GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/aacsbr_template.c Lines: 771 924 83.4 %
Date: 2021-04-20 04:37:23 Branches: 529 708 74.7 %

Line Branch Exec Source
1
/*
2
 * AAC Spectral Band Replication decoding functions
3
 * Copyright (c) 2008-2009 Robert Swain ( rob opendot cl )
4
 * Copyright (c) 2009-2010 Alex Converse <alex.converse@gmail.com>
5
 *
6
 * Fixed point code
7
 * Copyright (c) 2013
8
 *      MIPS Technologies, Inc., California.
9
 *
10
 * This file is part of FFmpeg.
11
 *
12
 * FFmpeg is free software; you can redistribute it and/or
13
 * modify it under the terms of the GNU Lesser General Public
14
 * License as published by the Free Software Foundation; either
15
 * version 2.1 of the License, or (at your option) any later version.
16
 *
17
 * FFmpeg is distributed in the hope that it will be useful,
18
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
19
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
20
 * Lesser General Public License for more details.
21
 *
22
 * You should have received a copy of the GNU Lesser General Public
23
 * License along with FFmpeg; if not, write to the Free Software
24
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
25
 */
26
27
/**
28
 * @file
29
 * AAC Spectral Band Replication decoding functions
30
 * @author Robert Swain ( rob opendot cl )
31
 * @author Stanislav Ocovaj ( stanislav.ocovaj@imgtec.com )
32
 * @author Zoran Basaric ( zoran.basaric@imgtec.com )
33
 */
34
35
#include "libavutil/qsort.h"
36
37
167
static av_cold void aacsbr_tableinit(void)
38
{
39
    int n;
40
41
53607
    for (n = 0; n < 320; n++)
42
53440
        sbr_qmf_window_ds[n] = sbr_qmf_window_us[2*n];
43
167
}
44
45
167
av_cold void AAC_RENAME(ff_aac_sbr_init)(void)
46
{
47
    static const struct {
48
        const void *sbr_codes, *sbr_bits;
49
        const unsigned int table_size, elem_size;
50
    } sbr_tmp[] = {
51
        SBR_VLC_ROW(t_huffman_env_1_5dB),
52
        SBR_VLC_ROW(f_huffman_env_1_5dB),
53
        SBR_VLC_ROW(t_huffman_env_bal_1_5dB),
54
        SBR_VLC_ROW(f_huffman_env_bal_1_5dB),
55
        SBR_VLC_ROW(t_huffman_env_3_0dB),
56
        SBR_VLC_ROW(f_huffman_env_3_0dB),
57
        SBR_VLC_ROW(t_huffman_env_bal_3_0dB),
58
        SBR_VLC_ROW(f_huffman_env_bal_3_0dB),
59
        SBR_VLC_ROW(t_huffman_noise_3_0dB),
60
        SBR_VLC_ROW(t_huffman_noise_bal_3_0dB),
61
    };
62
63
    // SBR VLC table initialization
64
167
    SBR_INIT_VLC_STATIC(0, 1098);
65
167
    SBR_INIT_VLC_STATIC(1, 1092);
66
167
    SBR_INIT_VLC_STATIC(2, 768);
67
167
    SBR_INIT_VLC_STATIC(3, 1026);
68
167
    SBR_INIT_VLC_STATIC(4, 1058);
69
167
    SBR_INIT_VLC_STATIC(5, 1052);
70
167
    SBR_INIT_VLC_STATIC(6, 544);
71
167
    SBR_INIT_VLC_STATIC(7, 544);
72
167
    SBR_INIT_VLC_STATIC(8, 592);
73
167
    SBR_INIT_VLC_STATIC(9, 512);
74
75
167
    aacsbr_tableinit();
76
77
167
    AAC_RENAME(ff_ps_init)();
78
167
}
79
80
/** Places SBR in pure upsampling mode. */
81
351
static void sbr_turnoff(SpectralBandReplication *sbr) {
82
351
    sbr->start = 0;
83
351
    sbr->ready_for_dequant = 0;
84
    // Init defults used in pure upsampling mode
85
351
    sbr->kx[1] = 32; //Typo in spec, kx' inits to 32
86
351
    sbr->m[1] = 0;
87
    // Reset values for first SBR header
88
351
    sbr->data[0].e_a[1] = sbr->data[1].e_a[1] = -1;
89
351
    memset(&sbr->spectrum_params, -1, sizeof(SpectrumParameters));
90
351
}
91
92
351
av_cold void AAC_RENAME(ff_aac_sbr_ctx_init)(AACContext *ac, SpectralBandReplication *sbr, int id_aac)
93
{
94
351
    if(sbr->mdct.mdct_bits)
95
        return;
96
351
    sbr->kx[0] = sbr->kx[1];
97
351
    sbr->id_aac = id_aac;
98
351
    sbr_turnoff(sbr);
99
351
    sbr->data[0].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
100
351
    sbr->data[1].synthesis_filterbank_samples_offset = SBR_SYNTHESIS_BUF_SIZE - (1280 - 128);
101
    /* SBR requires samples to be scaled to +/-32768.0 to work correctly.
102
     * mdct scale factors are adjusted to scale up from +/-1.0 at analysis
103
     * and scale back down at synthesis. */
104
351
    AAC_RENAME_32(ff_mdct_init)(&sbr->mdct,     7, 1, 1.0 / (64 * 32768.0));
105
351
    AAC_RENAME_32(ff_mdct_init)(&sbr->mdct_ana, 7, 1, -2.0 * 32768.0);
106
351
    AAC_RENAME(ff_ps_ctx_init)(&sbr->ps);
107
351
    AAC_RENAME(ff_sbrdsp_init)(&sbr->dsp);
108
351
    aacsbr_func_ptr_init(&sbr->c);
109
}
110
111
351
av_cold void AAC_RENAME(ff_aac_sbr_ctx_close)(SpectralBandReplication *sbr)
112
{
113
351
    AAC_RENAME_32(ff_mdct_end)(&sbr->mdct);
114
351
    AAC_RENAME_32(ff_mdct_end)(&sbr->mdct_ana);
115
351
}
116
117
6109
static int qsort_comparison_function_int16(const void *a, const void *b)
118
{
119
6109
    return *(const int16_t *)a - *(const int16_t *)b;
120
}
121
122
381
static inline int in_table_int16(const int16_t *table, int last_el, int16_t needle)
123
{
124
    int i;
125
1771
    for (i = 0; i <= last_el; i++)
126
1532
        if (table[i] == needle)
127
142
            return 1;
128
239
    return 0;
129
}
130
131
/// Limiter Frequency Band Table (14496-3 sp04 p198)
132
65
static void sbr_make_f_tablelim(SpectralBandReplication *sbr)
133
{
134
    int k;
135
65
    if (sbr->bs_limiter_bands > 0) {
136
        static const INTFLOAT bands_warped[3] = { Q23(1.32715174233856803909f),   //2^(0.49/1.2)
137
                                               Q23(1.18509277094158210129f),   //2^(0.49/2)
138
                                               Q23(1.11987160404675912501f) }; //2^(0.49/3)
139
65
        const INTFLOAT lim_bands_per_octave_warped = bands_warped[sbr->bs_limiter_bands - 1];
140
        int16_t patch_borders[7];
141
65
        uint16_t *in = sbr->f_tablelim + 1, *out = sbr->f_tablelim;
142
143
65
        patch_borders[0] = sbr->kx[1];
144
251
        for (k = 1; k <= sbr->num_patches; k++)
145
186
            patch_borders[k] = patch_borders[k-1] + sbr->patch_num_subbands[k-1];
146
147
65
        memcpy(sbr->f_tablelim, sbr->f_tablelow,
148
65
               (sbr->n[0] + 1) * sizeof(sbr->f_tablelow[0]));
149
65
        if (sbr->num_patches > 1)
150
63
            memcpy(sbr->f_tablelim + sbr->n[0] + 1, patch_borders + 1,
151
63
                   (sbr->num_patches - 1) * sizeof(patch_borders[0]));
152
153











1540
        AV_QSORT(sbr->f_tablelim, sbr->num_patches + sbr->n[0],
154
              uint16_t,
155
              qsort_comparison_function_int16);
156
157
65
        sbr->n_lim = sbr->n[0] + sbr->num_patches - 1;
158
606
        while (out < sbr->f_tablelim + sbr->n_lim) {
159
#if USE_FIXED
160
35
            if ((*in << 23) >= *out * lim_bands_per_octave_warped) {
161
#else
162
506
            if (*in >= *out * lim_bands_per_octave_warped) {
163
#endif /* USE_FIXED */
164
212
                *++out = *in++;
165

