FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/rka.c
Date: 2023-03-31 03:41:15
Exec Total Coverage
Lines: 0 572 0.0%
Functions: 0 21 0.0%
Branches: 0 330 0.0%

Line Branch Exec Source
1 /*
2 * RKA decoder
3 * Copyright (c) 2023 Paul B Mahol
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include "libavutil/channel_layout.h"
23 #include "libavutil/intreadwrite.h"
24
25 #include "avcodec.h"
26 #include "codec_internal.h"
27 #include "bytestream.h"
28 #include "decode.h"
29
30 typedef struct ACoder {
31 GetByteContext gb;
32 uint32_t low, high;
33 uint32_t value;
34 } ACoder;
35
36 typedef struct FiltCoeffs {
37 int32_t coeffs[257];
38 unsigned size;
39 } FiltCoeffs;
40
41 typedef struct Model64 {
42 uint32_t zero[2];
43 uint32_t sign[2];
44 unsigned size;
45 int bits;
46
47 uint16_t val4[65];
48 uint16_t val1[65];
49 } Model64;
50
51 typedef struct AdaptiveModel {
52 int last;
53 int total;
54 int buf_size;
55 int16_t sum;
56 uint16_t aprob0;
57 uint16_t aprob1;
58 uint16_t *prob[2];
59 } AdaptiveModel;
60
61 typedef struct ChContext {
62 int cmode;
63 int cmode2;
64 int last_nb_decoded;
65 unsigned srate_pad;
66 unsigned pos_idx;
67
68 AdaptiveModel *filt_size;
69 AdaptiveModel *filt_bits;
70
71 uint32_t *bprob[2];
72
73 AdaptiveModel position;
74 AdaptiveModel fshift;
75 AdaptiveModel nb_segments;
76 AdaptiveModel coeff_bits[11];
77
78 Model64 mdl64[4][11];
79
80 int32_t buf0[131072+2560];
81 int32_t buf1[131072+2560];
82 } ChContext;
83
84 typedef struct RKAContext {
85 AVClass *class;
86
87 ACoder ac;
88 ChContext ch[2];
89
90 int bps;
91 int align;
92 int channels;
93 int correlated;
94 int frame_samples;
95 int last_nb_samples;
96 uint32_t total_nb_samples;
97 uint32_t samples_left;
98
99 uint32_t bprob[2][257];
100
101 AdaptiveModel filt_size;
102 AdaptiveModel filt_bits;
103 } RKAContext;
104
105 static int adaptive_model_init(AdaptiveModel *am, int buf_size)
106 {
107 am->buf_size = buf_size;
108 am->sum = 2000;
109 am->aprob0 = 0;
110 am->aprob1 = 0;
111 am->total = 0;
112
113 if (!am->prob[0])
114 am->prob[0] = av_malloc_array(buf_size + 5, sizeof(*am->prob[0]));
115 if (!am->prob[1])
116 am->prob[1] = av_malloc_array(buf_size + 5, sizeof(*am->prob[1]));
117
118 if (!am->prob[0] || !am->prob[1])
119 return AVERROR(ENOMEM);
120 memset(am->prob[0], 0, (buf_size + 5) * sizeof(*am->prob[0]));
121 memset(am->prob[1], 0, (buf_size + 5) * sizeof(*am->prob[1]));
122 return 0;
123 }
124
125 static void adaptive_model_free(AdaptiveModel *am)
126 {
127 av_freep(&am->prob[0]);
128 av_freep(&am->prob[1]);
129 }
130
131 static av_cold int rka_decode_init(AVCodecContext *avctx)
132 {
133 RKAContext *s = avctx->priv_data;
134 int cmode;
135
136 if (avctx->extradata_size < 16)
137 return AVERROR_INVALIDDATA;
138
139 s->bps = avctx->bits_per_raw_sample = avctx->extradata[13];
140
141 switch (s->bps) {
142 case 8:
143 avctx->sample_fmt = AV_SAMPLE_FMT_U8P;
