GCC Code Coverage Report | |||||||||||||||||||||
|
|||||||||||||||||||||
Line | Branch | Exec | Source |
1 |
/* |
||
2 |
* AAC encoder psychoacoustic model |
||
3 |
* Copyright (C) 2008 Konstantin Shishkov |
||
4 |
* |
||
5 |
* This file is part of FFmpeg. |
||
6 |
* |
||
7 |
* FFmpeg is free software; you can redistribute it and/or |
||
8 |
* modify it under the terms of the GNU Lesser General Public |
||
9 |
* License as published by the Free Software Foundation; either |
||
10 |
* version 2.1 of the License, or (at your option) any later version. |
||
11 |
* |
||
12 |
* FFmpeg is distributed in the hope that it will be useful, |
||
13 |
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
||
14 |
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
||
15 |
* Lesser General Public License for more details. |
||
16 |
* |
||
17 |
* You should have received a copy of the GNU Lesser General Public |
||
18 |
* License along with FFmpeg; if not, write to the Free Software |
||
19 |
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
||
20 |
*/ |
||
21 |
|||
22 |
/** |
||
23 |
* @file |
||
24 |
* AAC encoder psychoacoustic model |
||
25 |
*/ |
||
26 |
|||
27 |
#include "libavutil/attributes.h" |
||
28 |
#include "libavutil/ffmath.h" |
||
29 |
|||
30 |
#include "avcodec.h" |
||
31 |
#include "aactab.h" |
||
32 |
#include "psymodel.h" |
||
33 |
|||
34 |
/*********************************** |
||
35 |
* TODOs: |
||
36 |
* try other bitrate controlling mechanism (maybe use ratecontrol.c?) |
||
37 |
* control quality for quality-based output |
||
38 |
**********************************/ |
||
39 |
|||
40 |
/** |
||
41 |
* constants for 3GPP AAC psychoacoustic model |
||
42 |
* @{ |
||
43 |
*/ |
||
44 |
#define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark) |
||
45 |
#define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark) |
||
46 |
/* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */ |
||
47 |
#define PSY_3GPP_EN_SPREAD_HI_L1 2.0f |
||
48 |
/* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */ |
||
49 |
#define PSY_3GPP_EN_SPREAD_HI_L2 1.5f |
||
50 |
/* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */ |
||
51 |
#define PSY_3GPP_EN_SPREAD_HI_S 1.5f |
||
52 |
/* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */ |
||
53 |
#define PSY_3GPP_EN_SPREAD_LOW_L 3.0f |
||
54 |
/* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */ |
||
55 |
#define PSY_3GPP_EN_SPREAD_LOW_S 2.0f |
||
56 |
|||
57 |
#define PSY_3GPP_RPEMIN 0.01f |
||
58 |
#define PSY_3GPP_RPELEV 2.0f |
||
59 |
|||
60 |
#define PSY_3GPP_C1 3.0f /* log2(8) */ |
||
61 |
#define PSY_3GPP_C2 1.3219281f /* log2(2.5) */ |
||
62 |
#define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */ |
||
63 |
|||
64 |
#define PSY_SNR_1DB 7.9432821e-1f /* -1dB */ |
||
65 |
#define PSY_SNR_25DB 3.1622776e-3f /* -25dB */ |
||
66 |
|||
67 |
#define PSY_3GPP_SAVE_SLOPE_L -0.46666667f |
||
68 |
#define PSY_3GPP_SAVE_SLOPE_S -0.36363637f |
||
69 |
#define PSY_3GPP_SAVE_ADD_L -0.84285712f |
||
70 |
#define PSY_3GPP_SAVE_ADD_S -0.75f |
||
71 |
#define PSY_3GPP_SPEND_SLOPE_L 0.66666669f |
||
72 |
#define PSY_3GPP_SPEND_SLOPE_S 0.81818181f |
||
73 |
#define PSY_3GPP_SPEND_ADD_L -0.35f |
||
74 |
#define PSY_3GPP_SPEND_ADD_S -0.26111111f |
||
75 |
#define PSY_3GPP_CLIP_LO_L 0.2f |
||
76 |
#define PSY_3GPP_CLIP_LO_S 0.2f |
||
77 |
#define PSY_3GPP_CLIP_HI_L 0.95f |
||
78 |
#define PSY_3GPP_CLIP_HI_S 0.75f |
||
79 |
|||
80 |
#define PSY_3GPP_AH_THR_LONG 0.5f |
||
81 |
#define PSY_3GPP_AH_THR_SHORT 0.63f |
||
82 |
|||
83 |
#define PSY_PE_FORGET_SLOPE 511 |
||
84 |
|||
85 |
enum { |
||
86 |
PSY_3GPP_AH_NONE, |
||
87 |
PSY_3GPP_AH_INACTIVE, |
||
88 |
PSY_3GPP_AH_ACTIVE |
||
89 |
}; |
||
90 |
|||
91 |
#define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f) |
||
92 |
#define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f) |
||
93 |
|||
94 |
/* LAME psy model constants */ |
||
95 |
#define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order |
||
96 |
#define AAC_BLOCK_SIZE_LONG 1024 ///< long block size |
||
97 |
#define AAC_BLOCK_SIZE_SHORT 128 ///< short block size |
||
98 |
#define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence |
||
99 |
#define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block |
||
100 |
|||
101 |
/** |
||
102 |
* @} |
||
103 |
*/ |
||
104 |
|||
105 |
/** |
||
106 |
* information for single band used by 3GPP TS26.403-inspired psychoacoustic model |
||
107 |
*/ |
||
108 |
typedef struct AacPsyBand{ |
||
109 |
float energy; ///< band energy |
||
110 |
float thr; ///< energy threshold |
||
111 |
float thr_quiet; ///< threshold in quiet |
||
112 |
float nz_lines; ///< number of non-zero spectral lines |
||
113 |
float active_lines; ///< number of active spectral lines |
||
114 |
float pe; ///< perceptual entropy |
||
115 |
float pe_const; ///< constant part of the PE calculation |
||
116 |
float norm_fac; ///< normalization factor for linearization |
||
117 |
int avoid_holes; ///< hole avoidance flag |
||
118 |
}AacPsyBand; |
||
119 |
|||
120 |
/** |
||
121 |
* single/pair channel context for psychoacoustic model |
||
122 |
*/ |
||
123 |
typedef struct AacPsyChannel{ |
||
124 |
AacPsyBand band[128]; ///< bands information |
||
125 |
AacPsyBand prev_band[128]; ///< bands information from the previous frame |
||
126 |
|||
127 |
float win_energy; ///< sliding average of channel energy |
||
128 |
float iir_state[2]; ///< hi-pass IIR filter state |
||
129 |
uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence) |
||
130 |
enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame |
||
131 |
/* LAME psy model specific members */ |
||
132 |
float attack_threshold; ///< attack threshold for this channel |
||
133 |
float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS]; |
||
134 |
int prev_attack; ///< attack value for the last short block in the previous sequence |
||
135 |
}AacPsyChannel; |
||
136 |
|||
137 |
/** |
||
138 |
* psychoacoustic model frame type-dependent coefficients |
||
139 |
*/ |
||
140 |
typedef struct AacPsyCoeffs{ |
||
141 |
float ath; ///< absolute threshold of hearing per bands |
||
142 |
float barks; ///< Bark value for each spectral band in long frame |
||
143 |
float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame |
||
144 |
float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame |
||
145 |
float min_snr; ///< minimal SNR |
||
146 |
}AacPsyCoeffs; |
||
147 |
|||
148 |
/** |
||
149 |
* 3GPP TS26.403-inspired psychoacoustic model specific data |
||
150 |
*/ |
||
151 |
typedef struct AacPsyContext{ |
||
152 |
int chan_bitrate; ///< bitrate per channel |
||
153 |
int frame_bits; ///< average bits per frame |
||
154 |
int fill_level; ///< bit reservoir fill level |
||
155 |
struct { |
||
156 |
float min; ///< minimum allowed PE for bit factor calculation |
||
157 |
float max; ///< maximum allowed PE for bit factor calculation |
||
158 |
float previous; ///< allowed PE of the previous frame |
||
159 |
float correction; ///< PE correction factor |
||
160 |
} pe; |
||
161 |
AacPsyCoeffs psy_coef[2][64]; |
||
162 |
AacPsyChannel *ch; |
||
163 |
float global_quality; ///< normalized global quality taken from avctx |
||
164 |
}AacPsyContext; |
||
165 |
|||
166 |
/** |
||
167 |
* LAME psy model preset struct |
||
168 |
*/ |
||
169 |
typedef struct PsyLamePreset { |
||
170 |
int quality; ///< Quality to map the rest of the vaules to. |
||
171 |
/* This is overloaded to be both kbps per channel in ABR mode, and |
||
172 |
* requested quality in constant quality mode. |
||
173 |
*/ |
||
174 |
float st_lrm; ///< short threshold for L, R, and M channels |
||
175 |
} PsyLamePreset; |
||
176 |
|||
177 |
/** |
||
178 |
* LAME psy model preset table for ABR |
||
179 |
*/ |
||
180 |
static const PsyLamePreset psy_abr_map[] = { |
||
181 |
/* TODO: Tuning. These were taken from LAME. */ |
||
182 |
/* kbps/ch st_lrm */ |
||
183 |
{ 8, 6.60}, |
||
184 |
{ 16, 6.60}, |
||
185 |
{ 24, 6.60}, |
||
186 |
{ 32, 6.60}, |
||
187 |
{ 40, 6.60}, |
||
188 |
{ 48, 6.60}, |
||
189 |
{ 56, 6.60}, |
||
190 |
{ 64, 6.40}, |
||
191 |
{ 80, 6.00}, |
||
192 |
{ 96, 5.60}, |
||
193 |
{112, 5.20}, |
||
194 |
{128, 5.20}, |
||
195 |
{160, 5.20} |
||
196 |
}; |
||
197 |
|||
198 |
/** |
||
199 |
* LAME psy model preset table for constant quality |
||
200 |
*/ |
||
201 |
static const PsyLamePreset psy_vbr_map[] = { |
||
202 |
/* vbr_q st_lrm */ |
||
203 |
{ 0, 4.20}, |
||
204 |
{ 1, 4.20}, |
||
205 |
{ 2, 4.20}, |
||
206 |
{ 3, 4.20}, |
||
207 |
{ 4, 4.20}, |
||
208 |
{ 5, 4.20}, |
||
209 |
{ 6, 4.20}, |
||
210 |
{ 7, 4.20}, |
||
211 |
{ 8, 4.20}, |
||
212 |
{ 9, 4.20}, |
||
213 |
{10, 4.20} |
||
214 |
}; |
||
215 |
|||
216 |
/** |
||
217 |
* LAME psy model FIR coefficient table |
||
218 |
*/ |
||
219 |
static const float psy_fir_coeffs[] = { |
||
220 |
-8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2, |
||
221 |
-3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2, |
||
222 |
-5.52212e-17 * 2, -0.313819 * 2 |
||
223 |
}; |
||
224 |
|||
225 |
#if ARCH_MIPS |
||
226 |
# include "mips/aacpsy_mips.h" |
||
227 |
#endif /* ARCH_MIPS */ |
||
228 |
|||
229 |
/** |
||
230 |
* Calculate the ABR attack threshold from the above LAME psymodel table. |
||
231 |
*/ |
||
232 |
25 |
static float lame_calc_attack_threshold(int bitrate) |
|
233 |
{ |
||
234 |
/* Assume max bitrate to start with */ |
||
235 |
25 |
int lower_range = 12, upper_range = 12; |
|
236 |
25 |
int lower_range_kbps = psy_abr_map[12].quality; |
|
237 |
25 |
int upper_range_kbps = psy_abr_map[12].quality; |
|
238 |
int i; |
||
239 |
|||
240 |
/* Determine which bitrates the value specified falls between. |
||
241 |
* If the loop ends without breaking our above assumption of 320kbps was correct. |
||
242 |
*/ |
||
243 |
✓✓ | 214 |
for (i = 1; i < 13; i++) { |
244 |
✓✓ | 210 |
if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) { |
245 |
21 |
upper_range = i; |
|
246 |
21 |
upper_range_kbps = psy_abr_map[i ].quality; |
|
247 |
21 |
lower_range = i - 1; |
|
248 |
21 |
lower_range_kbps = psy_abr_map[i - 1].quality; |
|
249 |
21 |
break; /* Upper range found */ |
|
250 |
} |
||
251 |
} |
||
252 |
|||
253 |
/* Determine which range the value specified is closer to */ |
||
254 |
✓✓ | 25 |
if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps)) |
255 |
21 |
return psy_abr_map[lower_range].st_lrm; |
|
256 |
4 |
return psy_abr_map[upper_range].st_lrm; |
|
257 |
} |
||
258 |
|||
259 |
/** |
||
260 |
* LAME psy model specific initialization |
||
261 |
*/ |
||
262 |
11 |
static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) |
|
263 |
{ |
||
264 |
int i, j; |
||
265 |
|||
266 |
✓✓ | 36 |
for (i = 0; i < avctx->channels; i++) { |
267 |
25 |
AacPsyChannel *pch = &ctx->ch[i]; |
|
268 |
|||
269 |
✗✓ | 25 |
if (avctx->flags & AV_CODEC_FLAG_QSCALE) |
270 |
pch->attack_threshold = psy_vbr_map[avctx->global_quality / FF_QP2LAMBDA].st_lrm; |
||
271 |
else |
||
272 |
25 |
pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->channels / 1000); |
|
273 |
|||
274 |
✓✓ | 625 |
for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++) |
275 |
600 |
