FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/rpzaenc.c
Date: 2023-03-31 03:41:15
Exec Total Coverage
Lines: 0 368 0.0%
Functions: 0 17 0.0%
Branches: 0 156 0.0%

Line Branch Exec Source
1 /*
2 * QuickTime RPZA Video Encoder
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file rpzaenc.c
23 * QT RPZA Video Encoder by Todd Kirby <doubleshot@pacbell.net> and David Adler
24 */
25
26 #include "libavutil/avassert.h"
27 #include "libavutil/common.h"
28 #include "libavutil/opt.h"
29
30 #include "avcodec.h"
31 #include "codec_internal.h"
32 #include "encode.h"
33 #include "put_bits.h"
34
35 typedef struct RpzaContext {
36 AVClass *avclass;
37
38 int skip_frame_thresh;
39 int start_one_color_thresh;
40 int continue_one_color_thresh;
41 int sixteen_color_thresh;
42
43 AVFrame *prev_frame; // buffer for previous source frame
44 PutBitContext pb; // buffer for encoded frame data.
45
46 int frame_width; // width in pixels of source frame
47 int frame_height; // height in pixesl of source frame
48
49 int first_frame; // flag set to one when the first frame is being processed
50 // so that comparisons with previous frame data in not attempted
51 } RpzaContext;
52
53 typedef enum channel_offset {
54 RED = 2,
55 GREEN = 1,
56 BLUE = 0,
57 } channel_offset;
58
59 typedef struct rgb {
60 uint8_t r;
61 uint8_t g;
62 uint8_t b;
63 } rgb;
64
65 #define SQR(x) ((x) * (x))
66
67 /* 15 bit components */
68 #define GET_CHAN(color, chan) (((color) >> ((chan) * 5) & 0x1F) * 8)
69 #define R(color) GET_CHAN(color, RED)
70 #define G(color) GET_CHAN(color, GREEN)
71 #define B(color) GET_CHAN(color, BLUE)
72
73 typedef struct BlockInfo {
74 int row;
75 int col;
76 int block_width;
77 int block_height;
78 int image_width;
79 int image_height;
80 int block_index;
81 uint16_t start;
82 int rowstride;
83 int prev_rowstride;
84 int blocks_per_row;
85 int total_blocks;
86 } BlockInfo;
87
88 static void get_colors(const uint8_t *min, const uint8_t *max, uint8_t color4[4][3])
89 {
90 uint8_t step;
91
92 color4[0][0] = min[0];
93 color4[0][1] = min[1];
94 color4[0][2] = min[2];
95
96 color4[3][0] = max[0];
97 color4[3][1] = max[1];
98 color4[3][2] = max[2];
99
100 // red components
101 step = (color4[3][0] - color4[0][0] + 1) / 3;
102 color4[1][0] = color4[0][0] + step;
103 color4[2][0] = color4[3][0] - step;
104
105 // green components
106 step = (color4[3][1] - color4[0][1] + 1) / 3;
107 color4[1][1] = color4[0][1] + step;
108 color4[2][1] = color4[3][1] - step;
109
110 // blue components
111 step = (color4[3][2] - color4[0][2] + 1) / 3;
112 color4[1][2] = color4[0][2] + step;
113 color4[2][2] = color4[3][2] - step;
114 }
115
116 /* Fill BlockInfo struct with information about a 4x4 block of the image */
117 static int get_block_info(BlockInfo *bi, int block, int prev_frame)
118 {
119 bi->row = block / bi->blocks_per_row;
120 bi->col = block % bi->blocks_per_row;
121
122 // test for right edge block
123 if (bi->col == bi->blocks_per_row - 1 && (bi->image_width % 4) != 0) {