144 break;
145 case 16:
146 avctx->sample_fmt = AV_SAMPLE_FMT_S16P;
147 break;
148 default:
149 return AVERROR_INVALIDDATA;
150 }
151
152 av_channel_layout_uninit(&avctx->ch_layout);
153 s->channels = avctx->ch_layout.nb_channels = avctx->extradata[12];
154 if (s->channels < 1 || s->channels > 2)
155 return AVERROR_INVALIDDATA;
156
157 s->align = (s->channels * (avctx->bits_per_raw_sample >> 3));
158 s->samples_left = s->total_nb_samples = (AV_RL32(avctx->extradata + 4)) / s->align;
159 s->frame_samples = 131072 / s->align;
160 s->last_nb_samples = s->total_nb_samples % s->frame_samples;
161 s->correlated = avctx->extradata[15] & 1;
162
163 cmode = avctx->extradata[14] & 0xf;
164 if ((avctx->extradata[15] & 4) != 0)
165 cmode = -cmode;
166
167 s->ch[0].cmode = s->ch[1].cmode = cmode < 0 ? 2 : cmode;
168 s->ch[0].cmode2 = cmode < 0 ? FFABS(cmode) : 0;
169 s->ch[1].cmode2 = cmode < 0 ? FFABS(cmode) : 0;
170 av_log(avctx, AV_LOG_DEBUG, "cmode: %d\n", cmode);
171
172 return 0;
173 }
174
175 static void model64_init(Model64 *m, unsigned bits)
176 {
177 unsigned x;
178
179 m->bits = bits;
180 m->size = 64;
181 m->zero[0] = 1;
182
183 x = (1 << (bits >> 1)) + 3;
184 x = FFMIN(x, 20);
185
186 m->zero[1] = x;
187 m->sign[0] = 1;
188 m->sign[1] = 1;
189
190 for (int i = 0; i < FF_ARRAY_ELEMS(m->val4); i++) {
191 m->val4[i] = 4;
192 m->val1[i] = 1;
193 }
194 }
195
196 static int chctx_init(RKAContext *s, ChContext *c,
197 int sample_rate, int bps)
198 {
199 int ret;
200
201 memset(c->buf0, 0, sizeof(c->buf0));
202 memset(c->buf1, 0, sizeof(c->buf1));
203
204 c->filt_size = &s->filt_size;
205 c->filt_bits = &s->filt_bits;
206
207 c->bprob[0] = s->bprob[0];
208 c->bprob[1] = s->bprob[1];
209
210 c->srate_pad = (sample_rate << 13) / 44100 & 0xFFFFFFFCU;
211 c->pos_idx = 1;
212
213 for (int i = 0; i < FF_ARRAY_ELEMS(s->bprob[0]); i++)
214 c->bprob[0][i] = c->bprob[1][i] = 1;
215
216 for (int i = 0; i < 11; i++) {
217 ret = adaptive_model_init(&c->coeff_bits[i], 32);
218 if (ret < 0)
219 return ret;
220
221 model64_init(&c->mdl64[0][i], i);
222 model64_init(&c->mdl64[1][i], i);
223 model64_init(&c->mdl64[2][i], i+1);
224 model64_init(&c->mdl64[3][i], i+1);
225 }
226
227 ret = adaptive_model_init(c->filt_size, 256);
228 if (ret < 0)
229 return ret;
230 ret = adaptive_model_init(c->filt_bits, 16);
231 if (ret < 0)
232 return ret;
233 ret = adaptive_model_init(&c->position, 16);
234 if (ret < 0)
235 return ret;
236 ret = adaptive_model_init(&c->nb_segments, 8);
237 if (ret < 0)
238 return ret;
239 return adaptive_model_init(&c->fshift, 32);
240 }
241
242 static void init_acoder(ACoder *ac)
243 {
244 ac->low = 0x0;
245 ac->high = 0xffffffff;
246 ac->value = bytestream2_get_be32(&ac->gb);
247 }
248
249 static int ac_decode_bool(ACoder *ac, int freq1, int freq2)
250 {
251 unsigned help, add, high, value;
252 int low;
253
254 low = ac->low;
255 help = ac->high / (unsigned)(freq2 + freq1);
