FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/ra144enc.c
Date: 2021-09-26 18:22:30
Exec Total Coverage
Lines: 215 221 97.3%
Branches: 102 108 94.4%

Line Branch Exec Source
1 /*
2 * Real Audio 1.0 (14.4K) encoder
3 * Copyright (c) 2010 Francesco Lavra <francescolavra@interfree.it>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * Real Audio 1.0 (14.4K) encoder
25 * @author Francesco Lavra <francescolavra@interfree.it>
26 */
27
28 #include <float.h>
29
30 #include "libavutil/channel_layout.h"
31 #include "avcodec.h"
32 #include "audio_frame_queue.h"
33 #include "celp_filters.h"
34 #include "encode.h"
35 #include "internal.h"
36 #include "mathops.h"
37 #include "put_bits.h"
38 #include "ra144.h"
39
40 1 static av_cold int ra144_encode_close(AVCodecContext *avctx)
41 {
42 1 RA144Context *ractx = avctx->priv_data;
43 1 ff_lpc_end(&ractx->lpc_ctx);
44 1 ff_af_queue_close(&ractx->afq);
45 1 return 0;
46 }
47
48
49 1 static av_cold int ra144_encode_init(AVCodecContext * avctx)
50 {
51 RA144Context *ractx;
52 int ret;
53
54
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (avctx->channels != 1) {
55 av_log(avctx, AV_LOG_ERROR, "invalid number of channels: %d\n",
56 avctx->channels);
57 return -1;
58 }
59 1 avctx->frame_size = NBLOCKS * BLOCKSIZE;
60 1 avctx->initial_padding = avctx->frame_size;
61 1 avctx->bit_rate = 8000;
62 1 ractx = avctx->priv_data;
63 1 ractx->lpc_coef[0] = ractx->lpc_tables[0];
64 1 ractx->lpc_coef[1] = ractx->lpc_tables[1];
65 1 ractx->avctx = avctx;
66 1 ff_audiodsp_init(&ractx->adsp);
67 1 ret = ff_lpc_init(&ractx->lpc_ctx, avctx->frame_size, LPC_ORDER,
68 FF_LPC_TYPE_LEVINSON);
69
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ret < 0)
70 return ret;
71
72 1 ff_af_queue_init(avctx, &ractx->afq);
73
74 1 return 0;
75 }
76
77
78 /**
79 * Quantize a value by searching a sorted table for the element with the
80 * nearest value
81 *
82 * @param value value to quantize
83 * @param table array containing the quantization table
84 * @param size size of the quantization table
85 * @return index of the quantization table corresponding to the element with the
86 * nearest value
87 */
88 3612 static int quantize(int value, const int16_t *table, unsigned int size)
89 {
90 3612 unsigned int low = 0, high = size - 1;
91
92 14245 while (1) {
93 17857 int index = (low + high) >> 1;
94 17857 int error = table[index] - value;
95
96
2/2
✓ Branch 0 taken 3612 times.
✓ Branch 1 taken 14245 times.
17857 if (index == low)
97
2/2
✓ Branch 0 taken 1748 times.
✓ Branch 1 taken 1864 times.
3612 return table[high] + error > value ? low : high;
98
2/2
✓ Branch 0 taken 5875 times.
✓ Branch 1 taken 8370 times.
14245 if (error > 0) {
99 5875 high = index;
100 } else {
101 8370 low = index;
102 }
103 }
104 }
105
106
107 /**
108 * Orthogonalize a vector to another vector
109 *
110 * @param v vector to orthogonalize
111 * @param u vector against which orthogonalization is performed
112 */
113 461357 static void orthogonalize(float *v, const float *u)
114 {
115 int i;
116 461357 float num = 0, den = 0;
117
118
2/2
✓ Branch 0 taken 18454280 times.
✓ Branch 1 taken 461357 times.
18915637 for (i = 0; i < BLOCKSIZE; i++) {
119 18454280 num += v[i] * u[i];
120 18454280 den += u[i] * u[i];
121 }
122 461357 num /= den;
123
2/2
✓ Branch 0 taken 18454280 times.
✓ Branch 1 taken 461357 times.
