| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /* | ||
| 2 | * Bluetooth low-complexity, subband codec (SBC) | ||
| 3 | * | ||
| 4 | * Copyright (C) 2017 Aurelien Jacobs <aurel@gnuage.org> | ||
| 5 | * Copyright (C) 2012-2013 Intel Corporation | ||
| 6 | * Copyright (C) 2008-2010 Nokia Corporation | ||
| 7 | * Copyright (C) 2004-2010 Marcel Holtmann <marcel@holtmann.org> | ||
| 8 | * Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch> | ||
| 9 | * Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com> | ||
| 10 | * | ||
| 11 | * This file is part of FFmpeg. | ||
| 12 | * | ||
| 13 | * FFmpeg is free software; you can redistribute it and/or | ||
| 14 | * modify it under the terms of the GNU Lesser General Public | ||
| 15 | * License as published by the Free Software Foundation; either | ||
| 16 | * version 2.1 of the License, or (at your option) any later version. | ||
| 17 | * | ||
| 18 | * FFmpeg is distributed in the hope that it will be useful, | ||
| 19 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 20 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
| 21 | * Lesser General Public License for more details. | ||
| 22 | * | ||
| 23 | * You should have received a copy of the GNU Lesser General Public | ||
| 24 | * License along with FFmpeg; if not, write to the Free Software | ||
| 25 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||
| 26 | */ | ||
| 27 | |||
| 28 | /** | ||
| 29 | * @file | ||
| 30 | * SBC basic "building bricks" | ||
| 31 | */ | ||
| 32 | |||
| 33 | #include <stdint.h> | ||
| 34 | #include <limits.h> | ||
| 35 | #include <string.h> | ||
| 36 | #include "libavutil/common.h" | ||
| 37 | #include "libavutil/intmath.h" | ||
| 38 | #include "libavutil/intreadwrite.h" | ||
| 39 | #include "sbc.h" | ||
| 40 | #include "sbcdsp.h" | ||
| 41 | #include "sbcdsp_data.h" | ||
| 42 | |||
| 43 | /* | ||
| 44 | * A reference C code of analysis filter with SIMD-friendly tables | ||
| 45 | * reordering and code layout. This code can be used to develop platform | ||
| 46 | * specific SIMD optimizations. Also it may be used as some kind of test | ||
| 47 | * for compiler autovectorization capabilities (who knows, if the compiler | ||
| 48 | * is very good at this stuff, hand optimized assembly may be not strictly | ||
| 49 | * needed for some platform). | ||
| 50 | * | ||
| 51 | * Note: It is also possible to make a simple variant of analysis filter, | ||
| 52 | * which needs only a single constants table without taking care about | ||
| 53 | * even/odd cases. This simple variant of filter can be implemented without | ||
| 54 | * input data permutation. The only thing that would be lost is the | ||
| 55 | * possibility to use pairwise SIMD multiplications. But for some simple | ||
| 56 | * CPU cores without SIMD extensions it can be useful. If anybody is | ||