256 value = ac->value;
257 add = freq1 * help;
258 ac->high = help;
259
260 if (value - low >= add) {
261 ac->low = low = add + low;
262 ac->high = high = freq2 * help;
263 while (1) {
264 if ((low ^ (high + low)) > 0xFFFFFF) {
265 if (high > 0xFFFF)
266 return 1;
267 ac->high = (uint16_t)-(int16_t)low;
268 }
269
270 if (bytestream2_get_bytes_left(&ac->gb) <= 0)
271 break;
272 ac->value = bytestream2_get_byteu(&ac->gb) | (ac->value << 8);
273 ac->high = high = ac->high << 8;
274 low = ac->low = ac->low << 8;
275 }
276 return -1;
277 }
278
279 ac->high = add;
280 while (1) {
281 if ((low ^ (add + low)) > 0xFFFFFF) {
282 if (add > 0xFFFF)
283 return 0;
284 ac->high = (uint16_t)-(int16_t)low;
285 }
286
287 if (bytestream2_get_bytes_left(&ac->gb) <= 0)
288 break;
289 ac->value = bytestream2_get_byteu(&ac->gb) | (ac->value << 8);
290 ac->high = add = ac->high << 8;
291 low = ac->low = ac->low << 8;
292 }
293 return -1;
294 }
295
296 static int decode_bool(ACoder *ac, ChContext *c, int idx)
297 {
298 uint32_t x;
299 int b;
300
301 x = c->bprob[0][idx];
302 if (x + c->bprob[1][idx] > 4096) {
303 c->bprob[0][idx] = (x >> 1) + 1;
304 c->bprob[1][idx] = (c->bprob[1][idx] >> 1) + 1;
305 }
306
307 b = ac_decode_bool(ac, c->bprob[0][idx], c->bprob[1][idx]);
308 if (b < 0)
309 return b;
310
311 c->bprob[b][idx]++;
312
313 return b;
314 }
315
316 static int ac_get_freq(ACoder *ac, unsigned freq, int *result)
317 {
318 uint32_t new_high;
319
320 if (freq == 0)
321 return -1;
322
323 new_high = ac->high / freq;
324 ac->high = new_high;
325
326 if (new_high == 0)
327 return -1;
328
329 *result = (ac->value - ac->low) / new_high;
330
331 return 0;
332 }
333
334 static int ac_update(ACoder *ac, int freq, int mul)
335 {
336 uint32_t low, high;
337
338 low = ac->low = ac->high * freq + ac->low;
339 high = ac->high = ac->high * mul;
340
341 while (1) {
342 if (((high + low) ^ low) > 0xffffff) {
343 if (high > 0xffff)
344 return 0;
345 ac->high = (uint16_t)-(int16_t)low;
346 }
347
348 if (bytestream2_get_bytes_left(&ac->gb) <= 0)
349 break;
350
351 ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb);
352 low = ac->low = ac->low << 8;
353 high = ac->high = ac->high << 8;
354 }
355
356 return -1;
357 }
358
359 static void amdl_update_prob(AdaptiveModel *am, int val, int diff)
360 {
361 am->aprob0 += diff;
362 if (val <= 0) {
363 am->prob[0][0] += diff;
364 } else {
365 do {
366 am->prob[0][val] += diff;
367 val += (val & -val);
368 } while (val < am->buf_size);
369 }
370 }
371
372 static void update_ch_subobj(AdaptiveModel *am)
373 {
374 int idx2, idx = am->buf_size - 1;
375
376 if (idx >= 0) {
377 do {
378 uint16_t *prob = am->prob[0];
379 int diff, prob_idx = prob[idx];
380
381 idx2 = idx - 1;
382 if (idx > 0) {
383 int idx3 = idx - 1;
384
385 if ((idx2 & idx) != idx2) {
386 do {
387 prob_idx -= prob[idx3];
388 idx3 &= idx3 - 1;
389 } while ((idx2 & idx) != idx3);
