FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/opus_pvq.c
Date: 2022-07-06 18:02:43
Exec Total Coverage
Lines: 398 497 80.1%
Branches: 262 346 75.7%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2007-2008 CSIRO
3 * Copyright (c) 2007-2009 Xiph.Org Foundation
4 * Copyright (c) 2008-2009 Gregory Maxwell
5 * Copyright (c) 2012 Andrew D'Addesio
6 * Copyright (c) 2013-2014 Mozilla Corporation
7 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
8 *
9 * This file is part of FFmpeg.
10 *
11 * FFmpeg is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * FFmpeg is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with FFmpeg; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26 #include "config_components.h"
27
28 #include "opustab.h"
29 #include "opus_pvq.h"
30
31 #define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
32 #define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
33
34 1037770 static inline int16_t celt_cos(int16_t x)
35 {
36 1037770 x = (MUL16(x, x) + 4096) >> 13;
37 1037770 x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
38 1037770 return x + 1;
39 }
40
41 518885 static inline int celt_log2tan(int isin, int icos)
42 {
43 int lc, ls;
44 518885 lc = opus_ilog(icos);
45 518885 ls = opus_ilog(isin);
46 518885 icos <<= 15 - lc;
47 518885 isin <<= 15 - ls;
48 518885 return (ls << 11) - (lc << 11) +
49 1037770 ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
50 518885 ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
51 }
52
53 1006497 static inline int celt_bits2pulses(const uint8_t *cache, int bits)
54 {
55 // TODO: Find the size of cache and make it into an array in the parameters list
56 1006497 int i, low = 0, high;
57
58 1006497 high = cache[0];
59 1006497 bits--;
60
61
2/2
✓ Branch 0 taken 6038982 times.
✓ Branch 1 taken 1006497 times.
7045479 for (i = 0; i < 6; i++) {
62 6038982 int center = (low + high + 1) >> 1;
63
2/2
✓ Branch 0 taken 3419805 times.
✓ Branch 1 taken 2619177 times.
6038982 if (cache[center] >= bits)
64 3419805 high = center;
65 else
66 2619177 low = center;
67 }
68
69
4/4
✓ Branch 0 taken 860429 times.
✓ Branch 1 taken 146068 times.
✓ Branch 2 taken 408004 times.
✓ Branch 3 taken 598493 times.
1006497 return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
70 }
71
72 1018229 static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
73 {
74 // TODO: Find the size of cache and make it into an array in the parameters list
75
2/2
✓ Branch 0 taken 879674 times.
✓ Branch 1 taken 138555 times.
1018229 return (pulses == 0) ? 0 : cache[pulses] + 1;
76 }
77
78 867942 static inline void celt_normalize_residual(const int * av_restrict iy, float * av_restrict X,
79 int N, float g)
80 {
81 int i;
82
2/2
✓ Branch 0 taken 7338362 times.
✓ Branch 1 taken 867942 times.
8206304 for (i = 0; i < N; i++)
83 7338362 X[i] = g * iy[i];
84 867942 }
85
86 374943 static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride,
87 float c, float s)
88 {
89 float *Xptr;
90 int i;
91
92 374943 Xptr = X;
93
2/2
✓ Branch 0 taken 5053544 times.
✓ Branch 1 taken 374943 times.
5428487 for (i = 0; i < len - stride; i++) {
94 5053544 float x1 = Xptr[0];
95 5053544 float x2 = Xptr[stride];
96 5053544 Xptr[stride] = c * x2 + s * x1;
97 5053544 *Xptr++ = c * x1 - s * x2;
98 }
99
100 374943 Xptr = &X[len - 2 * stride - 1];
101
2/2
✓ Branch 0 taken 4211554 times.
✓ Branch 1 taken 374943 times.
4586497 for (i = len - 2 * stride - 1; i >= 0; i--) {
102 4211554 float x1 = Xptr[0];
103 4211554 float x2 = Xptr[stride];
104 4211554 Xptr[stride] = c * x2 + s * x1;
105 4211554 *Xptr-- = c * x1 - s * x2;
106 }
107 374943 }
108
109 867942 static inline void celt_exp_rotation(float *X, uint32_t len,
110 uint32_t stride, uint32_t K,
111 enum CeltSpread spread, const int encode)
112 {
113 867942 uint32_t stride2 = 0;
114 float c, s;
115 float gain, theta;
116 int i;
117
118
4/4
✓ Branch 0 taken 169041 times.
✓ Branch 1 taken 698901 times.
✓ Branch 2 taken 5544 times.
✓ Branch 3 taken 163497 times.
867942 if (2*K >= len || spread == CELT_SPREAD_NONE)
119 704445 return;
120
121 163497 gain = (float)len / (len + (20 - 5*spread) * K);
122 163497 theta = M_PI * gain * gain / 4;
123
124 163497 c = cosf(theta);
125 163497 s = sinf(theta);
126
127
2/2
✓ Branch 0 taken 138987 times.
✓ Branch 1 taken 24510 times.
163497 if (len >= stride << 3) {
128 138987 stride2 = 1;
129 /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
130 It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
131
2/2
✓ Branch 0 taken 451438 times.
✓ Branch 1 taken 138987 times.
590425 while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
132 451438 stride2++;
133 }
134
135 163497 len /= stride;
136
2/2
✓ Branch 0 taken 221147 times.
✓ Branch 1 taken 163497 times.
384644 for (i = 0; i < stride; i++) {
137
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 221147 times.
