GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/adpcm.c Lines: 906 1237 73.2 %
Date: 2020-04-02 05:41:20 Branches: 425 629 67.6 %

Line Branch Exec Source
1
/*
2
 * Copyright (c) 2001-2003 The FFmpeg project
3
 *
4
 * first version by Francois Revol (revol@free.fr)
5
 * fringe ADPCM codecs (e.g., DK3, DK4, Westwood)
6
 *   by Mike Melanson (melanson@pcisys.net)
7
 * CD-ROM XA ADPCM codec by BERO
8
 * EA ADPCM decoder by Robin Kay (komadori@myrealbox.com)
9
 * EA ADPCM R1/R2/R3 decoder by Peter Ross (pross@xvid.org)
10
 * EA IMA EACS decoder by Peter Ross (pross@xvid.org)
11
 * EA IMA SEAD decoder by Peter Ross (pross@xvid.org)
12
 * EA ADPCM XAS decoder by Peter Ross (pross@xvid.org)
13
 * MAXIS EA ADPCM decoder by Robert Marston (rmarston@gmail.com)
14
 * THP ADPCM decoder by Marco Gerards (mgerards@xs4all.nl)
15
 * Argonaut Games ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
16
 * Simon & Schuster Interactive ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
17
 * Ubisoft ADPCM decoder by Zane van Iperen (zane@zanevaniperen.com)
18
 * High Voltage Software ALP decoder by Zane van Iperen (zane@zanevaniperen.com)
19
 *
20
 * This file is part of FFmpeg.
21
 *
22
 * FFmpeg is free software; you can redistribute it and/or
23
 * modify it under the terms of the GNU Lesser General Public
24
 * License as published by the Free Software Foundation; either
25
 * version 2.1 of the License, or (at your option) any later version.
26
 *
27
 * FFmpeg is distributed in the hope that it will be useful,
28
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
29
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
30
 * Lesser General Public License for more details.
31
 *
32
 * You should have received a copy of the GNU Lesser General Public
33
 * License along with FFmpeg; if not, write to the Free Software
34
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
35
 */
36
#include "avcodec.h"
37
#include "get_bits.h"
38
#include "bytestream.h"
39
#include "adpcm.h"
40
#include "adpcm_data.h"
41
#include "internal.h"
42
43
/**
44
 * @file
45
 * ADPCM decoders
46
 * Features and limitations:
47
 *
48
 * Reference documents:
49
 * http://wiki.multimedia.cx/index.php?title=Category:ADPCM_Audio_Codecs
50
 * http://www.pcisys.net/~melanson/codecs/simpleaudio.html [dead]
51
 * http://www.geocities.com/SiliconValley/8682/aud3.txt [dead]
52
 * http://openquicktime.sourceforge.net/
53
 * XAnim sources (xa_codec.c) http://xanim.polter.net/
54
 * http://www.cs.ucla.edu/~leec/mediabench/applications.html [dead]
55
 * SoX source code http://sox.sourceforge.net/
56
 *
57
 * CD-ROM XA:
58
 * http://ku-www.ss.titech.ac.jp/~yatsushi/xaadpcm.html [dead]
59
 * vagpack & depack http://homepages.compuserve.de/bITmASTER32/psx-index.html [dead]
60
 * readstr http://www.geocities.co.jp/Playtown/2004/
61
 */
62
63
/* These are for CD-ROM XA ADPCM */
64
static const int8_t xa_adpcm_table[5][2] = {
65
    {   0,   0 },
66
    {  60,   0 },
67
    { 115, -52 },
68
    {  98, -55 },
69
    { 122, -60 }
70
};
71
72
static const int16_t ea_adpcm_table[] = {
73
    0,  240,  460,  392,
74
    0,    0, -208, -220,
75
    0,    1,    3,    4,
76
    7,    8,   10,   11,
77
    0,   -1,   -3,   -4
78
};
79
80
// padded to zero where table size is less then 16
81
static const int8_t swf_index_tables[4][16] = {
82
    /*2*/ { -1, 2 },
83
    /*3*/ { -1, -1, 2, 4 },
84
    /*4*/ { -1, -1, -1, -1, 2, 4, 6, 8 },
85
    /*5*/ { -1, -1, -1, -1, -1, -1, -1, -1, 1, 2, 4, 6, 8, 10, 13, 16 }
86
};
87
88
static const int8_t zork_index_table[8] = {
89
    -1, -1, -1, 1, 4, 7, 10, 12,
90
};
91
92
static const int8_t mtf_index_table[16] = {
93
     8,  6,  4,  2, -1, -1, -1, -1,
94
    -1, -1, -1, -1,  2,  4,  6,  8,
95
};
96
97
/* end of tables */
98
99
typedef struct ADPCMDecodeContext {
100
    ADPCMChannelStatus status[14];
101
    int vqa_version;                /**< VQA version. Used for ADPCM_IMA_WS */
102
    int has_status;
103
} ADPCMDecodeContext;
104
105
148
static av_cold int adpcm_decode_init(AVCodecContext * avctx)
106
{
107
148
    ADPCMDecodeContext *c = avctx->priv_data;
108
148
    unsigned int min_channels = 1;
109
148
    unsigned int max_channels = 2;
110
111

148
    switch(avctx->codec->id) {
112
8
    case AV_CODEC_ID_ADPCM_DTK:
113
    case AV_CODEC_ID_ADPCM_EA:
114
8
        min_channels = 2;
115
8
        break;
116
23
    case AV_CODEC_ID_ADPCM_AFC:
117
    case AV_CODEC_ID_ADPCM_EA_R1:
118
    case AV_CODEC_ID_ADPCM_EA_R2:
119
    case AV_CODEC_ID_ADPCM_EA_R3:
120
    case AV_CODEC_ID_ADPCM_EA_XAS:
121
    case AV_CODEC_ID_ADPCM_MS:
122
23
        max_channels = 6;
123
23
        break;
124
    case AV_CODEC_ID_ADPCM_MTAF:
125
        min_channels = 2;
126
        max_channels = 8;
127
        if (avctx->channels & 1) {
128
            avpriv_request_sample(avctx, "channel count %d\n", avctx->channels);
129
            return AVERROR_PATCHWELCOME;
130
        }
131
        break;
132
    case AV_CODEC_ID_ADPCM_PSX:
133
        max_channels = 8;
134
        break;
135
8
    case AV_CODEC_ID_ADPCM_IMA_DAT4:
136
    case AV_CODEC_ID_ADPCM_THP:
137
    case AV_CODEC_ID_ADPCM_THP_LE:
138
8
        max_channels = 14;
139
8
        break;
140
    }
141

148
    if (avctx->channels < min_channels || avctx->channels > max_channels) {
142
        av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
143
        return AVERROR(EINVAL);
144
    }
145
146


148
    switch(avctx->codec->id) {
147
2
    case AV_CODEC_ID_ADPCM_CT:
148
2
        c->status[0].step = c->status[1].step = 511;
149
2
        break;
150
10
    case AV_CODEC_ID_ADPCM_IMA_WAV:
151

10
        if (avctx->bits_per_coded_sample < 2 || avctx->bits_per_coded_sample > 5)
152
            return AVERROR_INVALIDDATA;
153
10
        break;
154
3
    case AV_CODEC_ID_ADPCM_IMA_APC:
155

3
        if (avctx->extradata && avctx->extradata_size >= 8) {
156
2
            c->status[0].predictor = av_clip_intp2(AV_RL32(avctx->extradata    ), 18);
157
2
            c->status[1].predictor = av_clip_intp2(AV_RL32(avctx->extradata + 4), 18);
158
        }
159
3
        break;
160
4
    case AV_CODEC_ID_ADPCM_IMA_APM:
161

4
        if (avctx->extradata && avctx->extradata_size >= 16) {
162
4
            c->status[0].predictor  = AV_RL32(avctx->extradata +  0);
163
4
            c->status[0].step_index = av_clip(AV_RL32(avctx->extradata +  4), 0, 88);
164
4
            c->status[1].predictor  = AV_RL32(avctx->extradata +  8);
165
4
            c->status[1].step_index = av_clip(AV_RL32(avctx->extradata + 12), 0, 88);
166
        }
167
4
        break;
168
4
    case AV_CODEC_ID_ADPCM_IMA_WS:
169

4
        if (avctx->extradata && avctx->extradata_size >= 2)
170
3
            c->vqa_version = AV_RL16(avctx->extradata);
171
4
        break;
172
4
    case AV_CODEC_ID_ADPCM_ARGO:
173
4
        if (avctx->bits_per_coded_sample != 4)
174
            return AVERROR_INVALIDDATA;
175
4
        break;
176
    case AV_CODEC_ID_ADPCM_ZORK:
177
        if (avctx->bits_per_coded_sample != 8)
178
            return AVERROR_INVALIDDATA;
179
        break;
180
121
    default:
181
121
        break;
182
    }
183
184