612
            } else if (*in == *out ||
166
283
                !in_table_int16(patch_borders, sbr->num_patches, *in)) {
167
231
                in++;
168
231
                sbr->n_lim--;
169
98
            } else if (!in_table_int16(patch_borders, sbr->num_patches, *out)) {
170
54
                *out = *in++;
171
54
                sbr->n_lim--;
172
            } else {
173
44
                *++out = *in++;
174
            }
175
        }
176
    } else {
177
        sbr->f_tablelim[0] = sbr->f_tablelow[0];
178
        sbr->f_tablelim[1] = sbr->f_tablelow[sbr->n[0]];
179
        sbr->n_lim = 1;
180
    }
181
65
}
182
183
489
static unsigned int read_sbr_header(SpectralBandReplication *sbr, GetBitContext *gb)
184
{
185
489
    unsigned int cnt = get_bits_count(gb);
186
    uint8_t bs_header_extra_1;
187
    uint8_t bs_header_extra_2;
188
489
    int old_bs_limiter_bands = sbr->bs_limiter_bands;
189
    SpectrumParameters old_spectrum_params;
190
191
489
    sbr->start = 1;
192
489
    sbr->ready_for_dequant = 0;
193
194
    // Save last spectrum parameters variables to compare to new ones
195
489
    memcpy(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters));
196
197
489
    sbr->bs_amp_res_header              = get_bits1(gb);
198
489
    sbr->spectrum_params.bs_start_freq  = get_bits(gb, 4);
199
489
    sbr->spectrum_params.bs_stop_freq   = get_bits(gb, 4);
200
489
    sbr->spectrum_params.bs_xover_band  = get_bits(gb, 3);
201
489
                                          skip_bits(gb, 2); // bs_reserved
202
203
489
    bs_header_extra_1 = get_bits1(gb);
204
489
    bs_header_extra_2 = get_bits1(gb);
205
206
489
    if (bs_header_extra_1) {
207
430
        sbr->spectrum_params.bs_freq_scale  = get_bits(gb, 2);
208
430
        sbr->spectrum_params.bs_alter_scale = get_bits1(gb);
209
430
        sbr->spectrum_params.bs_noise_bands = get_bits(gb, 2);
210
    } else {
211
59
        sbr->spectrum_params.bs_freq_scale  = 2;
212
59
        sbr->spectrum_params.bs_alter_scale = 1;
213
59
        sbr->spectrum_params.bs_noise_bands = 2;
214
    }
215
216
    // Check if spectrum parameters changed
217
489
    if (memcmp(&old_spectrum_params, &sbr->spectrum_params, sizeof(SpectrumParameters)))
218
65
        sbr->reset = 1;
219
220
489
    if (bs_header_extra_2) {
221
26
        sbr->bs_limiter_bands  = get_bits(gb, 2);
222
26
        sbr->bs_limiter_gains  = get_bits(gb, 2);
223
26
        sbr->bs_interpol_freq  = get_bits1(gb);
224
26
        sbr->bs_smoothing_mode = get_bits1(gb);
225
    } else {
226
463
        sbr->bs_limiter_bands  = 2;
227
463
        sbr->bs_limiter_gains  = 2;
228
463
        sbr->bs_interpol_freq  = 1;
229
463
        sbr->bs_smoothing_mode = 1;
230
    }
231
232

489
    if (sbr->bs_limiter_bands != old_bs_limiter_bands && !sbr->reset)
233
        sbr_make_f_tablelim(sbr);
234
235
489
    return get_bits_count(gb) - cnt;
236
}
237
238
12
static int array_min_int16(const int16_t *array, int nel)
239
{
240
12
    int i, min = array[0];
241
28
    for (i = 1; i < nel; i++)
242
16
        min = FFMIN(array[i], min);
243
12
    return min;
244
}
245
246
65
static int check_n_master(AVCodecContext *avctx, int n_master, int bs_xover_band)
247
{
248
    // Requirements (14496-3 sp04 p205)
249
65
    if (n_master <= 0) {
250
        av_log(avctx, AV_LOG_ERROR, "Invalid n_master: %d\n", n_master);
251
        return -1;
252
    }
253
65
    if (bs_xover_band >= n_master) {
254
        av_log(avctx, AV_LOG_ERROR,
255
               "Invalid bitstream, crossover band index beyond array bounds: %d\n",
256
               bs_xover_band);
257
        return -1;
258
    }
259
65
    return 0;
260
}
261
262
/// Master Frequency Band Table (14496-3 sp04 p194)
263
65
static int sbr_make_f_master(AACContext *ac, SpectralBandReplication *sbr,
264
                             SpectrumParameters *spectrum)
265
{
266
65
    unsigned int temp, max_qmf_subbands = 0;
267
    unsigned int start_min, stop_min;
268
    int k;
269
    const int8_t *sbr_offset_ptr;
270
    int16_t stop_dk[13];
271
272

65
    switch (sbr->sample_rate) {
273
6
    case 16000:
274
6
        sbr_offset_ptr = sbr_offset[0];
275
6
        break;
276
    case 22050:
277
        sbr_offset_ptr = sbr_offset[1];
278
        break;
279
    case 24000:
280
        sbr_offset_ptr = sbr_offset[2];
281
        break;
282
12
    case 32000:
283
12
        sbr_offset_ptr = sbr_offset[3];
284
12
        break;
285
45
    case 44100: case 48000: case 64000:
286
45
        sbr_offset_ptr = sbr_offset[4];
287
45
        break;
288
2
    case 88200: case 96000: case 128000: case 176400: case 192000:
289
2
        sbr_offset_ptr = sbr_offset[5];
290
2
        break;
291
    default:
292
        av_log(ac->avctx, AV_LOG_ERROR,
293
               "Unsupported sample rate for SBR: %d\n", sbr->sample_rate);
294
        return -1;
295
    }
296
297
65
    if (sbr->sample_rate < 32000) {
298
6
        temp = 3000;
299
59
    } else if (sbr->sample_rate < 64000) {
300
57
        temp = 4000;
301
    } else
302
2
        temp = 5000;
303
304
65
    start_min = ((temp << 7) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
305
65
    stop_min  = ((temp << 8) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
306
307
65
    sbr->k[0] = start_min + sbr_offset_ptr[spectrum->bs_start_freq];
308
309
65
    if (spectrum->bs_stop_freq < 14) {
310
65
        sbr->k[2] = stop_min;
311
65
        make_bands(stop_dk, stop_min, 64, 13);
312











1827
        AV_QSORT(stop_dk, 13, int16_t, qsort_comparison_function_int16);
313
725
        for (k = 0; k < spectrum->bs_stop_freq; k++)
314
660
            sbr->k[2] += stop_dk[k];
315
    } else if (spectrum->bs_stop_freq == 14) {
316
        sbr->k[2] = 2*sbr->k[0];
317
    } else if (spectrum->bs_stop_freq == 15) {
318
        sbr->k[2] = 3*sbr->k[0];
319
    } else {
320
        av_log(ac->avctx, AV_LOG_ERROR,
321
               "Invalid bs_stop_freq: %d\n", spectrum->bs_stop_freq);
322
        return -1;
323
    }
324
65
    sbr->k[2] = FFMIN(64, sbr->k[2]);
325
326
    // Requirements (14496-3 sp04 p205)
327
65
    if (sbr->sample_rate <= 32000) {
328
18
        max_qmf_subbands = 48;
329
47
    } else if (sbr->sample_rate == 44100) {
330
36
        max_qmf_subbands = 35;
331
11
    } else if (sbr->sample_rate >= 48000)
332
11
        max_qmf_subbands = 32;
333
    else
334
        av_assert0(0);
335
336
65
    if (sbr->k[2] - sbr->k[0] > max_qmf_subbands) {
337
        av_log(ac->avctx, AV_LOG_ERROR,
338
               "Invalid bitstream, too many QMF subbands: %d\n", sbr->k[2] - sbr->k[0]);
339
        return -1;
340
    }
341
342
65
    if (!spectrum->bs_freq_scale) {
343
        int dk, k2diff;
344
345
14
        dk = spectrum->bs_alter_scale + 1;
346
14
        sbr->n_master = ((sbr->k[2] - sbr->k[0] + (dk&2)) >> dk) << 1;
347
14
        if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
348
            return -1;
349
350
266
        for (k = 1; k <= sbr->n_master; k++)
351
252
            sbr->f_master[k] = dk;
352
353
14
        k2diff = sbr->k[2] - sbr->k[0] - sbr->n_master * dk;
354
14
        if (k2diff < 0) {
355
14
            sbr->f_master[1]--;
356
14
            sbr->f_master[2]-= (k2diff < -1);
357
        } else if (k2diff) {
358
            sbr->f_master[sbr->n_master]++;
359
        }
360
361
14
        sbr->f_master[0] = sbr->k[0];
362
266
        for (k = 1; k <= sbr->n_master; k++)
363
252
            sbr->f_master[k] += sbr->f_master[k - 1];
364
365
    } else {
366
51
        int half_bands = 7 - spectrum->bs_freq_scale;      // bs_freq_scale  = {1,2,3}
367
        int two_regions, num_bands_0;
368
        int vdk0_max, vdk1_min;
369
        int16_t vk0[49];
370
#if USE_FIXED
371
5
        int tmp, nz = 0;
372
#endif /* USE_FIXED */
373
374
51
        if (49 * sbr->k[2] > 110 * sbr->k[0]) {
375
12
            two_regions = 1;
376
12
            sbr->k[1] = 2 * sbr->k[0];
377
        } else {
378
39
            two_regions = 0;
379
39
            sbr->k[1] = sbr->k[2];
380
        }
381
382
#if USE_FIXED
383
5
        tmp = (sbr->k[1] << 23) / sbr->k[0];
384
35
        while (tmp < 0x40000000) {
385
30
          tmp <<= 1;
386
30
          nz++;
387
        }
388
5
        tmp = fixed_log(tmp - 0x80000000);
389
5
        tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
390
5
        tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
391
5
        num_bands_0 = ((tmp + 0x400000) >> 23) * 2;
392
#else
393
46
        num_bands_0 = lrintf(half_bands * log2f(sbr->k[1] / (float)sbr->k[0])) * 2;
394
#endif /* USE_FIXED */
395
396
51
        if (num_bands_0 <= 0) { // Requirements (14496-3 sp04 p205)
397
            av_log(ac->avctx, AV_LOG_ERROR, "Invalid num_bands_0: %d\n", num_bands_0);
398
            return -1;
399
        }
400
401
51
        vk0[0] = 0;
402
403
51
        make_bands(vk0+1, sbr->k[0], sbr->k[1], num_bands_0);
404
405