18915637 for (i = 0; i < BLOCKSIZE; i++)
124 18454280 v[i] -= num * u[i];
125 461357 }
126
127
128 /**
129 * Calculate match score and gain of an LPC-filtered vector with respect to
130 * input data, possibly orthogonalizing it to up to two other vectors.
131 *
132 * @param work array used to calculate the filtered vector
133 * @param coefs coefficients of the LPC filter
134 * @param vect original vector
135 * @param ortho1 first vector against which orthogonalization is performed
136 * @param ortho2 second vector against which orthogonalization is performed
137 * @param data input data
138 * @param score pointer to variable where match score is returned
139 * @param gain pointer to variable where gain is returned
140 */
141 461132 static void get_match_score(float *work, const float *coefs, float *vect,
142 const float *ortho1, const float *ortho2,
143 const float *data, float *score, float *gain)
144 {
145 float c, g;
146 int i;
147
148 461132 ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
149
2/2
✓ Branch 0 taken 306432 times.
✓ Branch 1 taken 154700 times.
461132 if (ortho1)
150 306432 orthogonalize(work, ortho1);
151
2/2
✓ Branch 0 taken 153728 times.
✓ Branch 1 taken 307404 times.
461132 if (ortho2)
152 153728 orthogonalize(work, ortho2);
153 461132 c = g = 0;
154
2/2
✓ Branch 0 taken 18445280 times.
✓ Branch 1 taken 461132 times.
18906412 for (i = 0; i < BLOCKSIZE; i++) {
155 18445280 g += work[i] * work[i];
156 18445280 c += data[i] * work[i];
157 }
158
2/2
✓ Branch 0 taken 232992 times.
✓ Branch 1 taken 228140 times.
461132 if (c <= 0) {
159 232992 *score = 0;
160 232992 return;
161 }
162 228140 *gain = c / g;
163 228140 *score = *gain * c;
164 }
165
166
167 /**
168 * Create a vector from the adaptive codebook at a given lag value
169 *
170 * @param vect array where vector is stored
171 * @param cb adaptive codebook
172 * @param lag lag value
173 */
174 154105 static void create_adapt_vect(float *vect, const int16_t *cb, int lag)
175 {
176 int i;
177
178 154105 cb += BUFFERSIZE - lag;
179
2/2
✓ Branch 0 taken 5906921 times.
✓ Branch 1 taken 154105 times.
6061026 for (i = 0; i < FFMIN(BLOCKSIZE, lag); i++)
180 5906921 vect[i] = cb[i];
181
2/2
✓ Branch 0 taken 24517 times.
✓ Branch 1 taken 129588 times.
154105 if (lag < BLOCKSIZE)
182
2/2
✓ Branch 0 taken 257279 times.
✓ Branch 1 taken 24517 times.
281796 for (i = 0; i < BLOCKSIZE - lag; i++)
183 257279 vect[lag + i] = cb[i];
184 154105 }
185
186
187 /**
188 * Search the adaptive codebook for the best entry and gain and remove its
189 * contribution from input data
190 *
191 * @param adapt_cb array from which the adaptive codebook is extracted
192 * @param work array used to calculate LPC-filtered vectors
193 * @param coefs coefficients of the LPC filter
194 * @param data input data
195 * @return index of the best entry of the adaptive codebook
196 */
197 1204 static int adaptive_cb_search(const int16_t *adapt_cb, float *work,
198 const float *coefs, float *data)
199 {
200 1204 int i, av_uninit(best_vect);
201 1204 float score, gain, best_score, av_uninit(best_gain);
202 float exc[BLOCKSIZE];
203
204 1204 gain = best_score = 0;
205
2/2
✓ Branch 0 taken 152908 times.
✓ Branch 1 taken 1204 times.
154112 for (i = BLOCKSIZE / 2; i <= BUFFERSIZE; i++) {
206 152908 create_adapt_vect(exc, adapt_cb, i);
207 152908 get_match_score(work, coefs, exc, NULL, NULL, data, &score, &gain);
208
2/2
✓ Branch 0 taken 5528 times.
✓ Branch 1 taken 147380 times.
152908 if (score > best_score) {
209 5528 best_score = score;
210 5528 best_vect = i;
211 5528 best_gain = gain;
212 }
213 }
214
2/2
✓ Branch 0 taken 7 times.
