GCC Code Coverage Report
Directory: ../../../ffmpeg/ Exec Total Coverage
File: src/libavcodec/aacenc_ltp.c Lines: 4 133 3.0 %
Date: 2019-11-20 04:07:19 Branches: 1 86 1.2 %

Line Branch Exec Source
1
/*
2
 * AAC encoder long term prediction extension
3
 * Copyright (C) 2015 Rostislav Pehlivanov
4
 *
5
 * This file is part of FFmpeg.
6
 *
7
 * FFmpeg is free software; you can redistribute it and/or
8
 * modify it under the terms of the GNU Lesser General Public
9
 * License as published by the Free Software Foundation; either
10
 * version 2.1 of the License, or (at your option) any later version.
11
 *
12
 * FFmpeg is distributed in the hope that it will be useful,
13
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
15
 * Lesser General Public License for more details.
16
 *
17
 * You should have received a copy of the GNU Lesser General Public
18
 * License along with FFmpeg; if not, write to the Free Software
19
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20
 */
21
22
/**
23
 * @file
24
 * AAC encoder long term prediction extension
25
 * @author Rostislav Pehlivanov ( atomnuker gmail com )
26
 */
27
28
#include "aacenc_ltp.h"
29
#include "aacenc_quantization.h"
30
#include "aacenc_utils.h"
31
32
/**
33
 * Encode LTP data.
34
 */
35
6711
void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce,
36
                            int common_window)
37
{
38
    int i;
39
6711
    IndividualChannelStream *ics = &sce->ics;
40

6711
    if (s->profile != FF_PROFILE_AAC_LTP || !ics->predictor_present)
41
6711
        return;
42
    if (common_window)
43
        put_bits(&s->pb, 1, 0);
44
    put_bits(&s->pb, 1, ics->ltp.present);
45
    if (!ics->ltp.present)
46
        return;
47
    put_bits(&s->pb, 11, ics->ltp.lag);
48
    put_bits(&s->pb, 3,  ics->ltp.coef_idx);
49
    for (i = 0; i < FFMIN(ics->max_sfb, MAX_LTP_LONG_SFB); i++)
50
        put_bits(&s->pb, 1, ics->ltp.used[i]);
51
}
52
53
void ff_aac_ltp_insert_new_frame(AACEncContext *s)
54
{
55
    int i, ch, tag, chans, cur_channel, start_ch = 0;
56
    ChannelElement *cpe;
57
    SingleChannelElement *sce;
58
    for (i = 0; i < s->chan_map[0]; i++) {
59
        cpe = &s->cpe[i];
60
        tag      = s->chan_map[i+1];
61
        chans    = tag == TYPE_CPE ? 2 : 1;
62
        for (ch = 0; ch < chans; ch++) {
63
            sce = &cpe->ch[ch];
64
            cur_channel = start_ch + ch;
65
            /* New sample + overlap */
66
            memcpy(&sce->ltp_state[0],    &sce->ltp_state[1024], 1024*sizeof(sce->ltp_state[0]));
67
            memcpy(&sce->ltp_state[1024], &s->planar_samples[cur_channel][2048], 1024*sizeof(sce->ltp_state[0]));
68
            memcpy(&sce->ltp_state[2048], &sce->ret_buf[0], 1024*sizeof(sce->ltp_state[0]));
69
            sce->ics.ltp.lag = 0;
70
        }
71
        start_ch += chans;
72
    }
73
}
74
75
static void get_lag(float *buf, const float *new, LongTermPrediction *ltp)
76
{
77
    int i, j, lag = 0, max_corr = 0;
78
    float max_ratio = 0.0f;
79
    for (i = 0; i < 2048; i++) {
80
        float corr, s0 = 0.0f, s1 = 0.0f;
81
        const int start = FFMAX(0, i - 1024);
82
        for (j = start; j < 2048; j++) {
83
            const int idx = j - i + 1024;
84
            s0 += new[j]*buf[idx];
85
            s1 += buf[idx]*buf[idx];
86
        }
87
        corr = s1 > 0.0f ? s0/sqrt(s1) : 0.0f;
88
        if (corr > max_corr) {
89
            max_corr = corr;
90
            lag = i;
91
            max_ratio = corr/(2048-start);
92
        }
93
    }
94
    ltp->lag = FFMAX(av_clip_uintp2(lag, 11), 0);
95
    ltp->coef_idx = quant_array_idx(max_ratio, ltp_coef, 8);
96
    ltp->coef = ltp_coef[ltp->coef_idx];
97
}
98
99
static void generate_samples(float *buf, LongTermPrediction *ltp)
100
{
101
    int i, samples_num = 2048;
102
    if (!ltp->lag) {
103
        ltp->present = 0;
104
        return;
105
    } else if (ltp->lag < 1024) {
106
        samples_num = ltp->lag + 1024;
107
    }
108
    for (i = 0; i < samples_num; i++)
109
        buf[i] = ltp->coef*buf[i + 2048 - ltp->lag];
110
    memset(&buf[i], 0, (2048 - i)*sizeof(float));
111
}
112
113
/**
114
 * Process LTP parameters
115
 * @see Patent WO2006070265A1
116
 */
117
void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce)
118
{
119
    float *pred_signal = &sce->ltp_state[0];
120
    const float *samples = &s->planar_samples[s->cur_channel][1024];
121
122
    if (s->profile != FF_PROFILE_AAC_LTP)
123
        return;
124
125
    /* Calculate lag */
126
    get_lag(pred_signal, samples, &sce->ics.ltp);
127
    generate_samples(pred_signal, &sce->ics.ltp);
128
}
129
130
void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe)
131
{
132