390 }
391 }
392
393 diff = ((prob_idx > 0) - prob_idx) >> 1;
394 amdl_update_prob(am, idx, diff);
395 idx--;
396 } while (idx2 >= 0);
397 }
398
399 if (am->sum < 8000)
400 am->sum += 200;
401
402 am->aprob1 = (am->aprob1 + 1) >> 1;
403 }
404
405 static int amdl_decode_int(AdaptiveModel *am, ACoder *ac, unsigned *dst, unsigned size)
406 {
407 unsigned freq, size2, val, mul;
408 int j;
409
410 size = FFMIN(size, am->buf_size - 1);
411
412 if (am->aprob0 >= am->sum)
413 update_ch_subobj(am);
414
415 if (am->aprob1 && (am->total == am->buf_size ||
416 ac_decode_bool(ac, am->aprob0, am->aprob1) == 0)) {
417 if (am->total <= 1) {
418 dst[0] = am->last;
419 amdl_update_prob(am, dst[0], 1);
420 return 0;
421 }
422 if (size == am->buf_size - 1) {
423 freq = am->aprob0;
424 } else {
425 freq = am->prob[0][0];
426 for (int j = size; j > 0; j &= (j - 1) )
427 freq += am->prob[0][j];
428 }
429 ac_get_freq(ac, freq, &freq);
430 size2 = am->buf_size >> 1;
431 val = am->prob[0][0];
432 if (freq >= val) {
433 int sum = 0;
434 for (j = freq - val; size2; size2 >>= 1) {
435 unsigned v = am->prob[0][size2 + sum];
436 if (j >= v) {
437 sum += size2;
438 j -= v;
439 }
440 }
441 freq -= j;
442 val = sum + 1;
443 } else {
444 freq = 0;
445 val = 0;
446 }
447 dst[0] = val;
448 mul = am->prob[0][val];
449 if (val > 0) {
450 for (int k = val - 1; (val & (val - 1)) != k; k &= k - 1)
451 mul -= am->prob[0][k];
452 }
453 ac_update(ac, freq, mul);
454 amdl_update_prob(am, dst[0], 1);
455 return 0;
456 }
457 am->aprob1++;
458 if (size == am->buf_size - 1) {
459 ac_get_freq(ac, am->buf_size - am->total, &val);
460 } else {
461 freq = 1;
462 for (dst[0] = 0; dst[0] < size; dst[0]++) {
463 if (!am->prob[1][dst[0]])
464 freq++;
465 }
466 ac_get_freq(ac, freq, &val);
467 }
468 freq = 0;
469 dst[0] = 0;
470 if (val > 0 && am->buf_size > 0) {
471 for (dst[0] = 0; dst[0] < size & freq < val; dst[0]++) {
472 if (!am->prob[1][dst[0]])
473 freq++;
474 }
475 }
476 if (am->prob[1][dst[0]]) {
477 do {
478 val = dst[0]++;
479 } while (val + 1 < am->buf_size && am->prob[1][val + 1]);
480 }
481 ac_update(ac, freq, 1);
482 am->prob[1][dst[0]]++;
483 am->total++;
484 amdl_update_prob(am, dst[0], 1);
485 am->last = dst[0];
486
487 return 0;
488 }
489
490 static int decode_filt_coeffs(RKAContext *s, ChContext *ctx, ACoder *ac, FiltCoeffs *dst)
491 {
492 unsigned val, bits;
493 int idx = 0;
494
495 if (amdl_decode_int(ctx->filt_size, ac, &dst->size, 256) < 0)
496 return -1;
497
498 if (dst->size == 0)
499 return 0;
500
501 if (amdl_decode_int(ctx->filt_bits, ac, &bits, 10) < 0)
502 return -1;
503
504 do {
505 if (((idx == 8) || (idx == 20)) && (0 < bits))
506 bits--;
507
508 if (bits > 10)
509 return -1;
510
511 if (amdl_decode_int(&ctx->coeff_bits[bits], ac, &val, 31) < 0)
512 return -1;
513
514 if (val == 31) {
515 ac_get_freq(ac, 65536, &val);
516 ac_update(ac, val, 1);
517 }
518
519 if (val == 0) {