124 bi->block_width = bi->image_width % 4;
125 } else {
126 bi->block_width = 4;
127 }
128
129 // test for bottom edge block
130 if (bi->row == (bi->image_height / 4) && (bi->image_height % 4) != 0) {
131 bi->block_height = bi->image_height % 4;
132 } else {
133 bi->block_height = 4;
134 }
135
136 return block ? (bi->col * 4) + (bi->row * (prev_frame ? bi->prev_rowstride : bi->rowstride) * 4) : 0;
137 }
138
139 static uint16_t rgb24_to_rgb555(const uint8_t *rgb24)
140 {
141 uint16_t rgb555 = 0;
142 uint32_t r, g, b;
143
144 r = rgb24[0] >> 3;
145 g = rgb24[1] >> 3;
146 b = rgb24[2] >> 3;
147
148 rgb555 |= (r << 10);
149 rgb555 |= (g << 5);
150 rgb555 |= (b << 0);
151
152 return rgb555;
153 }
154
155 /*
156 * Returns the total difference between two 24 bit color values
157 */
158 static int diff_colors(const uint8_t *colorA, const uint8_t *colorB)
159 {
160 int tot;
161
162 tot = SQR(colorA[0] - colorB[0]);
163 tot += SQR(colorA[1] - colorB[1]);
164 tot += SQR(colorA[2] - colorB[2]);
165
166 return tot;
167 }
168
169 /*
170 * Returns the maximum channel difference
171 */
172 static int max_component_diff(const uint16_t *colorA, const uint16_t *colorB)
173 {
174 int diff, max = 0;
175
176 diff = FFABS(R(colorA[0]) - R(colorB[0]));
177 if (diff > max) {
178 max = diff;
179 }
180 diff = FFABS(G(colorA[0]) - G(colorB[0]));
181 if (diff > max) {
182 max = diff;
183 }
184 diff = FFABS(B(colorA[0]) - B(colorB[0]));
185 if (diff > max) {
186 max = diff;
187 }
188 return max * 8;
189 }
190
191 /*
192 * Find the channel that has the largest difference between minimum and maximum
193 * color values. Put the minimum value in min, maximum in max and the channel
194 * in chan.
195 */
196 static void get_max_component_diff(const BlockInfo *bi, const uint16_t *block_ptr,
197 uint8_t *min, uint8_t *max, channel_offset *chan)
198 {
199 int x, y;
200 uint8_t min_r, max_r, min_g, max_g, min_b, max_b;
201 uint8_t r, g, b;
202
203 // fix warning about uninitialized vars
204 min_r = min_g = min_b = UINT8_MAX;
205 max_r = max_g = max_b = 0;
206
207 // loop thru and compare pixels
208 for (y = 0; y < bi->block_height; y++) {
209 for (x = 0; x < bi->block_width; x++) {
210 // TODO: optimize
211 min_r = FFMIN(R(block_ptr[x]), min_r);
212 min_g = FFMIN(G(block_ptr[x]), min_g);
213 min_b = FFMIN(B(block_ptr[x]), min_b);
214
215 max_r = FFMAX(R(block_ptr[x]), max_r);
216 max_g = FFMAX(G(block_ptr[x]), max_g);
217 max_b = FFMAX(B(block_ptr[x]), max_b);
218 }
219 block_ptr += bi->rowstride;
220 }
221
222 r = max_r - min_r;
223 g = max_g - min_g;
224 b = max_b - min_b;
225
226 if (r > g && r > b) {
227 *max = max_r;
228 *min = min_r;
229 *chan = RED;
230 } else if (g > b && g >= r) {
231 *max = max_g;
232 *min = min_g;
233 *chan = GREEN;
234 } else {
235 *max = max_b;
236 *min = min_b;
237 *chan = BLUE;
238 }
239 }
240
241 /*
242 * Compare two 4x4 blocks to determine if the total difference between the
243 * blocks is greater than the thresh parameter. Returns -1 if difference
244 * exceeds threshold or zero otherwise.