✓ Branch 1 taken 1197 times.
1204 if (!best_score)
215 7 return 0;
216
217 /**
218 * Re-calculate the filtered vector from the vector with maximum match score
219 * and remove its contribution from input data.
220 */
221 1197 create_adapt_vect(exc, adapt_cb, best_vect);
222 1197 ff_celp_lp_synthesis_filterf(work, coefs, exc, BLOCKSIZE, LPC_ORDER);
223
2/2
✓ Branch 0 taken 47880 times.
✓ Branch 1 taken 1197 times.
49077 for (i = 0; i < BLOCKSIZE; i++)
224 47880 data[i] -= best_gain * work[i];
225 1197 return best_vect - BLOCKSIZE / 2 + 1;
226 }
227
228
229 /**
230 * Find the best vector of a fixed codebook by applying an LPC filter to
231 * codebook entries, possibly orthogonalizing them to up to two other vectors
232 * and matching the results with input data.
233 *
234 * @param work array used to calculate the filtered vectors
235 * @param coefs coefficients of the LPC filter
236 * @param cb fixed codebook
237 * @param ortho1 first vector against which orthogonalization is performed
238 * @param ortho2 second vector against which orthogonalization is performed
239 * @param data input data
240 * @param idx pointer to variable where the index of the best codebook entry is
241 * returned
242 * @param gain pointer to variable where the gain of the best codebook entry is
243 * returned
244 */
245 2408 static void find_best_vect(float *work, const float *coefs,
246 const int8_t cb[][BLOCKSIZE], const float *ortho1,
247 const float *ortho2, float *data, int *idx,
248 float *gain)
249 {
250 int i, j;
251 float g, score, best_score;
252 float vect[BLOCKSIZE];
253
254 2408 *idx = *gain = best_score = 0;
255
2/2
✓ Branch 0 taken 308224 times.
✓ Branch 1 taken 2408 times.
310632 for (i = 0; i < FIXED_CB_SIZE; i++) {
256
2/2
✓ Branch 0 taken 12328960 times.
✓ Branch 1 taken 308224 times.
12637184 for (j = 0; j < BLOCKSIZE; j++)
257 12328960 vect[j] = cb[i][j];
258 308224 get_match_score(work, coefs, vect, ortho1, ortho2, data, &score, &g);
259
2/2
✓ Branch 0 taken 14127 times.
✓ Branch 1 taken 294097 times.
308224 if (score > best_score) {
260 14127 best_score = score;
261 14127 *idx = i;
262 14127 *gain = g;
263 }
264 }
265 2408 }
266
267
268 /**
269 * Search the two fixed codebooks for the best entry and gain
270 *
271 * @param work array used to calculate LPC-filtered vectors
272 * @param coefs coefficients of the LPC filter
273 * @param data input data
274 * @param cba_idx index of the best entry of the adaptive codebook
275 * @param cb1_idx pointer to variable where the index of the best entry of the
276 * first fixed codebook is returned
277 * @param cb2_idx pointer to variable where the index of the best entry of the
278 * second fixed codebook is returned
279 */
280 1204 static void fixed_cb_search(float *work, const float *coefs, float *data,
281 int cba_idx, int *cb1_idx, int *cb2_idx)
282 {
283 int i, ortho_cb1;
284 float gain;
285 float cba_vect[BLOCKSIZE], cb1_vect[BLOCKSIZE];
286 float vect[BLOCKSIZE];
287
288 /**
289 * The filtered vector from the adaptive codebook can be retrieved from
290 * work, because this function is called just after adaptive_cb_search().
291 */
292
2/2
✓ Branch 0 taken 1197 times.
✓ Branch 1 taken 7 times.
1204 if (cba_idx)
293 1197 memcpy(cba_vect, work, sizeof(cba_vect));
294
295
2/2
✓ Branch 0 taken 1197 times.
✓ Branch 1 taken 7 times.
1204 find_best_vect(work, coefs, ff_cb1_vects, cba_idx ? cba_vect : NULL, NULL,
296 data, cb1_idx, &gain);
297
298 /**
299 * Re-calculate the filtered vector from the vector with maximum match score
300 * and remove its contribution from input data.