148
    switch (avctx->codec->id) {
185
60
    case AV_CODEC_ID_ADPCM_AICA:
186
    case AV_CODEC_ID_ADPCM_IMA_DAT4:
187
    case AV_CODEC_ID_ADPCM_IMA_QT:
188
    case AV_CODEC_ID_ADPCM_IMA_WAV:
189
    case AV_CODEC_ID_ADPCM_4XM:
190
    case AV_CODEC_ID_ADPCM_XA:
191
    case AV_CODEC_ID_ADPCM_EA_R1:
192
    case AV_CODEC_ID_ADPCM_EA_R2:
193
    case AV_CODEC_ID_ADPCM_EA_R3:
194
    case AV_CODEC_ID_ADPCM_EA_XAS:
195
    case AV_CODEC_ID_ADPCM_THP:
196
    case AV_CODEC_ID_ADPCM_THP_LE:
197
    case AV_CODEC_ID_ADPCM_AFC:
198
    case AV_CODEC_ID_ADPCM_DTK:
199
    case AV_CODEC_ID_ADPCM_PSX:
200
    case AV_CODEC_ID_ADPCM_MTAF:
201
    case AV_CODEC_ID_ADPCM_ARGO:
202
60
        avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
203
60
        break;
204
4
    case AV_CODEC_ID_ADPCM_IMA_WS:
205
4
        avctx->sample_fmt = c->vqa_version == 3 ? AV_SAMPLE_FMT_S16P :
206
                                                  AV_SAMPLE_FMT_S16;
207
4
        break;
208
11
    case AV_CODEC_ID_ADPCM_MS:
209
11
        avctx->sample_fmt = avctx->channels > 2 ? AV_SAMPLE_FMT_S16P :
210
                                                  AV_SAMPLE_FMT_S16;
211
11
        break;
212
73
    default:
213
73
        avctx->sample_fmt = AV_SAMPLE_FMT_S16;
214
    }
215
216
148
    return 0;
217
}
218
219
static inline int16_t adpcm_agm_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
220
{
221
    int delta, pred, step, add;
222
223
    pred = c->predictor;
224
    delta = nibble & 7;
225
    step = c->step;
226
    add = (delta * 2 + 1) * step;
227
    if (add < 0)
228
        add = add + 7;
229
230
    if ((nibble & 8) == 0)
231
        pred = av_clip(pred + (add >> 3), -32767, 32767);
232
    else
233
        pred = av_clip(pred - (add >> 3), -32767, 32767);
234
235
    switch (delta) {
236
    case 7:
237
        step *= 0x99;
238
        break;
239
    case 6:
240
        c->step = av_clip(c->step * 2, 127, 24576);
241
        c->predictor = pred;
242
        return pred;
243
    case 5:
244
        step *= 0x66;
245
        break;
246
    case 4:
247
        step *= 0x4d;
248
        break;
249
    default:
250
        step *= 0x39;
251
        break;
252
    }
253
254
    if (step < 0)
255
        step += 0x3f;
256
257
    c->step = step >> 6;
258
    c->step = av_clip(c->step, 127, 24576);
259
    c->predictor = pred;
260
    return pred;
261
}
262
263
9768100
static inline int16_t adpcm_ima_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
264
{
265
    int step_index;
266
    int predictor;
267
    int sign, delta, diff, step;
268
269
9768100
    step = ff_adpcm_step_table[c->step_index];
270
9768100
    step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
271
9768100
    step_index = av_clip(step_index, 0, 88);
272
273
9768100
    sign = nibble & 8;
274
9768100
    delta = nibble & 7;
275
    /* perform direct multiplication instead of series of jumps proposed by
276
     * the reference ADPCM implementation since modern CPUs can do the mults
277
     * quickly enough */
278
9768100
    diff = ((2 * delta + 1) * step) >> shift;
279
9768100
    predictor = c->predictor;
280
9768100
    if (sign) predictor -= diff;
281
4930690
    else predictor += diff;
282
283
9768100
    c->predictor = av_clip_int16(predictor);
284
9768100
    c->step_index = step_index;
285
286
9768100
    return (int16_t)c->predictor;
287
}
288
289
150144
static inline int16_t adpcm_ima_alp_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int shift)
290
{
291
    int step_index;
292
    int predictor;
293
    int sign, delta, diff, step;
294
295
150144
    step = ff_adpcm_step_table[c->step_index];
296
150144
    step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
297
150144
    step_index = av_clip(step_index, 0, 88);
298
299
150144
    sign = nibble & 8;
300
150144
    delta = nibble & 7;
301
150144
    diff = (delta * step) >> shift;
302
150144
    predictor = c->predictor;
303
150144
    if (sign) predictor -= diff;
304
74134
    else predictor += diff;
305
306
150144
    c->predictor = av_clip_int16(predictor);
307
150144
    c->step_index = step_index;
308
309
150144
    return (int16_t)c->predictor;
310
}
311
312
static inline int16_t adpcm_ima_mtf_expand_nibble(ADPCMChannelStatus *c, int nibble)
313
{
314
    int step_index, step, delta, predictor;
315
316
    step = ff_adpcm_step_table[c->step_index];
317
318
    delta = step * (2 * nibble - 15);
319
    predictor = c->predictor + delta;
320
321
    step_index = c->step_index + mtf_index_table[(unsigned)nibble];
322
    c->predictor = av_clip_int16(predictor >> 4);
323
    c->step_index = av_clip(step_index, 0, 88);
324
325
    return (int16_t)c->predictor;
326
}
327
328
static inline int16_t adpcm_ima_wav_expand_nibble(ADPCMChannelStatus *c, GetBitContext *gb, int bps)
329
{
330
    int nibble, step_index, predictor, sign, delta, diff, step, shift;
331
332
    shift = bps - 1;
333
    nibble = get_bits_le(gb, bps),
334
    step = ff_adpcm_step_table[c->step_index];
335
    step_index = c->step_index + ff_adpcm_index_tables[bps - 2][nibble];
336
    step_index = av_clip(step_index, 0, 88);
337
338
    sign = nibble & (1 << shift);
339
    delta = av_mod_uintp2(nibble, shift);
340
    diff = ((2 * delta + 1) * step) >> shift;
341
    predictor = c->predictor;
342
    if (sign) predictor -= diff;
343
    else predictor += diff;
344
345
    c->predictor = av_clip_int16(predictor);
346
    c->step_index = step_index;
347
348
    return (int16_t)c->predictor;
349
}
350
351
3637690
static inline int adpcm_ima_qt_expand_nibble(ADPCMChannelStatus *c, int nibble, int shift)
352
{
353
    int step_index;
354
    int predictor;
355
    int diff, step;
356
357
3637690
    step = ff_adpcm_step_table[c->step_index];
358
3637690
    step_index = c->step_index + ff_adpcm_index_table[nibble];
359
3637690
    step_index = av_clip(step_index, 0, 88);
360
361
3637690
    diff = step >> 3;
362
3637690
    if (nibble & 4) diff += step;
363
3637690
    if (nibble & 2) diff += step >> 1;
364
3637690
    if (nibble & 1) diff += step >> 2;
365
366
3637690
    if (nibble & 8)
367
1812254
        predictor = c->predictor - diff;
368
    else
369
1825436
        predictor = c->predictor + diff;
370
371
3637690
    c->predictor = av_clip_int16(predictor);
372
3637690
    c->step_index = step_index;
373
374
3637690
    return c->predictor;
375
}
376
377
2229948
static inline int16_t adpcm_ms_expand_nibble(ADPCMChannelStatus *c, int nibble)
378
{
379
    int predictor;
380
381
2229948
    predictor = (((c->sample1) * (c->coeff1)) + ((c->sample2) * (c->coeff2))) / 64;
382
2229948
    predictor += ((nibble & 0x08)?(nibble - 0x10):(nibble)) * c->idelta;
383
384
2229948
    c->sample2 = c->sample1;
385
2229948
    c->sample1 = av_clip_int16(predictor);
386
2229948
    c->idelta = (ff_adpcm_AdaptationTable[(int)nibble] * c->idelta) >> 8;
387
2229948
    if (c->idelta < 16) c->idelta = 16;
388
2229948
    if (c->idelta > INT_MAX/768) {
389
        av_log(NULL, AV_LOG_WARNING, "idelta overflow\n");
390
        c->idelta = INT_MAX/768;
391
    }
392
393
2229948
    return c->sample1;
394
}
395
396
55124
static inline int16_t adpcm_ima_oki_expand_nibble(ADPCMChannelStatus *c, int nibble)
397
{
398
    int step_index, predictor, sign, delta, diff, step;
399
400
55124
    step = ff_adpcm_oki_step_table[c->step_index];
401
55124
    step_index = c->step_index + ff_adpcm_index_table[(unsigned)nibble];
402
55124
    step_index = av_clip(step_index, 0, 48);
403
404
55124
    sign = nibble & 8;
405
55124
    delta = nibble & 7;
406
55124
    diff = ((2 * delta + 1) * step) >> 3;
407
55124
    predictor = c->predictor;
408
55124
    if (sign) predictor -= diff;
409
29772
    else predictor += diff;
410
411
55124
    c->predictor = av_clip_intp2(predictor, 11);
412
55124
    c->step_index = step_index;
413
414
55124
    return c->predictor * 16;
415
}
416
417
524192
static inline int16_t adpcm_ct_expand_nibble(ADPCMChannelStatus *c, int8_t nibble)
418
{
419
    int sign, delta, diff;
420
    int new_step;
421
422
524192
    sign = nibble & 8;
423
524192
    delta = nibble & 7;
424
    /* perform direct multiplication instead of series of jumps proposed by
425
     * the reference ADPCM implementation since modern CPUs can do the mults
426
     * quickly enough */
427
524192
    diff = ((2 * delta + 1) * c->step) >> 3;
428
    /* predictor update is not so trivial: predictor is multiplied on 254/256 before updating */
429
524192
    c->predictor = ((c->predictor * 254) >> 8) + (sign ? -diff : diff);
430
524192
    c->predictor = av_clip_int16(c->predictor);
431
    /* calculate new step and clamp it to range 511..32767 */
432
524192
    new_step = (ff_adpcm_AdaptationTable[nibble & 7] * c->step) >> 8;
433
524192
    c->step = av_clip(new_step, 511, 32767);
434
435
524192
    return (int16_t)c->predictor;
436
}
437
438
313380
static inline int16_t adpcm_sbpro_expand_nibble(ADPCMChannelStatus *c, int8_t nibble, int size, int shift)
439
{
440
    int sign, delta, diff;
441
442
313380
    sign = nibble & (1<<(size-1));
443
313380
    delta = nibble & ((1<<(size-1))-1);
444
313380
    diff = delta << (7 + c->step + shift);
445
446
    /* clamp result */
447
313380
    c->predictor = av_clip(c->predictor + (sign ? -diff : diff), -16384,16256);
448
449
    /* calculate new step */
450

313380
    if (delta >= (2*size - 3) && c->step < 3)
451
75080
        c->step++;
452

238300
    else if (delta == 0 && c->step > 0)
453
75080
        c->step--;
454
455
313380
    return (int16_t) c->predictor;
456
}
457
458
1105920
static inline int16_t adpcm_yamaha_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
459
{
460
1105920
    if(!c->step) {
461
5
        c->predictor = 0;
462
5
        c->step = 127;
463
    }
464
465
1105920
    c->predictor += (c->step * ff_adpcm_yamaha_difflookup[nibble]) / 8;
466
1105920
    c->predictor = av_clip_int16(c->predictor);
467
1105920
    c->step = (c->step * ff_adpcm_yamaha_indexscale[nibble]) >> 8;
468
1105920
    c->step = av_clip(c->step, 127, 24576);
469
1105920
    return c->predictor;
470
}
471
472
static inline int16_t adpcm_mtaf_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
473
{
474
    c->predictor += ff_adpcm_mtaf_stepsize[c->step][nibble];
475
    c->predictor = av_clip_int16(c->predictor);
476
    c->step += ff_adpcm_index_table[nibble];
477
    c->step = av_clip_uintp2(c->step, 5);
478
    return c->predictor;
479
}
480
481
static inline int16_t adpcm_zork_expand_nibble(ADPCMChannelStatus *c, uint8_t nibble)
482
{
483
    int16_t index = c->step_index;
484
    uint32_t lookup_sample = ff_adpcm_step_table[index];
485
    int32_t sample = 0;
486
487
    if (nibble & 0x40)
488
        sample += lookup_sample;
489
    if (nibble & 0x20)
490
        sample += lookup_sample >> 1;
491
    if (nibble & 0x10)
492
        sample += lookup_sample >> 2;
493
    if (nibble & 0x08)
494
        sample += lookup_sample >> 3;
495
    if (nibble & 0x04)
496
        sample += lookup_sample >> 4;
497
    if (nibble & 0x02)
498
        sample += lookup_sample >> 5;
499
    if (nibble & 0x01)
500
        sample += lookup_sample >> 6;
501
    if (nibble & 0x80)
502
        sample = -sample;
503
504
    sample += c->predictor;
505
    sample = av_clip_int16(sample);
506
507
    index += zork_index_table[(nibble >> 4) & 7];
508
    index = av_clip(index, 0, 88);
509
510
    c->predictor = sample;
511
    c->step_index = index;
512
513
    return sample;
514
}
515
516
666
static int xa_decode(AVCodecContext *avctx, int16_t *out0, int16_t *out1,
517
                     const uint8_t *in, ADPCMChannelStatus *left,
518
                     ADPCMChannelStatus *right, int channels, int sample_offset)
519
{
520
    int i, j;
521
    int shift,filter,f0,f1;
522
    int s_1,s_2;
523
    int d,s,t;
524
525
666
    out0 += sample_offset;
526
666
    if (channels == 1)
527
        out1 = out0 + 28;
528
    else
529
666
        out1 += sample_offset;
530
531
3330
    for(i=0;i<4;i++) {
532
2664
        shift  = 12 - (in[4+i*2] & 15);
533
2664
        filter = in[4+i*2] >> 4;
534
2664
        if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
535
            avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
536
            filter=0;
537
        }
538
2664
        f0 = xa_adpcm_table[filter][0];
539
2664
        f1 = xa_adpcm_table[filter][1];
540
541
2664
        s_1 = left->sample1;
542
2664
        s_2 = left->sample2;
543
544
77256
        for(j=0;j<28;j++) {
545
74592
            d = in[16+i+j*4];
546
547
74592
            t = sign_extend(d, 4);
548
74592
            s = t*(1<<shift) + ((s_1*f0 + s_2*f1+32)>>6);
549
74592
            s_2 = s_1;
550
74592
            s_1 = av_clip_int16(s);
551
74592
            out0[j] = s_1;
552
        }
553
554
2664
        if (channels == 2) {
555
2664
            left->sample1 = s_1;
556
2664
            left->sample2 = s_2;
557
2664
            s_1 = right->sample1;
558
2664
            s_2 = right->sample2;
559
        }
560
561
2664
        shift  = 12 - (in[5+i*2] & 15);
562
2664
        filter = in[5+i*2] >> 4;
563
2664
        if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table)) {
564
            avpriv_request_sample(avctx, "unknown XA-ADPCM filter %d", filter);
565
            filter=0;
566
        }
567
568
2664
        f0 = xa_adpcm_table[filter][0];
569
2664
        f1 = xa_adpcm_table[filter][1];
570
571
77256
        for(j=0;j<28;j++) {
572
74592
            d = in[16+i+j*4];
573
574
74592
            t = sign_extend(d >> 4, 4);
575
74592
            s = t*(1<<shift) + ((s_1*f0 + s_2*f1+32)>>6);
576
74592
            s_2 = s_1;
577
74592
            s_1 = av_clip_int16(s);
578
74592
            out1[j] = s_1;
579
        }
580
581
2664
        if (channels == 2) {
582
2664
            right->sample1 = s_1;
583
2664
            right->sample2 = s_2;
584
        } else {
585
            left->sample1 = s_1;
586
            left->sample2 = s_2;
587
        }
588
589
2664
        out0 += 28 * (3 - channels);
590
2664
        out1 += 28 * (3 - channels);
591
    }
592
593
666
    return 0;
594
}
595
596
260
static void adpcm_swf_decode(AVCodecContext *avctx, const uint8_t *buf, int buf_size, int16_t *samples)
597
{
598
260
    ADPCMDecodeContext *c = avctx->priv_data;
599
    GetBitContext gb;
600
    const int8_t *table;
601
    int k0, signmask, nb_bits, count;
602
260
    int size = buf_size*8;
603
    int i;
604
605
260
    init_get_bits(&gb, buf, size);
606
607
    //read bits & initial values
608
260
    nb_bits = get_bits(&gb, 2)+2;
609
260
    table = swf_index_tables[nb_bits-2];
610
260
    k0 = 1 << (nb_bits-2);
611
260
    signmask = 1 << (nb_bits-1);
612
613
520
    while (get_bits_count(&gb) <= size - 22*avctx->channels) {
614
780
        for (i = 0; i < avctx->channels; i++) {
615
520
            *samples++ = c->status[i].predictor = get_sbits(&gb, 16);
616
520
            c->status[i].step_index = get_bits(&gb, 6);
617
        }
618
619

