);
507
260
    signmask = 1 << (nb_bits-1);
508
509
520
    while (get_bits_count(&gb) <= size - 22*avctx->channels) {
510
780
        for (i = 0; i < avctx->channels; i++) {
511
520
            *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
512
520
            c->status[i].step_index = get_bits(&gb, 6);
513
        }
514
515

532480
        for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
516
            int i;
517
518
1596660
            for (i = 0; i < avctx->channels; i++) {
519
                // similar to IMA adpcm
520
1064440
                int delta = get_bits(&gb, nb_bits);
521
1064440
                int step = ff_adpcm_step_table[c->status[i].step_index];
522
1064440
                int vpdiff = 0; // vpdiff = (delta+0.5)*step/4
523
1064440
                int k = k0;
524
525
                do {
526
3193320
                    if (delta & k)
527
1328304
                        vpdiff += step;
528
3193320
                    step >>= 1;
529
3193320
                    k >>= 1;
530
3193320
                } while(k);
531
1064440
                vpdiff += step;
532
533
1064440
                if (delta & signmask)
534
535145
                    c->status[i].predictor -= vpdiff;
535
                else
536
529295
                    c->status[i].predictor += vpdiff;
537
538
1064440
                c->status[i].step_index += table[delta & (~signmask)];
539
540
1064440
                c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
541
1064440
                c->status[i].predictor = av_clip_int16(c->status[i].predictor);
542
543
1064440
                *samples++ = c->status[i].predictor;
544
            }
545
        }
546
    }
547
260
}
548
549
/**
550
 * Get the number of samples that will be decoded from the packet.
551
 * In one case, this is actually the maximum number of samples possible to
552
 * decode with the given buf_size.
553
 *
554
 * @param[out] coded_samples set to the number of samples as coded in the
555
 *                           packet, or 0 if the codec does not encode the
556
 *                           number of samples in each frame.
557
 * @param[out] approx_nb_samples set to non-zero if the number of samples
558
 *                               returned is an approximation.
559
 */
560
36079
static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
561
                          int buf_size, int *coded_samples, int *approx_nb_samples)
562
{
563
36079
    ADPCMDecodeContext *s = avctx->priv_data;
564
36079
    int nb_samples        = 0;
565
36079
    int ch                = avctx->channels;
566
36079
    int has_coded_samples = 0;
567
    int header_size;
568
569
36079
    *coded_samples = 0;
570
36079
    *approx_nb_samples = 0;
571
572
36079
    if(ch <= 0)
573
        return 0;
574
575

36079
    switch (avctx->codec->id) {
576
    /* constant, only check buf_size */
577
600
    case AV_CODEC_ID_ADPCM_EA_XAS:
578
600
        if (buf_size < 76 * ch)
579
            return 0;
580
600
        nb_samples = 128;
581
600
        break;
582
26342
    case AV_CODEC_ID_ADPCM_IMA_QT:
583
26342
        if (buf_size < 34 * ch)
584
            return 0;
585
26342
        nb_samples = 64;
586
26342
        break;
587
    /* simple 4-bit adpcm */
588
475
    case AV_CODEC_ID_ADPCM_CT:
589
    case AV_CODEC_ID_ADPCM_IMA_APC:
590
    case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
591
    case AV_CODEC_ID_ADPCM_IMA_OKI:
592
    case AV_CODEC_ID_ADPCM_IMA_WS:
593
    case AV_CODEC_ID_ADPCM_YAMAHA:
594
    case AV_CODEC_ID_ADPCM_AICA:
595
475
        nb_samples = buf_size * 2 / ch;
596
475
        break;
597
    }
598
36079
    if (nb_samples)
599
27417
        return nb_samples;
600
601
    /* simple 4-bit adpcm, with header */
602
8662
    header_size = 0;
603

8662
    switch (avctx->codec->id) {
604
145
        case AV_CODEC_ID_ADPCM_4XM:
605
        case AV_CODEC_ID_ADPCM_AGM:
606
        case AV_CODEC_ID_ADPCM_IMA_DAT4:
607
145
        case AV_CODEC_ID_ADPCM_IMA_ISS:     header_size = 4 * ch;      break;
608
161
        case AV_CODEC_ID_ADPCM_IMA_AMV:     header_size = 8;           break;
609
350
        case AV_CODEC_ID_ADPCM_IMA_SMJPEG:  header_size = 4 * ch;      break;
610
    }
611
8662
    if (header_size > 0)
612
656
        return (buf_size - header_size) * 2 / ch;
613
614
    /* more complex formats */
615




8006
    switch (avctx->codec->id) {
616
158
    case AV_CODEC_ID_ADPCM_EA:
617
158
        has_coded_samples = 1;
618
158
        *coded_samples  = bytestream2_get_le32(gb);
619
158
        *coded_samples -= *coded_samples % 28;
620
158
        nb_samples      = (buf_size - 12) / 30 * 28;
621
158
        break;
622
47
    case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
623
47
        has_coded_samples = 1;
624
47
        *coded_samples = bytestream2_get_le32(gb);
625
47
        nb_samples     = (buf_size - (4 + 8 * ch)) * 2 / ch;
626
47
        break;
627
30
    case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
628
30
        nb_samples = (buf_size - ch) / ch * 2;
629
30
        break;
630
400
    case AV_CODEC_ID_ADPCM_EA_R1:
631
    case AV_CODEC_ID_ADPCM_EA_R2:
632
    case AV_CODEC_ID_ADPCM_EA_R3:
633
        /* maximum number of samples */
634
        /* has internal offsets and a per-frame switch to signal raw 16-bit */
635
400
        has_coded_samples = 1;
636

400
        switch (avctx->codec->id) {
637
95
        case AV_CODEC_ID_ADPCM_EA_R1:
638
95
            header_size    = 4 + 9 * ch;
639
95
            *coded_samples = bytestream2_get_le32(gb);
640
95
            break;
641
180
        case AV_CODEC_ID_ADPCM_EA_R2:
642
180
            header_size    = 4 + 5 * ch;
643
180
            *coded_samples = bytestream2_get_le32(gb);
644
180
            break;
645
125
        case AV_CODEC_ID_ADPCM_EA_R3:
646
125
            header_size    = 4 + 5 * ch;
647
125
            *coded_samples = bytestream2_get_be32(gb);
648
125
            break;
649
        }
650
400
        *coded_samples -= *coded_samples % 28;
651
400
        nb_samples      = (buf_size - header_size) * 2 / ch;
652
400
        nb_samples     -= nb_samples % 28;
653
400
        *approx_nb_samples = 1;
654
400
        break;
655
642
    case AV_CODEC_ID_ADPCM_IMA_DK3:
656
642
        if (avctx->block_align > 0)
657
642
            buf_size = FFMIN(buf_size, avctx->block_align);
658
642
        nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
659
642
        break;
660
649
    case AV_CODEC_ID_ADPCM_IMA_DK4:
661
649
        if (avctx->block_align > 0)
662
649
            buf_size = FFMIN(buf_size, avctx->block_align);
663
649
        if (buf_size < 4 * ch)
664
            return AVERROR_INVALIDDATA;
665
649
        nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
666
649
        break;
667
1000
    case AV_CODEC_ID_ADPCM_IMA_RAD:
668
1000
        if (avctx->block_align > 0)
669
1000
            buf_size = FFMIN(buf_size, avctx->block_align);
670
1000
        nb_samples = (buf_size - 4 * ch) * 2 / ch;
671
1000
        break;
672
1668
    case AV_CODEC_ID_ADPCM_IMA_WAV:
673
    {
674
1668
        int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
675
1668
        int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
676
1668
        if (avctx->block_align > 0)
677
1668
            buf_size = FFMIN(buf_size, avctx->block_align);
678
1668
        if (buf_size < 4 * ch)
679
            return AVERROR_INVALIDDATA;
680
1668
        nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
681
1668
        break;
682
    }
683
2943
    case AV_CODEC_ID_ADPCM_MS:
684
2943
        if (avctx->block_align > 0)
685
2943
            buf_size = FFMIN(buf_size, avctx->block_align);
686
2943
        nb_samples = (buf_size - 6 * ch) * 2 / ch;
687
2943
        break;
688
    case AV_CODEC_ID_ADPCM_MTAF:
689
        if (avctx->block_align > 0)
690
            buf_size = FFMIN(buf_size, avctx->block_align);
691
        nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch;
692
        break;
693
57
    case AV_CODEC_ID_ADPCM_SBPRO_2:
694
    case AV_CODEC_ID_ADPCM_SBPRO_3:
695
    case AV_CODEC_ID_ADPCM_SBPRO_4:
696
    {
697
        int samples_per_byte;
698

57
        switch (avctx->codec->id) {
699
13
        case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
700
18
