Line |
Branch |
Exec |
Source |
1 |
|
|
/* |
2 |
|
|
* Bluetooth low-complexity, subband codec (SBC) |
3 |
|
|
* |
4 |
|
|
* Copyright (C) 2017 Aurelien Jacobs <aurel@gnuage.org> |
5 |
|
|
* Copyright (C) 2012-2013 Intel Corporation |
6 |
|
|
* Copyright (C) 2008-2010 Nokia Corporation |
7 |
|
|
* Copyright (C) 2004-2010 Marcel Holtmann <marcel@holtmann.org> |
8 |
|
|
* Copyright (C) 2004-2005 Henryk Ploetz <henryk@ploetzli.ch> |
9 |
|
|
* Copyright (C) 2005-2006 Brad Midgley <bmidgley@xmission.com> |
10 |
|
|
* |
11 |
|
|
* This file is part of FFmpeg. |
12 |
|
|
* |
13 |
|
|
* FFmpeg is free software; you can redistribute it and/or |
14 |
|
|
* modify it under the terms of the GNU Lesser General Public |
15 |
|
|
* License as published by the Free Software Foundation; either |
16 |
|
|
* version 2.1 of the License, or (at your option) any later version. |
17 |
|
|
* |
18 |
|
|
* FFmpeg is distributed in the hope that it will be useful, |
19 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
20 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
21 |
|
|
* Lesser General Public License for more details. |
22 |
|
|
* |
23 |
|
|
* You should have received a copy of the GNU Lesser General Public |
24 |
|
|
* License along with FFmpeg; if not, write to the Free Software |
25 |
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
26 |
|
|
*/ |
27 |
|
|
|
28 |
|
|
/** |
29 |
|
|
* @file |
30 |
|
|
* SBC basic "building bricks" |
31 |
|
|
*/ |
32 |
|
|
|
33 |
|
|
#include <stdint.h> |
34 |
|
|
#include <limits.h> |
35 |
|
|
#include <string.h> |
36 |
|
|
#include "libavutil/common.h" |
37 |
|
|
#include "libavutil/intmath.h" |
38 |
|
|
#include "libavutil/intreadwrite.h" |
39 |
|
|
#include "sbc.h" |
40 |
|
|
#include "sbcdsp.h" |
41 |
|
|
#include "sbcdsp_data.h" |
42 |
|
|
|
43 |
|
|
/* |
44 |
|
|
* A reference C code of analysis filter with SIMD-friendly tables |
45 |
|
|
* reordering and code layout. This code can be used to develop platform |
46 |
|
|
* specific SIMD optimizations. Also it may be used as some kind of test |
47 |
|
|
* for compiler autovectorization capabilities (who knows, if the compiler |
48 |
|
|
* is very good at this stuff, hand optimized assembly may be not strictly |
49 |
|
|
* needed for some platform). |
50 |
|
|
* |
51 |
|
|
* Note: It is also possible to make a simple variant of analysis filter, |
52 |
|
|
* which needs only a single constants table without taking care about |
53 |
|
|
* even/odd cases. This simple variant of filter can be implemented without |
54 |
|
|
* input data permutation. The only thing that would be lost is the |
55 |
|
|
* possibility to use pairwise SIMD multiplications. But for some simple |
56 |
|
|
* CPU cores without SIMD extensions it can be useful. If anybody is |
57 |
|