532480
        for (count = 0; get_bits_count(&gb) <= size - nb_bits*avctx->channels && count < 4095; count++) {
620
            int i;
621
622
1596660
            for (i = 0; i < avctx->channels; i++) {
623
                // similar to IMA adpcm
624
1064440
                int delta = get_bits(&gb, nb_bits);
625
1064440
                int step = ff_adpcm_step_table[c->status[i].step_index];
626
1064440
                int vpdiff = 0; // vpdiff = (delta+0.5)*step/4
627
1064440
                int k = k0;
628
629
                do {
630
3193320
                    if (delta & k)
631
1328304
                        vpdiff += step;
632
3193320
                    step >>= 1;
633
3193320
                    k >>= 1;
634
3193320
                } while(k);
635
1064440
                vpdiff += step;
636
637
1064440
                if (delta & signmask)
638
535145
                    c->status[i].predictor -= vpdiff;
639
                else
640
529295
                    c->status[i].predictor += vpdiff;
641
642
1064440
                c->status[i].step_index += table[delta & (~signmask)];
643
644
1064440
                c->status[i].step_index = av_clip(c->status[i].step_index, 0, 88);
645
1064440
                c->status[i].predictor = av_clip_int16(c->status[i].predictor);
646
647
1064440
                *samples++ = c->status[i].predictor;
648
            }
649
        }
650
    }
651
260
}
652
653
965376
static inline int16_t adpcm_argo_expand_nibble(ADPCMChannelStatus *cs, int nibble, int control, int shift)
654
{
655
965376
    int sample = nibble * (1 << shift);
656
657
965376
    if (control & 0x04)
658
880192
        sample += (8 * cs->sample1) - (4 * cs->sample2);
659
    else
660
85184
        sample += 4 * cs->sample1;
661
662
965376
    sample = av_clip_int16(sample >> 2);
663
664
965376
    cs->sample2 = cs->sample1;
665
965376
    cs->sample1 = sample;
666
667
965376
    return sample;
668
}
669
670
/**
671
 * Get the number of samples that will be decoded from the packet.
672
 * In one case, this is actually the maximum number of samples possible to
673
 * decode with the given buf_size.
674
 *
675
 * @param[out] coded_samples set to the number of samples as coded in the
676
 *                           packet, or 0 if the codec does not encode the
677
 *                           number of samples in each frame.
678
 * @param[out] approx_nb_samples set to non-zero if the number of samples
679
 *                               returned is an approximation.
680
 */
681
58159
static int get_nb_samples(AVCodecContext *avctx, GetByteContext *gb,
682
                          int buf_size, int *coded_samples, int *approx_nb_samples)
683
{
684
58159
    ADPCMDecodeContext *s = avctx->priv_data;
685
58159
    int nb_samples        = 0;
686
58159
    int ch                = avctx->channels;
687
58159
    int has_coded_samples = 0;
688
    int header_size;
689
690
58159
    *coded_samples = 0;
691
58159
    *approx_nb_samples = 0;
692
693
58159
    if(ch <= 0)
694
        return 0;
695
696

58159
    switch (avctx->codec->id) {
697
    /* constant, only check buf_size */
698
600
    case AV_CODEC_ID_ADPCM_EA_XAS:
699
600
        if (buf_size < 76 * ch)
700
            return 0;
701
600
        nb_samples = 128;
702
600
        break;
703
26342
    case AV_CODEC_ID_ADPCM_IMA_QT:
704
26342
        if (buf_size < 34 * ch)
705
            return 0;
706
26342
        nb_samples = 64;
707
26342
        break;
708
21976
    case AV_CODEC_ID_ADPCM_ARGO:
709
21976
        if (buf_size < 17 * ch)
710
            return 0;
711
21976
        nb_samples = 32;
712
21976
        break;
713
    /* simple 4-bit adpcm */
714
579
    case AV_CODEC_ID_ADPCM_CT:
715
    case AV_CODEC_ID_ADPCM_IMA_APC:
716
    case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
717
    case AV_CODEC_ID_ADPCM_IMA_OKI:
718
    case AV_CODEC_ID_ADPCM_IMA_WS:
719
    case AV_CODEC_ID_ADPCM_YAMAHA:
720
    case AV_CODEC_ID_ADPCM_AICA:
721
    case AV_CODEC_ID_ADPCM_IMA_SSI:
722
    case AV_CODEC_ID_ADPCM_IMA_APM:
723
    case AV_CODEC_ID_ADPCM_IMA_ALP:
724
    case AV_CODEC_ID_ADPCM_IMA_MTF:
725
579
        nb_samples = buf_size * 2 / ch;
726
579
        break;
727
    }
728
58159
    if (nb_samples)
729
49497
        return nb_samples;
730
731
    /* simple 4-bit adpcm, with header */
732
8662
    header_size = 0;
733

8662
    switch (avctx->codec->id) {
734
145
        case AV_CODEC_ID_ADPCM_4XM:
735
        case AV_CODEC_ID_ADPCM_AGM:
736
        case AV_CODEC_ID_ADPCM_IMA_DAT4:
737
145
        case AV_CODEC_ID_ADPCM_IMA_ISS:     header_size = 4 * ch;      break;
738
161
        case AV_CODEC_ID_ADPCM_IMA_AMV:     header_size = 8;           break;
739
350
        case AV_CODEC_ID_ADPCM_IMA_SMJPEG:  header_size = 4 * ch;      break;
740
    }
741
8662
    if (header_size > 0)
742
656
        return (buf_size - header_size) * 2 / ch;
743
744
    /* more complex formats */
745




8006
    switch (avctx->codec->id) {
746
158
    case AV_CODEC_ID_ADPCM_EA:
747
158
        has_coded_samples = 1;
748
158
        *coded_samples  = bytestream2_get_le32(gb);
749
158
        *coded_samples -= *coded_samples % 28;
750
158
        nb_samples      = (buf_size - 12) / 30 * 28;
751
158
        break;
752
47
    case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
753
47
        has_coded_samples = 1;
754
47
        *coded_samples = bytestream2_get_le32(gb);
755
47
        nb_samples     = (buf_size - (4 + 8 * ch)) * 2 / ch;
756
47
        break;
757
30
    case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
758
30
        nb_samples = (buf_size - ch) / ch * 2;
759
30
        break;
760
400
    case AV_CODEC_ID_ADPCM_EA_R1:
761
    case AV_CODEC_ID_ADPCM_EA_R2:
762
    case AV_CODEC_ID_ADPCM_EA_R3:
763
        /* maximum number of samples */
764
        /* has internal offsets and a per-frame switch to signal raw 16-bit */
765
400
        has_coded_samples = 1;
766

400
        switch (avctx->codec->id) {
767
95
        case AV_CODEC_ID_ADPCM_EA_R1:
768
95
            header_size    = 4 + 9 * ch;
769
95
            *coded_samples = bytestream2_get_le32(gb);
770
95
            break;
771
180
        case AV_CODEC_ID_ADPCM_EA_R2:
772
180
            header_size    = 4 + 5 * ch;
773
180
            *coded_samples = bytestream2_get_le32(gb);
774
180
            break;
775
125
        case AV_CODEC_ID_ADPCM_EA_R3:
776
125
            header_size    = 4 + 5 * ch;
777
125
            *coded_samples = bytestream2_get_be32(gb);
778
125
            break;
779
        }
780
400
        *coded_samples -= *coded_samples % 28;
781
400
        nb_samples      = (buf_size - header_size) * 2 / ch;
782
400
        nb_samples     -= nb_samples % 28;
783
400
        *approx_nb_samples = 1;
784
400
        break;
785
642
    case AV_CODEC_ID_ADPCM_IMA_DK3:
786
642
        if (avctx->block_align > 0)
787
642
            buf_size = FFMIN(buf_size, avctx->block_align);
788
642
        nb_samples = ((buf_size - 16) * 2 / 3 * 4) / ch;
789
642
        break;
790
649
    case AV_CODEC_ID_ADPCM_IMA_DK4:
791
649
        if (avctx->block_align > 0)
792
649
            buf_size = FFMIN(buf_size, avctx->block_align);
793
649
        if (buf_size < 4 * ch)
794
            return AVERROR_INVALIDDATA;
795
649
        nb_samples = 1 + (buf_size - 4 * ch) * 2 / ch;
796
649
        break;
797
1000
    case AV_CODEC_ID_ADPCM_IMA_RAD:
798
1000
        if (avctx->block_align > 0)
799
1000
            buf_size = FFMIN(buf_size, avctx->block_align);
800
1000
        nb_samples = (buf_size - 4 * ch) * 2 / ch;
801
1000
        break;
802
1668
    case AV_CODEC_ID_ADPCM_IMA_WAV:
803
    {
804
1668
        int bsize = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
805
1668
        int bsamples = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
806
1668
        if (avctx->block_align > 0)
807
1668
            buf_size = FFMIN(buf_size, avctx->block_align);
808
1668
        if (buf_size < 4 * ch)
809
            return AVERROR_INVALIDDATA;
810
1668
        nb_samples = 1 + (buf_size - 4 * ch) / (bsize * ch) * bsamples;
811
1668
        break;
812
    }
813
2943
    case AV_CODEC_ID_ADPCM_MS:
814
2943
        if (avctx->block_align > 0)
815
2943
            buf_size = FFMIN(buf_size, avctx->block_align);
816
2943
        nb_samples = (buf_size - 6 * ch) * 2 / ch;
817
2943
        break;
818
    case AV_CODEC_ID_ADPCM_MTAF:
819
        if (avctx->block_align > 0)
820
            buf_size = FFMIN(buf_size, avctx->block_align);
821
        nb_samples = (buf_size - 16 * (ch / 2)) * 2 / ch;
822
        break;
823
57
    case AV_CODEC_ID_ADPCM_SBPRO_2:
824
    case AV_CODEC_ID_ADPCM_SBPRO_3:
825
    case AV_CODEC_ID_ADPCM_SBPRO_4:
826
    {
827
        int samples_per_byte;
828

57
        switch (avctx->codec->id) {
829
13
        case AV_CODEC_ID_ADPCM_SBPRO_2: samples_per_byte = 4; break;
830
18
        case AV_CODEC_ID_ADPCM_SBPRO_3: samples_per_byte = 3; break;
831
26
        case AV_CODEC_ID_ADPCM_SBPRO_4: samples_per_byte = 2; break;
832
        }
833
57
        if (!s->status[0].step_index) {
834
3
            if (buf_size < ch)
835
                return AVERROR_INVALIDDATA;
836
3
            nb_samples++;
837
3
            buf_size -= ch;
838
        }
839
57
        nb_samples += buf_size * samples_per_byte / ch;
840
57
        break;
841
    }
842
260
    case AV_CODEC_ID_ADPCM_SWF:
843
    {
844
260
        int buf_bits       = buf_size * 8 - 2;
845
260
        int nbits          = (bytestream2_get_byte(gb) >> 6) + 2;
846
260
        int block_hdr_size = 22 * ch;
847
260
        int block_size     = block_hdr_size + nbits * ch * 4095;
848
260
        int nblocks        = buf_bits / block_size;
849
260
        int bits_left      = buf_bits - nblocks * block_size;
850
260
        nb_samples         = nblocks * 4096;
851
260
        if (bits_left >= block_hdr_size)
852
260
            nb_samples += 1 + (bits_left - block_hdr_size) / (nbits * ch);
853
260
        break;
854
    }
855
71
    case AV_CODEC_ID_ADPCM_THP:
856
    case AV_CODEC_ID_ADPCM_THP_LE:
857
71
        if (avctx->extradata) {
858
            nb_samples = buf_size * 14 / (8 * ch);
859
            break;
860
        }
861
71
        has_coded_samples = 1;
862
71
        bytestream2_skip(gb, 4); // channel size
863
142
        *coded_samples  = (avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE) ?
864
142
                          bytestream2_get_le32(gb) :
865
71
                          bytestream2_get_be32(gb);
866
71
        buf_size       -= 8 + 36 * ch;
867
71
        buf_size       /= ch;
868
71
        nb_samples      = buf_size / 8 * 14;
869
71
        if (buf_size % 8 > 1)
870
            nb_samples     += (buf_size % 8 - 1) * 2;
871
71
        *approx_nb_samples = 1;
872
71
        break;
873
12
    case AV_CODEC_ID_ADPCM_AFC:
874
12
        nb_samples = buf_size / (9 * ch) * 16;
875
12
        break;
876
37
    case AV_CODEC_ID_ADPCM_XA:
877
37
        nb_samples = (buf_size / 128) * 224 / ch;
878
37
        break;
879
32
    case AV_CODEC_ID_ADPCM_DTK:
880
    case AV_CODEC_ID_ADPCM_PSX:
881
32
        nb_samples = buf_size / (16 * ch) * 28;
882
32
        break;
883
    case AV_CODEC_ID_ADPCM_ZORK:
884
        nb_samples = buf_size / ch;
885
        break;
886
    }
887
888
    /* validate coded sample count */
889

