FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/opus_pvq.c
Date: 2024-04-18 10:05:09
Exec Total Coverage
Lines: 398 500 79.6%
Functions: 20 28 71.4%
Branches: 262 346 75.7%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2007-2008 CSIRO
3 * Copyright (c) 2007-2009 Xiph.Org Foundation
4 * Copyright (c) 2008-2009 Gregory Maxwell
5 * Copyright (c) 2012 Andrew D'Addesio
6 * Copyright (c) 2013-2014 Mozilla Corporation
7 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
8 *
9 * This file is part of FFmpeg.
10 *
11 * FFmpeg is free software; you can redistribute it and/or
12 * modify it under the terms of the GNU Lesser General Public
13 * License as published by the Free Software Foundation; either
14 * version 2.1 of the License, or (at your option) any later version.
15 *
16 * FFmpeg is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
19 * Lesser General Public License for more details.
20 *
21 * You should have received a copy of the GNU Lesser General Public
22 * License along with FFmpeg; if not, write to the Free Software
23 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
24 */
25
26 #include <float.h>
27
28 #include "config_components.h"
29
30 #include "libavutil/mem.h"
31 #include "mathops.h"
32 #include "opustab.h"
33 #include "opus_pvq.h"
34
35 #define ROUND_MUL16(a,b) ((MUL16(a, b) + 16384) >> 15)
36
37 #define CELT_PVQ_U(n, k) (ff_celt_pvq_u_row[FFMIN(n, k)][FFMAX(n, k)])
38 #define CELT_PVQ_V(n, k) (CELT_PVQ_U(n, k) + CELT_PVQ_U(n, (k) + 1))
39
40 1039102 static inline int16_t celt_cos(int16_t x)
41 {
42 1039102 x = (MUL16(x, x) + 4096) >> 13;
43 1039102 x = (32767-x) + ROUND_MUL16(x, (-7651 + ROUND_MUL16(x, (8277 + ROUND_MUL16(-626, x)))));
44 1039102 return x + 1;
45 }
46
47 519551 static inline int celt_log2tan(int isin, int icos)
48 {
49 int lc, ls;
50 519551 lc = opus_ilog(icos);
51 519551 ls = opus_ilog(isin);
52 519551 icos <<= 15 - lc;
53 519551 isin <<= 15 - ls;
54 519551 return (ls << 11) - (lc << 11) +
55 1039102 ROUND_MUL16(isin, ROUND_MUL16(isin, -2597) + 7932) -
56 519551 ROUND_MUL16(icos, ROUND_MUL16(icos, -2597) + 7932);
57 }
58
59 1007694 static inline int celt_bits2pulses(const uint8_t *cache, int bits)
60 {
61 // TODO: Find the size of cache and make it into an array in the parameters list
62 1007694 int i, low = 0, high;
63
64 1007694 high = cache[0];
65 1007694 bits--;
66
67
2/2
✓ Branch 0 taken 6046164 times.
✓ Branch 1 taken 1007694 times.
7053858 for (i = 0; i < 6; i++) {
68 6046164 int center = (low + high + 1) >> 1;
69
2/2
✓ Branch 0 taken 3424102 times.
✓ Branch 1 taken 2622062 times.
6046164 if (cache[center] >= bits)
70 3424102 high = center;
71 else
72 2622062 low = center;
73 }
74
75
4/4
✓ Branch 0 taken 861380 times.
✓ Branch 1 taken 146314 times.
✓ Branch 2 taken 408572 times.
✓ Branch 3 taken 599122 times.
1007694 return (bits - (low == 0 ? -1 : cache[low]) <= cache[high] - bits) ? low : high;
76 }
77
78 1019453 static inline int celt_pulses2bits(const uint8_t *cache, int pulses)
79 {
80 // TODO: Find the size of cache and make it into an array in the parameters list
81
2/2
✓ Branch 0 taken 880651 times.
✓ Branch 1 taken 138802 times.
1019453 return (pulses == 0) ? 0 : cache[pulses] + 1;
82 }
83
84 868892 static inline void celt_normalize_residual(const int * restrict iy, float * restrict X,
85 int N, float g)
86 {
87 int i;
88
2/2
✓ Branch 0 taken 7350932 times.
✓ Branch 1 taken 868892 times.