        case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
701
26
        case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
702
        }
703
57
        if (!s->status[0].step_index) {
704
3
            if (buf_size < ch)
705
                return AVERROR_INVALIDDATA;
706
3
            nb_samples++;
707
3
            buf_size -= ch;
708
        }
709
57
        nb_samples += buf_size * samples_per_byte / ch;
710
57
        break;
711
    }
712
260
    case AV_CODEC_ID_ADPCM_SWF:
713
    {
714
260
        int buf_bits       = buf_size * 8 - 2;
715
260
        int nbits          = (bytestream2_get_byte(gb) >> 6) + 2;
716
260
        int block_hdr_size = 22 * ch;
717
260
        int block_size     = block_hdr_size + nbits * ch * 4095;
718
260
        int nblocks        = buf_bits / block_size;
719
260
        int bits_left      = buf_bits - nblocks * block_size;
720
260
        nb_samples         = nblocks * 4096;
721
260
        if (bits_left >= block_hdr_size)
722
260
            nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
723
260
        break;
724
    }
725
71
    case AV_CODEC_ID_ADPCM_THP:
726
    case AV_CODEC_ID_ADPCM_THP_LE:
727
71
        if (avctx->extradata) {
728
            nb_samples = buf_size * 14 / (8 * ch);
729
            break;
730
        }
731
71
        has_coded_samples = 1;
732
71
        bytestream2_skip(gb, 4); // channel size
733
142
        *coded_samples  = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ?
734
142
                          bytestream2_get_le32(gb) :
735
71
                          bytestream2_get_be32(gb);
736
71
        buf_size       -= 8 + 36 * ch;
737
71
        buf_size       /= ch;
738
71
        nb_samples      = buf_size / 8 * 14;
739
71
        if (buf_size % 8 > 1)
740
            nb_samples     += (buf_size % 8 - 1) * 2;
741
71
        *approx_nb_samples = 1;
742
71
        break;
743
12
    case AV_CODEC_ID_ADPCM_AFC:
744
12
        nb_samples = buf_size / (9 * ch) * 16;
745
12
        break;
746
37
    case AV_CODEC_ID_ADPCM_XA:
747
37
        nb_samples = (buf_size / 128) * 224 / ch;
748
37
        break;
749
32
    case AV_CODEC_ID_ADPCM_DTK:
750
    case AV_CODEC_ID_ADPCM_PSX:
751
32
        nb_samples = buf_size / (16 * ch) * 28;
752
32
        break;
753
    }
754
755
    /* validate coded sample count */
756

8006
    if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
757
        return AVERROR_INVALIDDATA;
758
759
8006
    return nb_samples;
760
}
761
762
36079
static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
763
                              int *got_frame_ptr, AVPacket *avpkt)
764
{
765
36079
    AVFrame *frame     = data;
766
36079
    const uint8_t *buf = avpkt->data;
767
36079
    int buf_size = avpkt->size;
768
36079
    ADPCMDecodeContext *c = avctx->priv_data;
769
    ADPCMChannelStatus *cs;
770
    int n, m, channel, i;
771
    int16_t *samples;
772
    int16_t **samples_p;
773
    int st; /* stereo */
774
    int count1, count2;
775
    int nb_samples, coded_samples, approx_nb_samples, ret;
776
    GetByteContext gb;
777
778
36079
    bytestream2_init(&gb, buf, buf_size);
779
36079
    nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
780
36079
    if (nb_samples <= 0) {
781
        av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
782
        return AVERROR_INVALIDDATA;
783
    }
784
785
    /* get output buffer */
786
36079
    frame->nb_samples = nb_samples;
787
36079
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
788
        return ret;
789
36079
    samples = (int16_t *)frame->data[0];
790
36079
    samples_p = (int16_t **)frame->extended_data;
791
792
    /* use coded_samples when applicable */
793
    /* it is always <= nb_samples, so the output buffer will be large enough */
794
36079
    if (coded_samples) {
795

676
        if (!approx_nb_samples && coded_samples != nb_samples)
796
            av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
797
676
        frame->nb_samples = nb_samples = coded_samples;
798
    }
799
800
36079
    st = avctx->channels == 2 ? 1 : 0;
801
802








36079
    switch(avctx->codec->id) {
803
26342
    case AV_CODEC_ID_ADPCM_IMA_QT:
804
        /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
805
           Channel data is interleaved per-chunk. */
806
69990
        for (channel = 0; channel < avctx->channels; channel++) {
807
            int predictor;
808
            int step_index;
809
43648
            cs = &(c->status[channel]);
810
            /* (pppppp) (piiiiiii) */
811
812
            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
813
43648
            predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
814
43648
            step_index = predictor & 0x7F;
815
43648
            predictor &= ~0x7F;
816
817
43648
            if (cs->step_index == step_index) {
818
43648
                int diff = predictor - cs->predictor;
819
43648
                if (diff < 0)
820
39464
                    diff = - diff;
821
43648
                if (diff > 0x7f)
822
30
                    goto update;
823
            } else {
824
            update:
825
30
                cs->step_index = step_index;
826
30
                cs->predictor = predictor;
827
            }
828
829
43648
            if (cs->step_index > 88u){
830
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
831
                       channel, cs->step_index);
832
                return AVERROR_INVALIDDATA;
833
            }
834
835
43648
            samples = samples_p[channel];
836
837
1440384
            for (m = 0; m < 64; m += 2) {
838
1396736
                int byte = bytestream2_get_byteu(&gb);
839
1396736
                samples[m    ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
840
1396736
                samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4  , 3);
841
            }
842
        }
843
26342
        break;
844
1668
    case AV_CODEC_ID_ADPCM_IMA_WAV:
845
5004
        for(i=0; i<avctx->channels; i++){
846
3336
            cs = &(c->status[i]);
847
3336
            cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
848
849
3336
            cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
850
3336
            if (cs->step_index > 88u){
851
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
852
                       i, cs->step_index);
853
                return AVERROR_INVALIDDATA;
854
            }
855
        }
856
857
1668
        if (avctx->bits_per_coded_sample != 4) {
858
            int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
859
            int block_size = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
860
            uint8_t temp[20 + AV_INPUT_BUFFER_PADDING_SIZE] = { 0 };
861
            GetBitContext g;
862
863
            for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
864
                for (i = 0; i < avctx->channels; i++) {
865
                    int j;
866
867
                    cs = &c->status[i];
868
                    samples = &samples_p[i][1 + n * samples_per_block];
869
                    for (j = 0; j < block_size; j++) {
870
                        temp[j] = buf[4 * avctx->channels + block_size * n * avctx->channels +
871
                                        (j % 4) + (j / 4) * (avctx->channels * 4) + i * 4];
872
                    }
873
                    ret = init_get_bits8(&g, (const uint8_t *)&temp, block_size);
874
                    if (ret < 0)
875
                        return ret;
876
                    for (m = 0; m < samples_per_block; m++) {
877
                        samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
878
                                          avctx->bits_per_coded_sample);
879
                    }
880
                }
881
            }
882
            bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
883
        } else {
884
140160
        for (n = 0; n < (nb_samples - 1) / 8; n++) {
885
415476
            for (i = 0; i < avctx->channels; i++) {
886
276984
                cs = &c->status[i];
887
276984
                samples = &samples_p[i][1 + n * 8];
888
1384920
                for (m = 0; m < 8; m += 2) {
889
1107936
                    int v = bytestream2_get_byteu(&gb);
890
1107936
                    samples[m    ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