| 57 | * interested in implementing such variant of a filter, sourcecode from | ||
| 58 | * bluez versions 4.26/4.27 can be used as a reference and the history of | ||
| 59 | * the changes in git repository done around that time may be worth checking. | ||
| 60 | */ | ||
| 61 | |||
| 62 | ✗ | static av_always_inline void sbc_analyze_simd(const int16_t *in, int32_t *out, | |
| 63 | const int16_t *consts, | ||
| 64 | unsigned subbands) | ||
| 65 | { | ||
| 66 | int32_t t1[8]; | ||
| 67 | int16_t t2[8]; | ||
| 68 | ✗ | int i, j, hop = 0; | |
| 69 | |||
| 70 | /* rounding coefficient */ | ||
| 71 | ✗ | for (i = 0; i < subbands; i++) | |
| 72 | ✗ | t1[i] = 1 << (SBC_PROTO_FIXED_SCALE - 1); | |
| 73 | |||
| 74 | /* low pass polyphase filter */ | ||
| 75 | ✗ | for (hop = 0; hop < 10*subbands; hop += 2*subbands) | |
| 76 | ✗ | for (i = 0; i < 2*subbands; i++) | |
| 77 | ✗ | t1[i >> 1] += in[hop + i] * consts[hop + i]; | |
| 78 | |||
| 79 | /* scaling */ | ||
| 80 | ✗ | for (i = 0; i < subbands; i++) | |
| 81 | ✗ | t2[i] = t1[i] >> SBC_PROTO_FIXED_SCALE; | |
| 82 | |||
| 83 | ✗ | memset(t1, 0, sizeof(t1)); | |
| 84 | |||
| 85 | /* do the cos transform */ | ||
| 86 | ✗ | for (i = 0; i < subbands/2; i++) | |
| 87 | ✗ | for (j = 0; j < 2*subbands; j++) | |
| 88 | ✗ | t1[j>>1] += t2[i * 2 + (j&1)] * consts[10*subbands + i*2*subbands + j]; | |
| 89 | |||
| 90 | ✗ | for (i = 0; i < subbands; i++) | |
| 91 | ✗ | out[i] = t1[i] >> (SBC_COS_TABLE_FIXED_SCALE - SCALE_OUT_BITS); | |
| 92 | ✗ | } | |
| 93 | |||
| 94 | ✗ | static void sbc_analyze_4_simd(const int16_t *in, int32_t *out, | |
| 95 | const int16_t *consts) | ||
| 96 | { | ||
| 97 | ✗ | sbc_analyze_simd(in, out, consts, 4); | |
| 98 | ✗ | } | |
| 99 | |||
| 100 | ✗ | static void sbc_analyze_8_simd(const int16_t *in, int32_t *out, | |
| 101 | const int16_t *consts) | ||
| 102 | { | ||
| 103 | ✗ | sbc_analyze_simd(in, out, consts, 8); | |
| 104 | ✗ | } | |
| 105 | |||
| 106 | ✗ | static inline void sbc_analyze_4b_4s_simd(SBCDSPContext *s, | |
| 107 | int16_t *x, int32_t *out, int out_stride) | ||
| 108 | { | ||
| 109 | /* Analyze blocks */ | ||
| 110 | ✗ | s->sbc_analyze_4(x + 12, out, sbcdsp_analysis_consts_fixed4_simd_odd); | |
| 111 | ✗ | out += out_stride; | |
| 112 | ✗ | s->sbc_analyze_4(x + 8, out, sbcdsp_analysis_consts_fixed4_simd_even); | |
| 113 | ✗ | out += out_stride; | |
| 114 | ✗ | s->sbc_analyze_4(x + 4, out, sbcdsp_analysis_consts_fixed4_simd_odd); | |
| 115 | ✗ | out += out_stride; | |
| 116 | ✗ | s->sbc_analyze_4(x + 0, out, sbcdsp_analysis_consts_fixed4_simd_even); | |
| 117 | ✗ | } | |
| 118 | |||
| 119 | ✗ | static inline void sbc_analyze_4b_8s_simd(SBCDSPContext *s, | |
| 120 | int16_t *x, int32_t *out, int out_stride) | ||
| 121 | { | ||
| 122 | /* Analyze blocks */ | ||
| 123 | ✗ | s->sbc_analyze_8(x + 24, out, sbcdsp_analysis_consts_fixed8_simd_odd); | |
| 124 | ✗ | out += out_stride; | |