221147 if (encode) {
138 celt_exp_rotation_impl(X + i * len, len, 1, c, -s);
139 if (stride2)
140 celt_exp_rotation_impl(X + i * len, len, stride2, s, -c);
141 } else {
142
2/2
✓ Branch 0 taken 153796 times.
✓ Branch 1 taken 67351 times.
221147 if (stride2)
143 153796 celt_exp_rotation_impl(X + i * len, len, stride2, s, c);
144 221147 celt_exp_rotation_impl(X + i * len, len, 1, c, s);
145 }
146 }
147 }
148
149 867942 static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B)
150 {
151 867942 int i, j, N0 = N / B;
152 867942 uint32_t collapse_mask = 0;
153
154
2/2
✓ Branch 0 taken 741536 times.
✓ Branch 1 taken 126406 times.
867942 if (B <= 1)
155 741536 return 1;
156
157
2/2
✓ Branch 0 taken 407024 times.
✓ Branch 1 taken 126406 times.
533430 for (i = 0; i < B; i++)
158
2/2
✓ Branch 0 taken 1113128 times.
✓ Branch 1 taken 407024 times.
1520152 for (j = 0; j < N0; j++)
159 1113128 collapse_mask |= (!!iy[i*N0+j]) << i;
160 126406 return collapse_mask;
161 }
162
163 186191 static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
164 {
165 int i;
166 186191 float xp = 0, side = 0;
167 float E[2];
168 float mid2;
169 float gain[2];
170
171 /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
172
2/2
✓ Branch 0 taken 4285756 times.
✓ Branch 1 taken 186191 times.
4471947 for (i = 0; i < N; i++) {
173 4285756 xp += X[i] * Y[i];
174 4285756 side += Y[i] * Y[i];
175 }
176
177 /* Compensating for the mid normalization */
178 186191 xp *= mid;
179 186191 mid2 = mid;
180 186191 E[0] = mid2 * mid2 + side - 2 * xp;
181 186191 E[1] = mid2 * mid2 + side + 2 * xp;
182
4/4
✓ Branch 0 taken 186119 times.
✓ Branch 1 taken 72 times.
✓ Branch 2 taken 84 times.
✓ Branch 3 taken 186035 times.
186191 if (E[0] < 6e-4f || E[1] < 6e-4f) {
183
2/2
✓ Branch 0 taken 998 times.
✓ Branch 1 taken 156 times.
1154 for (i = 0; i < N; i++)
184 998 Y[i] = X[i];
185 156 return;
186 }
187
188 186035 gain[0] = 1.0f / sqrtf(E[0]);
189 186035 gain[1] = 1.0f / sqrtf(E[1]);
190
191
2/2
✓ Branch 0 taken 4284758 times.
✓ Branch 1 taken 186035 times.
4470793 for (i = 0; i < N; i++) {
192 float value[2];
193 /* Apply mid scaling (side is already scaled) */
194 4284758 value[0] = mid * X[i];
195 4284758 value[1] = Y[i];
196 4284758 X[i] = gain[0] * (value[0] - value[1]);
197 4284758 Y[i] = gain[1] * (value[0] + value[1]);
198 }
199 }
200
201 140127 static void celt_interleave_hadamard(float *tmp, float *X, int N0,
202 int stride, int hadamard)
203 {
204 140127 int i, j, N = N0*stride;
205
2/2
✓ Branch 0 taken 76152 times.
✓ Branch 1 taken 63975 times.
140127 const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
206
207
2/2
✓ Branch 0 taken 744618 times.
✓ Branch 1 taken 140127 times.
884745 for (i = 0; i < stride; i++)
208
2/2
✓ Branch 0 taken 3650288 times.
✓ Branch 1 taken 744618 times.
4394906 for (j = 0; j < N0; j++)
209 3650288 tmp[j*stride+i] = X[order[i]*N0+j];
210
211 140127 memcpy(X, tmp, N*sizeof(float));
212 140127 }
213
214 90824 static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
215 int stride, int hadamard)
216 {
217 90824 int i, j, N = N0*stride;
218
2/2
✓ Branch 0 taken 50902 times.
✓ Branch 1 taken 39922 times.
90824 const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
219
220
2/2
✓ Branch 0 taken 465256 times.
✓ Branch 1 taken 90824 times.
556080 for (i = 0; i < stride; i++)
221
2/2
✓ Branch 0 taken 2277490 times.
✓ Branch 1 taken 465256 times.
2742746 for (j = 0; j < N0; j++)
222 2277490 tmp[order[i]*N0+j] = X[j*stride+i];
223
224 90824 memcpy(X, tmp, N*sizeof(float));
225 90824 }
226
227 356919 static void celt_haar1(float *X, int N0, int stride)
228 {
229 int i, j;
230 356919 N0 >>= 1;
231
2/2
✓ Branch 0 taken 675619 times.
✓ Branch 1 taken 356919 times.
1032538 for (i = 0; i < stride; i++) {
232
2/2
✓ Branch 0 taken 5130104 times.
✓ Branch 1 taken 675619 times.
5805723 for (j = 0; j < N0; j++) {
233 5130104 float x0 = X[stride * (2 * j + 0) + i];
234 5130104 float x1 = X[stride * (2 * j + 1) + i];
235 5130104 X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
236 5130104 X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
237 }
238 }
239 356919 }
240
241 575131 static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
242 int stereo)
243 {
244 int qn, qb;
245 575131 int N2 = 2 * N - 1;
246
4/4
✓ Branch 0 taken 188735 times.
✓ Branch 1 taken 386396 times.
✓ Branch 2 taken 48661 times.