|
* interested in implementing such variant of a filter, sourcecode from |
58 |
|
|
* bluez versions 4.26/4.27 can be used as a reference and the history of |
59 |
|
|
* the changes in git repository done around that time may be worth checking. |
60 |
|
|
*/ |
61 |
|
|
|
62 |
|
✗ |
static av_always_inline void sbc_analyze_simd(const int16_t *in, int32_t *out, |
63 |
|
|
const int16_t *consts, |
64 |
|
|
unsigned subbands) |
65 |
|
|
{ |
66 |
|
|
int32_t t1[8]; |
67 |
|
|
int16_t t2[8]; |
68 |
|
✗ |
int i, j, hop = 0; |
69 |
|
|
|
70 |
|
|
/* rounding coefficient */ |
71 |
|
✗ |
for (i = 0; i < subbands; i++) |
72 |
|
✗ |
t1[i] = 1 << (SBC_PROTO_FIXED_SCALE - 1); |
73 |
|
|
|
74 |
|
|
/* low pass polyphase filter */ |
75 |
|
✗ |
for (hop = 0; hop < 10*subbands; hop += 2*subbands) |
76 |
|
✗ |
for (i = 0; i < 2*subbands; i++) |
77 |
|
✗ |
t1[i >> 1] += in[hop + i] * consts[hop + i]; |
78 |
|
|
|
79 |
|
|
/* scaling */ |
80 |
|
✗ |
for (i = 0; i < subbands; i++) |
81 |
|
✗ |
t2[i] = t1[i] >> SBC_PROTO_FIXED_SCALE; |
82 |
|
|
|
83 |
|
✗ |
memset(t1, 0, sizeof(t1)); |
84 |
|
|
|
85 |
|
|
/* do the cos transform */ |
86 |
|
✗ |
for (i = 0; i < subbands/2; i++) |
87 |
|
✗ |
for (j = 0; j < 2*subbands; j++) |
88 |
|
✗ |
t1[j>>1] += t2[i * 2 + (j&1)] * consts[10*subbands + i*2*subbands + j]; |
89 |
|
|
|
90 |
|
✗ |
for (i = 0; i < subbands; i++) |
91 |
|
✗ |
out[i] = t1[i] >> (SBC_COS_TABLE_FIXED_SCALE - SCALE_OUT_BITS); |
92 |
|
✗ |
} |
93 |
|
|
|
94 |
|
✗ |
static void sbc_analyze_4_simd(const int16_t *in, int32_t *out, |
95 |
|
|
const int16_t *consts) |
96 |
|
|
{ |
97 |
|
✗ |
sbc_analyze_simd(in, out, consts, 4); |
98 |
|
✗ |
} |
99 |
|
|
|
100 |
|
✗ |
static void sbc_analyze_8_simd(const int16_t *in, int32_t *out, |
101 |
|
|
const int16_t *consts) |
102 |
|
|
{ |
103 |
|
✗ |
sbc_analyze_simd(in, out, consts, 8); |
104 |
|
✗ |
} |
105 |
|
|
|
106 |
|
✗ |
static inline void sbc_analyze_4b_4s_simd(SBCDSPContext *s, |
107 |
|
|
int16_t *x, int32_t *out, int out_stride) |
108 |
|
|
{ |
109 |
|
|
/* Analyze blocks */ |
110 |
|
✗ |
s->sbc_analyze_4(x + 12, out, ff_sbcdsp_analysis_consts_fixed4_simd_odd); |
111 |
|
✗ |
out += out_stride; |
112 |
|
✗ |
s->sbc_analyze_4(x + 8, out, ff_sbcdsp_analysis_consts_fixed4_simd_even); |
113 |
|
✗ |
out += out_stride; |
114 |
|
✗ |
s->sbc_analyze_4(x + 4, out, ff_sbcdsp_analysis_consts_fixed4_simd_odd); |
115 |
|
✗ |
out += out_stride; |
116 |
|
✗ |
s->sbc_analyze_4(x + 0, out, ff_sbcdsp_analysis_consts_fixed4_simd_even); |
117 |
|
✗ |
} |
118 |
|
|
|
119 |
|
✗ |
static inline void sbc_analyze_4b_8s_simd(SBCDSPContext *s, |
120 |
|
|
int16_t *x, int32_t *out, int out_stride) |
121 |
|
|
{ |
122 |
|
|
/* Analyze blocks */ |
123 |
|
✗ |
s->sbc_analyze_8(x + 24, out, ff_sbcdsp_analysis_consts_fixed8_simd_odd); |