8219824 for (i = 0; i < N; i++)
89 7350932 X[i] = g * iy[i];
90 868892 }
91
92 376059 static void celt_exp_rotation_impl(float *X, uint32_t len, uint32_t stride,
93 float c, float s)
94 {
95 float *Xptr;
96 int i;
97
98 376059 Xptr = X;
99
2/2
✓ Branch 0 taken 5067813 times.
✓ Branch 1 taken 376059 times.
5443872 for (i = 0; i < len - stride; i++) {
100 5067813 float x1 = Xptr[0];
101 5067813 float x2 = Xptr[stride];
102 5067813 Xptr[stride] = c * x2 + s * x1;
103 5067813 *Xptr++ = c * x1 - s * x2;
104 }
105
106 376059 Xptr = &X[len - 2 * stride - 1];
107
2/2
✓ Branch 0 taken 4223222 times.
✓ Branch 1 taken 376059 times.
4599281 for (i = len - 2 * stride - 1; i >= 0; i--) {
108 4223222 float x1 = Xptr[0];
109 4223222 float x2 = Xptr[stride];
110 4223222 Xptr[stride] = c * x2 + s * x1;
111 4223222 *Xptr-- = c * x1 - s * x2;
112 }
113 376059 }
114
115 868892 static inline void celt_exp_rotation(float *X, uint32_t len,
116 uint32_t stride, uint32_t K,
117 enum CeltSpread spread, const int encode)
118 {
119 868892 uint32_t stride2 = 0;
120 float c, s;
121 float gain, theta;
122 int i;
123
124
4/4
✓ Branch 0 taken 169420 times.
✓ Branch 1 taken 699472 times.
✓ Branch 2 taken 5544 times.
✓ Branch 3 taken 163876 times.
868892 if (2*K >= len || spread == CELT_SPREAD_NONE)
125 705016 return;
126
127 163876 gain = (float)len / (len + (20 - 5*spread) * K);
128 163876 theta = M_PI * gain * gain / 4;
129
130 163876 c = cosf(theta);
131 163876 s = sinf(theta);
132
133
2/2
✓ Branch 0 taken 139366 times.
✓ Branch 1 taken 24510 times.
163876 if (len >= stride << 3) {
134 139366 stride2 = 1;
135 /* This is just a simple (equivalent) way of computing sqrt(len/stride) with rounding.
136 It's basically incrementing long as (stride2+0.5)^2 < len/stride. */
137
2/2
✓ Branch 0 taken 452565 times.
✓ Branch 1 taken 139366 times.
591931 while ((stride2 * stride2 + stride2) * stride + (stride >> 2) < len)
138 452565 stride2++;
139 }
140
141 163876 len /= stride;
142
2/2
✓ Branch 0 taken 221705 times.
✓ Branch 1 taken 163876 times.
385581 for (i = 0; i < stride; i++) {
143
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 221705 times.
221705 if (encode) {
144 celt_exp_rotation_impl(X + i * len, len, 1, c, -s);
145 if (stride2)
146 celt_exp_rotation_impl(X + i * len, len, stride2, s, -c);
147 } else {
148
2/2
✓ Branch 0 taken 154354 times.
✓ Branch 1 taken 67351 times.
221705 if (stride2)
149 154354 celt_exp_rotation_impl(X + i * len, len, stride2, s, c);
150 221705 celt_exp_rotation_impl(X + i * len, len, 1, c, s);
151 }
152 }
153 }
154
155 868892 static inline uint32_t celt_extract_collapse_mask(const int *iy, uint32_t N, uint32_t B)
156 {
157 868892 int i, j, N0 = N / B;
158 868892 uint32_t collapse_mask = 0;
159
160
2/2
✓ Branch 0 taken 742013 times.
✓ Branch 1 taken 126879 times.
868892 if (B <= 1)
161 742013 return 1;
162
163
2/2
✓ Branch 0 taken 408468 times.
✓ Branch 1 taken 126879 times.
535347 for (i = 0; i < B; i++)
164
2/2
✓ Branch 0 taken 1118808 times.
✓ Branch 1 taken 408468 times.
1527276 for (j = 0; j < N0; j++)
165 1118808 collapse_mask |= (!!iy[i*N0+j]) << i;
166 126879 return collapse_mask;
167 }
168
169 186299 static inline void celt_stereo_merge(float *X, float *Y, float mid, int N)
170 {
171 int i;
172 186299 float xp = 0, side = 0;
173 float E[2];
174 float mid2;
175 float gain[2];
176
177 /* Compute the norm of X+Y and X-Y as |X|^2 + |Y|^2 +/- sum(xy) */
178
2/2
✓ Branch 0 taken 4294876 times.