301 */
302
2/2
✓ Branch 0 taken 1201 times.
✓ Branch 1 taken 3 times.
1204 if (gain) {
303
2/2
✓ Branch 0 taken 48040 times.
✓ Branch 1 taken 1201 times.
49241 for (i = 0; i < BLOCKSIZE; i++)
304 48040 vect[i] = ff_cb1_vects[*cb1_idx][i];
305 1201 ff_celp_lp_synthesis_filterf(work, coefs, vect, BLOCKSIZE, LPC_ORDER);
306
2/2
✓ Branch 0 taken 1197 times.
✓ Branch 1 taken 4 times.
1201 if (cba_idx)
307 1197 orthogonalize(work, cba_vect);
308
2/2
✓ Branch 0 taken 48040 times.
✓ Branch 1 taken 1201 times.
49241 for (i = 0; i < BLOCKSIZE; i++)
309 48040 data[i] -= gain * work[i];
310 1201 memcpy(cb1_vect, work, sizeof(cb1_vect));
311 1201 ortho_cb1 = 1;
312 } else
313 3 ortho_cb1 = 0;
314
315
4/4
✓ Branch 0 taken 1201 times.
✓ Branch 1 taken 3 times.
✓ Branch 2 taken 1197 times.
✓ Branch 3 taken 7 times.
1204 find_best_vect(work, coefs, ff_cb2_vects, cba_idx ? cba_vect : NULL,
316 ortho_cb1 ? cb1_vect : NULL, data, cb2_idx, &gain);
317 1204 }
318
319
320 /**
321 * Encode a subblock of the current frame
322 *
323 * @param ractx encoder context
324 * @param sblock_data input data of the subblock
325 * @param lpc_coefs coefficients of the LPC filter
326 * @param rms RMS of the reflection coefficients
327 * @param pb pointer to PutBitContext of the current frame
328 */
329 1204 static void ra144_encode_subblock(RA144Context *ractx,
330 const int16_t *sblock_data,
331 const int16_t *lpc_coefs, unsigned int rms,
332 PutBitContext *pb)
333 {
334 1204 float data[BLOCKSIZE] = { 0 }, work[LPC_ORDER + BLOCKSIZE];
335 float coefs[LPC_ORDER];
336 float zero[BLOCKSIZE], cba[BLOCKSIZE], cb1[BLOCKSIZE], cb2[BLOCKSIZE];
337 int cba_idx, cb1_idx, cb2_idx, gain;
338 int i, n;
339 unsigned m[3];
340 float g[3];
341 float error, best_error;
342
343
2/2
✓ Branch 0 taken 12040 times.
✓ Branch 1 taken 1204 times.
13244 for (i = 0; i < LPC_ORDER; i++) {
344 12040 work[i] = ractx->curr_sblock[BLOCKSIZE + i];
345 12040 coefs[i] = lpc_coefs[i] * (1/4096.0);
346 }
347
348 /**
349 * Calculate the zero-input response of the LPC filter and subtract it from
350 * input data.
351 */
352 1204 ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, data, BLOCKSIZE,
353 LPC_ORDER);
354
2/2
✓ Branch 0 taken 48160 times.
✓ Branch 1 taken 1204 times.
49364 for (i = 0; i < BLOCKSIZE; i++) {
355 48160 zero[i] = work[LPC_ORDER + i];
356 48160 data[i] = sblock_data[i] - zero[i];
357 }
358
359 /**
360 * Codebook search is performed without taking into account the contribution
361 * of the previous subblock, since it has been just subtracted from input
362 * data.
363 */
364 1204 memset(work, 0, LPC_ORDER * sizeof(*work));
365
366 1204 cba_idx = adaptive_cb_search(ractx->adapt_cb, work + LPC_ORDER, coefs,
367 data);
368
2/2
✓ Branch 0 taken 1197 times.
✓ Branch 1 taken 7 times.
1204 if (cba_idx) {
369 /**
370 * The filtered vector from the adaptive codebook can be retrieved from
371 * work, see implementation of adaptive_cb_search().