1037
        AV_QSORT(vk0 + 1, num_bands_0, int16_t, qsort_comparison_function_int16);
406
51
        vdk0_max = vk0[num_bands_0];
407
408
51
        vk0[0] = sbr->k[0];
409
611
        for (k = 1; k <= num_bands_0; k++) {
410
560
            if (vk0[k] <= 0) { // Requirements (14496-3 sp04 p205)
411
                av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk0[%d]: %d\n", k, vk0[k]);
412
                return -1;
413
            }
414
560
            vk0[k] += vk0[k-1];
415
        }
416
417
51
        if (two_regions) {
418
            int16_t vk1[49];
419
#if USE_FIXED
420
            int num_bands_1;
421
422
2
            tmp = (sbr->k[2] << 23) / sbr->k[1];
423
2
            nz = 0;
424
16
            while (tmp < 0x40000000) {
425
14
              tmp <<= 1;
426
14
              nz++;
427
            }
428
2
            tmp = fixed_log(tmp - 0x80000000);
429
2
            tmp = (int)(((int64_t)tmp * CONST_RECIP_LN2 + 0x20000000) >> 30);
430
2
            tmp = (((tmp + 0x80) >> 8) + ((8 - nz) << 23)) * half_bands;
431
2
            if (spectrum->bs_alter_scale)
432
2
                tmp = (int)(((int64_t)tmp * CONST_076923 + 0x40000000) >> 31);
433
2
            num_bands_1 = ((tmp + 0x400000) >> 23) * 2;
434
#else
435
20
            float invwarp = spectrum->bs_alter_scale ? 0.76923076923076923077f
436
10
                                                     : 1.0f; // bs_alter_scale = {0,1}
437
10
            int num_bands_1 = lrintf(half_bands * invwarp *
438
10
                                     log2f(sbr->k[2] / (float)sbr->k[1])) * 2;
439
#endif /* USE_FIXED */
440
12
            make_bands(vk1+1, sbr->k[1], sbr->k[2], num_bands_1);
441
442
12
            vdk1_min = array_min_int16(vk1 + 1, num_bands_1);
443
444
12
            if (vdk1_min < vdk0_max) {
445
                int change;
446
                AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
447
                change = FFMIN(vdk0_max - vk1[1], (vk1[num_bands_1] - vk1[1]) >> 1);
448
                vk1[1]           += change;
449
                vk1[num_bands_1] -= change;
450
            }
451
452











32
            AV_QSORT(vk1 + 1, num_bands_1, int16_t, qsort_comparison_function_int16);
453
454
12
            vk1[0] = sbr->k[1];
455
40
            for (k = 1; k <= num_bands_1; k++) {
456
28
                if (vk1[k] <= 0) { // Requirements (14496-3 sp04 p205)
457
                    av_log(ac->avctx, AV_LOG_ERROR, "Invalid vDk1[%d]: %d\n", k, vk1[k]);
458
                    return -1;
459
                }
460
28
                vk1[k] += vk1[k-1];
461
            }
462
463
12
            sbr->n_master = num_bands_0 + num_bands_1;
464
12
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
465
                return -1;
466
12
            memcpy(&sbr->f_master[0],               vk0,
467
12
                   (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
468
12
            memcpy(&sbr->f_master[num_bands_0 + 1], vk1 + 1,
469
                    num_bands_1      * sizeof(sbr->f_master[0]));
470
471
        } else {
472
39
            sbr->n_master = num_bands_0;
473
39
            if (check_n_master(ac->avctx, sbr->n_master, sbr->spectrum_params.bs_xover_band))
474
                return -1;
475
39
            memcpy(sbr->f_master, vk0, (num_bands_0 + 1) * sizeof(sbr->f_master[0]));
476
        }
477
    }
478
479
65
    return 0;
480
}
481
482
/// High Frequency Generation - Patch Construction (14496-3 sp04 p216 fig. 4.46)
483
65
static int sbr_hf_calc_npatches(AACContext *ac, SpectralBandReplication *sbr)
484
{
485
65
    int i, k, last_k = -1, last_msb = -1, sb = 0;
486
65
    int msb = sbr->k[0];
487
65
    int usb = sbr->kx[1];
488
65
    int goal_sb = ((1000 << 11) + (sbr->sample_rate >> 1)) / sbr->sample_rate;
489
490
65
    sbr->num_patches = 0;
491
492
65
    if (goal_sb < sbr->kx[1] + sbr->m[1]) {
493
334
        for (k = 0; sbr->f_master[k] < goal_sb; k++) ;
494
    } else
495
34
        k = sbr->n_master;
496
497
    do {
498
186
        int odd = 0;
499

186
        if (k == last_k && msb == last_msb) {
500
            av_log(ac->avctx, AV_LOG_ERROR, "patch construction failed\n");
501
            return AVERROR_INVALIDDATA;
502
        }
503
186
        last_k = k;
504
186
        last_msb = msb;
505

1060
        for (i = k; i == k || sb > (sbr->k[0] - 1 + msb - odd); i--) {
506
874
            sb = sbr->f_master[i];
507
874
            odd = (sb + sbr->k[0]) & 1;
508
        }
509
510
        // Requirements (14496-3 sp04 p205) sets the maximum number of patches to 5.
511
        // After this check the final number of patches can still be six which is
512
        // illegal however the Coding Technologies decoder check stream has a final
513
        // count of 6 patches
514
186
        if (sbr->num_patches > 5) {
515
            av_log(ac->avctx, AV_LOG_ERROR, "Too many patches: %d\n", sbr->num_patches);
516
            return -1;
517
        }
518
519
186
        sbr->patch_num_subbands[sbr->num_patches]  = FFMAX(sb - usb, 0);
520
186
        sbr->patch_start_subband[sbr->num_patches] = sbr->k[0] - odd - sbr->patch_num_subbands[sbr->num_patches];
521
522
186
        if (sbr->patch_num_subbands[sbr->num_patches] > 0) {
523
186
            usb = sb;
524
186
            msb = sb;
525
186
            sbr->num_patches++;
526
        } else
527
            msb = sbr->kx[1];
528
529
186
        if (sbr->f_master[k] - sb < 3)
530
86
            k = sbr->n_master;
531
186
    } while (sb != sbr->kx[1] + sbr->m[1]);
532
533
65
    if (sbr->num_patches > 1 &&
534
63
        sbr->patch_num_subbands[sbr->num_patches - 1] < 3)
535
        sbr->num_patches--;
536
537
65
    return 0;
538
}
539
540
/// Derived Frequency Band Tables (14496-3 sp04 p197)
541
65
static int sbr_make_f_derived(AACContext *ac, SpectralBandReplication *sbr)
542
{
543
    int k, temp;
544
#if USE_FIXED
545
5
    int nz = 0;
546
#endif /* USE_FIXED */
547
548
65
    sbr->n[1] = sbr->n_master - sbr->spectrum_params.bs_xover_band;
549
65
    sbr->n[0] = (sbr->n[1] + 1) >> 1;
550
551
65
    memcpy(sbr->f_tablehigh, &sbr->f_master[sbr->spectrum_params.bs_xover_band],
552
65
           (sbr->n[1] + 1) * sizeof(sbr->f_master[0]));
553
65
    sbr->m[1] = sbr->f_tablehigh[sbr->n[1]] - sbr->f_tablehigh[0];
554
65
    sbr->kx[1] = sbr->f_tablehigh[0];
555
556
    // Requirements (14496-3 sp04 p205)
557
65
    if (sbr->kx[1] + sbr->m[1] > 64) {
558
        av_log(ac->avctx, AV_LOG_ERROR,
559
               "Stop frequency border too high: %d\n", sbr->kx[1] + sbr->m[1]);
560
        return -1;
561
    }
562
65
    if (sbr->kx[1] > 32) {
563
        av_log(ac->avctx, AV_LOG_ERROR, "Start frequency border too high: %d\n", sbr->kx[1]);
564
        return -1;
565
    }
566
567
65
    sbr->f_tablelow[0] = sbr->f_tablehigh[0];
568
65
    temp = sbr->n[1] & 1;
569
485
    for (k = 1; k <= sbr->n[0]; k++)
570
420
        sbr->f_tablelow[k] = sbr->f_tablehigh[2 * k - temp];
571
#if USE_FIXED
572
5
    temp = (sbr->k[2] << 23) / sbr->kx[1];
573
35
    while (temp < 0x40000000) {
574
30
        temp <<= 1;
575
30
        nz++;
576
    }
577
5
    temp = fixed_log(temp - 0x80000000);
578
5
    temp = (int)(((int64_t)temp * CONST_RECIP_LN2 + 0x20000000) >> 30);
579
5
    temp = (((temp + 0x80) >> 8) + ((8 - nz) << 23)) * sbr->spectrum_params.bs_noise_bands;
580
581
5
    sbr->n_q = (temp + 0x400000) >> 23;
582
5
    if (sbr->n_q < 1)
583
        sbr->n_q = 1;
584
#else
585
60
    sbr->n_q = FFMAX(1, lrintf(sbr->spectrum_params.bs_noise_bands *
586
                               log2f(sbr->k[2] / (float)sbr->kx[1]))); // 0 <= bs_noise_bands <= 3
587
#endif /* USE_FIXED */
588
589
65
    if (sbr->n_q > 5) {
590
        av_log(ac->avctx, AV_LOG_ERROR, "Too many noise floor scale factors: %d\n", sbr->n_q);
591
        return -1;
592
    }
593
594
65
    sbr->f_tablenoise[0] = sbr->f_tablelow[0];
595
65
    temp = 0;
596
266
    for (k = 1; k <= sbr->n_q; k++) {
597
201
        temp += (sbr->n[0] - temp) / (sbr->n_q + 1 - k);
598
201
        sbr->f_tablenoise[k] = sbr->f_tablelow[temp];
599
    }
600
601
65
    if (sbr_hf_calc_npatches(ac, sbr) < 0)
602
        return -1;
603
604
65
    sbr_make_f_tablelim(sbr);
605
606
65
    sbr->data[0].f_indexnoise = 0;
607
65
    sbr->data[1].f_indexnoise = 0;
608
609
65
    return 0;
610
}
611
612
22940
static av_always_inline void get_bits1_vector(GetBitContext *gb, uint8_t *vec,
613
                                              int elements)
614
{
615
    int i;
616
71495
    for (i = 0; i < elements; i++) {
617
48555
        vec[i] = get_bits1(gb);
618
    }
619
22940
}
620
621
/** ceil(log2(index+1)) */
622
static const int8_t ceil_log2[] = {
623
    0, 1, 2, 2, 3, 3,
624
};
625
626
7793
static int read_sbr_grid(AACContext *ac, SpectralBandReplication *sbr,
627
                         GetBitContext *gb, SBRData *ch_data)
628
{
629
    int i;
630
7793
    int bs_pointer = 0;
631
    // frameLengthFlag ? 15 : 16; 960 sample length frames unsupported; this value is numTimeSlots
632
7793
    int abs_bord_trail = 16;
633
    int num_rel_lead, num_rel_trail;
634
7793
    unsigned bs_num_env_old = ch_data->bs_num_env;
635
    int bs_frame_class, bs_num_env;
636
637
7793
    ch_data->bs_freq_res[0] = ch_data->bs_freq_res[ch_data->bs_num_env];
638
7793
    ch_data->bs_amp_res = sbr->bs_amp_res_header;
639
7793
    ch_data->t_env_num_env_old = ch_data->t_env[bs_num_env_old];
640
641