245 */
246 static int compare_blocks(const uint16_t *block1, const uint16_t *block2,
247 const BlockInfo *bi, int thresh)
248 {
249 int x, y, diff = 0;
250 for (y = 0; y < bi->block_height; y++) {
251 for (x = 0; x < bi->block_width; x++) {
252 diff = max_component_diff(&block1[x], &block2[x]);
253 if (diff >= thresh) {
254 return -1;
255 }
256 }
257 block1 += bi->prev_rowstride;
258 block2 += bi->rowstride;
259 }
260 return 0;
261 }
262
263 /*
264 * Determine the fit of one channel to another within a 4x4 block. This
265 * is used to determine the best palette choices for 4-color encoding.
266 */
267 static int leastsquares(const uint16_t *block_ptr, const BlockInfo *bi,
268 channel_offset xchannel, channel_offset ychannel,
269 double *slope, double *y_intercept, double *correlation_coef)
270 {
271 double sumx = 0, sumy = 0, sumx2 = 0, sumy2 = 0, sumxy = 0,
272 sumx_sq = 0, sumy_sq = 0, tmp, tmp2;
273 int i, j, count;
274 uint8_t x, y;
275
276 count = bi->block_height * bi->block_width;
277
278 if (count < 2)
279 return -1;
280
281 for (i = 0; i < bi->block_height; i++) {
282 for (j = 0; j < bi->block_width; j++) {
283 x = GET_CHAN(block_ptr[j], xchannel);
284 y = GET_CHAN(block_ptr[j], ychannel);
285 sumx += x;
286 sumy += y;
287 sumx2 += x * x;
288 sumy2 += y * y;
289 sumxy += x * y;
290 }
291 block_ptr += bi->rowstride;
292 }
293
294 sumx_sq = sumx * sumx;
295 tmp = (count * sumx2 - sumx_sq);
296
297 // guard against div/0
298 if (tmp == 0)
299 return -2;
300
301 sumy_sq = sumy * sumy;
302
303 *slope = (sumx * sumy - sumxy) / tmp;
304 *y_intercept = (sumy - (*slope) * sumx) / count;
305
306 tmp2 = count * sumy2 - sumy_sq;
307 if (tmp2 == 0) {
308 *correlation_coef = 0.0;
309 } else {
310 *correlation_coef = (count * sumxy - sumx * sumy) /
311 sqrt(tmp * tmp2);
312 }
313
314 return 0; // success
315 }
316
317 /*
318 * Determine the amount of error in the leastsquares fit.
319 */
320 static int calc_lsq_max_fit_error(const uint16_t *block_ptr, const BlockInfo *bi,
321 int min, int max, int tmp_min, int tmp_max,
322 channel_offset xchannel, channel_offset ychannel)
323 {
324 int i, j, x, y;
325 int err;
326 int max_err = 0;
327
328 for (i = 0; i < bi->block_height; i++) {
329 for (j = 0; j < bi->block_width; j++) {
330 int x_inc, lin_y, lin_x;
331 x = GET_CHAN(block_ptr[j], xchannel);
332 y = GET_CHAN(block_ptr[j], ychannel);
333
334 /* calculate x_inc as the 4-color index (0..3) */
335 x_inc = floor( (x - min) * 3.0 / (max - min) + 0.5);
336 x_inc = FFMAX(FFMIN(3, x_inc), 0);
337
338 /* calculate lin_y corresponding to x_inc */
339 lin_y = (int)(tmp_min + (tmp_max - tmp_min) * x_inc / 3.0 + 0.5);
340
341 err = FFABS(lin_y - y);
342 if (err > max_err)
343 max_err = err;
344
345 /* calculate lin_x corresponding to x_inc */
346 lin_x = (int)(min + (max - min) * x_inc / 3.0 + 0.5);
347
348 err = FFABS(lin_x - x);
349 if (err > max_err)
350 max_err += err;
351 }
352 block_ptr += bi->rowstride;
353 }
354
355 return max_err;
356 }
357
358 /*
359 * Find the closest match to a color within the 4-color palette
360 */
361 static int match_color(const uint16_t *color, uint8_t colors[4][3])
362 {
363 int ret = 0;