8006
    if (has_coded_samples && (*coded_samples <= 0 || *coded_samples > nb_samples))
890
        return AVERROR_INVALIDDATA;
891
892
8006
    return nb_samples;
893
}
894
895
58159
static int adpcm_decode_frame(AVCodecContext *avctx, void *data,
896
                              int *got_frame_ptr, AVPacket *avpkt)
897
{
898
58159
    AVFrame *frame     = data;
899
58159
    const uint8_t *buf = avpkt->data;
900
58159
    int buf_size = avpkt->size;
901
58159
    ADPCMDecodeContext *c = avctx->priv_data;
902
    ADPCMChannelStatus *cs;
903
    int n, m, channel, i;
904
    int16_t *samples;
905
    int16_t **samples_p;
906
    int st; /* stereo */
907
    int count1, count2;
908
    int nb_samples, coded_samples, approx_nb_samples, ret;
909
    GetByteContext gb;
910
911
58159
    bytestream2_init(&gb, buf, buf_size);
912
58159
    nb_samples = get_nb_samples(avctx, &gb, buf_size, &coded_samples, &approx_nb_samples);
913
58159
    if (nb_samples <= 0) {
914
        av_log(avctx, AV_LOG_ERROR, "invalid number of samples in packet\n");
915
        return AVERROR_INVALIDDATA;
916
    }
917
918
    /* get output buffer */
919
58159
    frame->nb_samples = nb_samples;
920
58159
    if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
921
        return ret;
922
58159
    samples = (int16_t *)frame->data[0];
923
58159
    samples_p = (int16_t **)frame->extended_data;
924
925
    /* use coded_samples when applicable */
926
    /* it is always <= nb_samples, so the output buffer will be large enough */
927
58159
    if (coded_samples) {
928

676
        if (!approx_nb_samples && coded_samples != nb_samples)
929
            av_log(avctx, AV_LOG_WARNING, "mismatch in coded sample count\n");
930
676
        frame->nb_samples = nb_samples = coded_samples;
931
    }
932
933
58159
    st = avctx->channels == 2 ? 1 : 0;
934
935









58159
    switch(avctx->codec->id) {
936
26342
    case AV_CODEC_ID_ADPCM_IMA_QT:
937
        /* In QuickTime, IMA is encoded by chunks of 34 bytes (=64 samples).
938
           Channel data is interleaved per-chunk. */
939
69990
        for (channel = 0; channel < avctx->channels; channel++) {
940
            int predictor;
941
            int step_index;
942
43648
            cs = &(c->status[channel]);
943
            /* (pppppp) (piiiiiii) */
944
945
            /* Bits 15-7 are the _top_ 9 bits of the 16-bit initial predictor value */
946
43648
            predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
947
43648
            step_index = predictor & 0x7F;
948
43648
            predictor &= ~0x7F;
949
950
43648
            if (cs->step_index == step_index) {
951
43648
                int diff = predictor - cs->predictor;
952
43648
                if (diff < 0)
953
39464
                    diff = - diff;
954
43648
                if (diff > 0x7f)
955
30
                    goto update;
956
            } else {
957
            update:
958
30
                cs->step_index = step_index;
959
30
                cs->predictor = predictor;
960
            }
961
962
43648
            if (cs->step_index > 88u){
963
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
964
                       channel, cs->step_index);
965
                return AVERROR_INVALIDDATA;
966
            }
967
968
43648
            samples = samples_p[channel];
969
970
1440384
            for (m = 0; m < 64; m += 2) {
971
1396736
                int byte = bytestream2_get_byteu(&gb);
972
1396736
                samples[m    ] = adpcm_ima_qt_expand_nibble(cs, byte & 0x0F, 3);
973
1396736
                samples[m + 1] = adpcm_ima_qt_expand_nibble(cs, byte >> 4  , 3);
974
            }
975
        }
976
26342
        break;
977
1668
    case AV_CODEC_ID_ADPCM_IMA_WAV:
978
5004
        for(i=0; i<avctx->channels; i++){
979
3336
            cs = &(c->status[i]);
980
3336
            cs->predictor = samples_p[i][0] = sign_extend(bytestream2_get_le16u(&gb), 16);
981
982
3336
            cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
983
3336
            if (cs->step_index > 88u){
984
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
985
                       i, cs->step_index);
986
                return AVERROR_INVALIDDATA;
987
            }
988
        }
989
990
1668
        if (avctx->bits_per_coded_sample != 4) {
991
            int samples_per_block = ff_adpcm_ima_block_samples[avctx->bits_per_coded_sample - 2];
992
            int block_size = ff_adpcm_ima_block_sizes[avctx->bits_per_coded_sample - 2];
993
            uint8_t temp[20 + AV_INPUT_BUFFER_PADDING_SIZE] = { 0 };
994
            GetBitContext g;
995
996
            for (n = 0; n < (nb_samples - 1) / samples_per_block; n++) {
997
                for (i = 0; i < avctx->channels; i++) {
998
                    int j;
999
1000
                    cs = &c->status[i];
1001
                    samples = &samples_p[i][1 + n * samples_per_block];
1002
                    for (j = 0; j < block_size; j++) {
1003
                        temp[j] = buf[4 * avctx->channels + block_size * n * avctx->channels +
1004
                                        (j % 4) + (j / 4) * (avctx->channels * 4) + i * 4];
1005
                    }
1006
                    ret = init_get_bits8(&g, (const uint8_t *)&temp, block_size);
1007
                    if (ret < 0)
1008
                        return ret;
1009
                    for (m = 0; m < samples_per_block; m++) {
1010
                        samples[m] = adpcm_ima_wav_expand_nibble(cs, &g,
1011
                                          avctx->bits_per_coded_sample);
1012
                    }
1013
                }
1014
            }
1015
            bytestream2_skip(&gb, avctx->block_align - avctx->channels * 4);
1016
        } else {
1017
140160
        for (n = 0; n < (nb_samples - 1) / 8; n++) {
1018
415476
            for (i = 0; i < avctx->channels; i++) {
1019
276984
                cs = &c->status[i];
1020
276984
                samples = &samples_p[i][1 + n * 8];
1021
1384920
                for (m = 0; m < 8; m += 2) {
1022
1107936
                    int v = bytestream2_get_byteu(&gb);
1023
1107936
                    samples[m    ] = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
1024
1107936
                    samples[m + 1] = adpcm_ima_expand_nibble(cs, v >> 4  , 3);
1025
                }
1026
            }
1027
        }
1028
        }
1029
1668
        break;
1030
26
    case AV_CODEC_ID_ADPCM_4XM:
1031
78
        for (i = 0; i < avctx->channels; i++)
1032
52
            c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1033
1034
78
        for (i = 0; i < avctx->channels; i++) {
1035
52
            c->status[i].step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1036
52
            if (c->status[i].step_index > 88u) {
1037
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1038
                       i, c->status[i].step_index);
1039
                return AVERROR_INVALIDDATA;
1040
            }
1041
        }
1042
1043
78
        for (i = 0; i < avctx->channels; i++) {
1044
52
            samples = (int16_t *)frame->data[i];
1045
52
            cs = &c->status[i];
1046
38276
            for (n = nb_samples >> 1; n > 0; n--) {
1047
38224
                int v = bytestream2_get_byteu(&gb);
1048
38224
                *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 4);
1049
38224
                *samples++ = adpcm_ima_expand_nibble(cs, v >> 4  , 4);
1050
            }
1051
        }
1052
26
        break;
1053
    case AV_CODEC_ID_ADPCM_AGM:
1054
        for (i = 0; i < avctx->channels; i++)
1055
            c->status[i].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1056
        for (i = 0; i < avctx->channels; i++)
1057
            c->status[i].step = sign_extend(bytestream2_get_le16u(&gb), 16);
1058
1059
        for (n = 0; n < nb_samples >> (1 - st); n++) {
1060
            int v = bytestream2_get_byteu(&gb);
1061
            *samples++ = adpcm_agm_expand_nibble(&c->status[0], v & 0xF);
1062
            *samples++ = adpcm_agm_expand_nibble(&c->status[st], v >> 4 );
1063
        }
1064
        break;
1065
2943
    case AV_CODEC_ID_ADPCM_MS:
1066
    {
1067
        int block_predictor;
1068
1069
2943
        if (avctx->channels > 2) {
1070
            for (channel = 0; channel < avctx->channels; channel++) {
1071
                samples = samples_p[channel];
1072
                block_predictor = bytestream2_get_byteu(&gb);
1073
                if (block_predictor > 6) {
1074
                    av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[%d] = %d\n",
1075
                           channel, block_predictor);
1076
                    return AVERROR_INVALIDDATA;
1077
                }
1078
                c->status[channel].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
1079
                c->status[channel].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
1080
                c->status[channel].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
1081
                c->status[channel].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
1082
                c->status[channel].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
1083
                *samples++ = c->status[channel].sample2;
1084
                *samples++ = c->status[channel].sample1;
1085
                for(n = (nb_samples - 2) >> 1; n > 0; n--) {
1086
                    int byte = bytestream2_get_byteu(&gb);
1087
                    *samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte >> 4  );
1088
                    *samples++ = adpcm_ms_expand_nibble(&c->status[channel], byte & 0x0F);
1089
                }
1090
            }
1091
        } else {
1092
2943
            block_predictor = bytestream2_get_byteu(&gb);
1093
2943
            if (block_predictor > 6) {
1094
                av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[0] = %d\n",
1095
                       block_predictor);
1096
                return AVERROR_INVALIDDATA;
1097
            }
1098
2943
            c->status[0].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
1099
2943
            c->status[0].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
1100
2943
            if (st) {
1101
2895
                block_predictor = bytestream2_get_byteu(&gb);
1102
2895
                if (block_predictor > 6) {
1103
                    av_log(avctx, AV_LOG_ERROR, "ERROR: block_predictor[1] = %d\n",
1104
                           block_predictor);
1105
                    return AVERROR_INVALIDDATA;
1106
                }
1107
2895
                c->status[1].coeff1 = ff_adpcm_AdaptCoeff1[block_predictor];
1108
2895
                c->status[1].coeff2 = ff_adpcm_AdaptCoeff2[block_predictor];
1109
            }
1110
2943
            c->status[0].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
1111
2943
            if (st){
1112
2895
                c->status[1].idelta = sign_extend(bytestream2_get_le16u(&gb), 16);
1113
            }
1114
1115
2943
            c->status[0].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
1116
2943
            if (st) c->status[1].sample1 = sign_extend(bytestream2_get_le16u(&gb), 16);
1117
2943
            c->status[0].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
1118
2943
            if (st) c->status[1].sample2 = sign_extend(bytestream2_get_le16u(&gb), 16);
1119
1120
2943
            *samples++ = c->status[0].sample2;
1121
2943
            if (st) *samples++ = c->status[1].sample2;
1122
2943
            *samples++ = c->status[0].sample1;
1123
2943
            if (st) *samples++ = c->status[1].sample1;
1124
1117917
            for(n = (nb_samples - 2) >> (1 - st); n > 0; n--) {
1125
1114974
                int byte = bytestream2_get_byteu(&gb);
1126
1114974
                *samples++ = adpcm_ms_expand_nibble(&c->status[0 ], byte >> 4  );
1127
1114974
                *samples++ = adpcm_ms_expand_nibble(&c->status[st], byte & 0x0F);
1128
            }
1129
        }
1130
2943
        break;
1131
    }
1132
    case AV_CODEC_ID_ADPCM_MTAF:
1133
        for (channel = 0; channel < avctx->channels; channel+=2) {
1134
            bytestream2_skipu(&gb, 4);
1135
            c->status[channel    ].step      = bytestream2_get_le16u(&gb) & 0x1f;
1136
            c->status[channel + 1].step      = bytestream2_get_le16u(&gb) & 0x1f;
1137
            c->status[channel    ].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1138
            bytestream2_skipu(&gb, 2);
1139
            c->status[channel + 1].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1140
            bytestream2_skipu(&gb, 2);
1141
            for (n = 0; n < nb_samples; n+=2) {
1142
                int v = bytestream2_get_byteu(&gb);
1143
                samples_p[channel][n    ] = adpcm_mtaf_expand_nibble(&c->status[channel], v & 0x0F);
1144
                samples_p[channel][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel], v >> 4  );
1145
            }
1146
            for (n = 0; n < nb_samples; n+=2) {
1147
                int v = bytestream2_get_byteu(&gb);
1148
                samples_p[channel + 1][n    ] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v & 0x0F);
1149
                samples_p[channel + 1][n + 1] = adpcm_mtaf_expand_nibble(&c->status[channel + 1], v >> 4  );
1150
            }
1151
        }
1152
        break;
1153
649
    case AV_CODEC_ID_ADPCM_IMA_DK4:
1154
1947
        for (channel = 0; channel < avctx->channels; channel++) {
1155
1298
            cs = &c->status[channel];
1156
1298
            cs->predictor  = *samples++ = sign_extend(bytestream2_get_le16u(&gb), 16);
1157
1298
            cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1158
1298
            if (cs->step_index > 88u){
1159
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1160
                       channel, cs->step_index);
1161
                return AVERROR_INVALIDDATA;
1162
            }
1163
        }
1164
1324609
        for (n = (nb_samples - 1) >> (1 - st); n > 0; n--) {
1165
1323960
            int v = bytestream2_get_byteu(&gb);
1166
1323960
            *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v >> 4  , 3);
1167
1323960
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1168
        }
1169
649
        break;
1170
642
    case AV_CODEC_ID_ADPCM_IMA_DK3:
1171
    {
1172
642
        int last_byte = 0;
1173
        int nibble;
1174
642
        int decode_top_nibble_next = 0;
1175
        int diff_channel;
1176
642
        const int16_t *samples_end = samples + avctx->channels * nb_samples;
1177
1178
642
        bytestream2_skipu(&gb, 10);
1179
642
        c->status[0].predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1180
642
        c->status[1].predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1181
642
        c->status[0].step_index = bytestream2_get_byteu(&gb);
1182
642
        c->status[1].step_index = bytestream2_get_byteu(&gb);
1183