7793
    switch (bs_frame_class = get_bits(gb, 2)) {
642
6395
    case FIXFIX:
643
6395
        bs_num_env = 1 << get_bits(gb, 2);
644
6395
        if (bs_num_env > 4) {
645
            av_log(ac->avctx, AV_LOG_ERROR,
646
                   "Invalid bitstream, too many SBR envelopes in FIXFIX type SBR frame: %d\n",
647
                   bs_num_env);
648
            return -1;
649
        }
650
6395
        ch_data->bs_num_env = bs_num_env;
651
6395
        num_rel_lead                        = ch_data->bs_num_env - 1;
652
6395
        if (ch_data->bs_num_env == 1)
653
4929
            ch_data->bs_amp_res = 0;
654
655
656
6395
        ch_data->t_env[0]                   = 0;
657
6395
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
658
659
6395
        abs_bord_trail = (abs_bord_trail + (ch_data->bs_num_env >> 1)) /
660
6395
                   ch_data->bs_num_env;
661
7861
        for (i = 0; i < num_rel_lead; i++)
662
1466
            ch_data->t_env[i + 1] = ch_data->t_env[i] + abs_bord_trail;
663
664
6395
        ch_data->bs_freq_res[1] = get_bits1(gb);
665
7861
        for (i = 1; i < ch_data->bs_num_env; i++)
666
1466
            ch_data->bs_freq_res[i + 1] = ch_data->bs_freq_res[1];
667
6395
        break;
668
630
    case FIXVAR:
669
630
        abs_bord_trail                     += get_bits(gb, 2);
670
630
        num_rel_trail                       = get_bits(gb, 2);
671
630
        ch_data->bs_num_env                 = num_rel_trail + 1;
672
630
        ch_data->t_env[0]                   = 0;
673
630
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
674
675
1992
        for (i = 0; i < num_rel_trail; i++)
676
1362
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
677
1362
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
678
679
630
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
680
681
2622
        for (i = 0; i < ch_data->bs_num_env; i++)
682
1992
            ch_data->bs_freq_res[ch_data->bs_num_env - i] = get_bits1(gb);
683
630
        break;
684
620
    case VARFIX:
685
620
        ch_data->t_env[0]                   = get_bits(gb, 2);
686
620
        num_rel_lead                        = get_bits(gb, 2);
687
620
        ch_data->bs_num_env                 = num_rel_lead + 1;
688
620
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
689
690
1396
        for (i = 0; i < num_rel_lead; i++)
691
776
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
692
693
620
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
694
695
620
        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
696
620
        break;
697
148
    case VARVAR:
698
148
        ch_data->t_env[0]                   = get_bits(gb, 2);
699
148
        abs_bord_trail                     += get_bits(gb, 2);
700
148
        num_rel_lead                        = get_bits(gb, 2);
701
148
        num_rel_trail                       = get_bits(gb, 2);
702
148
        bs_num_env                          = num_rel_lead + num_rel_trail + 1;
703
704
148
        if (bs_num_env > 5) {
705
            av_log(ac->avctx, AV_LOG_ERROR,
706
                   "Invalid bitstream, too many SBR envelopes in VARVAR type SBR frame: %d\n",
707
                   bs_num_env);
708
            return -1;
709
        }
710
148
        ch_data->bs_num_env = bs_num_env;
711
712
148
        ch_data->t_env[ch_data->bs_num_env] = abs_bord_trail;
713
714
220
        for (i = 0; i < num_rel_lead; i++)
715
72
            ch_data->t_env[i + 1] = ch_data->t_env[i] + 2 * get_bits(gb, 2) + 2;
716
439
        for (i = 0; i < num_rel_trail; i++)
717
291
            ch_data->t_env[ch_data->bs_num_env - 1 - i] =
718
291
                ch_data->t_env[ch_data->bs_num_env - i] - 2 * get_bits(gb, 2) - 2;
719
720
148
        bs_pointer = get_bits(gb, ceil_log2[ch_data->bs_num_env]);
721
722
148
        get_bits1_vector(gb, ch_data->bs_freq_res + 1, ch_data->bs_num_env);
723
148
        break;
724
    }
725
7793
    ch_data->bs_frame_class = bs_frame_class;
726
727
7793
    av_assert0(bs_pointer >= 0);
728
7793
    if (bs_pointer > ch_data->bs_num_env + 1) {
729
        av_log(ac->avctx, AV_LOG_ERROR,
730
               "Invalid bitstream, bs_pointer points to a middle noise border outside the time borders table: %d\n",
731
               bs_pointer);
732
        return -1;
733
    }
734
735
19553
    for (i = 1; i <= ch_data->bs_num_env; i++) {
736
11760
        if (ch_data->t_env[i-1] >= ch_data->t_env[i]) {
737
            av_log(ac->avctx, AV_LOG_ERROR, "Not strictly monotone time borders\n");
738
            return -1;
739
        }
740
    }
741
742
7793
    ch_data->bs_num_noise = (ch_data->bs_num_env > 1) + 1;
743
744
7793
    ch_data->t_q[0]                     = ch_data->t_env[0];
745
7793
    ch_data->t_q[ch_data->bs_num_noise] = ch_data->t_env[ch_data->bs_num_env];
746
7793
    if (ch_data->bs_num_noise > 1) {
747
        int idx;
748
2864
        if (ch_data->bs_frame_class == FIXFIX) {
749
1466
            idx = ch_data->bs_num_env >> 1;
750
1398
        } else if (ch_data->bs_frame_class & 1) { // FIXVAR or VARVAR
751
778
            idx = ch_data->bs_num_env - FFMAX(bs_pointer - 1, 1);
752
        } else { // VARFIX
753
620
            if (!bs_pointer)
754
464
                idx = 1;
755
156
            else if (bs_pointer == 1)
756
156
                idx = ch_data->bs_num_env - 1;
757
            else // bs_pointer > 1
758
                idx = bs_pointer - 1;
759
        }
760
2864
        ch_data->t_q[1] = ch_data->t_env[idx];
761
    }
762
763
7793
    ch_data->e_a[0] = -(ch_data->e_a[1] != bs_num_env_old); // l_APrev
764
7793
    ch_data->e_a[1] = -1;
765

7793
    if ((ch_data->bs_frame_class & 1) && bs_pointer) { // FIXVAR or VARVAR and bs_pointer != 0
766
778
        ch_data->e_a[1] = ch_data->bs_num_env + 1 - bs_pointer;
767

7015
    } else if ((ch_data->bs_frame_class == 2) && (bs_pointer > 1)) // VARFIX and bs_pointer > 1
768
        ch_data->e_a[1] = bs_pointer - 1;
769
770
7793
    return 0;
771
}
772
773
2625
static void copy_sbr_grid(SBRData *dst, const SBRData *src) {
774
    //These variables are saved from the previous frame rather than copied
775
2625
    dst->bs_freq_res[0]    = dst->bs_freq_res[dst->bs_num_env];
776
2625
    dst->t_env_num_env_old = dst->t_env[dst->bs_num_env];
777
2625
    dst->e_a[0]            = -(dst->e_a[1] != dst->bs_num_env);
778
779
    //These variables are read from the bitstream and therefore copied
780
2625
    memcpy(dst->bs_freq_res+1, src->bs_freq_res+1, sizeof(dst->bs_freq_res)-sizeof(*dst->bs_freq_res));
781
2625
    memcpy(dst->t_env,         src->t_env,         sizeof(dst->t_env));
782
2625
    memcpy(dst->t_q,           src->t_q,           sizeof(dst->t_q));
783
2625
    dst->bs_num_env        = src->bs_num_env;
784
2625
    dst->bs_amp_res        = src->bs_amp_res;
785
2625
    dst->bs_num_noise      = src->bs_num_noise;
786
2625
    dst->bs_frame_class    = src->bs_frame_class;
787
2625
    dst->e_a[1]            = src->e_a[1];
788
2625
}
789
790
/// Read how the envelope and noise floor data is delta coded
791
10418
static void read_sbr_dtdf(SpectralBandReplication *sbr, GetBitContext *gb,
792
                          SBRData *ch_data)
793
{
794
10418
    get_bits1_vector(gb, ch_data->bs_df_env,   ch_data->bs_num_env);
795
10418
    get_bits1_vector(gb, ch_data->bs_df_noise, ch_data->bs_num_noise);
796
10418
}
797
798
/// Read inverse filtering data
799
7793
static void read_sbr_invf(SpectralBandReplication *sbr, GetBitContext *gb,
800
                          SBRData *ch_data)
801
{
802
    int i;
803
804
7793
    memcpy(ch_data->bs_invf_mode[1], ch_data->bs_invf_mode[0], 5 * sizeof(uint8_t));
805
31778
    for (i = 0; i < sbr->n_q; i++)
806
23985
        ch_data->bs_invf_mode[0][i] = get_bits(gb, 2);
807
7793
}
808
809
10418
static int read_sbr_envelope(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
810
                              SBRData *ch_data, int ch)
811
{
812
    int bits;
813
    int i, j, k;
814
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
815
    int t_lav, f_lav;
816

10418
    const int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
817
10418
    const int odd = sbr->n[1] & 1;
818
819