pch->prev_energy_subshort[j] = 10.0f; |
|
276 |
} |
||
277 |
11 |
} |
|
278 |
|||
279 |
/** |
||
280 |
* Calculate Bark value for given line. |
||
281 |
*/ |
||
282 |
704 |
static av_cold float calc_bark(float f) |
|
283 |
{ |
||
284 |
704 |
return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f)); |
|
285 |
} |
||
286 |
|||
287 |
#define ATH_ADD 4 |
||
288 |
/** |
||
289 |
* Calculate ATH value for given frequency. |
||
290 |
* Borrowed from Lame. |
||
291 |
*/ |
||
292 |
14341 |
static av_cold float ath(float f, float add) |
|
293 |
{ |
||
294 |
14341 |
f /= 1000.0f; |
|
295 |
14341 |
return 3.64 * pow(f, -0.8) |
|
296 |
14341 |
- 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4)) |
|
297 |
14341 |
+ 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7)) |
|
298 |
14341 |
+ (0.6 + 0.04 * add) * 0.001 * f * f * f * f; |
|
299 |
} |
||
300 |
|||
301 |
11 |
static av_cold int psy_3gpp_init(FFPsyContext *ctx) { |
|
302 |
AacPsyContext *pctx; |
||
303 |
float bark; |
||
304 |
int i, j, g, start; |
||
305 |
float prev, minscale, minath, minsnr, pe_min; |
||
306 |
✓✗ | 11 |
int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->channels); |
307 |
|||
308 |
✓✓✗✓ ✓✗✗✓ |
11 |
const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx); |
309 |
11 |
const float num_bark = calc_bark((float)bandwidth); |
|
310 |
|||
311 |
11 |
ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); |
|
312 |
✗✓ | 11 |
if (!ctx->model_priv_data) |
313 |
return AVERROR(ENOMEM); |
||
314 |
11 |
pctx = ctx->model_priv_data; |
|
315 |
✗✓ | 11 |
pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f; |
316 |
|||
317 |
✗✓ | 11 |
if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) { |
318 |
/* Use the target average bitrate to compute spread parameters */ |
||
319 |
chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120)); |
||
320 |
} |
||
321 |
|||
322 |
11 |
pctx->chan_bitrate = chan_bitrate; |
|
323 |
11 |
pctx->frame_bits = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate); |
|
324 |
11 |
pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); |
|
325 |
11 |
pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); |
|
326 |
11 |
ctx->bitres.size = 6144 - pctx->frame_bits; |
|
327 |
11 |
ctx->bitres.size -= ctx->bitres.size % 8; |
|
328 |
11 |
pctx->fill_level = ctx->bitres.size; |
|
329 |
11 |
minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD); |
|
330 |
✓✓ | 33 |
for (j = 0; j < 2; j++) { |
331 |
22 |
AacPsyCoeffs *coeffs = pctx->psy_coef[j]; |
|
332 |
22 |
const uint8_t *band_sizes = ctx->bands[j]; |
|
333 |
✓✓ | 22 |
float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f); |
334 |
✓✓ | 22 |
float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate; |
335 |
/* reference encoder uses 2.4% here instead of 60% like the spec says */ |
||
336 |
22 |
float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark; |
|
337 |
✓✓ | 22 |
float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L; |
338 |
/* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */ |
||
339 |
✓✓✗✓ |
22 |
float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1; |
340 |
|||
341 |
22 |
i = 0; |
|
342 |
22 |
prev = 0.0; |
|
343 |
✓✓ | 715 |
for (g = 0; g < ctx->num_bands[j]; g++) { |
344 |
693 |
i += band_sizes[g]; |
|
345 |
693 |
bark = calc_bark((i-1) * line_to_frequency); |
|
346 |
693 |
coeffs[g].barks = (bark + prev) / 2.0; |
|
347 |
693 |
prev = bark; |
|
348 |
} |
||
349 |
✓✓ | 693 |
for (g = 0; g < ctx->num_bands[j] - 1; g++) { |
350 |
671 |
AacPsyCoeffs *coeff = &coeffs[g]; |
|
351 |
671 |
float bark_width = coeffs[g+1].barks - coeffs->barks; |
|
352 |
671 |
coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW); |
|
353 |
671 |
coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI); |
|
354 |
671 |
coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low); |
|
355 |
671 |
coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi); |
|
356 |
671 |
pe_min = bark_pe * bark_width; |
|
357 |
671 |
minsnr = exp2(pe_min / band_sizes[g]) - 1.5f; |
|
358 |
671 |
coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB); |
|
359 |
} |
||
360 |
22 |
start = 0; |
|
361 |
✓✓ | 715 |
for (g = 0; g < ctx->num_bands[j]; g++) { |
362 |
693 |
minscale = ath(start * line_to_frequency, ATH_ADD); |
|
363 |
✓✓ | 12672 |
for (i = 1; i < band_sizes[g]; i++) |
364 |
✓✓ | 11979 |
minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD)); |
365 |
693 |
coeffs[g].ath = minscale - minath; |
|
366 |
693 |
start += band_sizes[g]; |
|
367 |
} |
||
368 |
} |
||
369 |
|||
370 |
11 |
pctx->ch = av_mallocz_array(ctx->avctx->channels, sizeof(AacPsyChannel)); |
|
371 |
✗✓ | 11 |
if (!pctx->ch) { |
372 |
av_freep(&ctx->model_priv_data); |
||
373 |
return AVERROR(ENOMEM); |
||
374 |
} |
||
375 |
|||
376 |
11 |
lame_window_init(pctx, ctx->avctx); |
|
377 |
|||
378 |
11 |
return 0; |
|
379 |
} |
||
380 |
|||
381 |
/** |
||
382 |
* IIR filter used in block switching decision |
||
383 |
*/ |
||
384 |
static float iir_filter(int in, float state[2]) |
||
385 |
{ |
||
386 |
float ret; |
||
387 |
|||
388 |
ret = 0.7548f * (in - state[0]) + 0.5095f * state[1]; |
||
389 |
state[0] = in; |
||
390 |
state[1] = ret; |
||
391 |
return ret; |
||
392 |
} |
||
393 |
|||
394 |
/** |
||
395 |
* window grouping information stored as bits (0 - new group, 1 - group continues) |
||
396 |
*/ |
||
397 |
static const uint8_t window_grouping[9] = { |
||
398 |
0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36 |
||
399 |
}; |
||
400 |
|||
401 |
/** |
||
402 |
* Tell encoder which window types to use. |