891
1107936
                    samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4  , 3);
892
                }
893
            }
894
        }
895
        }
896
1668
        break;
897
26
    case AV_CODEC_ID_ADPCM_4XM:
898
78
        for (i = 0; i < avctx->channels; i++)
899
52
            c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
900
901
78
        for (i = 0; i < avctx->channels; i++) {
902
52
            c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
903
52
            if (c->status[i].step_index > 88u) {
904
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
905
                       i, c->status[i].step_index);
906
                return AVERROR_INVALIDDATA;
907
            }
908
        }
909
910
78
        for (i = 0; i < avctx->channels; i++) {
911
52
            samples = (int16_t *)frame->data[i];
912
52
            cs = &c->status[i];
913
38276
            for (n = nb_samples >> 1; n > 0; n--) {
914
38224
                int v = bytestream2_get_byteu(&gb);
915
38224
                *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
916
38224
                *samples++ = adpcm_ima_expand_nibble(cs, v >> 4  , 4);
917
            }
918
        }
919
26
        break;
920
    case AV_CODEC_ID_ADPCM_AGM:
921
        for (i = 0; i < avctx->channels; i++)
922
            c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
923
        for (i = 0; i < avctx->channels; i++)
924
            c->status[i].step = sign_extend(bytestream2_get_le16u(&gb), 16);
925
926
        for (n = 0; n < nb_samples >> (1 - st); n++) {
927
            int v = bytestream2_get_byteu(&gb);
928
            *samples++ = adpcm_agm_expand_nibble(&c->status[0], v & 0xF);
929
            *samples++ = adpcm_agm_expand_nibble(&c->status[st], v >> 4 );
930
        }
931
        break;
932
2943
    case AV_CODEC_ID_ADPCM_MS:
933
    {
934
        int block_predictor;
935
936
2943
        if (avctx->channels > 2) {
937
            for (channel = 0; channel < avctx->channels; channel++) {
938
                samples = samples_p[channel];
939
                block_predictor = bytestream2_get_byteu(&gb);
940
                if (block_predictor > 6) {
941
                    av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[%d] = %d\n",
942
                           channel, block_predictor);
943
                    return AVERROR_INVALIDDATA;
944
                }
945
                c->status[channel].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
946
                c->status[channel].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
947
                c->status[channel].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
948
                c->status[channel].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
949
                c->status[channel].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
950
                *samples++ = c->status[channel].sample2;
951
                *samples++ = c->status[channel].sample1;
952
                for(n = (nb_samples - 2) >> 1; n > 0; n--) {
953
                    int byte = bytestream2_get_byteu(&gb);
954
                    *samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte >> 4  );
955
                    *samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte & 0x0F);
956
                }
957
            }
958
        } else {
959
2943
            block_predictor = bytestream2_get_byteu(&gb);
960
2943
            if (block_predictor > 6) {
961
                av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
962
                       block_predictor);
963
                return AVERROR_INVALIDDATA;
964
            }
965
2943
            c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
966
2943
            c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
967
2943
            if (st) {
968
2895
                block_predictor = bytestream2_get_byteu(&gb);
969
2895
                if (block_predictor > 6) {
970
                    av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
971
                           block_predictor);
972
                    return AVERROR_INVALIDDATA;
973
                }
974
2895
                c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
975
2895
                c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
976
            }
977
2943
            c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
978
2943
            if (st){
979
2895
                c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
980
            }
981
982
2943
            c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
983
2943
            if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
984
2943
            c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
985
2943
            if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
986
987
2943
            *samples++ = c->status[0].sample2;
988
2943
            if (st) *samples++ = c->status[1].sample2;
989
2943
            *samples++ = c->status[0].sample1;
990
2943
            if (st) *samples++ = c->status[1].sample1;
991
1117917
            for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
992
1114974
                int byte = bytestream2_get_byteu(&gb);
993
1114974
                *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4  );
994
1114974
                *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
995
            }
996
        }
997
2943
        break;
998
    }
999
    case AV_CODEC_ID_ADPCM_MTAF:
1000
        for (channel = 0; channel < avctx->channels; channel+=2) {
1001
            bytestream2_skipu(&gb, 4);
1002
            c->status[channel    ].step      = bytestream2_get_le16u(&gb) & 0x1f;
1003
            c->status[channel + 1].step      = bytestream2_get_le16u(&gb) & 0x1f;
1004
            c->status[channel    ].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1005
            bytestream2_skipu(&gb, 2);
1006
            c->status[channel + 1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1007
            bytestream2_skipu(&gb, 2);
1008
            for (n = 0; n < nb_samples; n+=2) {
1009
                int v = bytestream2_get_byteu(&gb);
1010
                samples_p[channel][n    ] = adpcm_mtaf_expand_nibble(&c->status[channel], v & 0x0F);
1011
                samples_p[channel][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel], v >> 4  );
1012
            }
1013
            for (n = 0; n < nb_samples; n+=2) {
1014
                int v = bytestream2_get_byteu(&gb);
1015
                samples_p[channel + 1][n    ] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v & 0x0F);
1016
                samples_p[channel + 1][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v >> 4  );
1017
            }
1018
        }
1019
        break;
1020
649
    case AV_CODEC_ID_ADPCM_IMA_DK4:
1021
1947
        for (channel = 0; channel < avctx->channels; channel++) {
1022
1298
            cs = &c->status[channel];
1023
1298
            cs->predictor  = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
1024
1298
            cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1025
1298
            if (cs->step_index > 88u){
1026
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1027
                       channel, cs->step_index);
1028
                return AVERROR_INVALIDDATA;
1029
            }
1030
        }
1031
1324609
        for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
1032
1323960
            int v = bytestream2_get_byteu(&gb);
1033
1323960
            *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4  , 3);
1034
1323960
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1035
        }
1036
649
        break;
1037
642
    case AV_CODEC_ID_ADPCM_IMA_DK3:
1038
    {
1039
642
        int last_byte = 0;
1040
        int nibble;
1041
642
        int decode_top_nibble_next = 0;
1042
        int diff_channel;
1043
642
        const int16_t *samples_end = samples + avctx->channels * nb_samples;
1044
1045
642
        bytestream2_skipu(&gb, 10);
1046
642
        c->status[0].predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1047
642
        c->status[1].predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1048
642
        c->status[0].step_index = bytestream2_get_byteu(&gb);