10418
    if (sbr->bs_coupling && ch) {
820
2625
        if (ch_data->bs_amp_res) {
821
582
            bits   = 5;
822
582
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_3_0DB].table;
823
582
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_3_0DB];
824
582
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
825
582
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
826
        } else {
827
2043
            bits   = 6;
828
2043
            t_huff = vlc_sbr[T_HUFFMAN_ENV_BAL_1_5DB].table;
829
2043
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_BAL_1_5DB];
830
2043
            f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_1_5DB].table;
831
2043
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_1_5DB];
832
        }
833
    } else {
834
7793
        if (ch_data->bs_amp_res) {
835
2864
            bits   = 6;
836
2864
            t_huff = vlc_sbr[T_HUFFMAN_ENV_3_0DB].table;
837
2864
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_3_0DB];
838
2864
            f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
839
2864
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
840
        } else {
841
4929
            bits   = 7;
842
4929
            t_huff = vlc_sbr[T_HUFFMAN_ENV_1_5DB].table;
843
4929
            t_lav  = vlc_sbr_lav[T_HUFFMAN_ENV_1_5DB];
844
4929
            f_huff = vlc_sbr[F_HUFFMAN_ENV_1_5DB].table;
845
4929
            f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_1_5DB];
846
        }
847
    }
848
849
25578
    for (i = 0; i < ch_data->bs_num_env; i++) {
850
15160
        if (ch_data->bs_df_env[i]) {
851
            // bs_freq_res[0] == bs_freq_res[bs_num_env] from prev frame
852
4947
            if (ch_data->bs_freq_res[i + 1] == ch_data->bs_freq_res[i]) {
853
55736
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
854
51282
                    ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
855
51282
                    if (ch_data->env_facs_q[i + 1][j] > 127U) {
856
                        av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
857
                        return AVERROR_INVALIDDATA;
858
                    }
859
                }
860
493
            } else if (ch_data->bs_freq_res[i + 1]) {
861
4655
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
862
4282
                    k = (j + odd) >> 1; // find k such that f_tablelow[k] <= f_tablehigh[j] < f_tablelow[k + 1]
863
4282
                    ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
864
4282
                    if (ch_data->env_facs_q[i + 1][j] > 127U) {
865
                        av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
866
                        return AVERROR_INVALIDDATA;
867
                    }
868
                }
869
            } else {
870
799
                for (j = 0; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
871
679
                    k = j ? 2*j - odd : 0; // find k such that f_tablehigh[k] == f_tablelow[j]
872
679
                    ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i][k] + delta * (get_vlc2(gb, t_huff, 9, 3) - t_lav);
873
679
                    if (ch_data->env_facs_q[i + 1][j] > 127U) {
874
                        av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
875
                        return AVERROR_INVALIDDATA;
876
                    }
877
                }
878
            }
879
        } else {
880
10213
            ch_data->env_facs_q[i + 1][0] = delta * get_bits(gb, bits); // bs_env_start_value_balance
881
115673
            for (j = 1; j < sbr->n[ch_data->bs_freq_res[i + 1]]; j++) {
882
105460
                ch_data->env_facs_q[i + 1][j] = ch_data->env_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
883
105460
                if (ch_data->env_facs_q[i + 1][j] > 127U) {
884
                    av_log(ac->avctx, AV_LOG_ERROR, "env_facs_q %d is invalid\n", ch_data->env_facs_q[i + 1][j]);
885
                    return AVERROR_INVALIDDATA;
886
                }
887
            }
888
        }
889
    }
890
891
    //assign 0th elements of env_facs_q from last elements
892
10418
    memcpy(ch_data->env_facs_q[0], ch_data->env_facs_q[ch_data->bs_num_env],
893
           sizeof(ch_data->env_facs_q[0]));
894
895
10418
    return 0;
896
}
897
898
10418
static int read_sbr_noise(AACContext *ac, SpectralBandReplication *sbr, GetBitContext *gb,
899
                           SBRData *ch_data, int ch)
900
{
901
    int i, j;
902
    VLC_TYPE (*t_huff)[2], (*f_huff)[2];
903
    int t_lav, f_lav;
904

10418
    int delta = (ch == 1 && sbr->bs_coupling == 1) + 1;
905
906

10418
    if (sbr->bs_coupling && ch) {
907
2625
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_BAL_3_0DB].table;
908
2625
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_BAL_3_0DB];
909
2625
        f_huff = vlc_sbr[F_HUFFMAN_ENV_BAL_3_0DB].table;
910
2625
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_BAL_3_0DB];
911
    } else {
912
7793
        t_huff = vlc_sbr[T_HUFFMAN_NOISE_3_0DB].table;
913
7793
        t_lav  = vlc_sbr_lav[T_HUFFMAN_NOISE_3_0DB];
914
7793
        f_huff = vlc_sbr[F_HUFFMAN_ENV_3_0DB].table;
915
7793
        f_lav  = vlc_sbr_lav[F_HUFFMAN_ENV_3_0DB];
916
    }
917
918
24282
    for (i = 0; i < ch_data->bs_num_noise; i++) {
919
13864
        if (ch_data->bs_df_noise[i]) {
920
43693
            for (j = 0; j < sbr->n_q; j++) {
921
32863
                ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i][j] + delta * (get_vlc2(gb, t_huff, 9, 2) - t_lav);
922
32863
                if (ch_data->noise_facs_q[i + 1][j] > 30U) {
923
                    av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
924
                    return AVERROR_INVALIDDATA;
925
                }
926
            }
927
        } else {
928
3034
            ch_data->noise_facs_q[i + 1][0] = delta * get_bits(gb, 5); // bs_noise_start_value_balance or bs_noise_start_value_level
929
8944
            for (j = 1; j < sbr->n_q; j++) {
930
5910
                ch_data->noise_facs_q[i + 1][j] = ch_data->noise_facs_q[i + 1][j - 1] + delta * (get_vlc2(gb, f_huff, 9, 3) - f_lav);
931
5910
                if (ch_data->noise_facs_q[i + 1][j] > 30U) {
932
                    av_log(ac->avctx, AV_LOG_ERROR, "noise_facs_q %d is invalid\n", ch_data->noise_facs_q[i + 1][j]);
933
                    return AVERROR_INVALIDDATA;
934
                }
935
            }
936
        }
937
    }
938
939
    //assign 0th elements of noise_facs_q from last elements
940
10418
    memcpy(ch_data->noise_facs_q[0], ch_data->noise_facs_q[ch_data->bs_num_noise],
941
           sizeof(ch_data->noise_facs_q[0]));
942
10418
    return 0;
943
}
944
945
1616
static void read_sbr_extension(AACContext *ac, SpectralBandReplication *sbr,
946
                               GetBitContext *gb,
947
                               int bs_extension_id, int *num_bits_left)
948
{
949
1616
    switch (bs_extension_id) {
950
1616
    case EXTENSION_ID_PS:
951
1616
        if (!ac->oc[1].m4ac.ps) {
952
            av_log(ac->avctx, AV_LOG_ERROR, "Parametric Stereo signaled to be not-present but was found in the bitstream.\n");
953
            skip_bits_long(gb, *num_bits_left); // bs_fill_bits
954
            *num_bits_left = 0;
955
        } else {
956
1616
            *num_bits_left -= ff_ps_read_data(ac->avctx, gb, &sbr->ps.common, *num_bits_left);
957
1616
            ac->avctx->profile = FF_PROFILE_AAC_HE_V2;
958
        }
959
1616
        break;
960
    default:
961
        // some files contain 0-padding
962
        if (bs_extension_id || *num_bits_left > 16 || show_bits(gb, *num_bits_left))
963
            avpriv_request_sample(ac->avctx, "Reserved SBR extensions");
964
        skip_bits_long(gb, *num_bits_left); // bs_fill_bits
965
        *num_bits_left = 0;
966
        break;
967
    }
968
1616
}
969
970
2646
static int read_sbr_single_channel_element(AACContext *ac,
971
                                            SpectralBandReplication *sbr,
972
                                            GetBitContext *gb)
973
{
974
    int ret;
975
976
2646
    if (get_bits1(gb)) // bs_data_extra
977
        skip_bits(gb, 4); // bs_reserved
978
979
2646
    if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
980
        return -1;
981
2646
    read_sbr_dtdf(sbr, gb, &sbr->data[0]);
982
2646
    read_sbr_invf(sbr, gb, &sbr->data[0]);
983
2646
    if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
984
        return ret;
985
2646
    if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
986
        return ret;
987
988
2646
    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
989
174
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
990
991
2646
    return 0;
992
}
993
994
3886
static int read_sbr_channel_pair_element(AACContext *ac,
995
                                          SpectralBandReplication *sbr,
996
                                          GetBitContext *gb)
997
{
998
    int ret;
999
1000
3886
    if (get_bits1(gb))    // bs_data_extra
1001
        skip_bits(gb, 8); // bs_reserved
1002
1003
3886
    if ((sbr->bs_coupling = get_bits1(gb))) {
1004
2625
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]))
1005
            return -1;
1006
2625
        copy_sbr_grid(&sbr->data[1], &sbr->data[0]);
1007
2625
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1008
2625
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1009
2625
        read_sbr_invf(sbr, gb, &sbr->data[0]);
1010
2625
        memcpy(sbr->data[1].bs_invf_mode[1], sbr->data[1].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1011
2625
        memcpy(sbr->data[1].bs_invf_mode[0], sbr->data[0].bs_invf_mode[0], sizeof(sbr->data[1].bs_invf_mode[0]));
1012
2625
        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1013
            return ret;
1014
2625
        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1015
            return ret;
1016
2625
        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1017
            return ret;
1018
2625
        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1019
            return ret;
1020
    } else {
1021

2522
        if (read_sbr_grid(ac, sbr, gb, &sbr->data[0]) ||
1022
1261
            read_sbr_grid(ac, sbr, gb, &sbr->data[1]))
1023
            return -1;
1024
1261
        read_sbr_dtdf(sbr, gb, &sbr->data[0]);
1025
1261
        read_sbr_dtdf(sbr, gb, &sbr->data[1]);
1026
1261
        read_sbr_invf(sbr, gb, &sbr->data[0]);
1027
1261
        read_sbr_invf(sbr, gb, &sbr->data[1]);
1028
1261
        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1029
            return ret;
1030
1261
        if((ret = read_sbr_envelope(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1031
            return ret;
1032
1261
        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[0], 0)) < 0)
1033
            return ret;
1034
1261
        if((ret = read_sbr_noise(ac, sbr, gb, &sbr->data[1], 1)) < 0)
1035
            return ret;
1036
    }
1037
1038
3886
    if ((sbr->data[0].bs_add_harmonic_flag = get_bits1(gb)))
1039
698
        get_bits1_vector(gb, sbr->data[0].bs_add_harmonic, sbr->n[1]);
1040
3886
    if ((sbr->data[1].bs_add_harmonic_flag = get_bits1(gb)))
1041
464
        get_bits1_vector(gb, sbr->data[1].bs_add_harmonic, sbr->n[1]);
1042
1043
3886
    return 0;
1044
}
1045
1046
6532
static unsigned int read_sbr_data(AACContext *ac, SpectralBandReplication *sbr,
1047
                                  GetBitContext *gb, int id_aac)
1048
{
1049
6532
    unsigned int cnt = get_bits_count(gb);
1050
1051
6532
    sbr->id_aac = id_aac;
1052
6532
    sbr->ready_for_dequant = 1;
1053
1054