642
        if (c->status[0].step_index > 88u || c->status[1].step_index > 88u){
1184
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i/%i\n",
1185
                   c->status[0].step_index, c->status[1].step_index);
1186
            return AVERROR_INVALIDDATA;
1187
        }
1188
        /* sign extend the predictors */
1189
642
        diff_channel = c->status[1].predictor;
1190
1191
        /* DK3 ADPCM support macro */
1192
#define DK3_GET_NEXT_NIBBLE() \
1193
    if (decode_top_nibble_next) { \
1194
        nibble = last_byte >> 4; \
1195
        decode_top_nibble_next = 0; \
1196
    } else { \
1197
        last_byte = bytestream2_get_byteu(&gb); \
1198
        nibble = last_byte & 0x0F; \
1199
        decode_top_nibble_next = 1; \
1200
    }
1201
1202
869910
        while (samples < samples_end) {
1203
1204
            /* for this algorithm, c->status[0] is the sum channel and
1205
             * c->status[1] is the diff channel */
1206
1207
            /* process the first predictor of the sum channel */
1208
869268
            DK3_GET_NEXT_NIBBLE();
1209
869268
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1210
1211
            /* process the diff channel predictor */
1212
869268
            DK3_GET_NEXT_NIBBLE();
1213
869268
            adpcm_ima_expand_nibble(&c->status[1], nibble, 3);
1214
1215
            /* process the first pair of stereo PCM samples */
1216
869268
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1217
869268
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1218
869268
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1219
1220
            /* process the second predictor of the sum channel */
1221
869268
            DK3_GET_NEXT_NIBBLE();
1222
869268
            adpcm_ima_expand_nibble(&c->status[0], nibble, 3);
1223
1224
            /* process the second pair of stereo PCM samples */
1225
869268
            diff_channel = (diff_channel + c->status[1].predictor) / 2;
1226
869268
            *samples++ = c->status[0].predictor + c->status[1].predictor;
1227
869268
            *samples++ = c->status[0].predictor - c->status[1].predictor;
1228
        }
1229
1230
642
        if ((bytestream2_tell(&gb) & 1))
1231
642
            bytestream2_skip(&gb, 1);
1232
642
        break;
1233
    }
1234
119
    case AV_CODEC_ID_ADPCM_IMA_ISS:
1235
238
        for (channel = 0; channel < avctx->channels; channel++) {
1236
119
            cs = &c->status[channel];
1237
119
            cs->predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1238
119
            cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1239
119
            if (cs->step_index > 88u){
1240
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1241
                       channel, cs->step_index);
1242
                return AVERROR_INVALIDDATA;
1243
            }
1244
        }
1245
1246
60571
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1247
            int v1, v2;
1248
60452
            int v = bytestream2_get_byteu(&gb);
1249
            /* nibbles are swapped for mono */
1250
60452
            if (st) {
1251
                v1 = v >> 4;
1252
                v2 = v & 0x0F;
1253
            } else {
1254
60452
                v2 = v >> 4;
1255
60452
                v1 = v & 0x0F;
1256
            }
1257
60452
            *samples++ = adpcm_ima_expand_nibble(&c->status[0 ], v1, 3);
1258
60452
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], v2, 3);
1259
        }
1260
119
        break;
1261
    case AV_CODEC_ID_ADPCM_IMA_DAT4:
1262
        for (channel = 0; channel < avctx->channels; channel++) {
1263
            cs = &c->status[channel];
1264
            samples = samples_p[channel];
1265
            bytestream2_skip(&gb, 4);
1266
            for (n = 0; n < nb_samples; n += 2) {
1267
                int v = bytestream2_get_byteu(&gb);
1268
                *samples++ = adpcm_ima_expand_nibble(cs, v >> 4  , 3);
1269
                *samples++ = adpcm_ima_expand_nibble(cs, v & 0x0F, 3);
1270
            }
1271
        }
1272
        break;
1273
179
    case AV_CODEC_ID_ADPCM_IMA_APC:
1274
732239
        while (bytestream2_get_bytes_left(&gb) > 0) {
1275
732060
            int v = bytestream2_get_byteu(&gb);
1276
732060
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  v >> 4  , 3);
1277
732060
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], v & 0x0F, 3);
1278
        }
1279
179
        break;
1280
62
    case AV_CODEC_ID_ADPCM_IMA_SSI:
1281
250062
        while (bytestream2_get_bytes_left(&gb) > 0) {
1282
250000
            int v = bytestream2_get_byteu(&gb);
1283
250000
            *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0],  v >> 4  , 3);
1284
250000
            *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0x0F, 3);
1285
        }
1286
62
        break;
1287
22
    case AV_CODEC_ID_ADPCM_IMA_APM:
1288
49552
        for (n = nb_samples / 2; n > 0; n--) {
1289
132039
            for (channel = 0; channel < avctx->channels; channel++) {
1290
82509
                int v = bytestream2_get_byteu(&gb);
1291
82509
                *samples++  = adpcm_ima_qt_expand_nibble(&c->status[channel], v >> 4  , 3);
1292
82509
                samples[st] = adpcm_ima_qt_expand_nibble(&c->status[channel], v & 0x0F, 3);
1293
            }
1294
49530
            samples += avctx->channels;
1295
        }
1296
22
        break;
1297
20
    case AV_CODEC_ID_ADPCM_IMA_ALP:
1298
40092
        for (n = nb_samples / 2; n > 0; n--) {
1299
115144
            for (channel = 0; channel < avctx->channels; channel++) {
1300
75072
                int v = bytestream2_get_byteu(&gb);
1301
75072
                *samples++  = adpcm_ima_alp_expand_nibble(&c->status[channel], v >> 4  , 2);
1302
75072
                samples[st] = adpcm_ima_alp_expand_nibble(&c->status[channel], v & 0x0F, 2);
1303
            }
1304
40072
            samples += avctx->channels;
1305
        }
1306
20
        break;
1307
7
    case AV_CODEC_ID_ADPCM_IMA_OKI:
1308
27569
        while (bytestream2_get_bytes_left(&gb) > 0) {
1309
27562
            int v = bytestream2_get_byteu(&gb);
1310
27562
            *samples++ = adpcm_ima_oki_expand_nibble(&c->status[0],  v >> 4  );
1311
27562
            *samples++ = adpcm_ima_oki_expand_nibble(&c->status[st], v & 0x0F);
1312
        }
1313
7
        break;
1314
1000
    case AV_CODEC_ID_ADPCM_IMA_RAD:
1315
3000
        for (channel = 0; channel < avctx->channels; channel++) {
1316
2000
            cs = &c->status[channel];
1317
2000
            cs->step_index = sign_extend(bytestream2_get_le16u(&gb), 16);
1318
2000
            cs->predictor  = sign_extend(bytestream2_get_le16u(&gb), 16);
1319
2000
            if (cs->step_index > 88u){
1320
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1321
                       channel, cs->step_index);
1322
                return AVERROR_INVALIDDATA;
1323
            }
1324
        }
1325
17000
        for (n = 0; n < nb_samples / 2; n++) {
1326
            int byte[2];
1327
1328
16000
            byte[0] = bytestream2_get_byteu(&gb);
1329
16000
            if (st)
1330
16000
                byte[1] = bytestream2_get_byteu(&gb);
1331
48000
            for(channel = 0; channel < avctx->channels; channel++) {
1332
32000
                *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] & 0x0F, 3);
1333
            }
1334
48000
            for(channel = 0; channel < avctx->channels; channel++) {
1335
32000
                *samples++ = adpcm_ima_expand_nibble(&c->status[channel], byte[channel] >> 4  , 3);
1336
            }
1337
        }
1338
1000
        break;
1339
40
    case AV_CODEC_ID_ADPCM_IMA_WS:
1340
40
        if (c->vqa_version == 3) {
1341
            for (channel = 0; channel < avctx->channels; channel++) {
1342
                int16_t *smp = samples_p[channel];
1343
1344
                for (n = nb_samples / 2; n > 0; n--) {
1345
                    int v = bytestream2_get_byteu(&gb);
1346
                    *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v >> 4  , 3);
1347
                    *smp++ = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1348
                }
1349
            }
1350
        } else {
1351
34217
            for (n = nb_samples / 2; n > 0; n--) {
1352
68354
                for (channel = 0; channel < avctx->channels; channel++) {
1353
34177
                    int v = bytestream2_get_byteu(&gb);
1354
34177
                    *samples++  = adpcm_ima_expand_nibble(&c->status[channel], v >> 4  , 3);
1355
34177
                    samples[st] = adpcm_ima_expand_nibble(&c->status[channel], v & 0x0F, 3);
1356
                }
1357
34177
                samples += avctx->channels;
1358
            }
1359
        }
1360
40
        bytestream2_seek(&gb, 0, SEEK_END);
1361
40
        break;
1362
37
    case AV_CODEC_ID_ADPCM_XA:
1363
    {
1364
37
        int16_t *out0 = samples_p[0];
1365
37
        int16_t *out1 = samples_p[1];
1366
37
        int samples_per_block = 28 * (3 - avctx->channels) * 4;
1367
37
        int sample_offset = 0;
1368
        int bytes_remaining;
1369
703
        while (bytestream2_get_bytes_left(&gb) >= 128) {
1370
666
            if ((ret = xa_decode(avctx, out0, out1, buf + bytestream2_tell(&gb),
1371
                                 &c->status[0], &c->status[1],
1372
                                 avctx->channels, sample_offset)) < 0)
1373
                return ret;
1374
666
            bytestream2_skipu(&gb, 128);
1375
666
            sample_offset += samples_per_block;
1376
        }
1377
        /* Less than a full block of data left, e.g. when reading from
1378
         * 2324 byte per sector XA; the remainder is padding */
1379
37
        bytes_remaining = bytestream2_get_bytes_left(&gb);
1380
37
        if (bytes_remaining > 0) {
1381
            bytestream2_skip(&gb, bytes_remaining);
1382
        }
1383
37
        break;
1384
    }
1385
47
    case AV_CODEC_ID_ADPCM_IMA_EA_EACS:
1386
141
        for (i=0; i<=st; i++) {
1387
94
            c->status[i].step_index = bytestream2_get_le32u(&gb);
1388
94
            if (c->status[i].step_index > 88u) {
1389
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index[%d] = %i\n",
1390
                       i, c->status[i].step_index);
1391
                return AVERROR_INVALIDDATA;
1392
            }
1393
        }
1394
141
        for (i=0; i<=st; i++) {
1395
94
            c->status[i].predictor  = bytestream2_get_le32u(&gb);
1396
94
            if (FFABS((int64_t)c->status[i].predictor) > (1<<16))
1397
                return AVERROR_INVALIDDATA;
1398
        }
1399
1400
69043
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1401
68996
            int byte   = bytestream2_get_byteu(&gb);
1402
68996
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  byte >> 4,   3);
1403
68996
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 3);
1404
        }
1405
47
        break;
1406
49
    case AV_CODEC_ID_ADPCM_IMA_EA_SEAD:
1407
71441
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1408
71392
            int byte = bytestream2_get_byteu(&gb);
1409
71392
            *samples++ = adpcm_ima_expand_nibble(&c->status[0],  byte >> 4,   6);
1410
71392
            *samples++ = adpcm_ima_expand_nibble(&c->status[st], byte & 0x0F, 6);
1411
        }
1412
49
        break;
1413
158
    case AV_CODEC_ID_ADPCM_EA:
1414
    {
1415
        int previous_left_sample, previous_right_sample;
1416
        int current_left_sample, current_right_sample;
1417
        int next_left_sample, next_right_sample;
1418
        int coeff1l, coeff2l, coeff1r, coeff2r;
1419
        int shift_left, shift_right;
1420
1421
        /* Each EA ADPCM frame has a 12-byte header followed by 30-byte pieces,
1422
           each coding 28 stereo samples. */
1423
1424
158
        if(avctx->channels != 2)
1425
            return AVERROR_INVALIDDATA;
1426
1427
158
        current_left_sample   = sign_extend(bytestream2_get_le16u(&gb), 16);
1428
158
        previous_left_sample  = sign_extend(bytestream2_get_le16u(&gb), 16);
1429
158
        current_right_sample  = sign_extend(bytestream2_get_le16u(&gb), 16);
1430
158
        previous_right_sample = sign_extend(bytestream2_get_le16u(&gb), 16);
1431
1432
8454
        for (count1 = 0; count1 < nb_samples / 28; count1++) {
1433
8296
            int byte = bytestream2_get_byteu(&gb);
1434
8296
            coeff1l = ea_adpcm_table[ byte >> 4       ];
1435
8296
            coeff2l = ea_adpcm_table[(byte >> 4  ) + 4];
1436
8296
            coeff1r = ea_adpcm_table[ byte & 0x0F];
1437
8296
            coeff2r = ea_adpcm_table[(byte & 0x0F) + 4];
1438
1439
8296
            byte = bytestream2_get_byteu(&gb);
1440
8296
            shift_left  = 20 - (byte >> 4);
1441
8296
            shift_right = 20 - (byte & 0x0F);
1442
1443
240584
            for (count2 = 0; count2 < 28; count2++) {
1444
232288
                byte = bytestream2_get_byteu(&gb);
1445
232288
                next_left_sample  = sign_extend(byte >> 4, 4) * (1 << shift_left);
1446
232288
                next_right_sample = sign_extend(byte,      4) * (1 << shift_right);
1447
1448
232288
                next_left_sample = (next_left_sample +
1449
232288
                    (current_left_sample * coeff1l) +
1450
232288
                    (previous_left_sample * coeff2l) + 0x80) >> 8;
1451
232288
                next_right_sample = (next_right_sample +
1452
232288
                    (current_right_sample * coeff1r) +
1453
232288
                    (previous_right_sample * coeff2r) + 0x80) >> 8;
1454
1455
232288
                previous_left_sample = current_left_sample;
1456
232288
                current_left_sample = av_clip_int16(next_left_sample);
1457
232288
                previous_right_sample = current_right_sample;
1458
232288
                current_right_sample = av_clip_int16(next_right_sample);
1459
232288
                *samples++ = current_left_sample;
1460
232288
                *samples++ = current_right_sample;
1461
            }
1462
        }
1463
1464
158
        bytestream2_skip(&gb, 2); // Skip terminating 0x0000
1465
1466
158
        break;
1467
    }
1468
30
    case AV_CODEC_ID_ADPCM_EA_MAXIS_XA:
1469
    {
1470
        int coeff[2][2], shift[2];
1471
1472
90
        for(channel = 0; channel < avctx->channels; channel++) {
1473
60
            int byte = bytestream2_get_byteu(&gb);
1474
180
            for (i=0; i<2; i++)
1475
120
                coeff[channel][i] = ea_adpcm_table[(byte >> 4) + 4*i];
1476
60
            shift[channel] = 20 - (byte & 0x0F);
1477
        }
1478
450
        for (count1 = 0; count1 < nb_samples / 2; count1++) {
1479
            int byte[2];
1480
1481
420
            byte[0] = bytestream2_get_byteu(&gb);
1482
420
            if (st) byte[1] = bytestream2_get_byteu(&gb);
1483
1260
            for(i = 4; i >= 0; i-=4) { /* Pairwise samples LL RR (st) or LL LL (mono) */
1484
2520
                for(channel = 0; channel < avctx->channels; channel++) {
1485
1680
                    int sample = sign_extend(byte[channel] >> i, 4) * (1 << shift[channel]);
1486
1680
                    sample = (sample +
1487
1680
                             c->status[channel].sample1 * coeff[channel][0] +
1488
1680
                             c->status[channel].sample2 * coeff[channel][1] + 0x80) >> 8;
1489
1680
                    c->status[channel].sample2 = c->status[channel].sample1;
1490
1680
                    c->status[channel].sample1 = av_clip_int16(sample);
1491
1680
                    *samples++ = c->status[channel].sample1;
1492
                }
1493
            }
1494
        }
1495
30
        bytestream2_seek(&gb, 0, SEEK_END);
1496
30
        break;
1497
    }
1498
400
    case AV_CODEC_ID_ADPCM_EA_R1:
1499
    case AV_CODEC_ID_ADPCM_EA_R2:
1500
    case AV_CODEC_ID_ADPCM_EA_R3: {
1501
        /* channel numbering
1502
           2chan: 0=fl, 1=fr
1503
           4chan: 0=fl, 1=rl, 2=fr, 3=rr
1504
           6chan: 0=fl, 1=c,  2=fr, 3=rl,  4=rr, 5=sub */
1505
400
        const int big_endian = avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R3;
1506
        int previous_sample, current_sample, next_sample;
1507
        int coeff1, coeff2;
1508
        int shift;
1509
        unsigned int channel;
1510
        uint16_t *samplesC;
1511
400
        int count = 0;
1512
        int offsets[6];
1513
1514
1200
        for (channel=0; channel<avctx->channels; channel++)
1515
800
            offsets[channel] = (big_endian ? bytestream2_get_be32(&gb) :
1516
550
                                             bytestream2_get_le32(&gb)) +
1517
800
                               (avctx->channels + 1) * 4;
1518
1519
1200
        for (channel=0; channel<avctx->channels; channel++) {
1520
800
            bytestream2_seek(&gb, offsets[channel], SEEK_SET);
1521
800
            samplesC = samples_p[channel];
1522
1523
800
            if (avctx->codec->id == AV_CODEC_ID_ADPCM_EA_R1) {
1524
190
                current_sample  = sign_extend(bytestream2_get_le16(&gb), 16);
1525
190
                previous_sample = sign_extend(bytestream2_get_le16(&gb), 16);
1526
            } else {
1527
610
                current_sample  = c->status[channel].predictor;
1528
610
                previous_sample = c->status[channel].prev_sample;
1529
            }
1530
1531
41992
            for (count1 = 0; count1 < nb_samples / 28; count1++) {
1532
41192
                int byte = bytestream2_get_byte(&gb);
1533
41192
                if (byte == 0xEE) {  /* only seen in R2 and R3 */
1534
12
                    current_sample  = sign_extend(bytestream2_get_be16(&gb), 16);
1535
12
                    previous_sample = sign_extend(bytestream2_get_be16(&gb), 16);
1536
1537
348
                    for (count2=0; count2<28; count2++)
1538
336
                        *samplesC++ = sign_extend(bytestream2_get_be16(&gb), 16);
1539
                } else {
1540
41180
                    coeff1 = ea_adpcm_table[ byte >> 4     ];
1541
41180
                    coeff2 = ea_adpcm_table[(byte >> 4) + 4];
1542
41180
                    shift = 20 - (byte & 0x0F);
1543
1544
1194220
                    for (count2=0; count2<28; count2++) {
1545
1153040
                        if (count2 & 1)
1546
576520
                            next_sample = (unsigned)sign_extend(byte,    4) << shift;
1547
                        else {
1548
576520
                            byte = bytestream2_get_byte(&gb);
1549
576520
                            next_sample = (unsigned)sign_extend(byte >> 4, 4) << shift;
1550
                        }
1551
1552
1153040
                        next_sample += (current_sample  * coeff1) +
1553
1153040
                                       (previous_sample * coeff2);
1554
1153040
                        next_sample = av_clip_int16(next_sample >> 8);
1555
1556
1153040
                        previous_sample = current_sample;
1557
1153040
                        current_sample  = next_sample;
1558
1153040
                        *samplesC++ = current_sample;
1559
                    }
1560
                }
1561
            }
1562
800
            if (!count) {
1563
400
                count = count1;
1564
400
            } else if (count != count1) {
1565
                av_log(avctx, AV_LOG_WARNING, "per-channel sample count mismatch\n");
1566
                count = FFMAX(count, count1);
1567
            }
1568
1569
800
            if (avctx->codec->id != AV_CODEC_ID_ADPCM_EA_R1) {
1570
610
                c->status[channel].predictor   = current_sample;
1571
610
                c->status[channel].prev_sample = previous_sample;
1572
            }
1573
        }
1574
1575
400
        frame->nb_samples = count * 28;
1576
400
        bytestream2_seek(&gb, 0, SEEK_END);
1577
400
        break;
1578
    }
1579
600
    case AV_CODEC_ID_ADPCM_EA_XAS:
1580
1200
        for (channel=0; channel<avctx->channels; channel++) {
1581
            int coeff[2][4], shift[4];
1582
600
            int16_t *s = samples_p[channel];
1583
3000
            for (n = 0; n < 4; n++, s += 32) {
1584
2400
                int val = sign_extend(bytestream2_get_le16u(&gb), 16);
1585
7200
                for (i=0; i<2; i++)
1586
4800
                    coeff[i][n] = ea_adpcm_table[(val&0x0F)+4*i];
1587
2400
                s[0] = val & ~0x0F;
1588
1589
2400
                val = sign_extend(bytestream2_get_le16u(&gb), 16);
1590
2400
                shift[n] = 20 - (val & 0x0F);
1591
2400
                s[1] = val & ~0x0F;
1592
            }
1593
1594
9600
            for (m=2; m<32; m+=2) {
1595
9000
                s = &samples_p[channel][m];
1596
45000
                for (n = 0; n < 4; n++, s += 32) {
1597
                    int level, pred;
1598
36000
                    int byte = bytestream2_get_byteu(&gb);
1599
1600
36000
                    level = sign_extend(byte >> 4, 4) * (1 << shift[n]);
1601
36000
                    pred  = s[-1] * coeff[0][n] + s[-2] * coeff[1][n];
1602
36000
                    s[0]  = av_clip_int16((level + pred + 0x80) >> 8);
1603
1604
36000
                    level = sign_extend(byte, 4) * (1 << shift[n]);
1605
36000
                    pred  = s[0] * coeff[0][n] + s[-1] * coeff[1][n];
1606
36000
                    s[1]  = av_clip_int16((level + pred + 0x80) >> 8);
1607
                }
1608
            }
1609
        }
1610
600
        break;
1611
161
    case AV_CODEC_ID_ADPCM_IMA_AMV:
1612
161
        c->status[0].predictor = sign_extend(bytestream2_get_le16u(&gb), 16);
1613
161
        c->status[0].step_index = bytestream2_get_byteu(&gb);
1614
161
        bytestream2_skipu(&gb, 5);
1615
161
        if (c->status[0].step_index > 88u) {
1616
            av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1617
                   c->status[0].step_index);
1618
            return AVERROR_INVALIDDATA;
1619
        }
1620
1621
111112
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1622
110951
            int v = bytestream2_get_byteu(&gb);
1623
1624
110951
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], v >> 4, 3);
1625
110951
            *samples++ = adpcm_ima_expand_nibble(&c->status[0], v & 0xf, 3);
1626
        }
1627
161
        break;
1628
350
    case AV_CODEC_ID_ADPCM_IMA_SMJPEG:
1629
700
        for (i = 0; i < avctx->channels; i++) {
1630
350
            c->status[i].predictor = sign_extend(bytestream2_get_be16u(&gb), 16);
1631
350
            c->status[i].step_index = bytestream2_get_byteu(&gb);
1632
350
            bytestream2_skipu(&gb, 1);
1633
350
            if (c->status[i].step_index > 88u) {
1634
                av_log(avctx, AV_LOG_ERROR, "ERROR: step_index = %i\n",
1635
                       c->status[i].step_index);
1636
                return AVERROR_INVALIDDATA;
1637
            }
1638
        }
1639
1640
89950
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1641
89600
            int v = bytestream2_get_byteu(&gb);
1642
1643
89600
            *samples++ = adpcm_ima_qt_expand_nibble(&c->status[0 ], v >> 4, 3);
1644
89600
            *samples++ = adpcm_ima_qt_expand_nibble(&c->status[st], v & 0xf, 3);
1645
        }
1646
350
        break;
1647
64
    case AV_CODEC_ID_ADPCM_CT:
1648
262160
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1649
262096
            int v = bytestream2_get_byteu(&gb);
1650
262096
            *samples++ = adpcm_ct_expand_nibble(&c->status[0 ], v >> 4  );
1651
262096
            *samples++ = adpcm_ct_expand_nibble(&c->status[st], v & 0x0F);
1652
        }
1653
64
        break;
1654
57
    case AV_CODEC_ID_ADPCM_SBPRO_4:
1655
    case AV_CODEC_ID_ADPCM_SBPRO_3:
1656
    case AV_CODEC_ID_ADPCM_SBPRO_2:
1657
57
        if (!c->status[0].step_index) {
1658
            /* the first byte is a raw sample */
1659
3
            *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1660
3
            if (st)
1661
                *samples++ = 128 * (bytestream2_get_byteu(&gb) - 0x80);
1662
3
            c->status[0].step_index = 1;
1663
3
            nb_samples--;
1664
        }
1665
57
        if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_4) {
1666
52256
            for (n = nb_samples >> (1 - st); n > 0; n--) {
1667
52230
                int byte = bytestream2_get_byteu(&gb);
1668
104460
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1669
52230
                                                       byte >> 4,   4, 0);
1670
52230
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1671
52230
                                                       byte & 0x0F, 4, 0);
1672
            }
1673
31
        } else if (avctx->codec->id == AV_CODEC_ID_ADPCM_SBPRO_3) {
1674
34838
            for (n = (nb_samples<<st) / 3; n > 0; n--) {
1675
34820
                int byte = bytestream2_get_byteu(&gb);
1676
69640
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1677
34820
                                                        byte >> 5        , 3, 0);
1678
69640
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1679
34820
                                                       (byte >> 2) & 0x07, 3, 0);
1680
34820
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1681
34820
                                                        byte & 0x03,       2, 0);
1682
            }
1683
        } else {
1684
26128
            for (n = nb_samples >> (2 - st); n > 0; n--) {
1685
26115
                int byte = bytestream2_get_byteu(&gb);
1686
52230
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1687
26115
                                                        byte >> 6        , 2, 2);
1688
52230
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1689
26115
                                                       (byte >> 4) & 0x03, 2, 2);
1690
52230
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[0],
1691
26115
                                                       (byte >> 2) & 0x03, 2, 2);
1692
26115
                *samples++ = adpcm_sbpro_expand_nibble(&c->status[st],
1693
26115
                                                        byte & 0x03,       2, 2);
1694
            }
1695
        }
1696
57
        break;
1697
260
    case AV_CODEC_ID_ADPCM_SWF:
1698
260
        adpcm_swf_decode(avctx, buf, buf_size, samples);
1699
260
        bytestream2_seek(&gb, 0, SEEK_END);
1700
260
        break;
1701
136
    case AV_CODEC_ID_ADPCM_YAMAHA:
1702
553096
        for (n = nb_samples >> (1 - st); n > 0; n--) {
1703
552960
            int v = bytestream2_get_byteu(&gb);
1704
552960
            *samples++ = adpcm_yamaha_expand_nibble(&c->status[0 ], v & 0x0F);
1705
552960
            *samples++ = adpcm_yamaha_expand_nibble(&c->status[st], v >> 4  );
1706
        }
1707
136
        break;
1708
    case AV_CODEC_ID_ADPCM_AICA:
1709
        if (!c->has_status) {
1710
            for (channel = 0; channel < avctx->channels; channel++)
1711
                c->status[channel].step = 0;
1712
            c->has_status = 1;
1713
        }
1714
        for (channel = 0; channel < avctx->channels; channel++) {
1715
            samples = samples_p[channel];
1716
            for (n = nb_samples >> 1; n > 0; n--) {
1717
                int v = bytestream2_get_byteu(&gb);
1718
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v & 0x0F);
1719
                *samples++ = adpcm_yamaha_expand_nibble(&c->status[channel], v >> 4  );
1720
            }
1721
        }
1722
        break;
1723
12
    case AV_CODEC_ID_ADPCM_AFC:
1724
    {
1725
        int samples_per_block;
1726
        int blocks;
1727
1728