✓ Branch 3 taken 140074 times.
575131 if (stereo && N == 2)
247 48661 N2--;
248
249 /* The upper limit ensures that in a stereo split with itheta==16384, we'll
250 * always have enough bits left over to code at least one pulse in the
251 * side; otherwise it would collapse, since it doesn't get folded. */
252 575131 qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
253
2/2
✓ Branch 0 taken 573416 times.
✓ Branch 1 taken 1715 times.
575131 qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
254 575131 return qn;
255 }
256
257 /* Convert the quantized vector to an index */
258 static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y)
259 {
260 int i, idx = 0, sum = 0;
261 for (i = N - 1; i >= 0; i--) {
262 const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1);
263 idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s;
264 sum += FFABS(y[i]);
265 }
266 return idx;
267 }
268
269 // this code was adapted from libopus
270 867942 static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
271 {
272 867942 uint64_t norm = 0;
273 uint32_t q, p;
274 int s, val;
275 int k0;
276
277
2/2
✓ Branch 0 taken 5602478 times.
✓ Branch 1 taken 867942 times.
6470420 while (N > 2) {
278 /*Lots of pulses case:*/
279
2/2
✓ Branch 0 taken 1666017 times.
✓ Branch 1 taken 3936461 times.
5602478 if (K >= N) {
280 1666017 const uint32_t *row = ff_celt_pvq_u_row[N];
281
282 /* Are the pulses in this dimension negative? */
283 1666017 p = row[K + 1];
284 1666017 s = -(i >= p);
285 1666017 i -= p & s;
286
287 /*Count how many pulses were placed in this dimension.*/
288 1666017 k0 = K;
289 1666017 q = row[N];
290
2/2
✓ Branch 0 taken 268919 times.
✓ Branch 1 taken 1397098 times.
1666017 if (q > i) {
291 268919 K = N;
292 do {
293 387231 p = ff_celt_pvq_u_row[--K][N];
294
2/2
✓ Branch 0 taken 118312 times.
✓ Branch 1 taken 268919 times.
387231 } while (p > i);
295 } else
296
2/2
✓ Branch 0 taken 7345399 times.
✓ Branch 1 taken 1397098 times.
8742497 for (p = row[K]; p > i; p = row[K])
297 7345399 K--;
298
299 1666017 i -= p;
300 1666017 val = (k0 - K + s) ^ s;
301 1666017 norm += val * val;
302 1666017 *y++ = val;
303 } else { /*Lots of dimensions case:*/
304 /*Are there any pulses in this dimension at all?*/
305 3936461 p = ff_celt_pvq_u_row[K ][N];
306 3936461 q = ff_celt_pvq_u_row[K + 1][N];
307
308
4/4
✓ Branch 0 taken 3385353 times.
✓ Branch 1 taken 551108 times.
✓ Branch 2 taken 2833646 times.
✓ Branch 3 taken 551707 times.
3936461 if (p <= i && i < q) {
309 2833646 i -= p;
310 2833646 *y++ = 0;
311 } else {
312 /*Are the pulses in this dimension negative?*/
313 1102815 s = -(i >= q);
314 1102815 i -= q & s;
315
316 /*Count how many pulses were placed in this dimension.*/
317 1102815 k0 = K;
318 1284281 do p = ff_celt_pvq_u_row[--K][N];
319
2/2
✓ Branch 0 taken 181466 times.
✓ Branch 1 taken 1102815 times.
1284281 while (p > i);
320
321 1102815 i -= p;
322 1102815 val = (k0 - K + s) ^ s;
323 1102815 norm += val * val;
324 1102815 *y++ = val;
325 }
326 }
327 5602478 N--;
328 }
329
330 /* N == 2 */
331 867942 p = 2 * K + 1;
332 867942 s = -(i >= p);
333 867942 i -= p & s;
334 867942 k0 = K;
335 867942 K = (i + 1) / 2;
336
337
2/2
✓ Branch 0 taken 611968 times.
✓ Branch 1 taken 255974 times.
867942 if (K)
338 611968 i -= 2 * K - 1;
339
340 867942 val = (k0 - K + s) ^ s;
341 867942 norm += val * val;
342 867942 *y++ = val;
343
344 /* N==1 */
345 867942 s = -i;
346 867942 val = (K + s) ^ s;
347 867942 norm += val * val;
348 867942 *y = val;
349
350 867942 return norm;
351 }
352
353 static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
354 {
355 ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K));
356 }
357
358 867942 static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
359 {
360
4/4
✓ Branch 0 taken 313175 times.
✓ Branch 1 taken 554767 times.
✓ Branch 2 taken 281043 times.
✓ Branch 3 taken 586899 times.
867942 const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
361 867942 return celt_cwrsi(N, K, idx, y);
362 }
363
364 /*
365 * Faster than libopus's search, operates entirely in the signed domain.
366 * Slightly worse/better depending on N, K and the input vector.