    int sfb, count = 0;
133
    SingleChannelElement *sce0 = &cpe->ch[0];
134
    SingleChannelElement *sce1 = &cpe->ch[1];
135
136
    if (!cpe->common_window ||
137
        sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE ||
138
        sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
139
        sce0->ics.ltp.present = 0;
140
        return;
141
    }
142
143
    for (sfb = 0; sfb < FFMIN(sce0->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) {
144
        int sum = sce0->ics.ltp.used[sfb] + sce1->ics.ltp.used[sfb];
145
        if (sum != 2) {
146
            sce0->ics.ltp.used[sfb] = 0;
147
        } else {
148
            count++;
149
        }
150
    }
151
152
    sce0->ics.ltp.present = !!count;
153
    sce0->ics.predictor_present = !!count;
154
}
155
156
/**
157
 * Mark LTP sfb's
158
 */
159
void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce,
160
                           int common_window)
161
{
162
    int w, g, w2, i, start = 0, count = 0;
163
    int saved_bits = -(15 + FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB));
164
    float *C34 = &s->scoefs[128*0], *PCD = &s->scoefs[128*1];
165
    float *PCD34 = &s->scoefs[128*2];
166
    const int max_ltp = FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB);
167
168
    if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) {
169
        if (sce->ics.ltp.lag) {
170
            memset(&sce->ltp_state[0], 0, 3072*sizeof(sce->ltp_state[0]));
171
            memset(&sce->ics.ltp, 0, sizeof(LongTermPrediction));
172
        }
173
        return;
174
    }
175
176
    if (!sce->ics.ltp.lag || s->lambda > 120.0f)
177
        return;
178
179
    for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
180
        start = 0;
181
        for (g = 0;  g < sce->ics.num_swb; g++) {
182
            int bits1 = 0, bits2 = 0;
183
            float dist1 = 0.0f, dist2 = 0.0f;
184
            if (w*16+g > max_ltp) {
185
                start += sce->ics.swb_sizes[g];
186
                continue;
187
            }
188
            for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
189
                int bits_tmp1, bits_tmp2;
190
                FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g];
191
                for (i = 0; i < sce->ics.swb_sizes[g]; i++)
192
                    PCD[i] = sce->coeffs[start+(w+w2)*128+i] - sce->lcoeffs[start+(w+w2)*128+i];
193
                s->abs_pow34(C34,  &sce->coeffs[start+(w+w2)*128],  sce->ics.swb_sizes[g]);
194
                s->abs_pow34(PCD34, PCD, sce->ics.swb_sizes[g]);
195
                dist1 += quantize_band_cost(s, &sce->coeffs[start+(w+w2)*128], C34, sce->ics.swb_sizes[g],
196
                                            sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g],
197
                                            s->lambda/band->threshold, INFINITY, &bits_tmp1, NULL, 0);
198
                dist2 += quantize_band_cost(s, PCD, PCD34, sce->ics.swb_sizes[g],
199
                                            sce->sf_idx[(w+w2)*16+g],
200
                                            sce->band_type[(w+w2)*16+g],
201
                                            s->lambda/band->threshold, INFINITY, &bits_tmp2, NULL, 0);
202
                bits1 += bits_tmp1;
203
                bits2 += bits_tmp2;
204
            }
205
            if (dist2 < dist1 && bits2 < bits1) {
206
                for (w2 = 0; w2 < sce->ics.group_len[w]; w2++)
207
                    for (i = 0; i < sce->ics.swb_sizes[g]; i++)
208
                        sce->coeffs[start+(w+w2)*128+i] -= sce->lcoeffs[start+(w+w2)*128+i];
209
                sce->ics.ltp.used[w*16+g] = 1;
210
                saved_bits += bits1 - bits2;
211
                count++;
212
            }
213
            start += sce->ics.swb_sizes[g];
214
        }
215
    }
216
217
    sce->ics.ltp.present = !!count && (saved_bits >= 0);
218
    sce->ics.predictor_present = !!sce->ics.ltp.present;
219
220
    /* Reset any marked sfbs */
221
    if (!sce->ics.ltp.present && !!count) {
222
        for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) {
223
            start = 0;
224
            for (g = 0;  g < sce->ics.num_swb; g++) {
225
                if (sce->ics.ltp.used[w*16+g]) {
226
                    for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) {
227
                        for (i = 0; i < sce->ics.swb_sizes[g]; i++) {
228
                            sce->coeffs[start+(w+w2)*128+i] += sce->lcoeffs[start+(w+w2)*128+i];
229
                        }
230
                    }
231
                }
232
                start += sce->ics.swb_sizes[g];
233
            }
234
        }
235
    }
236
}