||
403 |
* @see 3GPP TS26.403 5.4.1 "Blockswitching" |
||
404 |
*/ |
||
405 |
static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, |
||
406 |
const int16_t *audio, |
||
407 |
const int16_t *la, |
||
408 |
int channel, int prev_type) |
||
409 |
{ |
||
410 |
int i, j; |
||
411 |
int br = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate; |
||
412 |
int attack_ratio = br <= 16000 ? 18 : 10; |
||
413 |
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
||
414 |
AacPsyChannel *pch = &pctx->ch[channel]; |
||
415 |
uint8_t grouping = 0; |
||
416 |
int next_type = pch->next_window_seq; |
||
417 |
FFPsyWindowInfo wi = { { 0 } }; |
||
418 |
|||
419 |
if (la) { |
||
420 |
float s[8], v; |
||
421 |
int switch_to_eight = 0; |
||
422 |
float sum = 0.0, sum2 = 0.0; |
||
423 |
int attack_n = 0; |
||
424 |
int stay_short = 0; |
||
425 |
for (i = 0; i < 8; i++) { |
||
426 |
for (j = 0; j < 128; j++) { |
||
427 |
v = iir_filter(la[i*128+j], pch->iir_state); |
||
428 |
sum += v*v; |
||
429 |
} |
||
430 |
s[i] = sum; |
||
431 |
sum2 += sum; |
||
432 |
} |
||
433 |
for (i = 0; i < 8; i++) { |
||
434 |
if (s[i] > pch->win_energy * attack_ratio) { |
||
435 |
attack_n = i + 1; |
||
436 |
switch_to_eight = 1; |
||
437 |
break; |
||
438 |
} |
||
439 |
} |
||
440 |
pch->win_energy = pch->win_energy*7/8 + sum2/64; |
||
441 |
|||
442 |
wi.window_type[1] = prev_type; |
||
443 |
switch (prev_type) { |
||
444 |
case ONLY_LONG_SEQUENCE: |
||
445 |
wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; |
||
446 |
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; |
||
447 |
break; |
||
448 |
case LONG_START_SEQUENCE: |
||
449 |
wi.window_type[0] = EIGHT_SHORT_SEQUENCE; |
||
450 |
grouping = pch->next_grouping; |
||
451 |
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
||
452 |
break; |
||
453 |
case LONG_STOP_SEQUENCE: |
||
454 |
wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; |
||
455 |
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; |
||
456 |
break; |
||
457 |
case EIGHT_SHORT_SEQUENCE: |
||
458 |
stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight; |
||
459 |
wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
||
460 |
grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0; |
||
461 |
next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; |
||
462 |
break; |
||
463 |
} |
||
464 |
|||
465 |
pch->next_grouping = window_grouping[attack_n]; |
||
466 |
pch->next_window_seq = next_type; |
||
467 |
} else { |
||
468 |
for (i = 0; i < 3; i++) |
||
469 |
wi.window_type[i] = prev_type; |
||
470 |
grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; |
||
471 |
} |
||
472 |
|||
473 |
wi.window_shape = 1; |
||
474 |
if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
||
475 |
wi.num_windows = 1; |
||
476 |
wi.grouping[0] = 1; |
||
477 |
} else { |
||
478 |
int lastgrp = 0; |
||
479 |
wi.num_windows = 8; |
||
480 |
for (i = 0; i < 8; i++) { |
||
481 |
if (!((grouping >> i) & 1)) |
||
482 |
lastgrp = i; |
||
483 |
wi.grouping[lastgrp]++; |
||
484 |
} |
||
485 |
} |
||
486 |
|||
487 |
return wi; |
||
488 |
} |
||
489 |
|||
490 |
/* 5.6.1.2 "Calculation of Bit Demand" */ |
||
491 |
11743 |
static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, |
|
492 |
int short_window) |
||
493 |
{ |
||
494 |
✓✓ | 11743 |
const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L; |
495 |
✓✓ | 11743 |
const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L; |
496 |
✓✓ | 11743 |
const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L; |
497 |
✓✓ | 11743 |
const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L; |
498 |
11743 |
const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L; |
|
499 |
✓✓ | 11743 |
const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L; |
500 |
float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe; |
||
501 |
|||
502 |
11743 |
ctx->fill_level += ctx->frame_bits - bits; |
|
503 |
11743 |
ctx->fill_level = av_clip(ctx->fill_level, 0, size); |
|
504 |
11743 |
fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high); |
|
505 |
11743 |
clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max); |
|
506 |
11743 |
bit_save = (fill_level + bitsave_add) * bitsave_slope; |
|
507 |
assert(bit_save <= 0.3f && bit_save >= -0.05000001f); |
||
508 |
11743 |
bit_spend = (fill_level + bitspend_add) * bitspend_slope; |
|
509 |
assert(bit_spend <= 0.5f && bit_spend >= -0.1f); |
||
510 |
/* The bit factor graph in the spec is obviously incorrect. |
||
511 |
* bit_spend + ((bit_spend - bit_spend))... |
||
512 |
* The reference encoder subtracts everything from 1, but also seems incorrect. |
||
513 |
* 1 - bit_save + ((bit_spend + bit_save))... |
||
514 |
* Hopefully below is correct. |
||
515 |
*/ |
||
516 |
11743 |
bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min); |
|
517 |
/* NOTE: The reference encoder attempts to center pe max/min around the current pe. |
||
518 |
* Here we do that by slowly forgetting pe.min when pe stays in a range that makes |
||
519 |
* it unlikely (ie: above the mean) |
||
520 |
*/ |
||
521 |
✓✓ | 11743 |
ctx->pe.max = FFMAX(pe, ctx->pe.max); |
522 |
23486 |
forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE) |
|
523 |
✓✓ | 11743 |
+ FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1); |
524 |
✓✓ | 11743 |
ctx->pe.min = FFMIN(pe, forgetful_min_pe); |
525 |
|||
526 |
/* NOTE: allocate a minimum of 1/8th average frame bits, to avoid |
||
527 |
* reservoir starvation from producing zero-bit frames |
||
528 |
*/ |
||
529 |
✓✓✓✓ ✓✓ |
11743 |
return FFMIN( |
530 |