1049
642
        c->status[1].step_index = bytestream2_get_byteu(&gb);
1050

642
        if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
1051
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
1052
                   c->status[0].step_index, c->status[1].step_index);
1053
            return AVERROR_INVALIDDATA;
1054
        }
1055
        /* sign extend the predictors */
1056
642
        diff_channel = c->status[1].predictor;
1057
1058
        /* DK3 ADPCM support macro */
1059
#define DK3_GET_NEXT_NIBBLE() \
1060
    if (decode_top_nibble_next) { \
1061
        nibble = last_byte >> 4; \
1062
        decode_top_nibble_next = 0; \
1063
    } else { \
1064
        last_byte = bytestream2_get_byteu(&gb); \
1065
        nibble = last_byte & 0x0F; \
1066
        decode_top_nibble_next = 1; \
1067
    }
1068
1069
869910
        while (samples < samples_end) {
1070
1071
            /* for this algorithm, c->status[0] is the sum channel and
1072
             * c->status[1] is the diff channel */
1073
1074
            /* process the first predictor of the sum channel */
1075
869268
            DK3_GET_NEXT_NIBBLE();
1076
869268
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1077
1078
            /* process the diff channel predictor */
1079
869268
            DK3_GET_NEXT_NIBBLE();
1080
869268
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1081
1082
            /* process the first pair of stereo PCM samples */
1083
869268
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1084
869268
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1085
869268
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1086
1087
            /* process the second predictor of the sum channel */
1088
869268
            DK3_GET_NEXT_NIBBLE();
1089
869268
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1090
1091
            /* process the second pair of stereo PCM samples */
1092
869268
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1093
869268
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1094
869268
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1095
        }
1096
1097
642
        if ((bytestream2_tell(&gb) & 1))
1098
642
            bytestream2_skip(&gb, 1);
1099
642
        break;
1100
    }
1101
119
    case AV_CODEC_ID_ADPCM_IMA_ISS:
1102
238
        for (channel = 0; channel < avctx->channels; channel++) {
1103
119
            cs = &c->status[channel];
1104
119
            cs->predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1105
119
            cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1106
119
            if (cs->step_index > 88u){
1107
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1108
                       channel, cs->step_index);
1109
                return AVERROR_INVALIDDATA;
1110
            }
1111
        }
1112
1113
60571
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1114
            int v1, v2;
1115
60452
            int v = bytestream2_get_byteu(&gb);
1116
            /* nibbles are swapped for mono */
1117
60452
            if (st) {
1118
                v1 = v >> 4;
1119
                v2 = v & 0x0F;
1120
            } else {
1121
60452
                v2 = v >> 4;
1122
60452
                v1 = v & 0x0F;
1123
            }
1124
60452
            *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
1125
60452
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
1126
        }
1127
119
        break;
1128
    case AV_CODEC_ID_ADPCM_IMA_DAT4:
1129
        for (channel = 0; channel < avctx->channels; channel++) {
1130
            cs = &c->status[channel];
1131
            samples = samples_p[channel];
1132
            bytestream2_skip(&gb, 4);
1133
            for (n = 0; n < nb_samples; n += 2) {
1134
                int v = bytestream2_get_byteu(&gb);
1135
                *samples++ = adpcm_ima_expand_nibble(cs, v >> 4  , 3);
1136
                *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
1137
            }
1138
        }
1139
        break;
1140
179
    case AV_CODEC_ID_ADPCM_IMA_APC:
1141
732239
        while (bytestream2_get_bytes_left(&gb) > 0) {
1142
732060
            int v = bytestream2_get_byteu(&gb);
1143
732060
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  v >> 4  , 3);
1144
732060
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1145
        }
1146
179
        break;
1147
7
    case AV_CODEC_ID_ADPCM_IMA_OKI:
1148
27569
        while (bytestream2_get_bytes_left(&gb) > 0) {
1149
27562
            int v = bytestream2_get_byteu(&gb);
1150
27562
            *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0],  v >> 4  );
1151
27562
            *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
1152
        }
1153
7
        break;
1154
1000
    case AV_CODEC_ID_ADPCM_IMA_RAD:
1155
3000
        for (channel = 0; channel < avctx->channels; channel++) {
1156
2000
            cs = &c->status[channel];
1157
2000
            cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1158
2000
            cs->predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1159
2000
            if (cs->step_index > 88u){
1160
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1161
                       channel, cs->step_index);
1162
                return AVERROR_INVALIDDATA;
1163
            }
1164
        }
1165
17000
        for (n = 0; n < nb_samples / 2; n++) {
1166
            int byte[2];
1167
1168
16000
            byte[0] = bytestream2_get_byteu(&gb);
1169
16000
            if (st)
1170
16000
                byte[1] = bytestream2_get_byteu(&gb);
1171
48000
            for(channel = 0; channel < avctx->channels; channel++) {
1172
32000
                *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
1173
            }
1174
48000
            for(channel = 0; channel < avctx->channels; channel++) {
1175
32000
                *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4  , 3);
1176
            }
1177
        }
1178
1000
        break;
1179
40
    case AV_CODEC_ID_ADPCM_IMA_WS:
1180
40
        if (c->vqa_version == 3) {
1181
            for (channel = 0; channel < avctx->channels; channel++) {
1182
                int16_t *smp = samples_p[channel];
1183
1184
                for (n = nb_samples / 2; n > 0; n--) {
1185
                    int v = bytestream2_get_byteu(&gb);
1186
                    *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4  , 3);
1187
                    *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1188
                }
1189
            }
1190
        } else {
1191
34217
            for (n = nb_samples / 2; n > 0; n--) {
1192
68354
                for (channel = 0; channel < avctx->channels; channel++) {
1193
34177
                    int v = bytestream2_get_byteu(&gb);
1194
34177
                    *samples++  = adpcm_ima_expand_nibble(&c->status[channel], v >> 4  , 3);
1195
34177
                    samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1196
                }
1197
34177
                samples += avctx->channels;
1198
            }
1199
        }
1200
40
        bytestream2_seek(&gb, 0, SEEK_END);
1201
40
        break;
1202
37
    case AV_CODEC_ID_ADPCM_XA:
1203
    {
1204
37
        int16_t *out0 = samples_p[0];
1205
37
        int16_t *out1 = samples_p[1];
1206
37
        int samples_per_block = 28 * (3 - avctx->channels) * 4;
1207
37
        int sample_offset = 0;
1208
        int bytes_remaining;
1209
703
        while (bytestream2_get_bytes_left(&gb) >= 128) {
1210
666
            if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1211
                                 &c->status[0], &c->status[1],
1212
                                 avctx->channels, sample_offset)) < 0)
1213
                return ret;
1214
666
            bytestream2_skipu(&gb, 128);
1215
666
            sample_offset += samples_per_block;
1216
        }
1217
        /* Less than a full block of data left, e.g. when reading from
1218
         * 2324 byte per sector XA; the remainder is padding */
1219
37
        bytes_remaining = bytestream2_get_bytes_left(&gb);
1220
37
        if (bytes_remaining > 0) {
1221
            bytestream2_skip(&gb, bytes_remaining);
1222
        }
1223
37
        break;
1224
    }
1225
47
    case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
1226
141