372 */
373 1197 memcpy(cba, work + LPC_ORDER, sizeof(cba));
374
375 1197 ff_copy_and_dup(ractx->buffer_a, ractx->adapt_cb, cba_idx + BLOCKSIZE / 2 - 1);
376 1197 m[0] = (ff_irms(&ractx->adsp, ractx->buffer_a) * rms) >> 12;
377 }
378 1204 fixed_cb_search(work + LPC_ORDER, coefs, data, cba_idx, &cb1_idx, &cb2_idx);
379
2/2
✓ Branch 0 taken 48160 times.
✓ Branch 1 taken 1204 times.
49364 for (i = 0; i < BLOCKSIZE; i++) {
380 48160 cb1[i] = ff_cb1_vects[cb1_idx][i];
381 48160 cb2[i] = ff_cb2_vects[cb2_idx][i];
382 }
383 1204 ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb1, BLOCKSIZE,
384 LPC_ORDER);
385 1204 memcpy(cb1, work + LPC_ORDER, sizeof(cb1));
386 1204 m[1] = (ff_cb1_base[cb1_idx] * rms) >> 8;
387 1204 ff_celp_lp_synthesis_filterf(work + LPC_ORDER, coefs, cb2, BLOCKSIZE,
388 LPC_ORDER);
389 1204 memcpy(cb2, work + LPC_ORDER, sizeof(cb2));
390 1204 m[2] = (ff_cb2_base[cb2_idx] * rms) >> 8;
391 1204 best_error = FLT_MAX;
392 1204 gain = 0;
393
2/2
✓ Branch 0 taken 308224 times.
✓ Branch 1 taken 1204 times.
309428 for (n = 0; n < 256; n++) {
394 308224 g[1] = ((ff_gain_val_tab[n][1] * m[1]) >> ff_gain_exp_tab[n]) *
395 (1/4096.0);
396 308224 g[2] = ((ff_gain_val_tab[n][2] * m[2]) >> ff_gain_exp_tab[n]) *
397 (1/4096.0);
398 308224 error = 0;
399
2/2
✓ Branch 0 taken 306432 times.
✓ Branch 1 taken 1792 times.
308224 if (cba_idx) {
400 306432 g[0] = ((ff_gain_val_tab[n][0] * m[0]) >> ff_gain_exp_tab[n]) *
401 (1/4096.0);
402
2/2
✓ Branch 0 taken 12257280 times.
✓ Branch 1 taken 306432 times.
12563712 for (i = 0; i < BLOCKSIZE; i++) {
403 12257280 data[i] = zero[i] + g[0] * cba[i] + g[1] * cb1[i] +
404 12257280 g[2] * cb2[i];
405 12257280 error += (data[i] - sblock_data[i]) *
406 12257280 (data[i] - sblock_data[i]);
407 }
408 } else {
409
2/2
✓ Branch 0 taken 71680 times.
✓ Branch 1 taken 1792 times.
73472 for (i = 0; i < BLOCKSIZE; i++) {
410 71680 data[i] = zero[i] + g[1] * cb1[i] + g[2] * cb2[i];
411 71680 error += (data[i] - sblock_data[i]) *
412 71680 (data[i] - sblock_data[i]);
413 }
414 }
415
2/2
✓ Branch 0 taken 45662 times.
✓ Branch 1 taken 262562 times.
308224 if (error < best_error) {
416 45662 best_error = error;
417 45662 gain = n;
418 }
419 }
420 1204 put_bits(pb, 7, cba_idx);
421 1204 put_bits(pb, 8, gain);
422 1204 put_bits(pb, 7, cb1_idx);
423 1204 put_bits(pb, 7, cb2_idx);
424 1204 ff_subblock_synthesis(ractx, lpc_coefs, cba_idx, cb1_idx, cb2_idx, rms,
425 gain);
426 1204 }
427
428
429 302 static int ra144_encode_frame(AVCodecContext *avctx, AVPacket *avpkt,
430 const AVFrame *frame, int *got_packet_ptr)
431 {
432 static const uint8_t sizes[LPC_ORDER] = {64, 32, 32, 16, 16, 8, 8, 8, 8, 4};
433 static const uint8_t bit_sizes[LPC_ORDER] = {6, 5, 5, 4, 4, 3, 3, 3, 3, 2};
434 302 RA144Context *ractx = avctx->priv_data;
435 PutBitContext pb;
436 int32_t lpc_data[NBLOCKS * BLOCKSIZE];
437 int32_t lpc_coefs[LPC_ORDER][MAX_LPC_ORDER];
438 int shift[LPC_ORDER];
439 int16_t block_coefs[NBLOCKS][LPC_ORDER];
440 int lpc_refl[LPC_ORDER]; /**< reflection coefficients of the frame */
441 unsigned int refl_rms[NBLOCKS]; /**< RMS of the reflection coefficients */
442
2/2
✓ Branch 0 taken 300 times.