520 dst->coeffs[idx++] = 0;
521 } else {
522 unsigned freq = 0;
523 int sign;
524
525 if (bits > 0) {
526 ac_get_freq(ac, 1 << bits, &freq);
527 ac_update(ac, freq, 1);
528 }
529 dst->coeffs[idx] = freq + 1 + ((val - 1U) << bits);
530 sign = decode_bool(ac, ctx, idx);
531 if (sign < 0)
532 return -1;
533 if (sign == 1)
534 dst->coeffs[idx] = -dst->coeffs[idx];
535 idx++;
536 }
537 } while (idx < dst->size);
538
539 return 0;
540 }
541
542 static int ac_dec_bit(ACoder *ac)
543 {
544 uint32_t high, low;
545
546 low = ac->low;
547 ac->high = high = ac->high >> 1;
548 if (ac->value - low < high) {
549 do {
550 if (((high + low) ^ low) > 0xffffff) {
551 if (high > 0xffff)
552 return 0;
553 ac->high = (uint16_t)-(int16_t)low;
554 }
555
556 if (bytestream2_get_bytes_left(&ac->gb) <= 0)
557 break;
558
559 ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb);
560 ac->high = high = ac->high << 8;
561 ac->low = low = ac->low << 8;
562 } while (1);
563
564 return -1;
565 }
566 ac->low = low = low + high;
567 do {
568 if (((high + low) ^ low) > 0xffffff) {
569 if (high > 0xffff)
570 return 1;
571 ac->high = (uint16_t)-(int16_t)low;
572 }
573
574 if (bytestream2_get_bytes_left(&ac->gb) <= 0)
575 break;
576
577 ac->value = (ac->value << 8) | bytestream2_get_byteu(&ac->gb);
578 ac->high = high = ac->high << 8;
579 ac->low = low = ac->low << 8;
580 } while (1);
581
582 return -1;
583 }
584
585 static int mdl64_decode(ACoder *ac, Model64 *ctx, int *dst)
586 {
587 int sign, idx, bits;
588 unsigned val = 0;
589
590 if (ctx->zero[0] + ctx->zero[1] > 4000U) {
591 ctx->zero[0] = (ctx->zero[0] >> 1) + 1;
592 ctx->zero[1] = (ctx->zero[1] >> 1) + 1;
593 }
594 if (ctx->sign[0] + ctx->sign[1] > 4000U) {
595 ctx->sign[0] = (ctx->sign[0] >> 1) + 1;
596 ctx->sign[1] = (ctx->sign[1] >> 1) + 1;
597 }
598 sign = ac_decode_bool(ac, ctx->zero[0], ctx->zero[1]);
599 if (sign == 0) {
600 ctx->zero[0] += 2;
601 dst[0] = 0;
602 return 0;
603 } else if (sign < 0) {
604 return -1;
605 }
606
607 ctx->zero[1] += 2;
608 sign = ac_decode_bool(ac, ctx->sign[0], ctx->sign[1]);
609 if (sign < 0)
610 return -1;
611 ctx->sign[sign]++;
612 bits = ctx->bits;
613 if (bits > 0) {
614 if (bits < 13) {
615 ac_get_freq(ac, 1 << bits, &val);
616 ac_update(ac, val, 1);
617 } else {
618 int hbits = bits / 2;
619 ac_get_freq(ac, 1 << hbits, &val);
620 ac_update(ac, val, 1);
621 ac_get_freq(ac, 1 << (ctx->bits - (hbits)), &bits);
622 ac_update(ac, val, 1);
623 val += (bits << hbits);
624 }
625 }
626 bits = ctx->size;
627 idx = 0;
628 if (bits >= 0) {
629 do {
630 uint16_t *val4 = ctx->val4;
631 int b;
632
633 if (val4[idx] + ctx->val1[idx] > 2000U) {
634 val4[idx] = (val4[idx] >> 1) + 1;
635 ctx->val1[idx] = (ctx->val1[idx] >> 1) + 1;
636 }
637 b = ac_decode_bool(ac, ctx->val4[idx], ctx->val1[idx]);
638 if (b == 1) {
639 ctx->val1[idx] += 4;
640 break;
641 } else if (b < 0) {
642 return -1;
643 }
644 ctx->val4[idx] += 4;