364 int smallest_variance = INT_MAX;
365 uint8_t dithered_color[3];
366
367 for (int channel = 0; channel < 3; channel++) {
368 dithered_color[channel] = GET_CHAN(color[0], channel);
369 }
370
371 for (int palette_entry = 0; palette_entry < 4; palette_entry++) {
372 int variance = diff_colors(dithered_color, colors[palette_entry]);
373
374 if (variance < smallest_variance) {
375 smallest_variance = variance;
376 ret = palette_entry;
377 }
378 }
379
380 return ret;
381 }
382
383 /*
384 * Encode a block using the 4-color opcode and palette. return number of
385 * blocks encoded (until we implement multi-block 4 color runs this will
386 * always be 1)
387 */
388 static int encode_four_color_block(const uint8_t *min_color, const uint8_t *max_color,
389 PutBitContext *pb, const uint16_t *block_ptr, const BlockInfo *bi)
390 {
391 const int y_size = FFMIN(4, bi->image_height - bi->row * 4);
392 const int x_size = FFMIN(4, bi->image_width - bi->col * 4);
393 uint8_t color4[4][3];
394 uint16_t rounded_max, rounded_min;
395 int idx;
396
397 // round min and max wider
398 rounded_min = rgb24_to_rgb555(min_color);
399 rounded_max = rgb24_to_rgb555(max_color);
400
401 // put a and b colors
402 // encode 4 colors = first 16 bit color with MSB zeroed and...
403 put_bits(pb, 16, rounded_max & ~0x8000);
404 // ...second 16 bit color with MSB on.
405 put_bits(pb, 16, rounded_min | 0x8000);
406
407 get_colors(min_color, max_color, color4);
408
409 for (int y = 0; y < y_size; y++) {
410 for (int x = 0; x < x_size; x++) {
411 idx = match_color(&block_ptr[x], color4);
412 put_bits(pb, 2, idx);
413 }
414
415 for (int x = x_size; x < 4; x++)
416 put_bits(pb, 2, idx);
417 block_ptr += bi->rowstride;
418 }
419
420 for (int y = y_size; y < 4; y++) {
421 for (int x = 0; x < 4; x++)
422 put_bits(pb, 2, 0);
423 }
424 return 1; // num blocks encoded
425 }
426
427 /*
428 * Copy a 4x4 block from the current frame buffer to the previous frame buffer.
429 */
430 static void update_block_in_prev_frame(const uint16_t *src_pixels,
431 uint16_t *dest_pixels,
432 const BlockInfo *bi, int block_counter)
433 {
434 const int y_size = FFMIN(4, bi->image_height - bi->row * 4);
435 const int x_size = FFMIN(4, bi->image_width - bi->col * 4) * 2;
436
437 for (int y = 0; y < y_size; y++) {
438 memcpy(dest_pixels, src_pixels, x_size);
439 dest_pixels += bi->prev_rowstride;
440 src_pixels += bi->rowstride;
441 }
442 }
443
444 /*
445 * update statistics for the specified block. If first_block,
446 * it initializes the statistics. Otherwise it updates the statistics IF THIS
447 * BLOCK IS SUITABLE TO CONTINUE A 1-COLOR RUN. That is, it checks whether
448 * the range of colors (since the routine was called first_block != 0) are
449 * all close enough intensities to be represented by a single color.
450
451 * The routine returns 0 if this block is too different to be part of
452 * the same run of 1-color blocks. The routine returns 1 if this
453 * block can be part of the same 1-color block run.
454
455 * If the routine returns 1, it also updates its arguments to include
456 * the statistics of this block. Otherwise, the stats are unchanged
457 * and don't include the current block.