✓ Branch 1 taken 2 times.
302 const int16_t *samples = frame ? (const int16_t *)frame->data[0] : NULL;
443 302 int energy = 0;
444 int i, idx, ret;
445
446
2/2
✓ Branch 0 taken 1 times.
✓ Branch 1 taken 301 times.
302 if (ractx->last_frame)
447 1 return 0;
448
449
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 301 times.
301 if ((ret = ff_get_encode_buffer(avctx, avpkt, FRAME_SIZE, 0)) < 0)
450 return ret;
451
452 /**
453 * Since the LPC coefficients are calculated on a frame centered over the
454 * fourth subframe, to encode a given frame, data from the next frame is
455 * needed. In each call to this function, the previous frame (whose data are
456 * saved in the encoder context) is encoded, and data from the current frame
457 * are saved in the encoder context to be used in the next function call.
458 */
459
2/2
✓ Branch 0 taken 30100 times.
✓ Branch 1 taken 301 times.
30401 for (i = 0; i < (2 * BLOCKSIZE + BLOCKSIZE / 2); i++) {
460 30100 lpc_data[i] = ractx->curr_block[BLOCKSIZE + BLOCKSIZE / 2 + i];
461 30100 energy += (lpc_data[i] * lpc_data[i]) >> 4;
462 }
463
2/2
✓ Branch 0 taken 300 times.
✓ Branch 1 taken 1 times.
301 if (frame) {
464 int j;
465
3/4
✓ Branch 0 taken 18300 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 18000 times.
✓ Branch 3 taken 300 times.
18300 for (j = 0; j < frame->nb_samples && i < NBLOCKS * BLOCKSIZE; i++, j++) {
466 18000 lpc_data[i] = samples[j] >> 2;
467 18000 energy += (lpc_data[i] * lpc_data[i]) >> 4;
468 }
469 }
470
2/2
✓ Branch 0 taken 1 times.
✓ Branch 1 taken 300 times.
301 if (i < NBLOCKS * BLOCKSIZE)
471 1 memset(&lpc_data[i], 0, (NBLOCKS * BLOCKSIZE - i) * sizeof(*lpc_data));
472 301 energy = ff_energy_tab[quantize(ff_t_sqrt(energy >> 5) >> 10, ff_energy_tab,
473 32)];
474
475 301 ff_lpc_calc_coefs(&ractx->lpc_ctx, lpc_data, NBLOCKS * BLOCKSIZE, LPC_ORDER,
476 LPC_ORDER, 16, lpc_coefs, shift, FF_LPC_TYPE_LEVINSON,
477 0, ORDER_METHOD_EST, 0, 12, 0);
478
2/2
✓ Branch 0 taken 3010 times.
✓ Branch 1 taken 301 times.
3311 for (i = 0; i < LPC_ORDER; i++)
479 3010 block_coefs[NBLOCKS - 1][i] = -lpc_coefs[LPC_ORDER - 1][i]
480 3010 * (1 << (12 - shift[LPC_ORDER - 1]));
481
482 /**
483 * TODO: apply perceptual weighting of the input speech through bandwidth
484 * expansion of the LPC filter.
485 */
486
487
2/2
✓ Branch 1 taken 73 times.
✓ Branch 2 taken 228 times.
301 if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
488 /**
489 * The filter is unstable: use the coefficients of the previous frame.
490 */
491 73 ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[1]);
492
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 73 times.