        for (i=0; i<=st; i++) {
1227
94
            c->status[i].step_index = bytestream2_get_le32u(&gb);
1228
94
            if (c->status[i].step_index > 88u) {
1229
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1230
                       i, c->status[i].step_index);
1231
                return AVERROR_INVALIDDATA;
1232
            }
1233
        }
1234
141
        for (i=0; i<=st; i++) {
1235
94
            c->status[i].predictor  = bytestream2_get_le32u(&gb);
1236
94
            if (FFABS(c->status[i].predictor) > (1<<16))
1237
                return AVERROR_INVALIDDATA;
1238
        }
1239
1240
69043
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1241
68996
            int byte   = bytestream2_get_byteu(&gb);
1242
68996
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  byte >> 4,   3);
1243
68996
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1244
        }
1245
47
        break;
1246
49
    case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
1247
71441
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1248
71392
            int byte = bytestream2_get_byteu(&gb);
1249
71392
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  byte >> 4,   6);
1250
71392
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1251
        }
1252
49
        break;
1253
158
    case AV_CODEC_ID_ADPCM_EA:
1254
    {
1255
        int previous_left_sample, previous_right_sample;
1256
        int current_left_sample, current_right_sample;
1257
        int next_left_sample, next_right_sample;
1258
        int coeff1l, coeff2l, coeff1r, coeff2r;
1259
        int shift_left, shift_right;
1260
1261
        /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1262
           each coding 28 stereo samples. */
1263
1264
158
        if(avctx->channels != 2)
1265
            return AVERROR_INVALIDDATA;
1266
1267
158
        current_left_sample   = sign_extend(bytestream2_get_le16u(&gb), 16);
1268
158
        previous_left_sample  = sign_extend(bytestream2_get_le16u(&gb), 16);
1269
158
        current_right_sample  = sign_extend(bytestream2_get_le16u(&gb), 16);
1270
158
        previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1271
1272
8454
        for (count1 = 0; count1 < nb_samples / 28; count1++) {
1273
8296
            int byte = bytestream2_get_byteu(&gb);
1274
8296
            coeff1l = ea_adpcm_table[ byte >> 4       ];
1275
8296
            coeff2l = ea_adpcm_table[(byte >> 4  ) + 4];
1276
8296
            coeff1r = ea_adpcm_table[ byte & 0x0F];
1277
8296
            coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1278
1279
8296
            byte = bytestream2_get_byteu(&gb);
1280
8296
            shift_left  = 20 - (byte >> 4);
1281
8296
            shift_right = 20 - (byte & 0x0F);
1282
1283
240584
            for (count2 = 0; count2 < 28; count2++) {
1284
232288
                byte = bytestream2_get_byteu(&gb);
1285
232288
                next_left_sample  = sign_extend(byte >> 4, 4) << shift_left;
1286
232288
                next_right_sample = sign_extend(byte,      4) << shift_right;
1287
1288
232288
                next_left_sample = (next_left_sample +
1289
232288
                    (current_left_sample * coeff1l) +
1290
232288
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1291
232288
                next_right_sample = (next_right_sample +
1292
232288
                    (current_right_sample * coeff1r) +
1293
232288
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1294
1295
232288
                previous_left_sample = current_left_sample;
1296
232288
                current_left_sample = av_clip_int16(next_left_sample);
1297
232288
                previous_right_sample = current_right_sample;
1298
232288
                current_right_sample = av_clip_int16(next_right_sample);
1299
232288
                *samples++ = current_left_sample;
1300
232288
                *samples++ = current_right_sample;
1301
            }
1302
        }
1303
1304
158
        bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1305
1306
158
        break;
1307
    }
1308
30
    case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
1309
    {
1310
        int coeff[2][2], shift[2];
1311
1312
90
        for(channel = 0; channel < avctx->channels; channel++) {
1313
60
            int byte = bytestream2_get_byteu(&gb);
1314
180
            for (i=0; i<2; i++)
1315
120
                coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1316
60
            shift[channel] = 20 - (byte & 0x0F);
1317
        }
1318
450
        for (count1 = 0; count1 < nb_samples / 2; count1++) {
1319
            int byte[2];
1320
1321
420
            byte[0] = bytestream2_get_byteu(&gb);
1322
420
            if (st) byte[1] = bytestream2_get_byteu(&gb);
1323
1260
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1324
2520
                for(channel = 0; channel < avctx->channels; channel++) {
1325
1680
                    int sample = sign_extend(byte[channel] >> i, 4) << shift[channel];
1326
1680
                    sample = (sample +
1327
1680
                             c->status[channel].sample1 * coeff[channel][0] +
1328
1680
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1329
1680
                    c->status[channel].sample2 = c->status[channel].sample1;
1330
1680
                    c->status[channel].sample1 = av_clip_int16(sample);
1331
1680
                    *samples++ = c->status[channel].sample1;
1332
                }
1333
            }
1334
        }
1335
30
        bytestream2_seek(&gb, 0, SEEK_END);
1336
30
        break;
1337
    }
1338
400
    case AV_CODEC_ID_ADPCM_EA_R1:
1339
    case AV_CODEC_ID_ADPCM_EA_R2:
1340
    case AV_CODEC_ID_ADPCM_EA_R3: {
1341
        /* channel numbering
1342
           2chan: 0=fl, 1=fr
1343
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1344
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1345
400
        const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1346
        int previous_sample, current_sample, next_sample;
1347
        int coeff1, coeff2;
1348
        int shift;
1349
        unsigned int channel;
1350
        uint16_t *samplesC;
1351
400
        int count = 0;
1352
        int offsets[6];
1353
1354
1200
        for (channel=0; channel<avctx->channels; channel++)
1355
800
            offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1356
550
                                             bytestream2_get_le32(&gb)) +
1357
800
                               (avctx->channels + 1) * 4;
1358
1359
1200
        for (channel=0; channel<avctx->channels; channel++) {
1360
800
            bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1361
800
            samplesC = samples_p[channel];
1362
1363
800
            if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1364
190
                current_sample  = sign_extend(bytestream2_get_le16(&gb), 16);
1365
190
                previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1366
            } else {
1367
610
                current_sample  = c->status[channel].predictor;
1368
610
                previous_sample = c->status[channel].prev_sample;
1369
            }
1370
1371
41992
            for (count1 = 0; count1 < nb_samples / 28; count1++) {
1372
41192
                int byte = bytestream2_get_byte(&gb);
1373
41192
                if (byte == 0xEE) {  /* only seen in R2 and R3 */
1374
12
                    current_sample  = sign_extend(bytestream2_get_be16(&gb), 16);
1375
12
                    previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1376
1377
348
                    for (count2=0; count2<28; count2++)
1378
336
                        *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1379
                } else {
1380
41180
                    coeff1 = ea_adpcm_table[ byte >> 4     ];
1381
41180
                    coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1382
41180
                    shift = 20 - (byte & 0x0F);
1383
1384
1194220
                    for (count2=0; count2<28; count2++) {
1385
1153040
                        if (count2 & 1)
1386
576520
                            next_sample = (unsigned)sign_extend(byte,    4) << shift;
1387
                        else {
1388
576520
                            byte = bytestream2_get_byte(&gb);
1389
576520