458 */
459 static int update_block_stats(RpzaContext *s, const BlockInfo *bi, const uint16_t *block,
460 uint8_t min_color[3], uint8_t max_color[3],
461 int *total_rgb, int *total_pixels,
462 uint8_t avg_color[3], int first_block)
463 {
464 int x, y;
465 int is_in_range;
466 int total_pixels_blk;
467 int threshold;
468
469 uint8_t min_color_blk[3], max_color_blk[3];
470 int total_rgb_blk[3];
471 uint8_t avg_color_blk[3];
472
473 if (first_block) {
474 min_color[0] = UINT8_MAX;
475 min_color[1] = UINT8_MAX;
476 min_color[2] = UINT8_MAX;
477 max_color[0] = 0;
478 max_color[1] = 0;
479 max_color[2] = 0;
480 total_rgb[0] = 0;
481 total_rgb[1] = 0;
482 total_rgb[2] = 0;
483 *total_pixels = 0;
484 threshold = s->start_one_color_thresh;
485 } else {
486 threshold = s->continue_one_color_thresh;
487 }
488
489 /*
490 The *_blk variables will include the current block.
491 Initialize them based on the blocks so far.
492 */
493 min_color_blk[0] = min_color[0];
494 min_color_blk[1] = min_color[1];
495 min_color_blk[2] = min_color[2];
496 max_color_blk[0] = max_color[0];
497 max_color_blk[1] = max_color[1];
498 max_color_blk[2] = max_color[2];
499 total_rgb_blk[0] = total_rgb[0];
500 total_rgb_blk[1] = total_rgb[1];
501 total_rgb_blk[2] = total_rgb[2];
502 total_pixels_blk = *total_pixels + bi->block_height * bi->block_width;
503
504 /*
505 Update stats for this block's pixels
506 */
507 for (y = 0; y < bi->block_height; y++) {
508 for (x = 0; x < bi->block_width; x++) {
509 total_rgb_blk[0] += R(block[x]);
510 total_rgb_blk[1] += G(block[x]);
511 total_rgb_blk[2] += B(block[x]);
512
513 min_color_blk[0] = FFMIN(R(block[x]), min_color_blk[0]);
514 min_color_blk[1] = FFMIN(G(block[x]), min_color_blk[1]);
515 min_color_blk[2] = FFMIN(B(block[x]), min_color_blk[2]);
516
517 max_color_blk[0] = FFMAX(R(block[x]), max_color_blk[0]);
518 max_color_blk[1] = FFMAX(G(block[x]), max_color_blk[1]);
519 max_color_blk[2] = FFMAX(B(block[x]), max_color_blk[2]);
520 }
521 block += bi->rowstride;
522 }
523
524 /*
525 Calculate average color including current block.
526 */
527 avg_color_blk[0] = total_rgb_blk[0] / total_pixels_blk;
528 avg_color_blk[1] = total_rgb_blk[1] / total_pixels_blk;
529 avg_color_blk[2] = total_rgb_blk[2] / total_pixels_blk;
530
531 /*
532 Are all the pixels within threshold of the average color?
533 */
534 is_in_range = (max_color_blk[0] - avg_color_blk[0] <= threshold &&
535 max_color_blk[1] - avg_color_blk[1] <= threshold &&
536 max_color_blk[2] - avg_color_blk[2] <= threshold &&
537 avg_color_blk[0] - min_color_blk[0] <= threshold &&
538 avg_color_blk[1] - min_color_blk[1] <= threshold &&
539 avg_color_blk[2] - min_color_blk[2] <= threshold);