6532
    if (id_aac == TYPE_SCE || id_aac == TYPE_CCE) {
1055
2646
        if (read_sbr_single_channel_element(ac, sbr, gb)) {
1056
            sbr_turnoff(sbr);
1057
            return get_bits_count(gb) - cnt;
1058
        }
1059
3886
    } else if (id_aac == TYPE_CPE) {
1060
3886
        if (read_sbr_channel_pair_element(ac, sbr, gb)) {
1061
            sbr_turnoff(sbr);
1062
            return get_bits_count(gb) - cnt;
1063
        }
1064
    } else {
1065
        av_log(ac->avctx, AV_LOG_ERROR,
1066
            "Invalid bitstream - cannot apply SBR to element type %d\n", id_aac);
1067
        sbr_turnoff(sbr);
1068
        return get_bits_count(gb) - cnt;
1069
    }
1070
6532
    if (get_bits1(gb)) { // bs_extended_data
1071
1616
        int num_bits_left = get_bits(gb, 4); // bs_extension_size
1072
1616
        if (num_bits_left == 15)
1073
258
            num_bits_left += get_bits(gb, 8); // bs_esc_count
1074
1075
1616
        num_bits_left <<= 3;
1076
3232
        while (num_bits_left > 7) {
1077
1616
            num_bits_left -= 2;
1078
1616
            read_sbr_extension(ac, sbr, gb, get_bits(gb, 2), &num_bits_left); // bs_extension_id
1079
        }
1080
1616
        if (num_bits_left < 0) {
1081
            av_log(ac->avctx, AV_LOG_ERROR, "SBR Extension over read.\n");
1082
        }
1083
1616
        if (num_bits_left > 0)
1084
1451
            skip_bits(gb, num_bits_left);
1085
    }
1086
1087
6532
    return get_bits_count(gb) - cnt;
1088
}
1089
1090
65
static void sbr_reset(AACContext *ac, SpectralBandReplication *sbr)
1091
{
1092
    int err;
1093
65
    err = sbr_make_f_master(ac, sbr, &sbr->spectrum_params);
1094
65
    if (err >= 0)
1095
65
        err = sbr_make_f_derived(ac, sbr);
1096
65
    if (err < 0) {
1097
        av_log(ac->avctx, AV_LOG_ERROR,
1098
               "SBR reset failed. Switching SBR to pure upsampling mode.\n");
1099
        sbr_turnoff(sbr);
1100
    }
1101
65
}
1102
1103
/**
1104
 * Decode Spectral Band Replication extension data; reference: table 4.55.
1105
 *
1106
 * @param   crc flag indicating the presence of CRC checksum
1107
 * @param   cnt length of TYPE_FIL syntactic element in bytes
1108
 *
1109
 * @return  Returns number of bytes consumed from the TYPE_FIL element.
1110
 */
1111
10901
int AAC_RENAME(ff_decode_sbr_extension)(AACContext *ac, SpectralBandReplication *sbr,
1112
                            GetBitContext *gb_host, int crc, int cnt, int id_aac)
1113
{
1114
10901
    unsigned int num_sbr_bits = 0, num_align_bits;
1115
    unsigned bytes_read;
1116
10901
    GetBitContext gbc = *gb_host, *gb = &gbc;
1117
10901
    skip_bits_long(gb_host, cnt*8 - 4);
1118
1119
10901
    sbr->reset = 0;
1120
1121
10901
    if (!sbr->sample_rate)
1122
82
        sbr->sample_rate = 2 * ac->oc[1].m4ac.sample_rate; //TODO use the nominal sample rate for arbitrary sample rate support
1123
10901
    if (!ac->oc[1].m4ac.ext_sample_rate)
1124
18
        ac->oc[1].m4ac.ext_sample_rate = 2 * ac->oc[1].m4ac.sample_rate;
1125
1126
10901
    if (crc) {
1127
        skip_bits(gb, 10); // bs_sbr_crc_bits; TODO - implement CRC check
1128
        num_sbr_bits += 10;
1129
    }
1130
1131
    //Save some state from the previous frame.
1132
10901
    sbr->kx[0] = sbr->kx[1];
1133
10901
    sbr->m[0] = sbr->m[1];
1134
10901
    sbr->kx_and_m_pushed = 1;
1135
1136
10901
    num_sbr_bits++;
1137
10901
    if (get_bits1(gb)) // bs_header_flag
1138
489
        num_sbr_bits += read_sbr_header(sbr, gb);
1139
1140
10901
    if (sbr->reset)
1141
65
        sbr_reset(ac, sbr);
1142
1143
10901
    if (sbr->start)
1144
6532
        num_sbr_bits  += read_sbr_data(ac, sbr, gb, id_aac);
1145
1146
10901
    num_align_bits = ((cnt << 3) - 4 - num_sbr_bits) & 7;
1147
10901
    bytes_read = ((num_sbr_bits + num_align_bits + 4) >> 3);
1148
1149
10901
    if (bytes_read > cnt) {
1150
        av_log(ac->avctx, AV_LOG_ERROR,
1151
               "Expected to read %d SBR bytes actually read %d.\n", cnt, bytes_read);
1152
        sbr_turnoff(sbr);
1153
    }
1154
10901
    return cnt;
1155
}
1156
1157
/**
1158
 * Analysis QMF Bank (14496-3 sp04 p206)
1159
 *
1160
 * @param   x       pointer to the beginning of the first sample window
1161
 * @param   W       array of complex-valued samples split into subbands
1162
 */
1163
#ifndef sbr_qmf_analysis
1164
#if USE_FIXED
1165
8328
static void sbr_qmf_analysis(AVFixedDSPContext *dsp, FFTContext *mdct,
1166
#else
1167
11409
static void sbr_qmf_analysis(AVFloatDSPContext *dsp, FFTContext *mdct,
1168
#endif /* USE_FIXED */
1169
                             SBRDSPContext *sbrdsp, const INTFLOAT *in, INTFLOAT *x,
1170
                             INTFLOAT z[320], INTFLOAT W[2][32][32][2], int buf_idx)
1171
{
1172
    int i;
1173
#if USE_FIXED
1174
    int j;
1175
#endif
1176
19737
    memcpy(x    , x+1024, (320-32)*sizeof(x[0]));
1177
19737
    memcpy(x+288, in,         1024*sizeof(x[0]));
1178
651321
    for (i = 0; i < 32; i++) { // numTimeSlots*RATE = 16*2 as 960 sample frames
1179
                               // are not supported
1180
631584
        dsp->vector_fmul_reverse(z, sbr_qmf_window_ds, x, 320);
1181
631584
        sbrdsp->sum64x5(z);
1182
631584
        sbrdsp->qmf_pre_shuffle(z);
1183
#if USE_FIXED
1184
17322240
        for (j = 64; j < 128; j++) {
1185
17055744
            if (z[j] > 1<<24) {
1186
                av_log(NULL, AV_LOG_WARNING,
1187
                       "sbr_qmf_analysis: value %09d too large, setting to %09d\n",
1188
                       z[j], 1<<24);
1189
                z[j] = 1<<24;
1190
17055744
            } else if (z[j] < -(1<<24)) {
1191
                av_log(NULL, AV_LOG_WARNING,
1192
                       "sbr_qmf_analysis: value %09d too small, setting to %09d\n",
1193
                       z[j], -(1<<24));
1194
                z[j] = -(1<<24);
1195
            }
1196
        }
1197
#endif
1198
631584
        mdct->imdct_half(mdct, z, z+64);
1199
631584
        sbrdsp->qmf_post_shuffle(W[buf_idx][i], z);
1200
631584
        x += 32;
1201
    }
1202
19737
}
1203
#endif
1204
1205
/**
1206
 * Synthesis QMF Bank (14496-3 sp04 p206) and Downsampled Synthesis QMF Bank
1207
 * (14496-3 sp04 p206)
1208
 */
1209
#ifndef sbr_qmf_synthesis
1210
21736
static void sbr_qmf_synthesis(FFTContext *mdct,
1211
#if USE_FIXED
1212
                              SBRDSPContext *sbrdsp, AVFixedDSPContext *dsp,
1213
#else
1214
                              SBRDSPContext *sbrdsp, AVFloatDSPContext *dsp,
1215
#endif /* USE_FIXED */
1216
                              INTFLOAT *out, INTFLOAT X[2][38][64],
1217
                              INTFLOAT mdct_buf[2][64],
1218
                              INTFLOAT *v0, int *v_off, const unsigned int div)
1219
{
1220
    int i, n;
1221
21736
    const INTFLOAT *sbr_qmf_window = div ? sbr_qmf_window_ds : sbr_qmf_window_us;
1222
21736
    const int step = 128 >> div;
1223
    INTFLOAT *v;
1224
717288
    for (i = 0; i < 32; i++) {
1225
695552
        if (*v_off < step) {
1226
66284
            int saved_samples = (1280 - 128) >> div;
1227
66284
            memcpy(&v0[SBR_SYNTHESIS_BUF_SIZE - saved_samples], v0, saved_samples * sizeof(INTFLOAT));
1228
66284
            *v_off = SBR_SYNTHESIS_BUF_SIZE - saved_samples - step;
1229
        } else {
1230
629268
            *v_off -= step;
1231
        }
1232
695552
        v = v0 + *v_off;
1233
695552
        if (div) {
1234
4853376
            for (n = 0; n < 32; n++) {
1235
4706304
                X[0][i][   n] = -X[0][i][n];
1236
4706304
                X[0][i][32+n] =  X[1][i][31-n];
1237
            }
1238
147072
            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1239
147072
            sbrdsp->qmf_deint_neg(v, mdct_buf[0]);
1240
        } else {
1241
548480
            sbrdsp->neg_odd_64(X[1][i]);
1242
548480
            mdct->imdct_half(mdct, mdct_buf[0], X[0][i]);
1243
548480
            mdct->imdct_half(mdct, mdct_buf[1], X[1][i]);
1244
548480
            sbrdsp->qmf_deint_bfly(v, mdct_buf[1], mdct_buf[0]);
1245
        }
1246
695552
        dsp->vector_fmul    (out, v                , sbr_qmf_window                       , 64 >> div);
1247
695552
        dsp->vector_fmul_add(out, v + ( 192 >> div), sbr_qmf_window + ( 64 >> div), out   , 64 >> div);
1248
695552
        dsp->vector_fmul_add(out, v + ( 256 >> div), sbr_qmf_window + (128 >> div), out   , 64 >> div);
1249
695552
        dsp->vector_fmul_add(out, v + ( 448 >> div), sbr_qmf_window + (192 >> div), out   , 64 >> div);
1250
695552
        dsp->vector_fmul_add(out, v + ( 512 >> div), sbr_qmf_window + (256 >> div), out   , 64 >> div);
1251
695552
        dsp->vector_fmul_add(out, v + ( 704 >> div), sbr_qmf_window + (320 >> div), out   , 64 >> div);
1252
695552
        dsp->vector_fmul_add(out, v + ( 768 >> div), sbr_qmf_window + (384 >> div), out   , 64 >> div);
1253
695552
        dsp->vector_fmul_add(out, v + ( 960 >> div), sbr_qmf_window + (448 >> div), out   , 64 >> div);
1254
695552
        dsp->vector_fmul_add(out, v + (1024 >> div), sbr_qmf_window + (512 >> div), out   , 64 >> div);
1255
695552
        dsp->vector_fmul_add(out, v + (1216 >> div), sbr_qmf_window + (576 >> div), out   , 64 >> div);
1256
695552
        out += 64 >> div;
1257
    }
1258
21736
}
1259
#endif
1260
1261
/// Generate the subband filtered lowband
1262
19737
static int sbr_lf_gen(AACContext *ac, SpectralBandReplication *sbr,
1263
                      INTFLOAT X_low[32][40][2], const INTFLOAT W[2][32][32][2],
1264
                      int buf_idx)
1265
{
1266
    int i, k;
1267
19737
    const int t_HFGen = 8;
1268
19737
    const int i_f = 32;
1269
19737
    memset(X_low, 0, 32*sizeof(*X_low));
1270
510367
    for (k = 0; k < sbr->kx[1]; k++) {
1271
16190790
        for (i = t_HFGen; i < i_f + t_HFGen; i++) {
1272
15700160
            X_low[k][i][0] = W[buf_idx][i - t_HFGen][k][0];
1273
15700160
            X_low[k][i][1] = W[buf_idx][i - t_HFGen][k][1];
1274
        }
1275
    }
1276
19737
    buf_idx = 1-buf_idx;
1277
511207
    for (k = 0; k < sbr->kx[0]; k++) {
1278
4423230
        for (i = 0; i < t_HFGen; i++) {
1279
3931760
            X_low[k][i][0] = W[buf_idx][i + i_f - t_HFGen][k][0];
1280
3931760
            X_low[k][i][1] = W[buf_idx][i + i_f - t_HFGen][k][1];
1281
        }
1282
    }
1283
19737
    return 0;
1284
}
1285
1286
/// High Frequency Generator (14496-3 sp04 p215)
1287
10418
static int sbr_hf_gen(AACContext *ac, SpectralBandReplication *sbr,
1288
                      INTFLOAT X_high[64][40][2], const INTFLOAT X_low[32][40][2],
1289
                      const INTFLOAT (*alpha0)[2], const INTFLOAT (*alpha1)[2],
1290
                      const INTFLOAT bw_array[5], const uint8_t *t_env,
1291
                      int bs_num_env)
1292
{
1293
    int j, x;
1294
10418
    int g = 0;
1295
10418
    int k = sbr->kx[1];
1296
36609
    for (j = 0; j < sbr->num_patches; j++) {
1297
282933
        for (x = 0; x < sbr->patch_num_subbands[j]; x++, k++) {
1298
256742
            const int p = sbr->patch_start_subband[j] + x;
1299