                            next_sample = (unsigned)sign_extend(byte >> 4, 4) << shift;
1390
                        }
1391
1392
1153040
                        next_sample += (current_sample  * coeff1) +
1393
1153040
                                       (previous_sample * coeff2);
1394
1153040
                        next_sample = av_clip_int16(next_sample >> 8);
1395
1396
1153040
                        previous_sample = current_sample;
1397
1153040
                        current_sample  = next_sample;
1398
1153040
                        *samplesC++ = current_sample;
1399
                    }
1400
                }
1401
            }
1402
800
            if (!count) {
1403
400
                count = count1;
1404
400
            } else if (count != count1) {
1405
                av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1406
                count = FFMAX(count, count1);
1407
            }
1408
1409
800
            if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1410
610
                c->status[channel].predictor   = current_sample;
1411
610
                c->status[channel].prev_sample = previous_sample;
1412
            }
1413
        }
1414
1415
400
        frame->nb_samples = count * 28;
1416
400
        bytestream2_seek(&gb, 0, SEEK_END);
1417
400
        break;
1418
    }
1419
600
    case AV_CODEC_ID_ADPCM_EA_XAS:
1420
1200
        for (channel=0; channel<avctx->channels; channel++) {
1421
            int coeff[2][4], shift[4];
1422
600
            int16_t *s = samples_p[channel];
1423
3000
            for (n = 0; n < 4; n++, s += 32) {
1424
2400
                int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1425
7200
                for (i=0; i<2; i++)
1426
4800
                    coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1427
2400
                s[0] = val & ~0x0F;
1428
1429
2400
                val = sign_extend(bytestream2_get_le16u(&gb), 16);
1430
2400
                shift[n] = 20 - (val & 0x0F);
1431
2400
                s[1] = val & ~0x0F;
1432
            }
1433
1434
9600
            for (m=2; m<32; m+=2) {
1435
9000
                s = &samples_p[channel][m];
1436
45000
                for (n = 0; n < 4; n++, s += 32) {
1437
                    int level, pred;
1438
36000
                    int byte = bytestream2_get_byteu(&gb);
1439
1440
36000
                    level = sign_extend(byte >> 4, 4) << shift[n];
1441
36000
                    pred  = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1442
36000
                    s[0]  = av_clip_int16((level + pred + 0x80) >> 8);
1443
1444
36000
                    level = sign_extend(byte, 4) << shift[n];
1445
36000
                    pred  = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1446
36000
                    s[1]  = av_clip_int16((level + pred + 0x80) >> 8);
1447
                }
1448
            }
1449
        }
1450
600
        break;
1451
161
    case AV_CODEC_ID_ADPCM_IMA_AMV:
1452
161
        c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1453
161
        c->status[0].step_index = bytestream2_get_byteu(&gb);
1454
161
        bytestream2_skipu(&gb, 5);
1455
161
        if (c->status[0].step_index > 88u) {
1456
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1457
                   c->status[0].step_index);
1458
            return AVERROR_INVALIDDATA;
1459
        }
1460
1461
111112
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1462
110951
            int v = bytestream2_get_byteu(&gb);
1463
1464
110951
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1465
110951
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1466
        }
1467
161
        break;
1468
350
    case AV_CODEC_ID_ADPCM_IMA_SMJPEG:
1469
700
        for (i = 0; i < avctx->channels; i++) {
1470
350
            c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1471
350
            c->status[i].step_index = bytestream2_get_byteu(&gb);
1472
350
            bytestream2_skipu(&gb, 1);
1473
350
            if (c->status[i].step_index > 88u) {
1474
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1475
                       c->status[i].step_index);
1476
                return AVERROR_INVALIDDATA;
1477
            }
1478
        }
1479
1480
89950
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1481
89600
            int v = bytestream2_get_byteu(&gb);
1482
1483
89600
            *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
1484
89600
            *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
1485
        }
1486
350
        break;
1487
64
    case AV_CODEC_ID_ADPCM_CT:
1488
262160
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1489
262096
            int v = bytestream2_get_byteu(&gb);
1490
262096
            *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4  );
1491
262096
            *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1492
        }
1493
64
        break;
1494
57
    case AV_CODEC_ID_ADPCM_SBPRO_4:
1495
    case AV_CODEC_ID_ADPCM_SBPRO_3:
1496
    case AV_CODEC_ID_ADPCM_SBPRO_2:
1497
57
        if (!c->status[0].step_index) {
1498
            /* the first byte is a raw sample */
1499
3
            *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1500
3
            if (st)
1501
                *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1502
3
            c->status[0].step_index = 1;
1503
3
            nb_samples--;
1504
        }
1505
57
        if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1506
52256
            for (n = nb_samples >> (1 - st); n > 0; n--) {
1507
52230
                int byte = bytestream2_get_byteu(&gb);
1508
104460
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1509
52230
                                                       byte >> 4,   4, 0);
1510
52230
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1511
52230
                                                       byte & 0x0F, 4, 0);
1512
            }
1513
31
        } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1514
34838
            for (n = (nb_samples<<st) / 3; n > 0; n--) {
1515
34820
                int byte = bytestream2_get_byteu(&gb);
1516
69640
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1517
34820
                                                        byte >> 5        , 3, 0);
1518
69640
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1519
34820
                                                       (byte >> 2) & 0x07, 3, 0);
1520
34820
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1521
34820
                                                        byte & 0x03,       2, 0);
1522
            }
1523
        } else {
1524
26128
            for (n = nb_samples >> (2 - st); n > 0; n--) {
1525
26115
                int byte = bytestream2_get_byteu(&gb);
1526
52230
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1527
26115
                                                        byte >> 6        , 2, 2);
1528
52230
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1529
26115
                                                       (byte >> 4) & 0x03, 2, 2);
1530
52230
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1531
26115
                                                       (byte >> 2) & 0x03, 2, 2);
1532
26115
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1533
26115
                                                        byte & 0x03,       2, 2);
1534
            }
1535
        }
1536
57
        break;
1537
260
    case AV_CODEC_ID_ADPCM_SWF:
1538
260
        adpcm_swf_decode(avctx, buf, buf_size, samples);
1539
260
        bytestream2_seek(&gb, 0, SEEK_END);
1540
260
        break;
1541
136
    case AV_CODEC_ID_ADPCM_YAMAHA:
1542
553096
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1543
552960
            int v = bytestream2_get_byteu(&gb);
1544
552960
            *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1545
552960
            *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4  );
1546
        }
1547
136
        break;
1548
    case AV_CODEC_ID_ADPCM_AICA:
1549
        if (!c->has_status) {
1550
            for (channel = 0; channel < avctx->channels; channel++)
1551
                c->status[channel].step = 0;
1552
            c->has_status = 1;
1553
        }
1554
        for (channel = 0; channel < avctx->channels; channel++) {