367 */
368 static float ppp_pvq_search_c(float *X, int *y, int K, int N)
369 {
370 int i, y_norm = 0;
371 float res = 0.0f, xy_norm = 0.0f;
372
373 for (i = 0; i < N; i++)
374 res += FFABS(X[i]);
375
376 res = K/(res + FLT_EPSILON);
377
378 for (i = 0; i < N; i++) {
379 y[i] = lrintf(res*X[i]);
380 y_norm += y[i]*y[i];
381 xy_norm += y[i]*X[i];
382 K -= FFABS(y[i]);
383 }
384
385 while (K) {
386 int max_idx = 0, phase = FFSIGN(K);
387 float max_num = 0.0f;
388 float max_den = 1.0f;
389 y_norm += 1.0f;
390
391 for (i = 0; i < N; i++) {
392 /* If the sum has been overshot and the best place has 0 pulses allocated
393 * to it, attempting to decrease it further will actually increase the
394 * sum. Prevent this by disregarding any 0 positions when decrementing. */
395 const int ca = 1 ^ ((y[i] == 0) & (phase < 0));
396 const int y_new = y_norm + 2*phase*FFABS(y[i]);
397 float xy_new = xy_norm + 1*phase*FFABS(X[i]);
398 xy_new = xy_new * xy_new;
399 if (ca && (max_den*xy_new) > (y_new*max_num)) {
400 max_den = y_new;
401 max_num = xy_new;
402 max_idx = i;
403 }
404 }
405
406 K -= phase;
407
408 phase *= FFSIGN(X[max_idx]);
409 xy_norm += 1*phase*X[max_idx];
410 y_norm += 2*phase*y[max_idx];
411 y[max_idx] += phase;
412 }
413
414 return (float)y_norm;
415 }
416
417 static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
418 enum CeltSpread spread, uint32_t blocks, float gain,
419 CeltPVQ *pvq)
420 {
421 int *y = pvq->qcoeff;
422
423 celt_exp_rotation(X, N, blocks, K, spread, 1);
424 gain /= sqrtf(pvq->pvq_search(X, y, K, N));
425 celt_encode_pulses(rc, y, N, K);
426 celt_normalize_residual(y, X, N, gain);
427 celt_exp_rotation(X, N, blocks, K, spread, 0);
428 return celt_extract_collapse_mask(y, N, blocks);
429 }
430
431 /** Decode pulse vector and combine the result with the pitch vector to produce
432 the final normalised signal in the current band. */
433 867942 static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
434 enum CeltSpread spread, uint32_t blocks, float gain,
435 CeltPVQ *pvq)
436 {
437 867942 int *y = pvq->qcoeff;
438
439 867942 gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
440 867942 celt_normalize_residual(y, X, N, gain);
441 867942 celt_exp_rotation(X, N, blocks, K, spread, 0);
442 867942 return celt_extract_collapse_mask(y, N, blocks);
443 }
444
445 static int celt_calc_theta(const float *X, const float *Y, int coupling, int N)
446 {
447 int i;
448 float e[2] = { 0.0f, 0.0f };
449 if (coupling) { /* Coupling case */
450 for (i = 0; i < N; i++) {
451 e[0] += (X[i] + Y[i])*(X[i] + Y[i]);
452 e[1] += (X[i] - Y[i])*(X[i] - Y[i]);
453 }
454 } else {
455 for (i = 0; i < N; i++) {
456 e[0] += X[i]*X[i];
457 e[1] += Y[i]*Y[i];
458 }
459 }
460 return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI);
461 }
462
463 static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N)
464 {
465 int i;
466 const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON);
467 e_l *= energy_n;
468 e_r *= energy_n;
469 for (i = 0; i < N; i++)
470 X[i] = e_l*X[i] + e_r*Y[i];
471 }
472
473 static void celt_stereo_ms_decouple(float *X, float *Y, int N)
474 {
475 int i;
476 for (i = 0; i < N; i++) {
477 const float Xret = X[i];
478 X[i] = (X[i] + Y[i])*M_SQRT1_2;
479 Y[i] = (Y[i] - Xret)*M_SQRT1_2;
480 }
481 }
482
483 1742927 static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f,
484 OpusRangeCoder *rc,
485 const int band, float *X,
486 float *Y, int N, int b,
487 uint32_t blocks, float *lowband,
488 int duration, float *lowband_out,
489 int level, float gain,
490 float *lowband_scratch,
491 int fill, int quant)
492 {
493 int i;
494 const uint8_t *cache;
495 1742927 int stereo = !!Y, split = stereo;
496 1742927 int imid = 0, iside = 0;
497 1742927 uint32_t N0 = N;
498 1742927 int N_B = N / blocks;
499 1742927 int N_B0 = N_B;
500 1742927 int B0 = blocks;
501 1742927 int time_divide = 0;
502 1742927 int recombine = 0;
503 1742927 int inv = 0;
504 1742927 float mid = 0, side = 0;
505 1742927 int longblocks = (B0 == 1);
506 1742927 uint32_t cm = 0;
507
508
2/2
✓ Branch 0 taken 109648 times.
✓ Branch 1 taken 1633279 times.
1742927 if (N == 1) {
509 109648 float *x = X;
510
2/2
✓ Branch 0 taken 176024 times.
✓ Branch 1 taken 109648 times.
285672 for (i = 0; i <= stereo; i++) {
511 176024 int sign = 0;
512
2/2
✓ Branch 0 taken 169213 times.
✓ Branch 1 taken 6811 times.
176024 if (f->remaining2 >= 1 << 3) {
513
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 169213 times.
169213 if (quant) {
514 sign = x[0] < 0;
515 ff_opus_rc_put_raw(rc, sign, 1);
516 } else {
517 169213 sign = ff_opus_rc_get_raw(rc, 1);
518 }
519 169213 f->remaining2 -= 1 << 3;
520 }
521 176024 x[0] = 1.0f - 2.0f*sign;
522 176024 x = Y;
523 }
524
1/2
✓ Branch 0 taken 109648 times.
✗ Branch 1 not taken.
109648 if (lowband_out)
525 109648 lowband_out[0] = X[0];
526 109648 return 1;
527 }
528
529
4/4
✓ Branch 0 taken 1392893 times.
