FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/perlin.c
Date: 2025-01-20 09:27:23
Exec Total Coverage
Lines: 0 80 0.0%
Functions: 0 7 0.0%
Branches: 0 28 0.0%

Line Branch Exec Source
1 /*
2 * This file is part of FFmpeg.
3 *
4 * FFmpeg is free software; you can redistribute it and/or modify
5 * it under the terms of the GNU General Public License as published by
6 * the Free Software Foundation; either version 2 of the License, or
7 * (at your option) any later version.
8 *
9 * FFmpeg is distributed in the hope that it will be useful,
10 * but WITHOUT ANY WARRANTY; without even the implied warranty of
11 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
12 * GNU General Public License for more details.
13 *
14 * You should have received a copy of the GNU General Public License along
15 * with FFmpeg; if not, write to the Free Software Foundation, Inc.,
16 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
17 */
18
19 /**
20 * @file
21 * Perlin Noise generator, based on code from:
22 * https://adrianb.io/2014/08/09/perlinnoise.html
23 *
24 * Original article from Ken Perlin:
25 * http://mrl.nyu.edu/~perlin/paper445.pdf
26 */
27
28 #include <math.h>
29
30 #include "libavutil/lfg.h"
31 #include "libavutil/random_seed.h"
32 #include "perlin.h"
33
34 static inline int inc(int num, int period)
35 {
36 num++;
37 if (period > 0)
38 num %= period;
39 return num;
40 }
41
42 static inline double grad(int hash, double x, double y, double z)
43 {
44 // Take the hashed value and take the first 4 bits of it (15 == 0b1111)
45 int h = hash & 15;
46 // If the most significant bit (MSB) of the hash is 0 then set u = x. Otherwise y.
47 double u = h < 8 /* 0b1000 */ ? x : y;
48 double v;
49
50 // In Ken Perlin's original implementation this was another
51 // conditional operator (?:), then expanded for readability.
52 if (h < 4 /* 0b0100 */)
53 // If the first and second significant bits are 0 set v = y
54 v = y;
55 // If the first and second significant bits are 1 set v = x
56 else if (h == 12 /* 0b1100 */ || h == 14 /* 0b1110 */)
57 v = x;
58 else
59 // If the first and second significant bits are not equal (0/1, 1/0) set v = z
60 v = z;
61
62 // Use the last 2 bits to decide if u and v are positive or negative. Then return their addition.
63 return ((h&1) == 0 ? u : -u)+((h&2) == 0 ? v : -v);
64 }
65
66 static inline double fade(double t)
67 {
68 // Fade function as defined by Ken Perlin. This eases coordinate values
69 // so that they will "ease" towards integral values. This ends up smoothing
70 // the final output.
71 // use Horner method to compute: 6t^5 - 15t^4 + 10t^3
72 return t * t * t * (t * (t * 6 - 15) + 10);
73 }
74
75 static double lerp(double a, double b, double x)
76 {
77 return a + x * (b - a);
78 }
79
80 // Hash lookup table as defined by Ken Perlin. This is a randomly
81 // arranged array of all numbers from 0-255 inclusive.
82 static uint8_t ken_permutations[] = {
83 151, 160, 137, 91, 90, 15, 131, 13, 201, 95, 96, 53, 194, 233, 7, 225,
84 140, 36, 103, 30, 69, 142, 8, 99, 37, 240, 21, 10, 23, 190, 6, 148,
85 247, 120, 234, 75, 0, 26, 197, 62, 94, 252, 219, 203, 117, 35, 11, 32,
86 57, 177, 33, 88, 237, 149, 56, 87, 174, 20, 125, 136, 171, 168, 68, 175,
87 74, 165, 71, 134, 139, 48, 27, 166, 77, 146, 158, 231, 83, 111, 229, 122,
88 60, 211, 133, 230, 220, 105, 92, 41, 55, 46, 245, 40, 244, 102, 143, 54,
89 65, 25, 63, 161, 1, 216, 80, 73, 209, 76, 132, 187, 208, 89, 18, 169,
90 200, 196, 135, 130, 116, 188, 159, 86, 164, 100, 109, 198, 173, 186, 3, 64,
91 52, 217, 226, 250, 124, 123, 5, 202, 38, 147, 118, 126, 255, 82, 85, 212,
92 207, 206, 59, 227, 47, 16, 58, 17, 182, 189, 28, 42, 223, 183, 170, 213,
93 119, 248, 152, 2, 44, 154, 163, 70, 221, 153, 101, 155, 167, 43, 172, 9,
94 129, 22, 39, 253, 19, 98, 108, 110, 79, 113, 224, 232, 178, 185, 112, 104,
95 218, 246, 97, 228, 251, 34, 242, 193, 238, 210, 144, 12, 191, 179, 162, 241,
96 81, 51, 145, 235, 249, 14, 239, 107, 49, 192, 214, 31, 181, 199, 106, 157,
97 184, 84, 204, 176, 115, 121, 50, 45, 127, 4, 150, 254, 138, 236, 205, 93,