540
541 if (is_in_range) {
542 /*
543 Set the output variables to include this block.
544 */
545 min_color[0] = min_color_blk[0];
546 min_color[1] = min_color_blk[1];
547 min_color[2] = min_color_blk[2];
548 max_color[0] = max_color_blk[0];
549 max_color[1] = max_color_blk[1];
550 max_color[2] = max_color_blk[2];
551 total_rgb[0] = total_rgb_blk[0];
552 total_rgb[1] = total_rgb_blk[1];
553 total_rgb[2] = total_rgb_blk[2];
554 *total_pixels = total_pixels_blk;
555 avg_color[0] = avg_color_blk[0];
556 avg_color[1] = avg_color_blk[1];
557 avg_color[2] = avg_color_blk[2];
558 }
559
560 return is_in_range;
561 }
562
563 static void rpza_encode_stream(RpzaContext *s, const AVFrame *pict)
564 {
565 BlockInfo bi;
566 int block_counter = 0;
567 int n_blocks;
568 int total_blocks;
569 int prev_block_offset;
570 int block_offset = 0;
571 int pblock_offset = 0;
572 uint8_t min = 0, max = 0;
573 channel_offset chan;
574 int i;
575 int tmp_min, tmp_max;
576 int total_rgb[3];
577 uint8_t avg_color[3];
578 int pixel_count;
579 uint8_t min_color[3], max_color[3];
580 double slope, y_intercept, correlation_coef;
581 const uint16_t *src_pixels = (const uint16_t *)pict->data[0];
582 uint16_t *prev_pixels = (uint16_t *)s->prev_frame->data[0];
583
584 /* Number of 4x4 blocks in frame. */
585 total_blocks = ((s->frame_width + 3) / 4) * ((s->frame_height + 3) / 4);
586
587 bi.image_width = s->frame_width;
588 bi.image_height = s->frame_height;
589 bi.rowstride = pict->linesize[0] / 2;
590 bi.prev_rowstride = s->prev_frame->linesize[0] / 2;
591
592 bi.blocks_per_row = (s->frame_width + 3) / 4;
593
594 while (block_counter < total_blocks) {
595 // SKIP CHECK
596 // make sure we have a valid previous frame and we're not writing
597 // a key frame
598 if (!s->first_frame) {
599 n_blocks = 0;
600 prev_block_offset = 0;
601
602 while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
603 block_offset = get_block_info(&bi, block_counter + n_blocks, 0);
604 pblock_offset = get_block_info(&bi, block_counter + n_blocks, 1);
605
606 // multi-block opcodes cannot span multiple rows.
607 // If we're starting a new row, break out and write the opcode
608 /* TODO: Should eventually use bi.row here to determine when a
609 row break occurs, but that is currently breaking the
610 quicktime player. This is probably due to a bug in the
611 way I'm calculating the current row.
612 */
613 if (prev_block_offset && block_offset - prev_block_offset > 12) {
614 break;
615 }
616
617 prev_block_offset = block_offset;
618
619 if (compare_blocks(&prev_pixels[pblock_offset],
620 &src_pixels[block_offset], &bi, s->skip_frame_thresh) != 0) {
621 // write out skipable blocks
622 if (n_blocks) {
623
624 // write skip opcode
625 put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
626 block_counter += n_blocks;
627
628 goto post_skip;
629 }
630 break;
631 }
632
633 /*
634 * NOTE: we don't update skipped blocks in the previous frame buffer
635 * since skipped needs always to be compared against the first skipped
636 * block to avoid artifacts during gradual fade in/outs.
637 */
638
639 // update_block_in_prev_frame(&src_pixels[block_offset],
640 // &prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
641
642 n_blocks++;
643 }
644
645 // we're either at the end of the frame or we've reached the maximum
646 // of 32 blocks in a run. Write out the run.
647 if (n_blocks) {
648 // write skip opcode
649 put_bits(&s->pb, 8, 0x80 | (n_blocks - 1));
650 block_counter += n_blocks;
651
652 continue;
653 }
654
655 } else {
656 block_offset = get_block_info(&bi, block_counter, 0);
657 pblock_offset = get_block_info(&bi, block_counter, 1);
658 }
659 post_skip :
660
661 // ONE COLOR CHECK
662 if (update_block_stats(s, &bi, &src_pixels[block_offset],
663 min_color, max_color,
664 total_rgb, &pixel_count, avg_color, 1)) {
665 prev_block_offset = block_offset;
666
667 n_blocks = 1;
668
669 /* update this block in the previous frame buffer */
670 update_block_in_prev_frame(&src_pixels[block_offset],
671 &prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
672
673 // check for subsequent blocks with the same color
674 while (n_blocks < 32 && block_counter + n_blocks < total_blocks) {
675 block_offset = get_block_info(&bi, block_counter + n_blocks, 0);
676 pblock_offset = get_block_info(&bi, block_counter + n_blocks, 1);
677
678 // multi-block opcodes cannot span multiple rows.