✓ Branch 1 taken 240386 times.
✓ Branch 2 taken 620101 times.
✓ Branch 3 taken 772792 times.
1633279 if (!stereo && level == 0) {
530 620101 int tf_change = f->tf_change[band];
531 int k;
532
2/2
✓ Branch 0 taken 40217 times.
✓ Branch 1 taken 579884 times.
620101 if (tf_change > 0)
533 40217 recombine = tf_change;
534 /* Band recombining to increase frequency resolution */
535
536
4/4
✓ Branch 0 taken 371229 times.
✓ Branch 1 taken 248872 times.
✓ Branch 2 taken 345387 times.
✓ Branch 3 taken 25842 times.
620101 if (lowband &&
537
6/6
✓ Branch 0 taken 334517 times.
✓ Branch 1 taken 10870 times.
✓ Branch 2 taken 275524 times.
✓ Branch 3 taken 58993 times.
✓ Branch 4 taken 23444 times.
✓ Branch 5 taken 262950 times.
345387 (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
538
2/2
✓ Branch 0 taken 2674010 times.
✓ Branch 1 taken 108279 times.
2782289 for (i = 0; i < N; i++)
539 2674010 lowband_scratch[i] = lowband[i];
540 108279 lowband = lowband_scratch;
541 }
542
543
2/2
✓ Branch 0 taken 67800 times.
✓ Branch 1 taken 620101 times.
687901 for (k = 0; k < recombine; k++) {
544
3/4
✓ Branch 0 taken 67800 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 42647 times.
✓ Branch 3 taken 25153 times.
67800 if (quant || lowband)
545
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 42647 times.
42647 celt_haar1(quant ? X : lowband, N >> k, 1 << k);
546 67800 fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
547 }
548 620101 blocks >>= recombine;
549 620101 N_B <<= recombine;
550
551 /* Increasing the time resolution */
552
4/4
✓ Branch 0 taken 719316 times.
✓ Branch 1 taken 50423 times.
✓ Branch 2 taken 149638 times.
✓ Branch 3 taken 569678 times.
769739 while ((N_B & 1) == 0 && tf_change < 0) {
553
3/4
✓ Branch 0 taken 149638 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 96834 times.
✓ Branch 3 taken 52804 times.
149638 if (quant || lowband)
554
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 96834 times.
96834 celt_haar1(quant ? X : lowband, N_B, blocks);
555 149638 fill |= fill << blocks;
556 149638 blocks <<= 1;
557 149638 N_B >>= 1;
558 149638 time_divide++;
559 149638 tf_change++;
560 }
561 620101 B0 = blocks;
562 620101 N_B0 = N_B;
563
564 /* Reorganize the samples in time order instead of frequency order */
565
5/6
✓ Branch 0 taken 140127 times.
✓ Branch 1 taken 479974 times.
✓ Branch 2 taken 140127 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 90824 times.
✓ Branch 5 taken 49303 times.
620101 if (B0 > 1 && (quant || lowband))
566
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 90824 times.
90824 celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband,
567 N_B >> recombine, B0 << recombine,
568 longblocks);
569 }
570
571 /* If we need 1.5 more bit than we can produce, split the band in two. */
572 1633279 cache = ff_celt_cache_bits +
573 1633279 ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
574
8/8
✓ Branch 0 taken 1392893 times.
✓ Branch 1 taken 240386 times.
✓ Branch 2 taken 1193327 times.
✓ Branch 3 taken 199566 times.
✓ Branch 4 taken 440823 times.
✓ Branch 5 taken 752504 times.
✓ Branch 6 taken 386396 times.
✓ Branch 7 taken 54427 times.
1633279 if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
575 386396 N >>= 1;
576 386396 Y = X + N;
577 386396 split = 1;
578 386396 duration -= 1;
579
2/2
✓ Branch 0 taken 245705 times.
✓ Branch 1 taken 140691 times.
386396 if (blocks == 1)
580 245705 fill = (fill & 1) | (fill << 1);
581 386396 blocks = (blocks + 1) >> 1;
582 }
583
584
2/2
✓ Branch 0 taken 626782 times.
✓ Branch 1 taken 1006497 times.
1633279 if (split) {
585 int qn;
586
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 626782 times.
626782 int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0;
587 int mbits, sbits, delta;
588 int qalloc;
589 int pulse_cap;
590 int offset;
591 int orig_fill;
592 int tell;
593
594 /* Decide on the resolution to give to the split parameter theta */
595 626782 pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
596
4/4
✓ Branch 0 taken 240386 times.
✓ Branch 1 taken 386396 times.
✓ Branch 2 taken 54195 times.
✓ Branch 3 taken 186191 times.
626782 offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
597 CELT_QTHETA_OFFSET);
598
4/4
✓ Branch 0 taken 240386 times.
✓ Branch 1 taken 386396 times.
✓ Branch 2 taken 188735 times.
✓ Branch 3 taken 51651 times.
626782 qn = (stereo && band >= f->intensity_stereo) ? 1 :
599 575131 celt_compute_qn(N, b, offset, pulse_cap, stereo);
600 626782 tell = opus_rc_tell_frac(rc);
601
2/2
✓ Branch 0 taken 573416 times.
✓ Branch 1 taken 53366 times.
626782 if (qn != 1) {
602
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 573416 times.
573416 if (quant)
603 itheta = (itheta*qn + 8192) >> 14;
604 /* Entropy coding of the angle. We use a uniform pdf for the
605 * time split, a step for stereo, and a triangular one for the rest. */
606
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 573416 times.