98 222, 114, 67, 29, 24, 72, 243, 141, 128, 195, 78, 66, 215, 61, 156, 180
99 };
100
101 int ff_perlin_init(FFPerlin *perlin, double period, int octaves, double persistence,
102 enum FFPerlinRandomMode random_mode, unsigned int random_seed)
103 {
104 int i;
105
106 perlin->period = period;
107 perlin->octaves = octaves;
108 perlin->persistence = persistence;
109 perlin->random_mode = random_mode;
110 perlin->random_seed = random_seed;
111
112 if (perlin->random_mode == FF_PERLIN_RANDOM_MODE_KEN) {
113 for (i = 0; i < 512; i++) {
114 perlin->permutations[i] = ken_permutations[i % 256];
115 }
116 } else {
117 AVLFG lfg;
118 uint8_t random_permutations[256];
119
120 if (perlin->random_mode == FF_PERLIN_RANDOM_MODE_RANDOM)
121 perlin->random_seed = av_get_random_seed();
122
123 av_lfg_init(&lfg, perlin->random_seed);
124
125 for (i = 0; i < 256; i++) {
126 random_permutations[i] = i;
127 }
128
129 for (i = 0; i < 256; i++) {
130 unsigned int random_idx = av_lfg_get(&lfg) % (256-i);
131 uint8_t random_val = random_permutations[random_idx];
132 random_permutations[random_idx] = random_permutations[255-i];
133
134 perlin->permutations[i] = perlin->permutations[i+256] = random_val;
135 }
136 }
137
138 return 0;
139 }
140
141 static double perlin_get(FFPerlin *perlin, double x, double y, double z)
142 {
143 int xi, yi, zi;
144 double xf, yf, zf;
145 double u, v, w;
146 const uint8_t *p = perlin->permutations;
147 double period = perlin->period;
148 int aaa, aba, aab, abb, baa, bba, bab, bbb;
149 double x1, x2, y1, y2;
150
151 if (perlin->period > 0) {
152 // If we have any period on, change the coordinates to their "local" repetitions
153 x = fmod(x, perlin->period);
154 y = fmod(y, perlin->period);
155 z = fmod(z, perlin->period);
156 }
157
158 // Calculate the "unit cube" that the point asked will be located in
159 // The left bound is ( |_x_|,|_y_|,|_z_| ) and the right bound is that
160 // plus 1. Next we calculate the location (from 0.0 to 1.0) in that cube.
161 xi = (int)x & 255;
162 yi = (int)y & 255;
163 zi = (int)z & 255;
164
165 xf = x - (int)x;
166 yf = y - (int)y;
167 zf = z - (int)z;
168
169 // We also fade the location to smooth the result.
170 u = fade(xf);
171 v = fade(yf);
172 w = fade(zf);
173
174 aaa = p[p[p[ xi ] + yi ] + zi ];
175 aba = p[p[p[ xi ] + inc(yi, period)] + zi ];
176 aab = p[p[p[ xi ] + yi ] + inc(zi, period)];
177 abb = p[p[p[ xi ] + inc(yi, period)] + inc(zi, period)];
178 baa = p[p[p[inc(xi, period)] + yi ] + zi ];
179 bba = p[p[p[inc(xi, period)] + inc(yi, period)] + zi ];
180 bab = p[p[p[inc(xi, period)] + yi ] + inc(zi, period)];
181 bbb = p[p[p[inc(xi, period)] + inc(yi, period)] + inc(zi, period)];
182
183 // The gradient function calculates the dot product between a pseudorandom
184 // gradient vector and the vector from the input coordinate to the 8
185 // surrounding points in its unit cube.
186 // This is all then lerped together as a sort of weighted average based on the faded (u,v,w)
187 // values we made earlier.
188 x1 = lerp(grad(aaa, xf , yf , zf),
189 grad(baa, xf-1, yf , zf),
190 u);
191 x2 = lerp(grad(aba, xf , yf-1, zf),
192 grad(bba, xf-1, yf-1, zf),
193 u);
194 y1 = lerp(x1, x2, v);
195
196 x1 = lerp(grad(aab, xf , yf , zf-1),
197 grad(bab, xf-1, yf , zf-1),
198 u);
199 x2 = lerp(grad(abb, xf , yf-1, zf-1),
200 grad(bbb, xf-1, yf-1, zf-1),
201 u);
202 y2 = lerp(x1, x2, v);
203
204 // For convenience we bound it to 0 - 1 (theoretical min/max before is -1 - 1)
205 return (lerp(y1, y2, w) + 1) / 2;
206 }
207
208 double ff_perlin_get(FFPerlin *perlin, double x, double y, double z)
209 {
210 double total = 0;
211 double frequency = 1;
212 double amplitude = 1;
213 double max_value = 0; // Used for normalizing result to 0.0 - 1.0
214
215 for (int i = 0; i < perlin->octaves; i++) {
216 total += perlin_get(perlin, x * frequency, y * frequency, z * frequency) * amplitude;
217 max_value += amplitude;
218 amplitude *= perlin->persistence;
219 frequency *= 2;
220 }
221
222 return total / max_value;
223 }
224
225