645 idx++;
646 } while (idx <= ctx->size);
647 bits = ctx->size;
648 if (idx <= bits) {
649 dst[0] = val + 1 + (idx << ctx->bits);
650 if (sign)
651 dst[0] = -dst[0];
652 return 0;
653 }
654 }
655 bits++;
656 while (ac_dec_bit(ac) == 0)
657 bits += 64;
658 ac_get_freq(ac, 64, &idx);
659 ac_update(ac, idx, 1);
660 idx += bits;
661 dst[0] = val + 1 + (idx << ctx->bits);
662 if (sign)
663 dst[0] = -dst[0];
664
665 return 0;
666 }
667
668 static const uint8_t tab[16] = {
669 0, 3, 3, 2, 2, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 0
670 };
671
672 static int decode_filter(RKAContext *s, ChContext *ctx, ACoder *ac, int off, unsigned size)
673 {
674 FiltCoeffs filt;
675 Model64 *mdl64;
676 int m = 0, split, val, last_val = 0, ret;
677 unsigned idx = 3, bits = 0;
678
679 if (ctx->cmode == 0) {
680 if (amdl_decode_int(&ctx->fshift, ac, &bits, 15) < 0)
681 return -1;
682 bits &= 31U;
683 }
684
685 ret = decode_filt_coeffs(s, ctx, ac, &filt);
686 if (ret < 0)
687 return ret;
688
689 if (size < 512)
690 split = size / 2;
691 else
692 split = size >> 4;
693
694 if (size <= 1)
695 return 0;
696
697 for (int x = 0; x < size;) {
698 if (amdl_decode_int(&ctx->position, ac, &idx, 10) < 0)
699 return -1;
700
701 idx = (ctx->pos_idx + idx) % 11;
702 ctx->pos_idx = idx;
703
704 for (int y = 0; y < FFMIN(split, size - x); y++, off++) {
705 int midx, shift = idx, *src, sum = 16;
706
707 if (off >= FF_ARRAY_ELEMS(ctx->buf0))
708 return -1;
709
710 midx = FFABS(last_val) >> shift;
711 if (midx >= 15) {
712 mdl64 = &ctx->mdl64[3][idx];
713 } else if (midx >= 7) {
714 mdl64 = &ctx->mdl64[2][idx];
715 } else if (midx >= 4) {
716 mdl64 = &ctx->mdl64[1][idx];
717 } else {
718 mdl64 = &ctx->mdl64[0][idx];
719 }
720 ret = mdl64_decode(ac, mdl64, &val);
721 if (ret < 0)
722 return -1;
723 last_val = val;
724 src = &ctx->buf1[off + -1];
725 for (int i = 0; i < filt.size && i < 15; i++)
726 sum += filt.coeffs[i] * (unsigned)src[-i];
727 sum = sum * 2U;
728 for (int i = 15; i < filt.size; i++)
729 sum += filt.coeffs[i] * (unsigned)src[-i];
730 sum = sum >> 6;
731 if (ctx->cmode == 0) {
732 if (bits == 0) {
733 ctx->buf1[off] = sum + val;
734 } else {
735 ctx->buf1[off] = (val + (sum >> bits)) * (1 << bits) +
736 (((1U << bits) - 1U) & ctx->buf1[off + -1]);
737 }
738 ctx->buf0[off] = ctx->buf1[off] + ctx->buf0[off + -1];
739 } else {
740 val *= 1 << ctx->cmode;
741 sum += ctx->buf0[off + -1] + val;
742 switch (s->bps) {
743 case 16: sum = av_clip_int16(sum); break;
744 case 8: sum = av_clip_int8(sum); break;
745 }
746 ctx->buf1[off] = sum - ctx->buf0[off + -1];
747 ctx->buf0[off] = sum;
748 m += FFABS(ctx->buf1[off]);
749 }
750 }
751 if (ctx->cmode2 != 0) {
752 int sum = 0;
753 for (int i = (m << 6) / split; i > 0; i = i >> 1)
754 sum++;
755 sum = sum - (ctx->cmode2 + 7);
756 ctx->cmode = FFMAX(sum, tab[ctx->cmode2]);
757 }
758
759 x += split;
760 }
761
762 return 0;