573416 if (quant) {
607 if (stereo && N > 2)
608 ff_opus_rc_enc_uint_step(rc, itheta, qn / 2);
609 else if (stereo || B0 > 1)
610 ff_opus_rc_enc_uint(rc, itheta, qn + 1);
611 else
612 ff_opus_rc_enc_uint_tri(rc, itheta, qn);
613 itheta = itheta * 16384 / qn;
614 if (stereo) {
615 if (itheta == 0)
616 celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
617 f->block[1].lin_energy[band], N);
618 else
619 celt_stereo_ms_decouple(X, Y, N);
620 }
621 } else {
622
4/4
✓ Branch 0 taken 187020 times.
✓ Branch 1 taken 386396 times.
✓ Branch 2 taken 138861 times.
✓ Branch 3 taken 48159 times.
573416 if (stereo && N > 2)
623 138861 itheta = ff_opus_rc_dec_uint_step(rc, qn / 2);
624
4/4
✓ Branch 0 taken 386396 times.
✓ Branch 1 taken 48159 times.
✓ Branch 2 taken 140691 times.
✓ Branch 3 taken 245705 times.
434555 else if (stereo || B0 > 1)
625 188850 itheta = ff_opus_rc_dec_uint(rc, qn+1);
626 else
627 245705 itheta = ff_opus_rc_dec_uint_tri(rc, qn);
628 573416 itheta = itheta * 16384 / qn;
629 }
630
1/2
✓ Branch 0 taken 53366 times.
✗ Branch 1 not taken.
53366 } else if (stereo) {
631
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 53366 times.
53366 if (quant) {
632 inv = f->apply_phase_inv ? itheta > 8192 : 0;
633 if (inv) {
634 for (i = 0; i < N; i++)
635 Y[i] *= -1;
636 }
637 celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
638 f->block[1].lin_energy[band], N);
639
640 if (b > 2 << 3 && f->remaining2 > 2 << 3) {
641 ff_opus_rc_enc_log(rc, inv, 2);
642 } else {
643 inv = 0;
644 }
645 } else {
646
3/4
✓ Branch 0 taken 19527 times.
✓ Branch 1 taken 33839 times.
✓ Branch 2 taken 19527 times.
✗ Branch 3 not taken.
53366 inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
647
1/2
✓ Branch 0 taken 53366 times.
✗ Branch 1 not taken.
53366 inv = f->apply_phase_inv ? inv : 0;
648 }
649 53366 itheta = 0;
650 }
651 626782 qalloc = opus_rc_tell_frac(rc) - tell;
652 626782 b -= qalloc;
653
654 626782 orig_fill = fill;
655
2/2
✓ Branch 0 taken 105651 times.
✓ Branch 1 taken 521131 times.
626782 if (itheta == 0) {
656 105651 imid = 32767;
657 105651 iside = 0;
658 105651 fill = av_mod_uintp2(fill, blocks);
659 105651 delta = -16384;
660
2/2
✓ Branch 0 taken 2246 times.
✓ Branch 1 taken 518885 times.
521131 } else if (itheta == 16384) {
661 2246 imid = 0;
662 2246 iside = 32767;
663 2246 fill &= ((1 << blocks) - 1) << blocks;
664 2246 delta = 16384;
665 } else {
666 518885 imid = celt_cos(itheta);
667 518885 iside = celt_cos(16384-itheta);
668 /* This is the mid vs side allocation that minimizes squared error
669 in that band. */
670 518885 delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
671 }
672
673 626782 mid = imid / 32768.0f;
674 626782 side = iside / 32768.0f;
675
676 /* This is a special case for N=2 that only works for stereo and takes
677 advantage of the fact that mid and side are orthogonal to encode
678 the side with just one bit. */
679
4/4
✓ Branch 0 taken 104239 times.
✓ Branch 1 taken 522543 times.
✓ Branch 2 taken 54195 times.
✓ Branch 3 taken 50044 times.
626782 if (N == 2 && stereo) {
680 int c;
681 54195 int sign = 0;
682 float tmp;
683 float *x2, *y2;
684 54195 mbits = b;
685 /* Only need one bit for the side */
686
4/4
✓ Branch 0 taken 30179 times.
✓ Branch 1 taken 24016 times.
✓ Branch 2 taken 28840 times.
✓ Branch 3 taken 1339 times.
54195 sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
687 54195 mbits -= sbits;
688 54195 c = (itheta > 8192);
689 54195 f->remaining2 -= qalloc+sbits;
690
691
2/2
✓ Branch 0 taken 11376 times.
✓ Branch 1 taken 42819 times.
54195 x2 = c ? Y : X;
692
2/2
✓ Branch 0 taken 11376 times.
✓ Branch 1 taken 42819 times.
54195 y2 = c ? X : Y;
693
2/2
✓ Branch 0 taken 28840 times.
✓ Branch 1 taken 25355 times.
54195 if (sbits) {
694
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 28840 times.