679 // If we've hit end of a row, break out and write the opcode
680 if (block_offset - prev_block_offset > 12) {
681 break;
682 }
683
684 if (!update_block_stats(s, &bi, &src_pixels[block_offset],
685 min_color, max_color,
686 total_rgb, &pixel_count, avg_color, 0)) {
687 break;
688 }
689
690 prev_block_offset = block_offset;
691
692 /* update this block in the previous frame buffer */
693 update_block_in_prev_frame(&src_pixels[block_offset],
694 &prev_pixels[pblock_offset], &bi, block_counter + n_blocks);
695
696 n_blocks++;
697 }
698
699 // write one color opcode.
700 put_bits(&s->pb, 8, 0xa0 | (n_blocks - 1));
701 // write color to encode.
702 put_bits(&s->pb, 16, rgb24_to_rgb555(avg_color));
703 // skip past the blocks we've just encoded.
704 block_counter += n_blocks;
705 } else { // FOUR COLOR CHECK
706 int err = 0;
707
708 // get max component diff for block
709 get_max_component_diff(&bi, &src_pixels[block_offset], &min, &max, &chan);
710
711 min_color[0] = 0;
712 max_color[0] = 0;
713 min_color[1] = 0;
714 max_color[1] = 0;
715 min_color[2] = 0;
716 max_color[2] = 0;
717
718 // run least squares against other two components
719 for (i = 0; i < 3; i++) {
720 if (i == chan) {
721 min_color[i] = min;
722 max_color[i] = max;
723 continue;
724 }
725
726 slope = y_intercept = correlation_coef = 0;
727
728 if (leastsquares(&src_pixels[block_offset], &bi, chan, i,
729 &slope, &y_intercept, &correlation_coef)) {
730 min_color[i] = GET_CHAN(src_pixels[block_offset], i);
731 max_color[i] = GET_CHAN(src_pixels[block_offset], i);
732 } else {
733 tmp_min = (int)(0.5 + min * slope + y_intercept);
734 tmp_max = (int)(0.5 + max * slope + y_intercept);
735
736 av_assert0(tmp_min <= tmp_max);
737 // clamp min and max color values
738 tmp_min = av_clip_uint8(tmp_min);
739 tmp_max = av_clip_uint8(tmp_max);
740
741 err = FFMAX(calc_lsq_max_fit_error(&src_pixels[block_offset], &bi,
742 min, max, tmp_min, tmp_max, chan, i), err);
743
744 min_color[i] = tmp_min;
745 max_color[i] = tmp_max;
746 }
747 }
748
749 if (err > s->sixteen_color_thresh) { // DO SIXTEEN COLOR BLOCK
750 const uint16_t *row_ptr;
751 int y_size, rgb555;
752
753 block_offset = get_block_info(&bi, block_counter, 0);
754 pblock_offset = get_block_info(&bi, block_counter, 1);
755
756 row_ptr = &src_pixels[block_offset];
757 y_size = FFMIN(4, bi.image_height - bi.row * 4);
758
759 for (int y = 0; y < y_size; y++) {
760 for (int x = 0; x < 4; x++) {
761 rgb555 = row_ptr[x] & ~0x8000;
762
763 put_bits(&s->pb, 16, rgb555);
764 }
765 row_ptr += bi.rowstride;
766 }
767
768 for (int y = y_size; y < 4; y++) {
769 for (int x = 0; x < 4; x++)
770 put_bits(&s->pb, 16, 0);
771 }
772
773 block_counter++;
774 } else { // FOUR COLOR BLOCK
775 block_counter += encode_four_color_block(min_color, max_color,
776 &s->pb, &src_pixels[block_offset], &bi);
777 }
778
779 /* update this block in the previous frame buffer */
780 update_block_in_prev_frame(&src_pixels[block_offset],