12
        if (avctx->extradata && avctx->extradata_size == 1 && avctx->extradata[0]) {
1729
            samples_per_block = avctx->extradata[0] / 16;
1730
            blocks = nb_samples / avctx->extradata[0];
1731
        } else {
1732
12
            samples_per_block = nb_samples / 16;
1733
12
            blocks = 1;
1734
        }
1735
1736
24
        for (m = 0; m < blocks; m++) {
1737
36
        for (channel = 0; channel < avctx->channels; channel++) {
1738
24
            int prev1 = c->status[channel].sample1;
1739
24
            int prev2 = c->status[channel].sample2;
1740
1741
24
            samples = samples_p[channel] + m * 16;
1742
            /* Read in every sample for this channel.  */
1743
26904
            for (i = 0; i < samples_per_block; i++) {
1744
26880
                int byte = bytestream2_get_byteu(&gb);
1745
26880
                int scale = 1 << (byte >> 4);
1746
26880
                int index = byte & 0xf;
1747
26880
                int factor1 = ff_adpcm_afc_coeffs[0][index];
1748
26880
                int factor2 = ff_adpcm_afc_coeffs[1][index];
1749
1750
                /* Decode 16 samples.  */
1751
456960
                for (n = 0; n < 16; n++) {
1752
                    int32_t sampledat;
1753
1754
430080
                    if (n & 1) {
1755
215040
                        sampledat = sign_extend(byte, 4);
1756
                    } else {
1757
215040
                        byte = bytestream2_get_byteu(&gb);
1758
215040
                        sampledat = sign_extend(byte >> 4, 4);
1759
                    }
1760
1761
430080
                    sampledat = ((prev1 * factor1 + prev2 * factor2) >> 11) +
1762
430080
                                sampledat * scale;
1763
430080
                    *samples = av_clip_int16(sampledat);
1764
430080
                    prev2 = prev1;
1765
430080
                    prev1 = *samples++;
1766
                }
1767
            }
1768
1769
24
            c->status[channel].sample1 = prev1;
1770
24
            c->status[channel].sample2 = prev2;
1771
        }
1772
        }
1773
12
        bytestream2_seek(&gb, 0, SEEK_END);
1774
12
        break;
1775
    }
1776
71
    case AV_CODEC_ID_ADPCM_THP:
1777
    case AV_CODEC_ID_ADPCM_THP_LE:
1778
    {
1779
        int table[14][16];
1780
        int ch;
1781
1782
#define THP_GET16(g) \
1783
    sign_extend( \
1784
        avctx->codec->id == AV_CODEC_ID_ADPCM_THP_LE ? \
1785
        bytestream2_get_le16u(&(g)) : \
1786
        bytestream2_get_be16u(&(g)), 16)
1787
1788
71
        if (avctx->extradata) {
1789
            GetByteContext tb;
1790
            if (avctx->extradata_size < 32 * avctx->channels) {
1791
                av_log(avctx, AV_LOG_ERROR, "Missing coeff table\n");
1792
                return AVERROR_INVALIDDATA;
1793
            }
1794
1795
            bytestream2_init(&tb, avctx->extradata, avctx->extradata_size);
1796
            for (i = 0; i < avctx->channels; i++)
1797
                for (n = 0; n < 16; n++)
1798
                    table[i][n] = THP_GET16(tb);
1799
        } else {
1800
213
            for (i = 0; i < avctx->channels; i++)
1801
2414
                for (n = 0; n < 16; n++)
1802
2272
                    table[i][n] = THP_GET16(gb);
1803
1804
71
            if (!c->has_status) {
1805
                /* Initialize the previous sample.  */
1806
3
                for (i = 0; i < avctx->channels; i++) {
1807
2
                    c->status[i].sample1 = THP_GET16(gb);
1808
2
                    c->status[i].sample2 = THP_GET16(gb);
1809
                }
1810
1
                c->has_status = 1;
1811
            } else {
1812
70
                bytestream2_skip(&gb, avctx->channels * 4);
1813
            }
1814
        }
1815
1816
213
        for (ch = 0; ch < avctx->channels; ch++) {
1817
142
            samples = samples_p[ch];
1818
1819
            /* Read in every sample for this channel.  */
1820
10982
            for (i = 0; i < (nb_samples + 13) / 14; i++) {
1821
10840
                int byte = bytestream2_get_byteu(&gb);
1822
10840
                int index = (byte >> 4) & 7;
1823
10840
                unsigned int exp = byte & 0x0F;
1824
10840
                int factor1 = table[ch][index * 2];
1825
10840
                int factor2 = table[ch][index * 2 + 1];
1826
1827
                /* Decode 14 samples.  */
1828