28840 if (quant) {
695 sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
696 ff_opus_rc_put_raw(rc, sign, 1);
697 } else {
698 28840 sign = ff_opus_rc_get_raw(rc, 1);
699 }
700 }
701 54195 sign = 1 - 2 * sign;
702 /* We use orig_fill here because we want to fold the side, but if
703 itheta==16384, we'll have cleared the low bits of fill. */
704 54195 cm = pvq->quant_band(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration,
705 lowband_out, level, gain, lowband_scratch, orig_fill);
706 /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
707 and there's no need to worry about mixing with the other channel. */
708 54195 y2[0] = -sign * x2[1];
709 54195 y2[1] = sign * x2[0];
710 54195 X[0] *= mid;
711 54195 X[1] *= mid;
712 54195 Y[0] *= side;
713 54195 Y[1] *= side;
714 54195 tmp = X[0];
715 54195 X[0] = tmp - Y[0];
716 54195 Y[0] = tmp + Y[0];
717 54195 tmp = X[1];
718 54195 X[1] = tmp - Y[1];
719 54195 Y[1] = tmp + Y[1];
720 } else {
721 /* "Normal" split code */
722 572587 float *next_lowband2 = NULL;
723 572587 float *next_lowband_out1 = NULL;
724 572587 int next_level = 0;
725 int rebalance;
726 uint32_t cmt;
727
728 /* Give more bits to low-energy MDCTs than they would
729 * otherwise deserve */
730
6/6
✓ Branch 0 taken 169739 times.
✓ Branch 1 taken 402848 times.
✓ Branch 2 taken 140691 times.
✓ Branch 3 taken 29048 times.
✓ Branch 4 taken 139845 times.
✓ Branch 5 taken 846 times.
572587 if (B0 > 1 && !stereo && (itheta & 0x3fff)) {
731
2/2
✓ Branch 0 taken 61043 times.
✓ Branch 1 taken 78802 times.
139845 if (itheta > 8192)
732 /* Rough approximation for pre-echo masking */
733 61043 delta -= delta >> (4 - duration);
734 else
735 /* Corresponds to a forward-masking slope of
736 * 1.5 dB per 10 ms */
737 78802 delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
738 }
739 572587 mbits = av_clip((b - delta) / 2, 0, b);
740 572587 sbits = b - mbits;
741 572587 f->remaining2 -= qalloc;
742
743
4/4
✓ Branch 0 taken 452225 times.
✓ Branch 1 taken 120362 times.
✓ Branch 2 taken 292101 times.
✓ Branch 3 taken 160124 times.
572587 if (lowband && !stereo)
744 292101 next_lowband2 = lowband + N; /* >32-bit split case */
745
746 /* Only stereo needs to pass on lowband_out.
747 * Otherwise, it's handled at the end */
748
2/2
✓ Branch 0 taken 186191 times.
✓ Branch 1 taken 386396 times.
572587 if (stereo)
749 186191 next_lowband_out1 = lowband_out;
750 else
751 386396 next_level = level + 1;
752
753 572587 rebalance = f->remaining2;
754
2/2
✓ Branch 0 taken 351486 times.
✓ Branch 1 taken 221101 times.
572587 if (mbits >= sbits) {
755 /* In stereo mode, we do not apply a scaling to the mid
756 * because we need the normalized mid for folding later */
757
2/2
✓ Branch 0 taken 202395 times.
✓ Branch 1 taken 149091 times.
351486 cm = pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
758 lowband, duration, next_lowband_out1, next_level,
759 stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
760 351486 rebalance = mbits - (rebalance - f->remaining2);
761
4/4
✓ Branch 0 taken 95700 times.
✓ Branch 1 taken 255786 times.
✓ Branch 2 taken 86536 times.
✓ Branch 3 taken 9164 times.
351486 if (rebalance > 3 << 3 && itheta != 0)
762 86536 sbits += rebalance - (3 << 3);
763
764 /* For a stereo split, the high bits of fill are always zero,
765 * so no folding will be done to the side. */
766 351486 cmt = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
767 next_lowband2, duration, NULL, next_level,
768 gain * side, NULL, fill >> blocks);
769 351486 cm |= cmt << ((B0 >> 1) & (stereo - 1));
770 } else {
771 /* For a stereo split, the high bits of fill are always zero,
772 * so no folding will be done to the side. */
773 221101 cm = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
774 next_lowband2, duration, NULL, next_level,
775 gain * side, NULL, fill >> blocks);
776 221101 cm <<= ((B0 >> 1) & (stereo - 1));
777 221101 rebalance = sbits - (rebalance - f->remaining2);
778
4/4
✓ Branch 0 taken 81130 times.
✓ Branch 1 taken 139971 times.
✓ Branch 2 taken 80951 times.
✓ Branch 3 taken 179 times.
221101 if (rebalance > 3 << 3 && itheta != 16384)
779 80951 mbits += rebalance - (3 << 3);
780
781 /* In stereo mode, we do not apply a scaling to the mid because
782 * we need the normalized mid for folding later */
783
2/2
✓ Branch 0 taken 184001 times.
✓ Branch 1 taken 37100 times.
221101 cm |= pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
784 lowband, duration, next_lowband_out1, next_level,
785 stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
786 }
787 }
788 } else {
789 /* This is the basic no-split case */
790 1006497 uint32_t q = celt_bits2pulses(cache, b);
791 1006497 uint32_t curr_bits = celt_pulses2bits(cache, q);
792 1006497 f->remaining2 -= curr_bits;
793
794 /* Ensures we can never bust the budget */
795
4/4
✓ Branch 0 taken 14967 times.
✓ Branch 1 taken 1003262 times.
✓ Branch 2 taken 11732 times.
✓ Branch 3 taken 3235 times.
1018229 while (f->remaining2 < 0 && q > 0) {
796 11732 f->remaining2 += curr_bits;
797 11732 curr_bits = celt_pulses2bits(cache, --q);
798 11732 f->remaining2 -= curr_bits;
799 }
800
801
2/2
✓ Branch 0 taken 867942 times.
✓ Branch 1 taken 138555 times.