763 }
764
765 static int decode_samples(AVCodecContext *avctx, ACoder *ac, ChContext *ctx, int offset)
766 {
767 RKAContext *s = avctx->priv_data;
768 int segment_size, offset2, mode, ret;
769
770 ret = amdl_decode_int(&ctx->nb_segments, ac, &mode, 5);
771 if (ret < 0)
772 return ret;
773
774 if (mode == 5) {
775 ret = ac_get_freq(ac, ctx->srate_pad >> 2, &segment_size);
776 if (ret < 0)
777 return ret;
778 ac_update(ac, segment_size, 1);
779 segment_size *= 4;
780 ret = decode_filter(s, ctx, ac, offset, segment_size);
781 if (ret < 0)
782 return ret;
783 } else {
784 segment_size = ctx->srate_pad;
785
786 if (mode) {
787 if (mode > 2) {
788 ret = decode_filter(s, ctx, ac, offset, segment_size / 4);
789 if (ret < 0)
790 return ret;
791 offset2 = segment_size / 4 + offset;
792 ret = decode_filter(s, ctx, ac, offset2, segment_size / 4);
793 if (ret < 0)
794 return ret;
795 offset2 = segment_size / 4 + offset2;
796 } else {
797 ret = decode_filter(s, ctx, ac, offset, segment_size / 2);
798 if (ret < 0)
799 return ret;
800 offset2 = segment_size / 2 + offset;
801 }
802 if (mode & 1) {
803 ret = decode_filter(s, ctx, ac, offset2, segment_size / 2);
804 if (ret < 0)
805 return ret;
806 } else {
807 ret = decode_filter(s, ctx, ac, offset2, segment_size / 4);
808 if (ret < 0)
809 return ret;
810 ret = decode_filter(s, ctx, ac, segment_size / 4 + offset2, segment_size / 4);
811 if (ret < 0)
812 return ret;
813 }
814 } else {
815 ret = decode_filter(s, ctx, ac, offset, ctx->srate_pad);
816 if (ret < 0)
817 return ret;
818 }
819 }
820
821 return segment_size;
822 }
823
824 static int decode_ch_samples(AVCodecContext *avctx, ChContext *c)
825 {
826 RKAContext *s = avctx->priv_data;
827 ACoder *ac = &s->ac;
828 int nb_decoded = 0;
829
830 if (bytestream2_get_bytes_left(&ac->gb) <= 0)
831 return 0;
832
833 memmove(c->buf0, &c->buf0[c->last_nb_decoded], 2560 * sizeof(*c->buf0));
834 memmove(c->buf1, &c->buf1[c->last_nb_decoded], 2560 * sizeof(*c->buf1));
835
836 nb_decoded = decode_samples(avctx, ac, c, 2560);
837 if (nb_decoded < 0)
838 return nb_decoded;
839 c->last_nb_decoded = nb_decoded;
840
841 return nb_decoded;
842 }
843
844 static int rka_decode_frame(AVCodecContext *avctx, AVFrame *frame,
845 int *got_frame_ptr, AVPacket *avpkt)
846 {
847 RKAContext *s = avctx->priv_data;
848 ACoder *ac = &s->ac;
849 int ret;
850
851 bytestream2_init(&ac->gb, avpkt->data, avpkt->size);
852 init_acoder(ac);
853
854 for (int ch = 0; ch < s->channels; ch++) {
855 ret = chctx_init(s, &s->ch[ch], avctx->sample_rate,
856 avctx->bits_per_raw_sample);
857 if (ret < 0)
858 return ret;
859 }
860
861 frame->nb_samples = s->frame_samples;
862 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
863 return ret;
864
865 if (s->channels == 2 && s->correlated) {
866 int16_t *l16 = (int16_t *)frame->extended_data[0];
867 int16_t *r16 = (int16_t *)frame->extended_data[1];
868 uint8_t *l8 = frame->extended_data[0];