ctx->frame_bits * bit_factor, |
||
531 |
FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8)); |
||
532 |
} |
||
533 |
|||
534 |
1973930 |
static float calc_pe_3gpp(AacPsyBand *band) |
|
535 |
{ |
||
536 |
float pe, a; |
||
537 |
|||
538 |
1973930 |
band->pe = 0.0f; |
|
539 |
1973930 |
band->pe_const = 0.0f; |
|
540 |
1973930 |
band->active_lines = 0.0f; |
|
541 |
✓✓ | 1973930 |
if (band->energy > band->thr) { |
542 |
1841592 |
a = log2f(band->energy); |
|
543 |
1841592 |
pe = a - log2f(band->thr); |
|
544 |
1841592 |
band->active_lines = band->nz_lines; |
|
545 |
✓✓ | 1841592 |
if (pe < PSY_3GPP_C1) { |
546 |
869029 |
pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2; |
|
547 |
869029 |
a = a * PSY_3GPP_C3 + PSY_3GPP_C2; |
|
548 |
869029 |
band->active_lines *= PSY_3GPP_C3; |
|
549 |
} |
||
550 |
1841592 |
band->pe = pe * band->nz_lines; |
|
551 |
1841592 |
band->pe_const = a * band->nz_lines; |
|
552 |
} |
||
553 |
|||
554 |
1973930 |
return band->pe; |
|
555 |
} |
||
556 |
|||
557 |
28985 |
static float calc_reduction_3gpp(float a, float desired_pe, float pe, |
|
558 |
float active_lines) |
||
559 |
{ |
||
560 |
float thr_avg, reduction; |
||
561 |
|||
562 |
✓✓ | 28985 |
if(active_lines == 0.0) |
563 |
56 |
return 0; |
|
564 |
|||
565 |
28929 |
thr_avg = exp2f((a - pe) / (4.0f * active_lines)); |
|
566 |
28929 |
reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg; |
|
567 |
|||
568 |
✓✓ | 28929 |
return FFMAX(reduction, 0.0f); |
569 |
} |
||
570 |
|||
571 |
1381639 |
static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, |
|
572 |
float reduction) |
||
573 |
{ |
||
574 |
1381639 |
float thr = band->thr; |
|
575 |
|||
576 |
✓✓ | 1381639 |
if (band->energy > thr) { |
577 |
1292601 |
thr = sqrtf(thr); |
|
578 |
1292601 |
thr = sqrtf(thr) + reduction; |
|
579 |
1292601 |
thr *= thr; |
|
580 |
1292601 |
thr *= thr; |
|
581 |
|||
582 |
/* This deviates from the 3GPP spec to match the reference encoder. |
||
583 |
* It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands |
||
584 |
* that have hole avoidance on (active or inactive). It always reduces the |
||
585 |
* threshold of bands with hole avoidance off. |
||
586 |
*/ |
||
587 |
✓✓✓✓ |
1292601 |
if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) { |
588 |
✓✓ | 396949 |
thr = FFMAX(band->thr, band->energy * min_snr); |
589 |
396949 |
band->avoid_holes = PSY_3GPP_AH_ACTIVE; |
|
590 |
} |
||
591 |
} |
||
592 |
|||
593 |
1381639 |
return thr; |
|
594 |
} |
||
595 |
|||
596 |
#ifndef calc_thr_3gpp |
||
597 |
11743 |
static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch, |
|
598 |
const uint8_t *band_sizes, const float *coefs, const int cutoff) |
||
599 |
{ |
||
600 |
int i, w, g; |
||
601 |
11743 |
int start = 0, wstart = 0; |
|
602 |
✓✓ | 25362 |
for (w = 0; w < wi->num_windows*16; w += 16) { |
603 |
13619 |
wstart = 0; |
|
604 |
✓✓ | 605910 |
for (g = 0; g < num_bands; g++) { |
605 |
592291 |
AacPsyBand *band = &pch->band[w+g]; |
|
606 |
|||
607 |
592291 |
float form_factor = 0.0f; |
|
608 |
float Temp; |
||
609 |
592291 |
band->energy = 0.0f; |
|
610 |
✓✓ | 592291 |
if (wstart < cutoff) { |
611 |
✓✓ | 11871762 |
for (i = 0; i < band_sizes[g]; i++) { |
612 |
11297184 |
band->energy += coefs[start+i] * coefs[start+i]; |
|
613 |
11297184 |
form_factor += sqrtf(fabs(coefs[start+i])); |
|
614 |
} |
||
615 |
} |
||
616 |
✓✓ | 592291 |
Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0; |
617 |
592291 |
band->thr = band->energy * 0.001258925f; |
|
618 |
592291 |
band->nz_lines = form_factor * sqrtf(Temp); |
|
619 |
|||
620 |
592291 |
start += band_sizes[g]; |
|
621 |
592291 |
wstart += band_sizes[g]; |
|
622 |
} |
||
623 |
} |
||
624 |
11743 |
} |
|
625 |
#endif /* calc_thr_3gpp */ |
||
626 |
|||
627 |
#ifndef psy_hp_filter |
||
628 |
7188 |
static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs) |
|
629 |
{ |
||
630 |
int i, j; |
||
631 |
✓✓ | 7367700 |
for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) { |
632 |
float sum1, sum2; |
||
633 |
7360512 |
sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2]; |
|
634 |
7360512 |
sum2 = 0.0; |
|
635 |
✓✓ | 44163072 |
for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) { |
636 |
36802560 |
sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]); |
|
637 |
36802560 |
sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]); |
|
638 |
} |
||
639 |
/* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768. |
||
640 |
* Tuning this for normalized floats would be difficult. */ |
||
641 |
7360512 |
hpfsmpl[i] = (sum1 + sum2) * 32768.0f; |
|
642 |
} |
||
643 |
7188 |
} |
|
644 |
#endif /* psy_hp_filter */ |
||
645 |
|||
646 |
/** |
||
647 |
* Calculate band thresholds as suggested in 3GPP TS26.403 |
||
648 |
*/ |
||
649 |
11743 |
static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel, |
|
650 |
const float *coefs, const FFPsyWindowInfo *wi) |
||
651 |
{ |
||
652 |
11743 |
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
|
653 |
11743 |
AacPsyChannel *pch = &pctx->ch[channel]; |
|
654 |
int i, w, g; |
||
655 |
11743 |
float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0}; |
|
656 |
11743 |
float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f; |
|
657 |
✗✓✗✗ |
11743 |
float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f); |
658 |
✓✓ | 11743 |
const int num_bands = ctx->num_bands[wi->num_windows == 8]; |
659 |
✓✓ | 11743 |
const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; |
660 |
11743 |
AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; |
|
661 |
✓✓ | 11743 |