124 |
|
✗ |
out += out_stride; |
125 |
|
✗ |
s->sbc_analyze_8(x + 16, out, ff_sbcdsp_analysis_consts_fixed8_simd_even); |
126 |
|
✗ |
out += out_stride; |
127 |
|
✗ |
s->sbc_analyze_8(x + 8, out, ff_sbcdsp_analysis_consts_fixed8_simd_odd); |
128 |
|
✗ |
out += out_stride; |
129 |
|
✗ |
s->sbc_analyze_8(x + 0, out, ff_sbcdsp_analysis_consts_fixed8_simd_even); |
130 |
|
✗ |
} |
131 |
|
|
|
132 |
|
|
static inline void sbc_analyze_1b_8s_simd_even(SBCDSPContext *s, |
133 |
|
|
int16_t *x, int32_t *out, |
134 |
|
|
int out_stride); |
135 |
|
|
|
136 |
|
✗ |
static inline void sbc_analyze_1b_8s_simd_odd(SBCDSPContext *s, |
137 |
|
|
int16_t *x, int32_t *out, |
138 |
|
|
int out_stride) |
139 |
|
|
{ |
140 |
|
✗ |
s->sbc_analyze_8(x, out, ff_sbcdsp_analysis_consts_fixed8_simd_odd); |
141 |
|
✗ |
s->sbc_analyze_8s = sbc_analyze_1b_8s_simd_even; |
142 |
|
✗ |
} |
143 |
|
|
|
144 |
|
✗ |
static inline void sbc_analyze_1b_8s_simd_even(SBCDSPContext *s, |
145 |
|
|
int16_t *x, int32_t *out, |
146 |
|
|
int out_stride) |
147 |
|
|
{ |
148 |
|
✗ |
s->sbc_analyze_8(x, out, ff_sbcdsp_analysis_consts_fixed8_simd_even); |
149 |
|
✗ |
s->sbc_analyze_8s = sbc_analyze_1b_8s_simd_odd; |
150 |
|
✗ |
} |
151 |
|
|
|
152 |
|
|
/* |
153 |
|
|
* Input data processing functions. The data is endian converted if needed, |
154 |
|
|
* channels are deintrleaved and audio samples are reordered for use in |
155 |
|
|
* SIMD-friendly analysis filter function. The results are put into "X" |
156 |
|
|
* array, getting appended to the previous data (or it is better to say |
157 |
|
|
* prepended, as the buffer is filled from top to bottom). Old data is |
158 |
|
|
* discarded when neededed, but availability of (10 * nrof_subbands) |
159 |
|
|
* contiguous samples is always guaranteed for the input to the analysis |
160 |
|
|
* filter. This is achieved by copying a sufficient part of old data |
161 |
|
|
* to the top of the buffer on buffer wraparound. |
162 |
|
|
*/ |
163 |
|
|
|
164 |
|
✗ |
static int sbc_enc_process_input_4s(int position, const uint8_t *pcm, |
165 |
|
|
int16_t X[2][SBC_X_BUFFER_SIZE], |
166 |
|
|
int nsamples, int nchannels) |
167 |
|
|
{ |
168 |
|
|
int c; |
169 |
|
|
|
170 |
|
|
/* handle X buffer wraparound */ |
171 |
|
✗ |
if (position < nsamples) { |
172 |
|
✗ |
for (c = 0; c < nchannels; c++) |
173 |
|
✗ |
memcpy(&X[c][SBC_X_BUFFER_SIZE - 40], &X[c][position], |
174 |
|
|
36 * sizeof(int16_t)); |
175 |
|
✗ |
position = SBC_X_BUFFER_SIZE - 40; |
176 |
|
|
} |
177 |
|
|
|
178 |
|
|
/* copy/permutate audio samples */ |
179 |
|
✗ |
for (; nsamples >= 8; nsamples -= 8, pcm += 16 * nchannels) { |
180 |
|
✗ |
position -= 8; |
181 |
|
✗ |
for (c = 0; c < nchannels; c++) { |
182 |
|
✗ |
int16_t *x = &X[c][position]; |
183 |
|
✗ |
x[0] = AV_RN16(pcm + 14*nchannels + 2*c); |