| 125 | ✗ | s->sbc_analyze_8(x + 16, out, sbcdsp_analysis_consts_fixed8_simd_even); | |
| 126 | ✗ | out += out_stride; | |
| 127 | ✗ | s->sbc_analyze_8(x + 8, out, sbcdsp_analysis_consts_fixed8_simd_odd); | |
| 128 | ✗ | out += out_stride; | |
| 129 | ✗ | s->sbc_analyze_8(x + 0, out, sbcdsp_analysis_consts_fixed8_simd_even); | |
| 130 | ✗ | } | |
| 131 | |||
| 132 | static inline void sbc_analyze_1b_8s_simd_even(SBCDSPContext *s, | ||
| 133 | int16_t *x, int32_t *out, | ||
| 134 | int out_stride); | ||
| 135 | |||
| 136 | ✗ | static inline void sbc_analyze_1b_8s_simd_odd(SBCDSPContext *s, | |
| 137 | int16_t *x, int32_t *out, | ||
| 138 | int out_stride) | ||
| 139 | { | ||
| 140 | ✗ | s->sbc_analyze_8(x, out, sbcdsp_analysis_consts_fixed8_simd_odd); | |
| 141 | ✗ | s->sbc_analyze_8s = sbc_analyze_1b_8s_simd_even; | |
| 142 | ✗ | } | |
| 143 | |||
| 144 | ✗ | static inline void sbc_analyze_1b_8s_simd_even(SBCDSPContext *s, | |
| 145 | int16_t *x, int32_t *out, | ||
| 146 | int out_stride) | ||
| 147 | { | ||
| 148 | ✗ | s->sbc_analyze_8(x, out, sbcdsp_analysis_consts_fixed8_simd_even); | |
| 149 | ✗ | s->sbc_analyze_8s = sbc_analyze_1b_8s_simd_odd; | |
| 150 | ✗ | } | |
| 151 | |||
| 152 | /* | ||
| 153 | * Input data processing functions. The data is endian converted if needed, | ||
| 154 | * channels are deintrleaved and audio samples are reordered for use in | ||
| 155 | * SIMD-friendly analysis filter function. The results are put into "X" | ||
| 156 | * array, getting appended to the previous data (or it is better to say | ||
| 157 | * prepended, as the buffer is filled from top to bottom). Old data is | ||
| 158 | * discarded when neededed, but availability of (10 * nrof_subbands) | ||
| 159 | * contiguous samples is always guaranteed for the input to the analysis | ||
| 160 | * filter. This is achieved by copying a sufficient part of old data | ||
| 161 | * to the top of the buffer on buffer wraparound. | ||
| 162 | */ | ||
| 163 | |||
| 164 | ✗ | static int sbc_enc_process_input_4s(int position, const uint8_t *pcm, | |
| 165 | int16_t X[2][SBC_X_BUFFER_SIZE], | ||
| 166 | int nsamples, int nchannels) | ||
| 167 | { | ||
| 168 | int c; | ||
| 169 | |||
| 170 | /* handle X buffer wraparound */ | ||
| 171 | ✗ | if (position < nsamples) { | |
| 172 | ✗ | for (c = 0; c < nchannels; c++) | |
| 173 | ✗ | memcpy(&X[c][SBC_X_BUFFER_SIZE - 40], &X[c][position], | |
| 174 | 36 * sizeof(int16_t)); | ||
| 175 | ✗ | position = SBC_X_BUFFER_SIZE - 40; | |
| 176 | } | ||
| 177 | |||
| 178 | /* copy/permutate audio samples */ | ||
| 179 | ✗ | for (; nsamples >= 8; nsamples -= 8, pcm += 16 * nchannels) { | |
| 180 | ✗ | position -= 8; | |
| 181 | ✗ | for (c = 0; c < nchannels; c++) { | |
| 182 | ✗ | int16_t *x = &X[c][position]; | |
| 183 | ✗ | x[0] = AV_RN16(pcm + 14*nchannels + 2*c); | |
| 184 | ✗ | x[1] = AV_RN16(pcm + 6*nchannels + 2*c); | |