const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG; |
662 |
✓✓✗✓ ✓✗✗✓ |
11743 |
const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx); |
663 |
11743 |
const int cutoff = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate; |
|
664 |
|||
665 |
//calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" |
||
666 |
11743 |
calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff); |
|
667 |
|||
668 |
//modify thresholds and energies - spread, threshold in quiet, pre-echo control |
||
669 |
✓✓ | 25362 |
for (w = 0; w < wi->num_windows*16; w += 16) { |
670 |
13619 |
AacPsyBand *bands = &pch->band[w]; |
|
671 |
|||
672 |
/* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */ |
||
673 |
13619 |
spread_en[0] = bands[0].energy; |
|
674 |
✓✓ | 592291 |
for (g = 1; g < num_bands; g++) { |
675 |
✓✓ | 578672 |
bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]); |
676 |
✓✓ | 578672 |
spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]); |
677 |
} |
||
678 |
✓✓ | 592291 |
for (g = num_bands - 2; g >= 0; g--) { |
679 |
✓✓ | 578672 |
bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]); |
680 |
✓✓ | 578672 |
spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]); |
681 |
} |
||
682 |
//5.4.2.4 "Threshold in quiet" |
||
683 |
✓✓ | 605910 |
for (g = 0; g < num_bands; g++) { |
684 |
592291 |
AacPsyBand *band = &bands[g]; |
|
685 |
|||
686 |
✓✓ | 592291 |
band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath); |
687 |
//5.4.2.5 "Pre-echo control" |
||
688 |
✓✓✓✓ ✓✓ |
592291 |
if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (!w && wi->window_type[1] == LONG_START_SEQUENCE))) |
689 |
✓✓✓✓ ✓✓ |
584626 |
band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr, |
690 |
PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); |
||
691 |
|||
692 |
/* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */ |
||
693 |
592291 |
pe += calc_pe_3gpp(band); |
|
694 |
592291 |
a += band->pe_const; |
|
695 |
592291 |
active_lines += band->active_lines; |
|
696 |
|||
697 |
/* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */ |
||
698 |
✓✓✗✓ |
592291 |
if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f) |
699 |
300 |
band->avoid_holes = PSY_3GPP_AH_NONE; |
|
700 |
else |
||
701 |
591991 |
band->avoid_holes = PSY_3GPP_AH_INACTIVE; |
|
702 |
} |
||
703 |
} |
||
704 |
|||
705 |
/* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */ |
||
706 |
11743 |
ctx->ch[channel].entropy = pe; |
|
707 |
✗✓ | 11743 |
if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) { |
708 |
/* (2.5 * 120) achieves almost transparent rate, and we want to give |
||
709 |
* ample room downwards, so we make that equivalent to QSCALE=2.4 |
||
710 |
*/ |
||
711 |
desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f); |
||
712 |
desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe)); |
||
713 |
desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping |
||
714 |
|||
715 |
/* PE slope smoothing */ |
||
716 |
if (ctx->bitres.bits > 0) { |
||
717 |
desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe)); |
||
718 |
desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping |
||
719 |
} |
||
720 |
|||
721 |
pctx->pe.max = FFMAX(pe, pctx->pe.max); |
||
722 |
pctx->pe.min = FFMIN(pe, pctx->pe.min); |
||
723 |
} else { |
||
724 |
11743 |
desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8); |
|
725 |
11743 |
desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); |
|
726 |
|||
727 |
/* NOTE: PE correction is kept simple. During initial testing it had very |
||
728 |
* little effect on the final bitrate. Probably a good idea to come |
||
729 |
* back and do more testing later. |
||
730 |
*/ |
||
731 |
✓✓ | 11743 |
if (ctx->bitres.bits > 0) |
732 |
11682 |
desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits), |
|
733 |
0.85f, 1.15f); |
||
734 |
} |
||
735 |
11743 |
pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits); |
|
736 |
11743 |
ctx->bitres.alloc = desired_bits; |
|
737 |
|||
738 |
✓✓ | 11743 |
if (desired_pe < pe) { |
739 |
/* 5.6.1.3.4 "First Estimation of the reduction value" */ |
||
740 |
✓✓ | 24490 |
for (w = 0; w < wi->num_windows*16; w += 16) { |
741 |
12868 |
reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines); |
|
742 |
12868 |
pe = 0.0f; |
|
743 |
12868 |
a = 0.0f; |
|
744 |
12868 |
active_lines = 0.0f; |
|
745 |
✓✓ | 593560 |
for (g = 0; g < num_bands; g++) { |
746 |
580692 |
AacPsyBand *band = &pch->band[w+g]; |
|
747 |
|||
748 |
580692 |
band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); |
|
749 |
/* recalculate PE */ |
||
750 |
580692 |
pe += calc_pe_3gpp(band); |
|
751 |
580692 |
a += band->pe_const; |
|
752 |
580692 |
active_lines += band->active_lines; |
|
753 |
} |
||
754 |
} |
||
755 |
|||
756 |
/* 5.6.1.3.5 "Second Estimation of the reduction value" */ |
||
757 |
✓✓ | 20612 |
for (i = 0; i < 2; i++) { |
758 |
16117 |
float pe_no_ah = 0.0f, desired_pe_no_ah; |
|
759 |
16117 |
active_lines = a = 0.0f; |
|
760 |
✓✓ | 33480 |
for (w = 0; w < wi->num_windows*16; w += 16) { |
761 |
✓✓ | 818310 |
for (g = 0; g < num_bands; g++) { |
762 |
800947 |
AacPsyBand *band = &pch->band[w+g]; |
|
763 |
|||
764 |
✓✓ | 800947 |
if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) { |
765 |
648954 |
pe_no_ah += band->pe; |
|
766 |
648954 |
a += band->pe_const; |
|
767 |
648954 |
active_lines += band->active_lines; |
|
768 |
} |
||
769 |
} |
||
770 |
} |
||
771 |
✓✓ | 16117 |
desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f); |
772 |
✓✗ | 16117 |
if (active_lines > 0.0f) |
773 |