1006497 if (q != 0) {
802 /* Finally do the actual (de)quantization */
803
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 867942 times.
867942 if (quant) {
804 cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
805 f->spread, blocks, gain, pvq);
806 } else {
807
2/2
✓ Branch 0 taken 557776 times.
✓ Branch 1 taken 310166 times.
867942 cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
808 f->spread, blocks, gain, pvq);
809 }
810 } else {
811 /* If there's no pulse, fill the band anyway */
812 138555 uint32_t cm_mask = (1 << blocks) - 1;
813 138555 fill &= cm_mask;
814
2/2
✓ Branch 0 taken 54172 times.
✓ Branch 1 taken 84383 times.
138555 if (fill) {
815
2/2
✓ Branch 0 taken 9194 times.
✓ Branch 1 taken 44978 times.
54172 if (!lowband) {
816 /* Noise */
817
2/2
✓ Branch 0 taken 212448 times.
✓ Branch 1 taken 9194 times.
221642 for (i = 0; i < N; i++)
818 212448 X[i] = (((int32_t)celt_rng(f)) >> 20);
819 9194 cm = cm_mask;
820 } else {
821 /* Folded spectrum */
822
2/2
✓ Branch 0 taken 1772186 times.
✓ Branch 1 taken 44978 times.
1817164 for (i = 0; i < N; i++) {
823 /* About 48 dB below the "normal" folding level */
824
2/2
✓ Branch 1 taken 887413 times.
✓ Branch 2 taken 884773 times.
1772186 X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
825 }
826 44978 cm = fill;
827 }
828 54172 celt_renormalize_vector(X, N, gain);
829 } else {
830 84383 memset(X, 0, N*sizeof(float));
831 }
832 }
833 }
834
835 /* This code is used by the decoder and by the resynthesis-enabled encoder */
836
2/2
✓ Branch 0 taken 240386 times.
✓ Branch 1 taken 1392893 times.
1633279 if (stereo) {
837
2/2
✓ Branch 0 taken 186191 times.
✓ Branch 1 taken 54195 times.
240386 if (N > 2)
838 186191 celt_stereo_merge(X, Y, mid, N);
839
2/2
✓ Branch 0 taken 6978 times.
✓ Branch 1 taken 233408 times.
240386 if (inv) {
840
2/2
✓ Branch 0 taken 391242 times.
✓ Branch 1 taken 6978 times.
398220 for (i = 0; i < N; i++)
841 391242 Y[i] *= -1;
842 }
843
2/2
✓ Branch 0 taken 620101 times.
✓ Branch 1 taken 772792 times.
1392893 } else if (level == 0) {
844 int k;
845
846 /* Undo the sample reorganization going from time order to frequency order */
847
2/2
✓ Branch 0 taken 140127 times.
✓ Branch 1 taken 479974 times.
620101 if (B0 > 1)
848 140127 celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine,
849 B0 << recombine, longblocks);
850
851 /* Undo time-freq changes that we did earlier */
852 620101 N_B = N_B0;
853 620101 blocks = B0;
854
2/2
✓ Branch 0 taken 149638 times.
✓ Branch 1 taken 620101 times.
769739 for (k = 0; k < time_divide; k++) {
855 149638 blocks >>= 1;
856 149638 N_B <<= 1;
857 149638 cm |= cm >> blocks;
858 149638 celt_haar1(X, N_B, blocks);
859 }
860
861
2/2
✓ Branch 0 taken 67800 times.
✓ Branch 1 taken 620101 times.
687901 for (k = 0; k < recombine; k++) {
862 67800 cm = ff_celt_bit_deinterleave[cm];
863 67800 celt_haar1(X, N0>>k, 1<<k);
864 }
865 620101 blocks <<= recombine;
866
867 /* Scale output for later folding */
868
2/2
✓ Branch 0 taken 433910 times.
✓ Branch 1 taken 186191 times.
620101 if (lowband_out) {
869 433910 float n = sqrtf(N0);
870
2/2
✓ Branch 0 taken 7755370 times.
✓ Branch 1 taken 433910 times.
8189280 for (i = 0; i < N0; i++)
871 7755370 lowband_out[i] = n * X[i];
872 }
873 620101 cm = av_mod_uintp2(cm, blocks);
874 }
875
876 1633279 return cm;
877 }
878
879 1742927 static QUANT_FN(pvq_decode_band)
880 {
881 #if CONFIG_OPUS_DECODER
882 1742927 return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
883 lowband_out, level, gain, lowband_scratch, fill, 0);
884 #else
885 return 0;
886 #endif
887 }
888
889 static QUANT_FN(pvq_encode_band)
890 {
891 #if CONFIG_OPUS_ENCODER
892 return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
893 lowband_out, level, gain, lowband_scratch, fill, 1);
894 #else
895 return 0;
896 #endif
897 }
898
899 48 int av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode)
900 {
901 48 CeltPVQ *s = av_malloc(sizeof(CeltPVQ));
902
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 48 times.
48 if (!s)
903 return AVERROR(ENOMEM);
904
905 48 s->pvq_search = ppp_pvq_search_c;
906
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 48 times.
48 s->quant_band = encode ? pvq_encode_band : pvq_decode_band;
907
908 #if CONFIG_OPUS_ENCODER && ARCH_X86
909 48 ff_celt_pvq_init_x86(s);
910 #endif
911
912 48 *pvq = s;
913
914 48 return 0;
915 }
916
917 48 void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq)
918 {
919 48 av_freep(pvq);
920 48 }
921