| 185 | ✗ | x[2] = AV_RN16(pcm + 12*nchannels + 2*c); | |
| 186 | ✗ | x[3] = AV_RN16(pcm + 8*nchannels + 2*c); | |
| 187 | ✗ | x[4] = AV_RN16(pcm + 0*nchannels + 2*c); | |
| 188 | ✗ | x[5] = AV_RN16(pcm + 4*nchannels + 2*c); | |
| 189 | ✗ | x[6] = AV_RN16(pcm + 2*nchannels + 2*c); | |
| 190 | ✗ | x[7] = AV_RN16(pcm + 10*nchannels + 2*c); | |
| 191 | } | ||
| 192 | } | ||
| 193 | |||
| 194 | ✗ | return position; | |
| 195 | } | ||
| 196 | |||
| 197 | ✗ | static int sbc_enc_process_input_8s(int position, const uint8_t *pcm, | |
| 198 | int16_t X[2][SBC_X_BUFFER_SIZE], | ||
| 199 | int nsamples, int nchannels) | ||
| 200 | { | ||
| 201 | int c; | ||
| 202 | |||
| 203 | /* handle X buffer wraparound */ | ||
| 204 | ✗ | if (position < nsamples) { | |
| 205 | ✗ | for (c = 0; c < nchannels; c++) | |
| 206 | ✗ | memcpy(&X[c][SBC_X_BUFFER_SIZE - 72], &X[c][position], | |
| 207 | 72 * sizeof(int16_t)); | ||
| 208 | ✗ | position = SBC_X_BUFFER_SIZE - 72; | |
| 209 | } | ||
| 210 | |||
| 211 | ✗ | if (position % 16 == 8) { | |
| 212 | ✗ | position -= 8; | |
| 213 | ✗ | nsamples -= 8; | |
| 214 | ✗ | for (c = 0; c < nchannels; c++) { | |
| 215 | ✗ | int16_t *x = &X[c][position]; | |
| 216 | ✗ | x[0] = AV_RN16(pcm + 14*nchannels + 2*c); | |
| 217 | ✗ | x[2] = AV_RN16(pcm + 12*nchannels + 2*c); | |
| 218 | ✗ | x[3] = AV_RN16(pcm + 0*nchannels + 2*c); | |
| 219 | ✗ | x[4] = AV_RN16(pcm + 10*nchannels + 2*c); | |
| 220 | ✗ | x[5] = AV_RN16(pcm + 2*nchannels + 2*c); | |
| 221 | ✗ | x[6] = AV_RN16(pcm + 8*nchannels + 2*c); | |
| 222 | ✗ | x[7] = AV_RN16(pcm + 4*nchannels + 2*c); | |
| 223 | ✗ | x[8] = AV_RN16(pcm + 6*nchannels + 2*c); | |
| 224 | } | ||
| 225 | ✗ | pcm += 16 * nchannels; | |
| 226 | } | ||
| 227 | |||
| 228 | /* copy/permutate audio samples */ | ||
| 229 | ✗ | for (; nsamples >= 16; nsamples -= 16, pcm += 32 * nchannels) { | |
| 230 | ✗ | position -= 16; | |
| 231 | ✗ | for (c = 0; c < nchannels; c++) { | |
| 232 | ✗ | int16_t *x = &X[c][position]; | |
| 233 | ✗ | x[0] = AV_RN16(pcm + 30*nchannels + 2*c); | |
| 234 | ✗ | x[1] = AV_RN16(pcm + 14*nchannels + 2*c); | |
| 235 | ✗ | x[2] = AV_RN16(pcm + 28*nchannels + 2*c); | |
| 236 | ✗ | x[3] = AV_RN16(pcm + 16*nchannels + 2*c); | |
| 237 | ✗ | x[4] = AV_RN16(pcm + 26*nchannels + 2*c); | |
| 238 | ✗ | x[5] = AV_RN16(pcm + 18*nchannels + 2*c); | |
| 239 | ✗ | x[6] = AV_RN16(pcm + 24*nchannels + 2*c); | |
| 240 | ✗ | x[7] = AV_RN16(pcm + 20*nchannels + 2*c); | |
| 241 | ✗ | x[8] = AV_RN16(pcm + 22*nchannels + 2*c); | |
| 242 | ✗ | x[9] = AV_RN16(pcm + 6*nchannels + 2*c); | |
| 243 | ✗ | x[10] = AV_RN16(pcm + 12*nchannels + 2*c); | |
| 244 | ✗ | x[11] = AV_RN16(pcm + 0*nchannels + 2*c); | |
| 245 | ✗ | x[12] = AV_RN16(pcm + 10*nchannels + 2*c); | |
| 246 | ✗ | x[13] = AV_RN16(pcm + 2*nchannels + 2*c); | |
| 247 | ✗ | x[14] = AV_RN16(pcm + 8*nchannels + 2*c); | |