162600
                for (n = 0; n < 14 && (i * 14 + n < nb_samples); n++) {
1829
                    int32_t sampledat;
1830
1831
151760
                    if (n & 1) {
1832
75880
                        sampledat = sign_extend(byte, 4);
1833
                    } else {
1834
75880
                        byte = bytestream2_get_byteu(&gb);
1835
75880
                        sampledat = sign_extend(byte >> 4, 4);
1836
                    }
1837
1838
151760
                    sampledat = ((c->status[ch].sample1 * factor1
1839
151760
                                + c->status[ch].sample2 * factor2) >> 11) + sampledat * (1 << exp);
1840
151760
                    *samples = av_clip_int16(sampledat);
1841
151760
                    c->status[ch].sample2 = c->status[ch].sample1;
1842
151760
                    c->status[ch].sample1 = *samples++;
1843
                }
1844
            }
1845
        }
1846
71
        break;
1847
    }
1848
32
    case AV_CODEC_ID_ADPCM_DTK:
1849
96
        for (channel = 0; channel < avctx->channels; channel++) {
1850
64
            samples = samples_p[channel];
1851
1852
            /* Read in every sample for this channel.  */
1853
2112
            for (i = 0; i < nb_samples / 28; i++) {
1854
                int byte, header;
1855
2048
                if (channel)
1856
1024
                    bytestream2_skipu(&gb, 1);
1857
2048
                header = bytestream2_get_byteu(&gb);
1858
2048
                bytestream2_skipu(&gb, 3 - channel);
1859
1860
                /* Decode 28 samples.  */
1861
59392
                for (n = 0; n < 28; n++) {
1862
                    int32_t sampledat, prev;
1863
1864