1555
            samples = samples_p[channel];
1556
            for (n = nb_samples >> 1; n > 0; n--) {
1557
                int v = bytestream2_get_byteu(&gb);
1558
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v & 0x0F);
1559
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v >> 4  );
1560
            }
1561
        }
1562
        break;
1563
12
    case AV_CODEC_ID_ADPCM_AFC:
1564
    {
1565
        int samples_per_block;
1566
        int blocks;
1567
1568

12
        if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1569
            samples_per_block = avctx->extradata[0] / 16;
1570
            blocks = nb_samples / avctx->extradata[0];
1571
        } else {
1572
12
            samples_per_block = nb_samples / 16;
1573
12
            blocks = 1;
1574
        }
1575
1576
24
        for (m = 0; m < blocks; m++) {
1577
36
        for (channel = 0; channel < avctx->channels; channel++) {
1578
24
            int prev1 = c->status[channel].sample1;
1579
24
            int prev2 = c->status[channel].sample2;
1580
1581
24
            samples = samples_p[channel] + m * 16;
1582
            /* Read in every sample for this channel.  */
1583
26904
            for (i = 0; i < samples_per_block; i++) {
1584
26880
                int byte = bytestream2_get_byteu(&gb);
1585
26880
                int scale = 1 << (byte >> 4);
1586
26880
                int index = byte & 0xf;
1587
26880
                int factor1 = ff_adpcm_afc_coeffs[0][index];
1588
26880
                int factor2 = ff_adpcm_afc_coeffs[1][index];
1589
1590
                /* Decode 16 samples.  */
1591
456960
                for (n = 0; n < 16; n++) {
1592
                    int32_t sampledat;
1593
1594
430080
                    if (n & 1) {
1595
215040
                        sampledat = sign_extend(byte, 4);
1596
                    } else {
1597
215040
                        byte = bytestream2_get_byteu(&gb);
1598
215040
                        sampledat = sign_extend(byte >> 4, 4);
1599
                    }
1600
1601
430080
                    sampledat = ((prev1 * factor1 + prev2 * factor2) +
1602
430080
                                 ((sampledat * scale) << 11)) >> 11;
1603
430080
                    *samples = av_clip_int16(sampledat);
1604
430080
                    prev2 = prev1;
1605
430080
                    prev1 = *samples++;
1606
                }
1607
            }
1608
1609
24
            c->status[channel].sample1 = prev1;
1610
24
            c->status[channel].sample2 = prev2;
1611
        }
1612
        }
1613
12
        bytestream2_seek(&gb, 0, SEEK_END);
1614
12
        break;
1615
    }
1616
71
    case AV_CODEC_ID_ADPCM_THP:
1617
    case AV_CODEC_ID_ADPCM_THP_LE:
1618
    {
1619
        int table[14][16];
1620
        int ch;
1621
1622
#define THP_GET16(g) \
1623
    sign_extend( \
1624
        avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
1625
        bytestream2_get_le16u(&(g)) : \
1626
        bytestream2_get_be16u(&(g)), 16)
1627
1628
71
        if (avctx->extradata) {
1629
            GetByteContext tb;
1630
            if (avctx->extradata_size < 32 * avctx->channels) {
1631
                av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1632
                return AVERROR_INVALIDDATA;
1633
            }
1634
1635
            bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1636
            for (i = 0; i < avctx->channels; i++)
1637
                for (n = 0; n < 16; n++)
1638
                    table[i][n] = THP_GET16(tb);
1639
        } else {
1640
213
            for (i = 0; i < avctx->channels; i++)
1641
2414
                for (n = 0; n < 16; n++)
1642
2272
                    table[i][n] = THP_GET16(gb);
1643
1644
71
            if (!c->has_status) {
1645
                /* Initialize the previous sample.  */
1646
3
                for (i = 0; i < avctx->channels; i++) {
1647
2
                    c->status[i].sample1 = THP_GET16(gb);
1648
2
                    c->status[i].sample2 = THP_GET16(gb);
1649
                }
1650
1
                c->has_status = 1;
1651
            } else {
1652
70
                bytestream2_skip(&gb, avctx->channels * 4);
1653
            }
1654
        }
1655
1656
213
        for (ch = 0; ch < avctx->channels; ch++) {
1657
142
            samples = samples_p[ch];
1658
1659
            /* Read in every sample for this channel.  */
1660
10982
            for (i = 0; i < (nb_samples + 13) / 14; i++) {
1661
10840
                int byte = bytestream2_get_byteu(&gb);
1662
10840
                int index = (byte >> 4) & 7;
1663
10840
                unsigned int exp = byte & 0x0F;
1664
10840
                int factor1 = table[ch][index * 2];
1665
10840
                int factor2 = table[ch][index * 2 + 1];
1666
1667
                /* Decode 14 samples.  */
1668

162600
                for (n = 0; n < 14 && (i * 14 + n < nb_samples); n++) {
1669
                    int32_t sampledat;
1670
1671
151760
                    if (n & 1) {
1672
75880
                        sampledat = sign_extend(byte, 4);
1673
                    } else {
1674
75880
                        byte = bytestream2_get_byteu(&gb);
1675
75880
                        sampledat = sign_extend(byte >> 4, 4);
1676
                    }
1677
1678
151760
                    sampledat = ((c->status[ch].sample1 * factor1
1679
151760
                                + c->status[ch].sample2 * factor2) >> 11) + (sampledat << exp);
1680
151760
                    *samples = av_clip_int16(sampledat);
1681
151760
                    c->status[ch].sample2 = c->status[ch].sample1;
1682
151760
                    c->status[ch].sample1 = *samples++;
1683
                }
1684
            }
1685
        }
1686
71
        break;
1687
    }
1688
32
    case AV_CODEC_ID_ADPCM_DTK:
1689
96
        for (channel = 0; channel < avctx->channels; channel++) {
1690
64
            samples = samples_p[channel];
1691
1692
            /* Read in every sample for this channel.  */
1693
2112
            for (i = 0; i < nb_samples / 28; i++) {
1694
                int byte, header;
1695
2048
                if (channel)
1696
1024
                    bytestream2_skipu(&gb, 1);
1697
2048
                header = bytestream2_get_byteu(&gb);
1698
2048
                bytestream2_skipu(&gb, 3 - channel);
1699
1700
                /* Decode 28 samples.  */
1701
59392
                for (n = 0; n < 28; n++) {
1702
                    int32_t sampledat, prev;
1703
1704

57344
                    switch (header >> 4) {
1705
3388
                    case 1:
1706
3388
                        prev = (c->status[channel].sample1 * 0x3c);
1707
3388
                        break;
1708
50876
                    case 2:
1709
50876
                        prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1710
50876
                        break;
1711
2744
                    case 3:
1712
2744
                        prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1713
2744
                        break;
1714
336
                    default:
1715
336
                        prev = 0;
1716
                    }
1717
1718
57344
                    prev = av_clip_intp2((prev + 0x20) >> 6, 21);
1719
1720
57344
                    byte = bytestream2_get_byteu(&gb);
1721
57344
                    if (!channel)
1722
28672
                        sampledat = sign_extend(byte, 4);
1723
                    else
1724
28672
                        sampledat = sign_extend(byte >> 4, 4);
1725
1726
57344
                    sampledat = ((sampledat * (1 << 12)) >> (header & 0xf)) * (1 << 6) + prev;
1727
57344
                    *samples++ = av_clip_int16(sampledat >> 6);
1728
57344
                    c->status[channel].sample2 = c->status[channel].sample1;
1729
57344
                    c->status[channel].sample1 = sampledat;
1730
                }
1731
            }
1732
64
            if (!channel)
1733
32
                bytestream2_seek(&gb, 0, SEEK_SET);
1734
        }
1735
32
        break;
1736
    case AV_CODEC_ID_ADPCM_PSX:
1737
        for (channel = 0; channel < avctx->channels; channel++) {
1738
            samples = samples_p[channel];
1739
1740
            /* Read in every sample for this channel.  */
1741
            for (i = 0; i < nb_samples / 28; i++) {