184 |
|
✗ |
x[1] = AV_RN16(pcm + 6*nchannels + 2*c); |
185 |
|
✗ |
x[2] = AV_RN16(pcm + 12*nchannels + 2*c); |
186 |
|
✗ |
x[3] = AV_RN16(pcm + 8*nchannels + 2*c); |
187 |
|
✗ |
x[4] = AV_RN16(pcm + 0*nchannels + 2*c); |
188 |
|
✗ |
x[5] = AV_RN16(pcm + 4*nchannels + 2*c); |
189 |
|
✗ |
x[6] = AV_RN16(pcm + 2*nchannels + 2*c); |
190 |
|
✗ |
x[7] = AV_RN16(pcm + 10*nchannels + 2*c); |
191 |
|
|
} |
192 |
|
|
} |
193 |
|
|
|
194 |
|
✗ |
return position; |
195 |
|
|
} |
196 |
|
|
|
197 |
|
✗ |
static int sbc_enc_process_input_8s(int position, const uint8_t *pcm, |
198 |
|
|
int16_t X[2][SBC_X_BUFFER_SIZE], |
199 |
|
|
int nsamples, int nchannels) |
200 |
|
|
{ |
201 |
|
|
int c; |
202 |
|
|
|
203 |
|
|
/* handle X buffer wraparound */ |
204 |
|
✗ |
if (position < nsamples) { |
205 |
|
✗ |
for (c = 0; c < nchannels; c++) |
206 |
|
✗ |
memcpy(&X[c][SBC_X_BUFFER_SIZE - 72], &X[c][position], |
207 |
|
|
72 * sizeof(int16_t)); |
208 |
|
✗ |
position = SBC_X_BUFFER_SIZE - 72; |
209 |
|
|
} |
210 |
|
|
|
211 |
|
✗ |
if (position % 16 == 8) { |
212 |
|
✗ |
position -= 8; |
213 |
|
✗ |
nsamples -= 8; |
214 |
|
✗ |
for (c = 0; c < nchannels; c++) { |
215 |
|
✗ |
int16_t *x = &X[c][position]; |
216 |
|
✗ |
x[0] = AV_RN16(pcm + 14*nchannels + 2*c); |
217 |
|
✗ |
x[2] = AV_RN16(pcm + 12*nchannels + 2*c); |
218 |
|
✗ |
x[3] = AV_RN16(pcm + 0*nchannels + 2*c); |
219 |
|
✗ |
x[4] = AV_RN16(pcm + 10*nchannels + 2*c); |
220 |
|
✗ |
x[5] = AV_RN16(pcm + 2*nchannels + 2*c); |
221 |
|
✗ |
x[6] = AV_RN16(pcm + 8*nchannels + 2*c); |
222 |
|
✗ |
x[7] = AV_RN16(pcm + 4*nchannels + 2*c); |
223 |
|
✗ |
x[8] = AV_RN16(pcm + 6*nchannels + 2*c); |
224 |
|
|
} |
225 |
|
✗ |
pcm += 16 * nchannels; |
226 |
|
|
} |
227 |
|
|
|
228 |
|
|
/* copy/permutate audio samples */ |
229 |
|
✗ |
for (; nsamples >= 16; nsamples -= 16, pcm += 32 * nchannels) { |
230 |
|
✗ |
position -= 16; |
231 |
|
✗ |
for (c = 0; c < nchannels; c++) { |
232 |
|
✗ |
int16_t *x = &X[c][position]; |
233 |
|
✗ |
x[0] = AV_RN16(pcm + 30*nchannels + 2*c); |
234 |
|
✗ |
x[1] = AV_RN16(pcm + 14*nchannels + 2*c); |
235 |
|
✗ |
x[2] = AV_RN16(pcm + 28*nchannels + 2*c); |
236 |
|
✗ |
x[3] = AV_RN16(pcm + 16*nchannels + 2*c); |
237 |
|
✗ |
x[4] = AV_RN16(pcm + 26*nchannels + 2*c); |
238 |
|
✗ |
x[5] = AV_RN16(pcm + 18*nchannels + 2*c); |
239 |
|
✗ |
x[6] = AV_RN16(pcm + 24*nchannels + 2*c); |
240 |
|
✗ |
x[7] = AV_RN16(pcm + 20*nchannels + 2*c); |
241 |
|
✗ |
x[8] = AV_RN16(pcm + 22*nchannels + 2*c); |
242 |
|
✗ |
x[9] = AV_RN16(pcm + 6*nchannels + 2*c); |
243 |
|
✗ |
x[10] = AV_RN16(pcm + 12*nchannels + 2*c); |
244 |
|
✗ |
x[11] = AV_RN16(pcm + 0*nchannels + 2*c); |
245 |
|
✗ |
x[12] = AV_RN16(pcm + 10*nchannels + 2*c); |
246 |
|
✗ |
x[13] = AV_RN16(pcm + 2*nchannels + 2*c); |
247 |
|
✗ |