869 uint8_t *r8 = frame->extended_data[1];
870
871 for (int n = 0; n < frame->nb_samples;) {
872 ret = decode_ch_samples(avctx, &s->ch[0]);
873 if (ret == 0) {
874 frame->nb_samples = n;
875 break;
876 }
877 if (ret < 0 || n + ret > frame->nb_samples)
878 return AVERROR_INVALIDDATA;
879
880 ret = decode_ch_samples(avctx, &s->ch[1]);
881 if (ret == 0) {
882 frame->nb_samples = n;
883 break;
884 }
885 if (ret < 0 || n + ret > frame->nb_samples)
886 return AVERROR_INVALIDDATA;
887
888 switch (avctx->sample_fmt) {
889 case AV_SAMPLE_FMT_S16P:
890 for (int i = 0; i < ret; i++) {
891 int l = s->ch[0].buf0[2560 + i];
892 int r = s->ch[1].buf0[2560 + i];
893
894 l16[n + i] = (l * 2 + r + 1) >> 1;
895 r16[n + i] = (l * 2 - r + 1) >> 1;
896 }
897 break;
898 case AV_SAMPLE_FMT_U8P:
899 for (int i = 0; i < ret; i++) {
900 int l = s->ch[0].buf0[2560 + i];
901 int r = s->ch[1].buf0[2560 + i];
902
903 l8[n + i] = ((l * 2 + r + 1) >> 1) + 0x7f;
904 r8[n + i] = ((l * 2 - r + 1) >> 1) + 0x7f;
905 }
906 break;
907 default:
908 return AVERROR_INVALIDDATA;
909 }
910
911 n += ret;
912 }
913 } else {
914 for (int n = 0; n < frame->nb_samples;) {
915 for (int ch = 0; ch < s->channels; ch++) {
916 int16_t *m16 = (int16_t *)frame->data[ch];
917 uint8_t *m8 = frame->data[ch];
918
919 ret = decode_ch_samples(avctx, &s->ch[ch]);
920 if (ret == 0) {
921 frame->nb_samples = n;
922 break;
923 }
924
925 if (ret < 0 || n + ret > frame->nb_samples)
926 return AVERROR_INVALIDDATA;
927
928 switch (avctx->sample_fmt) {
929 case AV_SAMPLE_FMT_S16P:
930 for (int i = 0; i < ret; i++) {
931 int m = s->ch[ch].buf0[2560 + i];
932
933 m16[n + i] = m;
934 }
935 break;
936 case AV_SAMPLE_FMT_U8P:
937 for (int i = 0; i < ret; i++) {
938 int m = s->ch[ch].buf0[2560 + i];
939
940 m8[n + i] = m + 0x7f;
941 }
942 break;
943 default:
944 return AVERROR_INVALIDDATA;
945 }
946 }
947
948 n += ret;
949 }
950 }
951
952 *got_frame_ptr = 1;
953
954 return avpkt->size;
955 }
956
957 static av_cold int rka_decode_close(AVCodecContext *avctx)
958 {
959 RKAContext *s = avctx->priv_data;
960
961 for (int ch = 0; ch < 2; ch++) {
962 ChContext *c = &s->ch[ch];
963
964 for (int i = 0; i < 11; i++)
965 adaptive_model_free(&c->coeff_bits[i]);
966
967 adaptive_model_free(&c->position);
968 adaptive_model_free(&c->nb_segments);
969 adaptive_model_free(&c->fshift);
970 }
971
972 adaptive_model_free(&s->filt_size);
973 adaptive_model_free(&s->filt_bits);
974
975 return 0;
976 }
977
978 const FFCodec ff_rka_decoder = {
979 .p.name = "rka",
980 CODEC_LONG_NAME("RKA (RK Audio)"),
981 .p.type = AVMEDIA_TYPE_AUDIO,
982 .p.id = AV_CODEC_ID_RKA,
983 .priv_data_size = sizeof(RKAContext),
984 .init = rka_decode_init,
985 .close = rka_decode_close,
986 FF_CODEC_DECODE_CB(rka_decode_frame),
987 .p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF,
988 .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
989 };
990