533838
            while (g <= sbr->n_q && k >= sbr->f_tablenoise[g])
1300
277096
                g++;
1301
256742
            g--;
1302
1303
256742
            if (g < 0) {
1304
                av_log(ac->avctx, AV_LOG_ERROR,
1305
                       "ERROR : no subband found for frequency %d\n", k);
1306
                return -1;
1307
            }
1308
1309
256742
            sbr->dsp.hf_gen(X_high[k] + ENVELOPE_ADJUSTMENT_OFFSET,
1310
256742
                            X_low[p]  + ENVELOPE_ADJUSTMENT_OFFSET,
1311
256742
                            alpha0[p], alpha1[p], bw_array[g],
1312
256742
                            2 * t_env[0], 2 * t_env[bs_num_env]);
1313
        }
1314
    }
1315
10418
    if (k < sbr->m[1] + sbr->kx[1])
1316
        memset(X_high + k, 0, (sbr->m[1] + sbr->kx[1] - k) * sizeof(*X_high));
1317
1318
10418
    return 0;
1319
}
1320
1321
/// Generate the subband filtered lowband
1322
19737
static int sbr_x_gen(SpectralBandReplication *sbr, INTFLOAT X[2][38][64],
1323
                     const INTFLOAT Y0[38][64][2], const INTFLOAT Y1[38][64][2],
1324
                     const INTFLOAT X_low[32][40][2], int ch)
1325
{
1326
    int k, i;
1327
19737
    const int i_f = 32;
1328
19737
    const int i_Temp = FFMAX(2*sbr->data[ch].t_env_num_env_old - i_f, 0);
1329
19737
    memset(X, 0, 2*sizeof(*X));
1330
511207
    for (k = 0; k < sbr->kx[0]; k++) {
1331
547200
        for (i = 0; i < i_Temp; i++) {
1332
55730
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1333
55730
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1334
        }
1335
    }
1336
273883
    for (; k < sbr->kx[0] + sbr->m[0]; k++) {
1337
322412
        for (i = 0; i < i_Temp; i++) {
1338
68266
            X[0][i][k] = Y0[i + i_f][k][0];
1339
68266
            X[1][i][k] = Y0[i + i_f][k][1];
1340
        }
1341
    }
1342
1343
510367
    for (k = 0; k < sbr->kx[1]; k++) {
1344
19078840
        for (i = i_Temp; i < 38; i++) {
1345
18588210
            X[0][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][0];
1346
18588210
            X[1][i][k] = X_low[k][i + ENVELOPE_ADJUSTMENT_OFFSET][1];
1347
        }
1348
    }
1349
276479
    for (; k < sbr->kx[1] + sbr->m[1]; k++) {
1350
8404220
        for (i = i_Temp; i < i_f; i++) {
1351
8147478
            X[0][i][k] = Y1[i][k][0];
1352
8147478
            X[1][i][k] = Y1[i][k][1];
1353
        }
1354
    }
1355
19737
    return 0;
1356
}
1357
1358
/** High Frequency Adjustment (14496-3 sp04 p217) and Mapping
1359
 * (14496-3 sp04 p217)
1360
 */
1361
10418
static int sbr_mapping(AACContext *ac, SpectralBandReplication *sbr,
1362
                        SBRData *ch_data, int e_a[2])
1363
{
1364
    int e, i, m;
1365
1366
10418
    memset(ch_data->s_indexmapped[1], 0, 7*sizeof(ch_data->s_indexmapped[1]));
1367
25578
    for (e = 0; e < ch_data->bs_num_env; e++) {
1368
15160
        const unsigned int ilim = sbr->n[ch_data->bs_freq_res[e + 1]];
1369
15160
        uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1370
        int k;
1371
1372
15160
        if (sbr->kx[1] != table[0]) {
1373
            av_log(ac->avctx, AV_LOG_ERROR, "kx != f_table{high,low}[0]. "
1374
                   "Derived frequency tables were not regenerated.\n");
1375
            sbr_turnoff(sbr);
1376
            return AVERROR_BUG;
1377
        }
1378
187076
        for (i = 0; i < ilim; i++)
1379
550938
            for (m = table[i]; m < table[i + 1]; m++)
1380
379022
                sbr->e_origmapped[e][m - sbr->kx[1]] = ch_data->env_facs[e+1][i];
1381
1382
        // ch_data->bs_num_noise > 1 => 2 noise floors
1383

15160
        k = (ch_data->bs_num_noise > 1) && (ch_data->t_env[e] >= ch_data->t_q[1]);
1384
60744
        for (i = 0; i < sbr->n_q; i++)
1385
424606
            for (m = sbr->f_tablenoise[i]; m < sbr->f_tablenoise[i + 1]; m++)
1386
379022
                sbr->q_mapped[e][m - sbr->kx[1]] = ch_data->noise_facs[k+1][i];
1387
1388
197376
        for (i = 0; i < sbr->n[1]; i++) {
1389
182216
            if (ch_data->bs_add_harmonic_flag) {
1390
32694
                const unsigned int m_midpoint =
1391
32694
                    (sbr->f_tablehigh[i] + sbr->f_tablehigh[i + 1]) >> 1;
1392
1393
32694
                ch_data->s_indexmapped[e + 1][m_midpoint - sbr->kx[1]] = ch_data->bs_add_harmonic[i] *
1394