x[14] = AV_RN16(pcm + 8*nchannels + 2*c); |
248 |
|
✗ |
x[15] = AV_RN16(pcm + 4*nchannels + 2*c); |
249 |
|
|
} |
250 |
|
|
} |
251 |
|
|
|
252 |
|
✗ |
if (nsamples == 8) { |
253 |
|
✗ |
position -= 8; |
254 |
|
✗ |
for (c = 0; c < nchannels; c++) { |
255 |
|
✗ |
int16_t *x = &X[c][position]; |
256 |
|
✗ |
x[-7] = AV_RN16(pcm + 14*nchannels + 2*c); |
257 |
|
✗ |
x[1] = AV_RN16(pcm + 6*nchannels + 2*c); |
258 |
|
✗ |
x[2] = AV_RN16(pcm + 12*nchannels + 2*c); |
259 |
|
✗ |
x[3] = AV_RN16(pcm + 0*nchannels + 2*c); |
260 |
|
✗ |
x[4] = AV_RN16(pcm + 10*nchannels + 2*c); |
261 |
|
✗ |
x[5] = AV_RN16(pcm + 2*nchannels + 2*c); |
262 |
|
✗ |
x[6] = AV_RN16(pcm + 8*nchannels + 2*c); |
263 |
|
✗ |
x[7] = AV_RN16(pcm + 4*nchannels + 2*c); |
264 |
|
|
} |
265 |
|
|
} |
266 |
|
|
|
267 |
|
✗ |
return position; |
268 |
|
|
} |
269 |
|
|
|
270 |
|
✗ |
static void sbc_calc_scalefactors(int32_t sb_sample_f[16][2][8], |
271 |
|
|
uint32_t scale_factor[2][8], |
272 |
|
|
int blocks, int channels, int subbands) |
273 |
|
|
{ |
274 |
|
|
int ch, sb, blk; |
275 |
|
✗ |
for (ch = 0; ch < channels; ch++) { |
276 |
|
✗ |
for (sb = 0; sb < subbands; sb++) { |
277 |
|
✗ |
uint32_t x = 1 << SCALE_OUT_BITS; |
278 |
|
✗ |
for (blk = 0; blk < blocks; blk++) { |
279 |
|
✗ |
int32_t tmp = FFABS(sb_sample_f[blk][ch][sb]); |
280 |
|
✗ |
if (tmp != 0) |
281 |
|
✗ |
x |= tmp - 1; |
282 |
|
|
} |
283 |
|
✗ |
scale_factor[ch][sb] = (31 - SCALE_OUT_BITS) - ff_clz(x); |
284 |
|
|
} |
285 |
|
|
} |
286 |
|
✗ |
} |
287 |
|
|
|
288 |
|
✗ |
static int sbc_calc_scalefactors_j(int32_t sb_sample_f[16][2][8], |
289 |
|
|
uint32_t scale_factor[2][8], |
290 |
|
|
int blocks, int subbands) |
291 |
|
|
{ |
292 |
|
✗ |
int blk, joint = 0; |
293 |
|
|
int32_t tmp0, tmp1; |
294 |
|
|
uint32_t x, y; |
295 |
|
|
|
296 |
|
|
/* last subband does not use joint stereo */ |
297 |
|
✗ |
int sb = subbands - 1; |
298 |
|
✗ |
x = 1 << SCALE_OUT_BITS; |
299 |
|
✗ |
y = 1 << SCALE_OUT_BITS; |
300 |
|
✗ |
for (blk = 0; blk < blocks; blk++) { |
301 |
|
✗ |
tmp0 = FFABS(sb_sample_f[blk][0][sb]); |
302 |
|
✗ |
tmp1 = FFABS(sb_sample_f[blk][1][sb]); |
303 |
|
✗ |
if (tmp0 != 0) |
304 |
|
✗ |
x |= tmp0 - 1; |
305 |
|
✗ |
if (tmp1 != 0) |
306 |
|
✗ |
y |= tmp1 - 1; |
307 |
|
|
} |
308 |
|
✗ |
scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - ff_clz(x); |
309 |
|
✗ |
scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - ff_clz(y); |
310 |
|
|
|
311 |
|
|
/* the rest of subbands can use joint stereo */ |
312 |
|
✗ |
while (--sb >= 0) { |
313 |
|
|
int32_t sb_sample_j[16][2]; |
314 |
|
✗ |
x = 1 << SCALE_OUT_BITS; |
315 |
|
✗ |
y = 1 << SCALE_OUT_BITS; |
316 |
|
✗ |
for (blk = 0; blk < blocks; blk++) { |
317 |
|
✗ |
tmp0 = sb_sample_f[blk][0][sb]; |
318 |
|
✗ |
tmp1 = sb_sample_f[blk][1][sb]; |
319 |
|
✗ |