16117 |
reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines); |
|
774 |
|||
775 |
16117 |
pe = 0.0f; |
|
776 |
✓✓ | 33480 |
for (w = 0; w < wi->num_windows*16; w += 16) { |
777 |
✓✓ | 818310 |
for (g = 0; g < num_bands; g++) { |
778 |
800947 |
AacPsyBand *band = &pch->band[w+g]; |
|
779 |
|||
780 |
✓✗ | 800947 |
if (active_lines > 0.0f) |
781 |
800947 |
band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); |
|
782 |
800947 |
pe += calc_pe_3gpp(band); |
|
783 |
✓✗ | 800947 |
if (band->thr > 0.0f) |
784 |
800947 |
band->norm_fac = band->active_lines / band->thr; |
|
785 |
else |
||
786 |
band->norm_fac = 0.0f; |
||
787 |
800947 |
norm_fac += band->norm_fac; |
|
788 |
} |
||
789 |
} |
||
790 |
16117 |
delta_pe = desired_pe - pe; |
|
791 |
✓✓ | 16117 |
if (fabs(delta_pe) > 0.05f * desired_pe) |
792 |
7127 |
break; |
|
793 |
} |
||
794 |
|||
795 |
✓✓ | 11622 |
if (pe < 1.15f * desired_pe) { |
796 |
/* 6.6.1.3.6 "Final threshold modification by linearization" */ |
||
797 |
6487 |
norm_fac = 1.0f / norm_fac; |
|
798 |
✓✓ | 12974 |
for (w = 0; w < wi->num_windows*16; w += 16) { |
799 |
✓✓ | 324350 |
for (g = 0; g < num_bands; g++) { |
800 |
317863 |
AacPsyBand *band = &pch->band[w+g]; |
|
801 |
|||
802 |
✓✓ | 317863 |
if (band->active_lines > 0.5f) { |
803 |
291708 |
float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe; |
|
804 |
291708 |
float thr = band->thr; |
|
805 |
|||
806 |
291708 |
thr *= exp2f(delta_sfb_pe / band->active_lines); |
|
807 |
✓✓✓✓ |
291708 |
if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE) |
808 |
✗✓ | 73 |
thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy); |
809 |
291708 |
band->thr = thr; |
|
810 |
} |
||
811 |
} |
||
812 |
} |
||
813 |
} else { |
||
814 |
/* 5.6.1.3.7 "Further perceptual entropy reduction" */ |
||
815 |
5135 |
g = num_bands; |
|
816 |
✓✓✓✓ |
250104 |
while (pe > desired_pe && g--) { |
817 |
✓✓ | 507382 |
for (w = 0; w < wi->num_windows*16; w+= 16) { |
818 |
262413 |
AacPsyBand *band = &pch->band[w+g]; |
|
819 |
✓✓✓✓ |
262413 |
if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) { |
820 |
400 |
coeffs[g].min_snr = PSY_SNR_1DB; |
|
821 |
400 |
band->thr = band->energy * PSY_SNR_1DB; |
|
822 |
400 |
pe += band->active_lines * 1.5f - band->pe; |
|
823 |
} |
||
824 |
} |
||
825 |
} |
||
826 |
/* TODO: allow more holes (unused without mid/side) */ |
||
827 |
} |
||
828 |
} |
||
829 |
|||
830 |
✓✓ | 25362 |
for (w = 0; w < wi->num_windows*16; w += 16) { |
831 |
✓✓ | 605910 |
for (g = 0; g < num_bands; g++) { |
832 |
592291 |
AacPsyBand *band = &pch->band[w+g]; |
|
833 |
592291 |
FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g]; |
|
834 |
|||
835 |
592291 |
psy_band->threshold = band->thr; |
|
836 |
592291 |
psy_band->energy = band->energy; |
|
837 |
592291 |
psy_band->spread = band->active_lines * 2.0f / band_sizes[g]; |
|
838 |
592291 |
psy_band->bits = PSY_3GPP_PE_TO_BITS(band->pe); |
|
839 |
} |
||
840 |
} |
||
841 |
|||
842 |
11743 |
memcpy(pch->prev_band, pch->band, sizeof(pch->band)); |
|
843 |
11743 |
} |
|
844 |
|||
845 |
6469 |
static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, |
|
846 |
const float **coeffs, const FFPsyWindowInfo *wi) |
||
847 |
{ |
||
848 |
int ch; |
||
849 |
6469 |
FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel); |
|
850 |
|||
851 |
✓✓ | 18212 |
for (ch = 0; ch < group->num_ch; ch++) |
852 |
11743 |
psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]); |
|
853 |
6469 |
} |
|
854 |
|||
855 |
11 |
static av_cold void psy_3gpp_end(FFPsyContext *apc) |
|
856 |
{ |
||
857 |
11 |
AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data; |
|
858 |
11 |
av_freep(&pctx->ch); |
|
859 |
11 |
av_freep(&apc->model_priv_data); |
|
860 |
11 |
} |
|
861 |
|||
862 |
7236 |
static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock) |
|
863 |
{ |
||
864 |
7236 |
int blocktype = ONLY_LONG_SEQUENCE; |
|
865 |
✓✓ | 7236 |
if (uselongblock) { |
866 |
✓✓ | 7073 |
if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE) |
867 |
120 |
blocktype = LONG_STOP_SEQUENCE; |
|
868 |
} else { |
||
869 |
163 |
blocktype = EIGHT_SHORT_SEQUENCE; |
|
870 |
✓✓ | 163 |
if (ctx->next_window_seq == ONLY_LONG_SEQUENCE) |
871 |
119 |
ctx->next_window_seq = LONG_START_SEQUENCE; |
|
872 |
✓✓ | 163 |
if (ctx->next_window_seq == LONG_STOP_SEQUENCE) |
873 |
18 |
ctx->next_window_seq = EIGHT_SHORT_SEQUENCE; |
|
874 |
} |
||
875 |
|||
876 |
7236 |
wi->window_type[0] = ctx->next_window_seq; |
|
877 |
7236 |
ctx->next_window_seq = blocktype; |
|
878 |
7236 |
} |
|
879 |
|||
880 |
7236 |
static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio, |
|
881 |
const float *la, int channel, int prev_type) |
||
882 |
{ |
||
883 |
7236 |
AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; |
|
884 |
7236 |
AacPsyChannel *pch = &pctx->ch[channel]; |
|
885 |
7236 |
int grouping = 0; |
|
886 |
7236 |
int uselongblock = 1; |
|
887 |
7236 |
int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; |
|
888 |
int i; |
||
889 |
7236 |
FFPsyWindowInfo wi = { { 0 } }; |
|
890 |
|||
891 |
✓✓ | 7236 |
if (la) { |
892 |
float hpfsmpl[AAC_BLOCK_SIZE_LONG]; |
||
893 |
7188 |
const float *pf = hpfsmpl; |
|
894 |
float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; |
||
895 |
float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; |
||
896 |
7188 |
float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; |
|
897 |
7188 |
const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN); |
|
898 |
7188 |
int att_sum = 0; |
|
899 |
|||
900 |
/* LAME comment: apply high pass filter of fs/4 */ |