32694
                    (e >= e_a[1] || (ch_data->s_indexmapped[0][m_midpoint - sbr->kx[1]] == 1));
1395
            }
1396
        }
1397
1398
187076
        for (i = 0; i < ilim; i++) {
1399
171916
            int additional_sinusoid_present = 0;
1400
544482
            for (m = table[i]; m < table[i + 1]; m++) {
1401
376296
                if (ch_data->s_indexmapped[e + 1][m - sbr->kx[1]]) {
1402
3730
                    additional_sinusoid_present = 1;
1403
3730
                    break;
1404
                }
1405
            }
1406
171916
            memset(&sbr->s_mapped[e][table[i] - sbr->kx[1]], additional_sinusoid_present,
1407
171916
                   (table[i + 1] - table[i]) * sizeof(sbr->s_mapped[e][0]));
1408
        }
1409
    }
1410
1411
10418
    memcpy(ch_data->s_indexmapped[0], ch_data->s_indexmapped[ch_data->bs_num_env], sizeof(ch_data->s_indexmapped[0]));
1412
10418
    return 0;
1413
}
1414
1415
/// Estimation of current envelope (14496-3 sp04 p218)
1416
10418
static void sbr_env_estimate(AAC_FLOAT (*e_curr)[48], INTFLOAT X_high[64][40][2],
1417
                             SpectralBandReplication *sbr, SBRData *ch_data)
1418
{
1419
    int e, m;
1420
10418
    int kx1 = sbr->kx[1];
1421
1422
10418
    if (sbr->bs_interpol_freq) {
1423
25578
        for (e = 0; e < ch_data->bs_num_env; e++) {
1424
#if USE_FIXED
1425
5588
            const SoftFloat recip_env_size = av_int2sf(0x20000000 / (ch_data->t_env[e + 1] - ch_data->t_env[e]), 30);
1426
#else
1427
9572
            const float recip_env_size = 0.5f / (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1428
#endif /* USE_FIXED */
1429
15160
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1430
15160
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1431
1432
394182
            for (m = 0; m < sbr->m[1]; m++) {
1433
379022
                AAC_FLOAT sum = sbr->dsp.sum_square(X_high[m+kx1] + ilb, iub - ilb);
1434
#if USE_FIXED
1435
127837
                e_curr[e][m] = av_mul_sf(sum, recip_env_size);
1436
#else
1437
251185
                e_curr[e][m] = sum * recip_env_size;
1438
#endif /* USE_FIXED */
1439
            }
1440
        }
1441
    } else {
1442
        int k, p;
1443
1444
        for (e = 0; e < ch_data->bs_num_env; e++) {
1445
            const int env_size = 2 * (ch_data->t_env[e + 1] - ch_data->t_env[e]);
1446
            int ilb = ch_data->t_env[e]     * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1447
            int iub = ch_data->t_env[e + 1] * 2 + ENVELOPE_ADJUSTMENT_OFFSET;
1448
            const uint16_t *table = ch_data->bs_freq_res[e + 1] ? sbr->f_tablehigh : sbr->f_tablelow;
1449
1450
            for (p = 0; p < sbr->n[ch_data->bs_freq_res[e + 1]]; p++) {
1451
#if USE_FIXED
1452
                SoftFloat sum = FLOAT_0;
1453
                const SoftFloat den = av_int2sf(0x20000000 / (env_size * (table[p + 1] - table[p])), 29);
1454
                for (k = table[p]; k < table[p + 1]; k++) {
1455
                    sum = av_add_sf(sum, sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb));
1456
                }
1457
                sum = av_mul_sf(sum, den);
1458
#else
1459
                float sum = 0.0f;
1460
                const int den = env_size * (table[p + 1] - table[p]);
1461
1462
                for (k = table[p]; k < table[p + 1]; k++) {
1463
                    sum += sbr->dsp.sum_square(X_high[k] + ilb, iub - ilb);
1464
                }
1465
                sum /= den;
1466
#endif /* USE_FIXED */
1467
                for (k = table[p]; k < table[p + 1]; k++) {
1468
                    e_curr[e][k - kx1] = sum;
1469
                }
1470
            }
1471
        }
1472
    }
1473
10418
}
1474
1475
12411
void AAC_RENAME(ff_sbr_apply)(AACContext *ac, SpectralBandReplication *sbr, int id_aac,
1476
                  INTFLOAT* L, INTFLOAT* R)
1477
{
1478
12411
    int downsampled = ac->oc[1].m4ac.ext_sample_rate < sbr->sample_rate;
1479
    int ch;
1480
12411
    int nch = (id_aac == TYPE_CPE) ? 2 : 1;
1481
    int err;
1482
1483
12411
    if (id_aac != sbr->id_aac) {
1484
        av_log(ac->avctx, id_aac == TYPE_LFE ? AV_LOG_VERBOSE : AV_LOG_WARNING,
1485
            "element type mismatch %d != %d\n", id_aac, sbr->id_aac);
1486
        sbr_turnoff(sbr);
1487
    }
1488
1489

12411
    if (sbr->start && !sbr->ready_for_dequant) {
1490
        av_log(ac->avctx, AV_LOG_ERROR,
1491
               "No quantized data read for sbr_dequant.\n");
1492
        sbr_turnoff(sbr);
1493
    }
1494
1495
12411
    if (!sbr->kx_and_m_pushed) {
1496
1510
        sbr->kx[0] = sbr->kx[1];
1497
1510
        sbr->m[0] = sbr->m[1];
1498
    } else {
1499
10901
        sbr->kx_and_m_pushed = 0;
1500
    }
1501
1502
12411
    if (sbr->start) {
1503
6532
        sbr_dequant(sbr, id_aac);
1504
6532
        sbr->ready_for_dequant = 0;
1505
    }
1506
32148
    for (ch = 0; ch < nch; ch++) {
1507
        /* decode channel */
1508
19737
        sbr_qmf_analysis(ac->fdsp, &sbr->mdct_ana, &sbr->dsp, ch ? R : L, sbr->data[ch].analysis_filterbank_samples,
1509
19737
                         (INTFLOAT*)sbr->qmf_filter_scratch,
1510
19737
                         sbr->data[ch].W, sbr->data[ch].Ypos);
1511
19737
        sbr->c.sbr_lf_gen(ac, sbr, sbr->X_low,
1512
19737
                          (const INTFLOAT (*)[32][32][2]) sbr->data[ch].W,
1513
                          sbr->data[ch].Ypos);
1514
19737
        sbr->data[ch].Ypos ^= 1;
1515
19737
        if (sbr->start) {
1516
10418
            sbr->c.sbr_hf_inverse_filter(&sbr->dsp, sbr->alpha0, sbr->alpha1,
1517
10418
                                         (const INTFLOAT (*)[40][2]) sbr->X_low, sbr->k[0]);
1518
10418
            sbr_chirp(sbr, &sbr->data[ch]);
1519
10418
            av_assert0(sbr->data[ch].bs_num_env > 0);
1520
10418
            sbr_hf_gen(ac, sbr, sbr->X_high,
1521
10418
                       (const INTFLOAT (*)[40][2]) sbr->X_low,
1522
10418
                       (const INTFLOAT (*)[2]) sbr->alpha0,
1523
10418
                       (const INTFLOAT (*)[2]) sbr->alpha1,
1524
10418
                       sbr->data[ch].bw_array, sbr->data[ch].t_env,
1525
6631
                       sbr->data[ch].bs_num_env);
1526
1527
            // hf_adj
1528
10418
            err = sbr_mapping(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1529
10418
            if (!err) {
1530
10418
                sbr_env_estimate(sbr->e_curr, sbr->X_high, sbr, &sbr->data[ch]);
1531
10418
                sbr_gain_calc(ac, sbr, &sbr->data[ch], sbr->data[ch].e_a);
1532
10418
                sbr->c.sbr_hf_assemble(sbr->data[ch].Y[sbr->data[ch].Ypos],
1533
10418
                                (const INTFLOAT (*)[40][2]) sbr->X_high,
1534
                                sbr, &sbr->data[ch],
1535
10418
                                sbr->data[ch].e_a);
1536
            }
1537
        }
1538
1539
        /* synthesis */
1540
19737
        sbr->c.sbr_x_gen(sbr, sbr->X[ch],
1541
19737
                  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[1-sbr->data[ch].Ypos],
1542
19737
                  (const INTFLOAT (*)[64][2]) sbr->data[ch].Y[  sbr->data[ch].Ypos],
1543
19737
                  (const INTFLOAT (*)[40][2]) sbr->X_low, ch);
1544
    }
1545
1546
12411
    if (ac->oc[1].m4ac.ps == 1) {
1547
1999
        if (sbr->ps.common.start) {
1548
1616
            AAC_RENAME(ff_ps_apply)(ac->avctx, &sbr->ps, sbr->X[0], sbr->X[1], sbr->kx[1] + sbr->m[1]);
1549
        } else {
1550
383
            memcpy(sbr->X[1], sbr->X[0], sizeof(sbr->X[0]));
1551
        }
1552
1999
        nch = 2;
1553
    }
1554
1555
12411
    sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1556
12411
                      L, sbr->X[0], sbr->qmf_filter_scratch,
1557
12411
                      sbr->data[0].synthesis_filterbank_samples,
1558
                      &sbr->data[0].synthesis_filterbank_samples_offset,
1559
                      downsampled);
1560
12411
    if (nch == 2)
1561
9325
        sbr_qmf_synthesis(&sbr->mdct, &sbr->dsp, ac->fdsp,
1562
9325
                          R, sbr->X[1], sbr->qmf_filter_scratch,
1563
9325
                          sbr->data[1].synthesis_filterbank_samples,
1564
                          &sbr->data[1].synthesis_filterbank_samples_offset,
1565
                          downsampled);
1566
12411
}
1567
1568
351
static void aacsbr_func_ptr_init(AACSBRContext *c)
1569
{
1570
351
    c->sbr_lf_gen            = sbr_lf_gen;
1571
351
    c->sbr_hf_assemble       = sbr_hf_assemble;
1572
351
    c->sbr_x_gen             = sbr_x_gen;
1573
351
    c->sbr_hf_inverse_filter = sbr_hf_inverse_filter;
1574
1575
#if !USE_FIXED
1576
    if(ARCH_MIPS)
1577
        ff_aacsbr_func_ptr_init_mips(c);
1578
#endif
1579
351
}