73 if (ff_eval_refl(lpc_refl, block_coefs[NBLOCKS - 1], avctx)) {
493 /* the filter is still unstable. set reflection coeffs to zero. */
494 memset(lpc_refl, 0, sizeof(lpc_refl));
495 }
496 }
497 301 init_put_bits(&pb, avpkt->data, avpkt->size);
498
2/2
✓ Branch 0 taken 3010 times.
✓ Branch 1 taken 301 times.
3311 for (i = 0; i < LPC_ORDER; i++) {
499 3010 idx = quantize(lpc_refl[i], ff_lpc_refl_cb[i], sizes[i]);
500 3010 put_bits(&pb, bit_sizes[i], idx);
501 3010 lpc_refl[i] = ff_lpc_refl_cb[i][idx];
502 }
503 301 ractx->lpc_refl_rms[0] = ff_rms(lpc_refl);
504 301 ff_eval_coefs(ractx->lpc_coef[0], lpc_refl);
505 301 refl_rms[0] = ff_interp(ractx, block_coefs[0], 1, 1, ractx->old_energy);
506 602 refl_rms[1] = ff_interp(ractx, block_coefs[1], 2,
507 301 energy <= ractx->old_energy,
508 301 ff_t_sqrt(energy * ractx->old_energy) >> 12);
509 301 refl_rms[2] = ff_interp(ractx, block_coefs[2], 3, 0, energy);
510 301 refl_rms[3] = ff_rescale_rms(ractx->lpc_refl_rms[0], energy);
511 301 ff_int_to_int16(block_coefs[NBLOCKS - 1], ractx->lpc_coef[0]);
512 301 put_bits(&pb, 5, quantize(energy, ff_energy_tab, 32));
513
2/2
✓ Branch 0 taken 1204 times.
✓ Branch 1 taken 301 times.
1505 for (i = 0; i < NBLOCKS; i++)
514 1204 ra144_encode_subblock(ractx, ractx->curr_block + i * BLOCKSIZE,
515 1204 block_coefs[i], refl_rms[i], &pb);
516 301 flush_put_bits(&pb);
517 301 ractx->old_energy = energy;
518 301 ractx->lpc_refl_rms[1] = ractx->lpc_refl_rms[0];
519 301 FFSWAP(unsigned int *, ractx->lpc_coef[0], ractx->lpc_coef[1]);
520
521 /* copy input samples to current block for processing in next call */
522 301 i = 0;
523
2/2
✓ Branch 0 taken 300 times.
✓ Branch 1 taken 1 times.
301 if (frame) {
524
2/2
✓ Branch 0 taken 48000 times.
✓ Branch 1 taken 300 times.
48300 for (; i < frame->nb_samples; i++)
525 48000 ractx->curr_block[i] = samples[i] >> 2;
526
527
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 300 times.
300 if ((ret = ff_af_queue_add(&ractx->afq, frame)) < 0)
528 return ret;
529 } else
530 1 ractx->last_frame = 1;
531 301 memset(&ractx->curr_block[i], 0,
532 301 (NBLOCKS * BLOCKSIZE - i) * sizeof(*ractx->curr_block));
533
534 /* Get the next frame pts/duration */
535 301 ff_af_queue_remove(&ractx->afq, avctx->frame_size, &avpkt->pts,
536 &avpkt->duration);
537
538 301 *got_packet_ptr = 1;
539 301 return 0;
540 }
541
542
543 const AVCodec ff_ra_144_encoder = {
544 .name = "real_144",
545 .long_name = NULL_IF_CONFIG_SMALL("RealAudio 1.0 (14.4K)"),
546 .type = AVMEDIA_TYPE_AUDIO,
547 .id = AV_CODEC_ID_RA_144,
548 .capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_DELAY |
549 AV_CODEC_CAP_SMALL_LAST_FRAME,
550 .priv_data_size = sizeof(RA144Context),
551 .init = ra144_encode_init,
552 .encode2 = ra144_encode_frame,
553 .close = ra144_encode_close,
554 .sample_fmts = (const enum AVSampleFormat[]){ AV_SAMPLE_FMT_S16,
555 AV_SAMPLE_FMT_NONE },
556 .supported_samplerates = (const int[]){ 8000, 0 },
557 .channel_layouts = (const uint64_t[]) { AV_CH_LAYOUT_MONO, 0 },
558 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE,
559 };
560