57344
                    switch (header >> 4) {
1865
3388
                    case 1:
1866
3388
                        prev = (c->status[channel].sample1 * 0x3c);
1867
3388
                        break;
1868
50876
                    case 2:
1869
50876
                        prev = (c->status[channel].sample1 * 0x73) - (c->status[channel].sample2 * 0x34);
1870
50876
                        break;
1871
2744
                    case 3:
1872
2744
                        prev = (c->status[channel].sample1 * 0x62) - (c->status[channel].sample2 * 0x37);
1873
2744
                        break;
1874
336
                    default:
1875
336
                        prev = 0;
1876
                    }
1877
1878
57344
                    prev = av_clip_intp2((prev + 0x20) >> 6, 21);
1879
1880
57344
                    byte = bytestream2_get_byteu(&gb);
1881
57344
                    if (!channel)
1882
28672
                        sampledat = sign_extend(byte, 4);
1883
                    else
1884
28672
                        sampledat = sign_extend(byte >> 4, 4);
1885
1886
57344
                    sampledat = ((sampledat * (1 << 12)) >> (header & 0xf)) * (1 << 6) + prev;
1887
57344
                    *samples++ = av_clip_int16(sampledat >> 6);
1888
57344
                    c->status[channel].sample2 = c->status[channel].sample1;
1889
57344
                    c->status[channel].sample1 = sampledat;
1890
                }
1891
            }
1892
64
            if (!channel)
1893
32
                bytestream2_seek(&gb, 0, SEEK_SET);
1894
        }
1895
32
        break;
1896
    case AV_CODEC_ID_ADPCM_PSX:
1897
        for (channel = 0; channel < avctx->channels; channel++) {
1898
            samples = samples_p[channel];
1899
1900
            /* Read in every sample for this channel.  */
1901
            for (i = 0; i < nb_samples / 28; i++) {
1902
                int filter, shift, flag, byte;
1903
1904
                filter = bytestream2_get_byteu(&gb);
1905
                shift  = filter & 0xf;
1906
                filter = filter >> 4;
1907
                if (filter >= FF_ARRAY_ELEMS(xa_adpcm_table))
1908
                    return AVERROR_INVALIDDATA;
1909
                flag   = bytestream2_get_byteu(&gb);
1910
1911
                /* Decode 28 samples.  */
1912
                for (n = 0; n < 28; n++) {
1913
                    int sample = 0, scale;
1914
1915
                    if (flag < 0x07) {
1916
                        if (n & 1) {
1917
                            scale = sign_extend(byte >> 4, 4);
1918
                        } else {
1919
                            byte  = bytestream2_get_byteu(&gb);
1920
                            scale = sign_extend(byte, 4);
1921
                        }
1922
1923
                        scale  = scale * (1 << 12);
1924
                        sample = (int)((scale >> shift) + (c->status[channel].sample1 * xa_adpcm_table[filter][0] + c->status[channel].sample2 * xa_adpcm_table[filter][1]) / 64);
1925
                    }
1926
                    *samples++ = av_clip_int16(sample);
1927
                    c->status[channel].sample2 = c->status[channel].sample1;
1928
                    c->status[channel].sample1 = sample;
1929
                }
1930
            }
1931
        }
1932
        break;
1933
21976
    case AV_CODEC_ID_ADPCM_ARGO:
1934
        /*
1935
         * The format of each block:
1936
         *   uint8_t left_control;
1937
         *   uint4_t left_samples[nb_samples];
1938
         *   ---- and if stereo ----
1939
         *   uint8_t right_control;
1940
         *   uint4_t right_samples[nb_samples];
1941
         *
1942
         * Format of the control byte:
1943
         * MSB [SSSSDRRR] LSB
1944
         *   S = (Shift Amount - 2)
1945
         *   D = Decoder flag.
1946
         *   R = Reserved
1947
         *
1948
         * Each block relies on the previous two samples of each channel.
1949
         * They should be 0 initially.
1950
         */
1951
52144
        for (channel = 0; channel < avctx->channels; channel++) {
1952
            int control, shift;
1953
1954
30168
            samples = samples_p[channel];
1955
30168
            cs = c->status + channel;
1956
1957
            /* Get the control byte and decode the samples, 2 at a time. */
1958
30168
            control = bytestream2_get_byteu(&gb);
1959
30168
            shift = (control >> 4) + 2;
1960
1961
512856
            for (n = 0; n < nb_samples / 2; n++) {
1962
482688
                int sample = bytestream2_get_byteu(&gb);
1963
482688
                *samples++ = adpcm_argo_expand_nibble(cs, sign_extend(sample >> 4, 4), control, shift);
1964
482688
                *samples++ = adpcm_argo_expand_nibble(cs, sign_extend(sample >> 0, 4), control, shift);
1965
            }
1966
        }
1967
21976
        break;
1968
    case AV_CODEC_ID_ADPCM_ZORK:
1969
        if (!c->has_status) {
1970
            for (channel = 0; channel < avctx->channels; channel++) {
1971
                c->status[channel].predictor  = 0;
1972
                c->status[channel].step_index = 0;
1973
            }
1974
            c->has_status = 1;
1975
        }
1976
        for (n = 0; n < nb_samples * avctx->channels; n++) {
1977
            int v = bytestream2_get_byteu(&gb);
1978
            *samples++ = adpcm_zork_expand_nibble(&c->status[n % avctx->channels], v);
1979
        }
1980
        break;
1981
    case AV_CODEC_ID_ADPCM_IMA_MTF:
1982
        for (n = nb_samples / 2; n > 0; n--) {
1983
            for (channel = 0; channel < avctx->channels; channel++) {
1984
                int v = bytestream2_get_byteu(&gb);
1985
                *samples++  = adpcm_ima_mtf_expand_nibble(&c->status[channel], v >> 4);
1986
                samples[st] = adpcm_ima_mtf_expand_nibble(&c->status[channel], v & 0x0F);
1987
            }
1988
            samples += avctx->channels;
1989
        }
1990
        break;
1991
    default:
1992
        av_assert0(0); // unsupported codec_id should not happen
1993
    }
1994
1995

58159
    if (avpkt->size && bytestream2_tell(&gb) == 0) {
1996
        av_log(avctx, AV_LOG_ERROR, "Nothing consumed\n");
1997
        return AVERROR_INVALIDDATA;
1998
    }
1999
2000
58159
    *got_frame_ptr = 1;
2001
2002
58159
    if (avpkt->size < bytestream2_tell(&gb)) {
2003
        av_log(avctx, AV_LOG_ERROR, "Overread of %d < %d\n", avpkt->size, bytestream2_tell(&gb));
2004
        return avpkt->size;
2005
    }
2006
2007
58159
    return bytestream2_tell(&gb);
2008
}
2009
2010
static void adpcm_flush(AVCodecContext *avctx)
2011
{
2012
    ADPCMDecodeContext *c = avctx->priv_data;
2013
    c->has_status = 0;
2014
}
2015
2016
2017
static const enum AVSampleFormat sample_fmts_s16[]  = { AV_SAMPLE_FMT_S16,
2018
                                                        AV_SAMPLE_FMT_NONE };
2019
static const enum AVSampleFormat sample_fmts_s16p[] = { AV_SAMPLE_FMT_S16P,
2020
                                                        AV_SAMPLE_FMT_NONE };
2021
static const enum AVSampleFormat sample_fmts_both[] = { AV_SAMPLE_FMT_S16,
2022
                                                        AV_SAMPLE_FMT_S16P,
2023
                                                        AV_SAMPLE_FMT_NONE };
2024
2025
#define ADPCM_DECODER(id_, sample_fmts_, name_, long_name_) \
2026
AVCodec ff_ ## name_ ## _decoder = {                        \
2027
    .name           = #name_,                               \
2028
    .long_name      = NULL_IF_CONFIG_SMALL(long_name_),     \
2029
    .type           = AVMEDIA_TYPE_AUDIO,                   \
2030
    .id             = id_,                                  \
2031
    .priv_data_size = sizeof(ADPCMDecodeContext),           \
2032
    .init           = adpcm_decode_init,                    \
2033
    .decode         = adpcm_decode_frame,                   \
2034
    .flush          = adpcm_flush,                          \
2035
    .capabilities   = AV_CODEC_CAP_DR1,                     \
2036
    .sample_fmts    = sample_fmts_,                         \
2037
}
2038
2039
/* Note: Do not forget to add new entries to the Makefile as well. */
2040
ADPCM_DECODER(AV_CODEC_ID_ADPCM_4XM,         sample_fmts_s16p, adpcm_4xm,         "ADPCM 4X Movie");
2041
ADPCM_DECODER(AV_CODEC_ID_ADPCM_AFC,         sample_fmts_s16p, adpcm_afc,         "ADPCM Nintendo Gamecube AFC");
2042
ADPCM_DECODER(AV_CODEC_ID_ADPCM_AGM,         sample_fmts_s16,  adpcm_agm,         "ADPCM AmuseGraphics Movie");
2043
ADPCM_DECODER(AV_CODEC_ID_ADPCM_AICA,        sample_fmts_s16p, adpcm_aica,        "ADPCM Yamaha AICA");
2044
ADPCM_DECODER(AV_CODEC_ID_ADPCM_ARGO,        sample_fmts_s16p, adpcm_argo,        "ADPCM Argonaut Games");
2045
ADPCM_DECODER(AV_CODEC_ID_ADPCM_CT,          sample_fmts_s16,  adpcm_ct,          "ADPCM Creative Technology");
2046
ADPCM_DECODER(AV_CODEC_ID_ADPCM_DTK,         sample_fmts_s16p, adpcm_dtk,         "ADPCM Nintendo Gamecube DTK");
2047
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA,          sample_fmts_s16,  adpcm_ea,          "ADPCM Electronic Arts");
2048
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_MAXIS_XA, sample_fmts_s16,  adpcm_ea_maxis_xa, "ADPCM Electronic Arts Maxis CDROM XA");
2049
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R1,       sample_fmts_s16p, adpcm_ea_r1,       "ADPCM Electronic Arts R1");
2050
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R2,       sample_fmts_s16p, adpcm_ea_r2,       "ADPCM Electronic Arts R2");
2051
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_R3,       sample_fmts_s16p, adpcm_ea_r3,       "ADPCM Electronic Arts R3");
2052
ADPCM_DECODER(AV_CODEC_ID_ADPCM_EA_XAS,      sample_fmts_s16p, adpcm_ea_xas,      "ADPCM Electronic Arts XAS");
2053
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_AMV,     sample_fmts_s16,  adpcm_ima_amv,     "ADPCM IMA AMV");
2054
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APC,     sample_fmts_s16,  adpcm_ima_apc,     "ADPCM IMA CRYO APC");
2055
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_APM,     sample_fmts_s16,  adpcm_ima_apm,     "ADPCM IMA Ubisoft APM");
2056
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DAT4,    sample_fmts_s16,  adpcm_ima_dat4,    "ADPCM IMA Eurocom DAT4");
2057
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK3,     sample_fmts_s16,  adpcm_ima_dk3,     "ADPCM IMA Duck DK3");
2058
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_DK4,     sample_fmts_s16,  adpcm_ima_dk4,     "ADPCM IMA Duck DK4");
2059
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_EACS, sample_fmts_s16,  adpcm_ima_ea_eacs, "ADPCM IMA Electronic Arts EACS");
2060
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_EA_SEAD, sample_fmts_s16,  adpcm_ima_ea_sead, "ADPCM IMA Electronic Arts SEAD");
2061
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ISS,     sample_fmts_s16,  adpcm_ima_iss,     "ADPCM IMA Funcom ISS");
2062
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_MTF,     sample_fmts_s16,  adpcm_ima_mtf,     "ADPCM IMA Capcom's MT Framework");
2063
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_OKI,     sample_fmts_s16,  adpcm_ima_oki,     "ADPCM IMA Dialogic OKI");
2064
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_QT,      sample_fmts_s16p, adpcm_ima_qt,      "ADPCM IMA QuickTime");
2065
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_RAD,     sample_fmts_s16,  adpcm_ima_rad,     "ADPCM IMA Radical");
2066
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SSI,     sample_fmts_s16,  adpcm_ima_ssi,     "ADPCM IMA Simon & Schuster Interactive");
2067
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_SMJPEG,  sample_fmts_s16,  adpcm_ima_smjpeg,  "ADPCM IMA Loki SDL MJPEG");
2068
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_ALP,     sample_fmts_s16,  adpcm_ima_alp,     "ADPCM IMA High Voltage Software ALP");
2069
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WAV,     sample_fmts_s16p, adpcm_ima_wav,     "ADPCM IMA WAV");
2070
ADPCM_DECODER(AV_CODEC_ID_ADPCM_IMA_WS,      sample_fmts_both, adpcm_ima_ws,      "ADPCM IMA Westwood");
2071
ADPCM_DECODER(AV_CODEC_ID_ADPCM_MS,          sample_fmts_both, adpcm_ms,          "ADPCM Microsoft");
2072
ADPCM_DECODER(AV_CODEC_ID_ADPCM_MTAF,        sample_fmts_s16p, adpcm_mtaf,        "ADPCM MTAF");
2073
ADPCM_DECODER(AV_CODEC_ID_ADPCM_PSX,         sample_fmts_s16p, adpcm_psx,         "ADPCM Playstation");
2074
ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_2,     sample_fmts_s16,  adpcm_sbpro_2,     "ADPCM Sound Blaster Pro 2-bit");
2075
ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_3,     sample_fmts_s16,  adpcm_sbpro_3,     "ADPCM Sound Blaster Pro 2.6-bit");
2076
ADPCM_DECODER(AV_CODEC_ID_ADPCM_SBPRO_4,     sample_fmts_s16,  adpcm_sbpro_4,     "ADPCM Sound Blaster Pro 4-bit");
2077
ADPCM_DECODER(AV_CODEC_ID_ADPCM_SWF,         sample_fmts_s16,  adpcm_swf,         "ADPCM Shockwave Flash");
2078
ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP_LE,      sample_fmts_s16p, adpcm_thp_le,      "ADPCM Nintendo THP (little-endian)");
2079
ADPCM_DECODER(AV_CODEC_ID_ADPCM_THP,         sample_fmts_s16p, adpcm_thp,         "ADPCM Nintendo THP");
2080
ADPCM_DECODER(AV_CODEC_ID_ADPCM_XA,          sample_fmts_s16p, adpcm_xa,          "ADPCM CDROM XA");
2081
ADPCM_DECODER(AV_CODEC_ID_ADPCM_YAMAHA,      sample_fmts_s16,  adpcm_yamaha,      "ADPCM Yamaha");
2082
ADPCM_DECODER(AV_CODEC_ID_ADPCM_ZORK,        sample_fmts_s16,  adpcm_zork,        "ADPCM Zork");