781 &prev_pixels[pblock_offset], &bi, block_counter);
782 }
783 }
784 }
785
786 static int rpza_encode_init(AVCodecContext *avctx)
787 {
788 RpzaContext *s = avctx->priv_data;
789
790 s->frame_width = avctx->width;
791 s->frame_height = avctx->height;
792
793 s->prev_frame = av_frame_alloc();
794 if (!s->prev_frame)
795 return AVERROR(ENOMEM);
796
797 return 0;
798 }
799
800 static int rpza_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
801 const AVFrame *pict, int *got_packet)
802 {
803 RpzaContext *s = avctx->priv_data;
804 uint8_t *buf;
805 int ret = ff_alloc_packet(avctx, pkt, 4LL + 6LL * avctx->height * avctx->width);
806
807 if (ret < 0)
808 return ret;
809
810 init_put_bits(&s->pb, pkt->data, pkt->size);
811
812 // skip 4 byte header, write it later once the size of the chunk is known
813 put_bits32(&s->pb, 0x00);
814
815 if (!s->prev_frame->data[0]) {
816 s->first_frame = 1;
817 s->prev_frame->format = pict->format;
818 s->prev_frame->width = pict->width;
819 s->prev_frame->height = pict->height;
820 ret = av_frame_get_buffer(s->prev_frame, 0);
821 if (ret < 0)
822 return ret;
823 } else {
824 s->first_frame = 0;
825 }
826
827 rpza_encode_stream(s, pict);
828
829 flush_put_bits(&s->pb);
830
831 av_shrink_packet(pkt, put_bytes_output(&s->pb));
832 buf = pkt->data;
833
834 // write header opcode
835 buf[0] = 0xe1; // chunk opcode
836
837 // write chunk length
838 AV_WB24(buf + 1, pkt->size);
839
840 *got_packet = 1;
841
842 return 0;
843 }
844
845 static int rpza_encode_end(AVCodecContext *avctx)
846 {
847 RpzaContext *s = (RpzaContext *)avctx->priv_data;
848
849 av_frame_free(&s->prev_frame);
850
851 return 0;
852 }
853
854 #define OFFSET(x) offsetof(RpzaContext, x)
855 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
856 static const AVOption options[] = {
857 { "skip_frame_thresh", NULL, OFFSET(skip_frame_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
858 { "start_one_color_thresh", NULL, OFFSET(start_one_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
859 { "continue_one_color_thresh", NULL, OFFSET(continue_one_color_thresh), AV_OPT_TYPE_INT, {.i64=0}, 0, 24, VE},
860 { "sixteen_color_thresh", NULL, OFFSET(sixteen_color_thresh), AV_OPT_TYPE_INT, {.i64=1}, 0, 24, VE},
861 { NULL },
862 };
863
864 static const AVClass rpza_class = {
865 .class_name = "rpza",
866 .item_name = av_default_item_name,
867 .option = options,
868 .version = LIBAVUTIL_VERSION_INT,
869 };
870
871 const FFCodec ff_rpza_encoder = {
872 .p.name = "rpza",
873 CODEC_LONG_NAME("QuickTime video (RPZA)"),
874 .p.type = AVMEDIA_TYPE_VIDEO,
875 .p.id = AV_CODEC_ID_RPZA,
876 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_ENCODER_REORDERED_OPAQUE,
877 .priv_data_size = sizeof(RpzaContext),
878 .p.priv_class = &rpza_class,
879 .init = rpza_encode_init,
880 FF_CODEC_ENCODE_CB(rpza_encode_frame),
881 .close = rpza_encode_end,
882 .p.pix_fmts = (const enum AVPixelFormat[]) { AV_PIX_FMT_RGB555,
883 AV_PIX_FMT_NONE},
884 };
885