| 248 | ✗ | x[15] = AV_RN16(pcm + 4*nchannels + 2*c); | |
| 249 | } | ||
| 250 | } | ||
| 251 | |||
| 252 | ✗ | if (nsamples == 8) { | |
| 253 | ✗ | position -= 8; | |
| 254 | ✗ | for (c = 0; c < nchannels; c++) { | |
| 255 | ✗ | int16_t *x = &X[c][position]; | |
| 256 | ✗ | x[-7] = AV_RN16(pcm + 14*nchannels + 2*c); | |
| 257 | ✗ | x[1] = AV_RN16(pcm + 6*nchannels + 2*c); | |
| 258 | ✗ | x[2] = AV_RN16(pcm + 12*nchannels + 2*c); | |
| 259 | ✗ | x[3] = AV_RN16(pcm + 0*nchannels + 2*c); | |
| 260 | ✗ | x[4] = AV_RN16(pcm + 10*nchannels + 2*c); | |
| 261 | ✗ | x[5] = AV_RN16(pcm + 2*nchannels + 2*c); | |
| 262 | ✗ | x[6] = AV_RN16(pcm + 8*nchannels + 2*c); | |
| 263 | ✗ | x[7] = AV_RN16(pcm + 4*nchannels + 2*c); | |
| 264 | } | ||
| 265 | } | ||
| 266 | |||
| 267 | ✗ | return position; | |
| 268 | } | ||
| 269 | |||
| 270 | ✗ | static void sbc_calc_scalefactors(int32_t sb_sample_f[16][2][8], | |
| 271 | uint32_t scale_factor[2][8], | ||
| 272 | int blocks, int channels, int subbands) | ||
| 273 | { | ||
| 274 | int ch, sb, blk; | ||
| 275 | ✗ | for (ch = 0; ch < channels; ch++) { | |
| 276 | ✗ | for (sb = 0; sb < subbands; sb++) { | |
| 277 | ✗ | uint32_t x = 1 << SCALE_OUT_BITS; | |
| 278 | ✗ | for (blk = 0; blk < blocks; blk++) { | |
| 279 | ✗ | int32_t tmp = FFABS(sb_sample_f[blk][ch][sb]); | |
| 280 | ✗ | if (tmp != 0) | |
| 281 | ✗ | x |= tmp - 1; | |
| 282 | } | ||
| 283 | ✗ | scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) - ff_clz(x); | |
| 284 | } | ||
| 285 | } | ||
| 286 | ✗ | } | |
| 287 | |||
| 288 | ✗ | static int sbc_calc_scalefactors_j(int32_t sb_sample_f[16][2][8], | |
| 289 | uint32_t scale_factor[2][8], | ||
| 290 | int blocks, int subbands) | ||
| 291 | { | ||
| 292 | ✗ | int blk, joint = 0; | |
| 293 | int32_t tmp0, tmp1; | ||
| 294 | uint32_t x, y; | ||
| 295 | |||
| 296 | /* last subband does not use joint stereo */ | ||
| 297 | ✗ | int sb = subbands - 1; | |
| 298 | ✗ | x = 1 << SCALE_OUT_BITS; | |
| 299 | ✗ | y = 1 << SCALE_OUT_BITS; | |
| 300 | ✗ | for (blk = 0; blk < blocks; blk++) { | |
| 301 | ✗ | tmp0 = FFABS(sb_sample_f[blk][0][sb]); | |
| 302 | ✗ | tmp1 = FFABS(sb_sample_f[blk][1][sb]); | |
| 303 | ✗ | if (tmp0 != 0) | |
| 304 | ✗ | x |= tmp0 - 1; | |
| 305 | ✗ | if (tmp1 != 0) | |
| 306 | ✗ | y |= tmp1 - 1; | |
| 307 | } | ||
| 308 | ✗ | scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - ff_clz(x); | |
| 309 | ✗ | scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - ff_clz(y); | |
| 310 | |||
| 311 | /* the rest of subbands can use joint stereo */ | ||
| 312 | ✗ | while (--sb >= 0) { | |
| 313 | int32_t sb_sample_j[16][2]; | ||
| 314 | ✗ | x = 1 << SCALE_OUT_BITS; | |
| 315 | ✗ | y = 1 << SCALE_OUT_BITS; | |
| 316 | ✗ | for (blk = 0; blk < blocks; blk++) { | |
| 317 | ✗ | tmp0 = sb_sample_f[blk][0][sb]; | |
| 318 | ✗ | tmp1 = sb_sample_f[blk][1][sb]; | |
| 319 | ✗ | sb_sample_j[blk][0] = (tmp0 >> 1) + (tmp1 >> 1); | |