1742
                int filter, shift, flag, byte;
1743
1744
                filter = bytestream2_get_byteu(&gb);
1745
                shift  = filter & 0xf;
1746
                filter = filter >> 4;
1747
                if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table))
1748
                    return AVERROR_INVALIDDATA;
1749
                flag   = bytestream2_get_byteu(&gb);
1750
1751
                /* Decode 28 samples.  */
1752
                for (n = 0; n < 28; n++) {
1753
                    int sample = 0, scale;
1754
1755
                    if (flag < 0x07) {
1756
                        if (n & 1) {
1757
                            scale = sign_extend(byte >> 4, 4);
1758
                        } else {
1759
                            byte  = bytestream2_get_byteu(&gb);
1760
                            scale = sign_extend(byte, 4);
1761
                        }
1762
1763
                        scale  = scale << 12;
1764
                        sample = (int)((scale >> shift) + (c->status[channel].sample1 * xa_adpcm_table[filter][0] + c->status[channel].sample2 * xa_adpcm_table[filter][1]) / 64);
1765
                    }
1766
                    *samples++ = av_clip_int16(sample);
1767
                    c->status[channel].sample2 = c->status[channel].sample1;
1768
                    c->status[channel].sample1 = sample;
1769
                }
1770
            }
1771
        }
1772
        break;
1773
1774
    default:
1775
        av_assert0(0); // unsupported codec_id should not happen
1776
    }
1777
1778

36079
    if (avpkt->size && bytestream2_tell(&gb) == 0) {
1779
        av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
1780
        return AVERROR_INVALIDDATA;
1781
    }
1782
1783
36079
    *got_frame_ptr = 1;
1784
1785
36079
    if (avpkt->size < bytestream2_tell(&gb)) {
1786
        av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
1787
        return avpkt->size;
1788
    }
1789
1790
36079
    return bytestream2_tell(&gb);
1791
}
1792
1793
static void adpcm_flush(AVCodecContext *avctx)
1794
{
1795
    ADPCMDecodeContext *c = avctx->priv_data;
1796
    c->has_status = 0;
1797
}
1798
1799
1800
static const enum AVSampleFormat sample_fmts_s16[]  = { AV_SAMPLE_FMT_S16,
1801
                                                        AV_SAMPLE_FMT_NONE };
1802
static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16P,
1803
                                                        AV_SAMPLE_FMT_NONE };
1804
static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
1805
                                                        AV_SAMPLE_FMT_S16P,
1806
                                                        AV_SAMPLE_FMT_NONE };
1807
1808
#define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
1809
AVCodec ff_ ## name_ ## _decoder = {                        \
1810
    .name           = #name_,                               \
1811
    .long_name      = NULL_IF_CONFIG_SMALL(long_name_),     \
1812
    .type           = AVMEDIA_TYPE_AUDIO,                   \
1813
    .id             = id_,                                  \
1814
    .priv_data_size = sizeof(ADPCMDecodeContext),           \
1815
    .init           = adpcm_decode_init,                    \
1816
    .decode         = adpcm_decode_frame,                   \
1817
    .flush          = adpcm_flush,                          \
1818
    .capabilities   = AV_CODEC_CAP_DR1,                     \
1819
    .sample_fmts    = sample_fmts_,                         \
1820
}
1821
1822
/* Note: Do not forget to add new entries to the Makefile as well. */
1823
ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM,         sample_fmts_s16p, adpcm_4xm,         "ADPCM 4X Movie");
1824
ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC,         sample_fmts_s16p, adpcm_afc,         "ADPCM Nintendo Gamecube AFC");
1825
ADPCM_DECODER(AV_CODEC_ID_ADPCM_AGM,         sample_fmts_s16,  adpcm_agm,         "ADPCM AmuseGraphics Movie");
1826
ADPCM_DECODER(AV_CODEC_ID_ADPCM_AICA,        sample_fmts_s16p, adpcm_aica,        "ADPCM Yamaha AICA");
1827
ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT,          sample_fmts_s16,  adpcm_ct,          "ADPCM Creative Technology");
1828
ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK,         sample_fmts_s16p, adpcm_dtk,         "ADPCM Nintendo Gamecube DTK");
1829
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA,          sample_fmts_s16,  adpcm_ea,          "ADPCM Electronic Arts");
1830
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16,  adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
1831
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1,       sample_fmts_s16p, adpcm_ea_r1,       "ADPCM Electronic Arts R1");
1832
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2,       sample_fmts_s16p, adpcm_ea_r2,       "ADPCM Electronic Arts R2");
1833
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3,       sample_fmts_s16p, adpcm_ea_r3,       "ADPCM Electronic Arts R3");
1834
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS,      sample_fmts_s16p, adpcm_ea_xas,      "ADPCM Electronic Arts XAS");
1835
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV,     sample_fmts_s16,  adpcm_ima_amv,     "ADPCM IMA AMV");
1836
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC,     sample_fmts_s16,  adpcm_ima_apc,     "ADPCM IMA CRYO APC");
1837
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DAT4,    sample_fmts_s16,  adpcm_ima_dat4,    "ADPCM IMA Eurocom DAT4");
1838
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3,     sample_fmts_s16,  adpcm_ima_dk3,     "ADPCM IMA Duck DK3");
1839
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4,     sample_fmts_s16,  adpcm_ima_dk4,     "ADPCM IMA Duck DK4");
1840
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16,  adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
1841
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16,  adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
1842
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS,     sample_fmts_s16,  adpcm_ima_iss,     "ADPCM IMA Funcom ISS");
1843
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI,     sample_fmts_s16,  adpcm_ima_oki,     "ADPCM IMA Dialogic OKI");
1844
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT,      sample_fmts_s16p, adpcm_ima_qt,      "ADPCM IMA QuickTime");
1845
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD,     sample_fmts_s16,  adpcm_ima_rad,     "ADPCM IMA Radical");
1846
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG,  sample_fmts_s16,  adpcm_ima_smjpeg,  "ADPCM IMA Loki SDL MJPEG");
1847
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV,     sample_fmts_s16p, adpcm_ima_wav,     "ADPCM IMA WAV");
1848
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS,      sample_fmts_both, adpcm_ima_ws,      "ADPCM IMA Westwood");
1849
ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS,          sample_fmts_both, adpcm_ms,          "ADPCM Microsoft");
1850
ADPCM_DECODER(AV_CODEC_ID_ADPCM_MTAF,        sample_fmts_s16p, adpcm_mtaf,        "ADPCM MTAF");
1851
ADPCM_DECODER(AV_CODEC_ID_ADPCM_PSX,         sample_fmts_s16p, adpcm_psx,         "ADPCM Playstation");
1852
ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2,     sample_fmts_s16,  adpcm_sbpro_2,     "ADPCM Sound Blaster Pro 2-bit");
1853
ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3,     sample_fmts_s16,  adpcm_sbpro_3,     "ADPCM Sound Blaster Pro 2.6-bit");
1854
ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4,     sample_fmts_s16,  adpcm_sbpro_4,     "ADPCM Sound Blaster Pro 4-bit");
1855
ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF,         sample_fmts_s16,  adpcm_swf,         "ADPCM Shockwave Flash");
1856
ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP_LE,      sample_fmts_s16p, adpcm_thp_le,      "ADPCM Nintendo THP (little-endian)");
1857
ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP,         sample_fmts_s16p, adpcm_thp,         "ADPCM Nintendo THP");
1858
ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA,          sample_fmts_s16p, adpcm_xa,          "ADPCM CDROM XA");
1859
ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA,      sample_fmts_s16,  adpcm_yamaha,      "ADPCM Yamaha");