sb_sample_j[blk][0] = (tmp0 >> 1) + (tmp1 >> 1); |
320 |
|
✗ |
sb_sample_j[blk][1] = (tmp0 >> 1) - (tmp1 >> 1); |
321 |
|
✗ |
tmp0 = FFABS(tmp0); |
322 |
|
✗ |
tmp1 = FFABS(tmp1); |
323 |
|
✗ |
if (tmp0 != 0) |
324 |
|
✗ |
x |= tmp0 - 1; |
325 |
|
✗ |
if (tmp1 != 0) |
326 |
|
✗ |
y |= tmp1 - 1; |
327 |
|
|
} |
328 |
|
✗ |
scale_factor[0][sb] = (31 - SCALE_OUT_BITS) - |
329 |
|
✗ |
ff_clz(x); |
330 |
|
✗ |
scale_factor[1][sb] = (31 - SCALE_OUT_BITS) - |
331 |
|
✗ |
ff_clz(y); |
332 |
|
✗ |
x = 1 << SCALE_OUT_BITS; |
333 |
|
✗ |
y = 1 << SCALE_OUT_BITS; |
334 |
|
✗ |
for (blk = 0; blk < blocks; blk++) { |
335 |
|
✗ |
tmp0 = FFABS(sb_sample_j[blk][0]); |
336 |
|
✗ |
tmp1 = FFABS(sb_sample_j[blk][1]); |
337 |
|
✗ |
if (tmp0 != 0) |
338 |
|
✗ |
x |= tmp0 - 1; |
339 |
|
✗ |
if (tmp1 != 0) |
340 |
|
✗ |
y |= tmp1 - 1; |
341 |
|
|
} |
342 |
|
✗ |
x = (31 - SCALE_OUT_BITS) - ff_clz(x); |
343 |
|
✗ |
y = (31 - SCALE_OUT_BITS) - ff_clz(y); |
344 |
|
|
|
345 |
|
|
/* decide whether to use joint stereo for this subband */ |
346 |
|
✗ |
if ((scale_factor[0][sb] + scale_factor[1][sb]) > x + y) { |
347 |
|
✗ |
joint |= 1 << (subbands - 1 - sb); |
348 |
|
✗ |
scale_factor[0][sb] = x; |
349 |
|
✗ |
scale_factor[1][sb] = y; |
350 |
|
✗ |
for (blk = 0; blk < blocks; blk++) { |
351 |
|
✗ |
sb_sample_f[blk][0][sb] = sb_sample_j[blk][0]; |
352 |
|
✗ |
sb_sample_f[blk][1][sb] = sb_sample_j[blk][1]; |
353 |
|
|
} |
354 |
|
|
} |
355 |
|
|
} |
356 |
|
|
|
357 |
|
|
/* bitmask with the information about subbands using joint stereo */ |
358 |
|
✗ |
return joint; |
359 |
|
|
} |
360 |
|
|
|
361 |
|
|
/* |
362 |
|
|
* Detect CPU features and setup function pointers |
363 |
|
|
*/ |
364 |
|
✗ |
av_cold void ff_sbcdsp_init(SBCDSPContext *s) |
365 |
|
|
{ |
366 |
|
|
/* Default implementation for analyze functions */ |
367 |
|
✗ |
s->sbc_analyze_4 = sbc_analyze_4_simd; |
368 |
|
✗ |
s->sbc_analyze_8 = sbc_analyze_8_simd; |
369 |
|
✗ |
s->sbc_analyze_4s = sbc_analyze_4b_4s_simd; |
370 |
|
✗ |
if (s->increment == 1) |
371 |
|
✗ |
s->sbc_analyze_8s = sbc_analyze_1b_8s_simd_odd; |
372 |
|
|
else |
373 |
|
✗ |
s->sbc_analyze_8s = sbc_analyze_4b_8s_simd; |
374 |
|
|
|
375 |
|
|
/* Default implementation for input reordering / deinterleaving */ |
376 |
|
✗ |
s->sbc_enc_process_input_4s = sbc_enc_process_input_4s; |
377 |
|
✗ |
s->sbc_enc_process_input_8s = sbc_enc_process_input_8s; |
378 |
|
|
|
379 |
|
|
/* Default implementation for scale factors calculation */ |
380 |
|
✗ |
s->sbc_calc_scalefactors = sbc_calc_scalefactors; |
381 |
|
✗ |
s->sbc_calc_scalefactors_j = sbc_calc_scalefactors_j; |
382 |
|
|
|
383 |
|
|
#if ARCH_ARM |
384 |
|
|
ff_sbcdsp_init_arm(s); |
385 |
|
|
#elif ARCH_X86 |
386 |
|
✗ |
ff_sbcdsp_init_x86(s); |
387 |
|
|
#endif |
388 |
|
✗ |
} |
389 |
|
|
|