| 320 | ✗ | sb_sample_j[blk][1] = (tmp0 >> 1) - (tmp1 >> 1); | |
| 321 | ✗ | tmp0 = FFABS(tmp0); | |
| 322 | ✗ | tmp1 = FFABS(tmp1); | |
| 323 | ✗ | if (tmp0 != 0) | |
| 324 | ✗ | x |= tmp0 - 1; | |
| 325 | ✗ | if (tmp1 != 0) | |
| 326 | ✗ | y |= tmp1 - 1; | |
| 327 | } | ||
| 328 | ✗ | scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - | |
| 329 | ✗ | ff_clz(x); | |
| 330 | ✗ | scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - | |
| 331 | ✗ | ff_clz(y); | |
| 332 | ✗ | x = 1 << SCALE_OUT_BITS; | |
| 333 | ✗ | y = 1 << SCALE_OUT_BITS; | |
| 334 | ✗ | for (blk = 0; blk < blocks; blk++) { | |
| 335 | ✗ | tmp0 = FFABS(sb_sample_j[blk][0]); | |
| 336 | ✗ | tmp1 = FFABS(sb_sample_j[blk][1]); | |
| 337 | ✗ | if (tmp0 != 0) | |
| 338 | ✗ | x |= tmp0 - 1; | |
| 339 | ✗ | if (tmp1 != 0) | |
| 340 | ✗ | y |= tmp1 - 1; | |
| 341 | } | ||
| 342 | ✗ | x = (31 - SCALE_OUT_BITS) - ff_clz(x); | |
| 343 | ✗ | y = (31 - SCALE_OUT_BITS) - ff_clz(y); | |
| 344 | |||
| 345 | /* decide whether to use joint stereo for this subband */ | ||
| 346 | ✗ | if ((scale_factor[0][sb] + scale_factor[1][sb]) > x + y) { | |
| 347 | ✗ | joint |= 1 << (subbands - 1 - sb); | |
| 348 | ✗ | scale_factor[0][sb] = x; | |
| 349 | ✗ | scale_factor[1][sb] = y; | |
| 350 | ✗ | for (blk = 0; blk < blocks; blk++) { | |
| 351 | ✗ | sb_sample_f[blk][0][sb] = sb_sample_j[blk][0]; | |
| 352 | ✗ | sb_sample_f[blk][1][sb] = sb_sample_j[blk][1]; | |
| 353 | } | ||
| 354 | } | ||
| 355 | } | ||
| 356 | |||
| 357 | /* bitmask with the information about subbands using joint stereo */ | ||
| 358 | ✗ | return joint; | |
| 359 | } | ||
| 360 | |||
| 361 | /* | ||
| 362 | * Detect CPU features and setup function pointers | ||
| 363 | */ | ||
| 364 | ✗ | av_cold void ff_sbcdsp_init(SBCDSPContext *s) | |
| 365 | { | ||
| 366 | /* Default implementation for analyze functions */ | ||
| 367 | ✗ | s->sbc_analyze_4 = sbc_analyze_4_simd; | |
| 368 | ✗ | s->sbc_analyze_8 = sbc_analyze_8_simd; | |
| 369 | ✗ | s->sbc_analyze_4s = sbc_analyze_4b_4s_simd; | |
| 370 | ✗ | if (s->increment == 1) | |
| 371 | ✗ | s->sbc_analyze_8s = sbc_analyze_1b_8s_simd_odd; | |
| 372 | else | ||
| 373 | ✗ | s->sbc_analyze_8s = sbc_analyze_4b_8s_simd; | |
| 374 | |||
| 375 | /* Default implementation for input reordering / deinterleaving */ | ||
| 376 | ✗ | s->sbc_enc_process_input_4s = sbc_enc_process_input_4s; | |
| 377 | ✗ | s->sbc_enc_process_input_8s = sbc_enc_process_input_8s; | |
| 378 | |||
| 379 | /* Default implementation for scale factors calculation */ | ||
| 380 | ✗ | s->sbc_calc_scalefactors = sbc_calc_scalefactors; | |
| 381 | ✗ | s->sbc_calc_scalefactors_j = sbc_calc_scalefactors_j; | |
| 382 | |||
| 383 | #if ARCH_ARM | ||
| 384 | ff_sbcdsp_init_arm(s); | ||
| 385 | #elif ARCH_X86 | ||
| 386 | ✗ | ff_sbcdsp_init_x86(s); | |
| 387 | #endif | ||
| 388 | ✗ | } | |
| 389 |