||
901 |
7188 |
psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs); |
|
902 |
|||
903 |
/* Calculate the energies of each sub-shortblock */ |
||
904 |
✓✓ | 28752 |
for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) { |
905 |
21564 |
energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)]; |
|
906 |
assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0); |
||
907 |
21564 |
attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)]; |
|
908 |
21564 |
energy_short[0] += energy_subshort[i]; |
|
909 |
} |
||
910 |
|||
911 |
✓✓ | 179700 |
for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) { |
912 |
172512 |
const float *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS); |
|
913 |
172512 |
float p = 1.0f; |
|
914 |
✓✓ | 7418016 |
for (; pf < pfe; pf++) |
915 |
✓✓ | 7245504 |
p = FFMAX(p, fabsf(*pf)); |
916 |
172512 |
pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p; |
|
917 |
172512 |
energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p; |
|
918 |
/* NOTE: The indexes below are [i + 3 - 2] in the LAME source. |
||
919 |
* Obviously the 3 and 2 have some significance, or this would be just [i + 1] |
||
920 |
* (which is what we use here). What the 3 stands for is ambiguous, as it is both |
||
921 |
* number of short blocks, and the number of sub-short blocks. |
||
922 |
* It seems that LAME is comparing each sub-block to sub-block + 1 in the |
||
923 |
* previous block. |
||
924 |
*/ |
||
925 |
✓✓ | 172512 |
if (p > energy_subshort[i + 1]) |
926 |
85320 |
p = p / energy_subshort[i + 1]; |
|
927 |
✓✓ | 87192 |
else if (energy_subshort[i + 1] > p * 10.0f) |
928 |
52 |
p = energy_subshort[i + 1] / (p * 10.0f); |
|
929 |
else |
||
930 |
87140 |
p = 0.0; |
|
931 |
172512 |
attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p; |
|
932 |
} |
||
933 |
|||
934 |
/* compare energy between sub-short blocks */ |
||
935 |
✓✓ | 201264 |
for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++) |
936 |
✓✓ | 194076 |
if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS]) |
937 |
✓✓ | 193893 |
if (attack_intensity[i] > pch->attack_threshold) |
938 |
190 |
attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1; |
|
939 |
|||
940 |
/* should have energy change between short blocks, in order to avoid periodic signals */ |
||
941 |
/* Good samples to show the effect are Trumpet test songs */ |
||
942 |
/* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */ |
||
943 |
/* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */ |
||
944 |
✓✓ | 64692 |
for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) { |
945 |
57504 |
const float u = energy_short[i - 1]; |
|
946 |
57504 |
const float v = energy_short[i]; |
|
947 |
✓✓ | 57504 |
const float m = FFMAX(u, v); |
948 |
✓✓ | 57504 |
if (m < 40000) { /* (2) */ |
949 |
✓✓✓✓ |
54508 |
if (u < 1.7f * v && v < 1.7f * u) { /* (1) */ |
950 |
✓✓✓✓ |
51265 |
if (i == 1 && attacks[0] < attacks[i]) |
951 |
9 |
attacks[0] = 0; |
|
952 |
51265 |
attacks[i] = 0; |
|
953 |
} |
||
954 |
} |
||
955 |
57504 |
att_sum += attacks[i]; |
|
956 |
} |
||
957 |
|||
958 |
✓✗ | 7188 |
if (attacks[0] <= pch->prev_attack) |
959 |
7188 |
attacks[0] = 0; |
|
960 |
|||
961 |
7188 |
att_sum += attacks[0]; |
|
962 |
/* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */ |
||
963 |
✓✓✓✓ |
7188 |
if (pch->prev_attack == 3 || att_sum) { |
964 |
146 |
uselongblock = 0; |
|
965 |
|||
966 |
✓✓ | 1314 |
for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) |
967 |
✓✓✗✓ |
1168 |
if (attacks[i] && attacks[i-1]) |
968 |
attacks[i] = 0; |
||
969 |
} |
||
970 |
} else { |
||
971 |
/* We have no lookahead info, so just use same type as the previous sequence. */ |
||
972 |
48 |
uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE); |
|
973 |
} |
||
974 |
|||
975 |
7236 |
lame_apply_block_type(pch, &wi, uselongblock); |
|
976 |
|||
977 |
7236 |
wi.window_type[1] = prev_type; |
|
978 |
✓✓ | 7236 |
if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
979 |
|||
980 |
7072 |
wi.num_windows = 1; |
|
981 |
7072 |
wi.grouping[0] = 1; |
|
982 |
✓✓ | 7072 |
if (wi.window_type[0] == LONG_START_SEQUENCE) |
983 |
119 |
wi.window_shape = 0; |
|
984 |
else |
||
985 |
6953 |
wi.window_shape = 1; |
|
986 |
|||
987 |
} else { |
||
988 |
164 |
int lastgrp = 0; |
|
989 |
|||
990 |
164 |
wi.num_windows = 8; |
|
991 |
164 |
wi.window_shape = 0; |
|
992 |
✓✓ | 1476 |
for (i = 0; i < 8; i++) { |
993 |
✓✓ | 1312 |
if (!((pch->next_grouping >> i) & 1)) |
994 |
624 |
lastgrp = i; |
|
995 |
1312 |
wi.grouping[lastgrp]++; |
|
996 |
} |
||
997 |
} |
||
998 |
|||
999 |
/* Determine grouping, based on the location of the first attack, and save for |
||
1000 |
* the next frame. |
||
1001 |
* FIXME: Move this to analysis. |
||
1002 |
* TODO: Tune groupings depending on attack location |
||
1003 |
* TODO: Handle more than one attack in a group |
||
1004 |
*/ |
||
1005 |
✓✓ | 71825 |
for (i = 0; i < 9; i++) { |
1006 |
✓✓ | 64721 |
if (attacks[i]) { |
1007 |
132 |
grouping = i; |
|
1008 |
132 |
break; |
|
1009 |
} |
||
1010 |
} |
||
1011 |
7236 |
pch->next_grouping = window_grouping[grouping]; |
|
1012 |
|||
1013 |
7236 |
pch->prev_attack = attacks[8]; |
|
1014 |
|||
1015 |
7236 |
return wi; |
|
1016 |
} |
||
1017 |
|||
1018 |
const FFPsyModel ff_aac_psy_model = |
||
1019 |
{ |
||
1020 |
.name = "3GPP TS 26.403-inspired model", |
||
1021 |
.init = psy_3gpp_init, |
||
1022 |
.window = psy_lame_window, |
||
1023 |
.analyze = psy_3gpp_analyze, |
||
1024 |
.end = psy_3gpp_end, |
||
1025 |
}; |
Generated by: GCOVR (Version 4.2) |