✓ Branch 1 taken 186299 times.
4481175 for (i = 0; i < N; i++) {
179 4294876 xp += X[i] * Y[i];
180 4294876 side += Y[i] * Y[i];
181 }
182
183 /* Compensating for the mid normalization */
184 186299 xp *= mid;
185 186299 mid2 = mid;
186 186299 E[0] = mid2 * mid2 + side - 2 * xp;
187 186299 E[1] = mid2 * mid2 + side + 2 * xp;
188
4/4
✓ Branch 0 taken 186227 times.
✓ Branch 1 taken 72 times.
✓ Branch 2 taken 84 times.
✓ Branch 3 taken 186143 times.
186299 if (E[0] < 6e-4f || E[1] < 6e-4f) {
189
2/2
✓ Branch 0 taken 998 times.
✓ Branch 1 taken 156 times.
1154 for (i = 0; i < N; i++)
190 998 Y[i] = X[i];
191 156 return;
192 }
193
194 186143 gain[0] = 1.0f / sqrtf(E[0]);
195 186143 gain[1] = 1.0f / sqrtf(E[1]);
196
197
2/2
✓ Branch 0 taken 4293878 times.
✓ Branch 1 taken 186143 times.
4480021 for (i = 0; i < N; i++) {
198 float value[2];
199 /* Apply mid scaling (side is already scaled) */
200 4293878 value[0] = mid * X[i];
201 4293878 value[1] = Y[i];
202 4293878 X[i] = gain[0] * (value[0] - value[1]);
203 4293878 Y[i] = gain[1] * (value[0] + value[1]);
204 }
205 }
206
207 140404 static void celt_interleave_hadamard(float *tmp, float *X, int N0,
208 int stride, int hadamard)
209 {
210 140404 int i, j, N = N0*stride;
211
2/2
✓ Branch 0 taken 76152 times.
✓ Branch 1 taken 64252 times.
140404 const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
212
213
2/2
✓ Branch 0 taken 747146 times.
✓ Branch 1 taken 140404 times.
887550 for (i = 0; i < stride; i++)
214
2/2
✓ Branch 0 taken 3664528 times.
✓ Branch 1 taken 747146 times.
4411674 for (j = 0; j < N0; j++)
215 3664528 tmp[j*stride+i] = X[order[i]*N0+j];
216
217 140404 memcpy(X, tmp, N*sizeof(float));
218 140404 }
219
220 91020 static void celt_deinterleave_hadamard(float *tmp, float *X, int N0,
221 int stride, int hadamard)
222 {
223 91020 int i, j, N = N0*stride;
224
2/2
✓ Branch 0 taken 50902 times.
✓ Branch 1 taken 40118 times.
91020 const uint8_t *order = &ff_celt_hadamard_order[hadamard ? stride - 2 : 30];
225
226
2/2
✓ Branch 0 taken 467136 times.
✓ Branch 1 taken 91020 times.
558156 for (i = 0; i < stride; i++)
227
2/2
✓ Branch 0 taken 2285770 times.
✓ Branch 1 taken 467136 times.
2752906 for (j = 0; j < N0; j++)
228 2285770 tmp[order[i]*N0+j] = X[j*stride+i];
229
230 91020 memcpy(X, tmp, N*sizeof(float));
231 91020 }
232
233 356997 static void celt_haar1(float *X, int N0, int stride)
234 {
235 int i, j;
236 356997 N0 >>= 1;
237
2/2
✓ Branch 0 taken 676243 times.
✓ Branch 1 taken 356997 times.
1033240 for (i = 0; i < stride; i++) {
238
2/2
✓ Branch 0 taken 5132312 times.
✓ Branch 1 taken 676243 times.
5808555 for (j = 0; j < N0; j++) {
239 5132312 float x0 = X[stride * (2 * j + 0) + i];
240 5132312 float x1 = X[stride * (2 * j + 1) + i];
241 5132312 X[stride * (2 * j + 0) + i] = (x0 + x1) * M_SQRT1_2;
242 5132312 X[stride * (2 * j + 1) + i] = (x0 - x1) * M_SQRT1_2;
243 }
244 }
245 356997 }
246
247 575935 static inline int celt_compute_qn(int N, int b, int offset, int pulse_cap,
248 int stereo)
249 {
250 int qn, qb;
251 575935 int N2 = 2 * N - 1;
252
4/4
✓ Branch 0 taken 188735 times.
✓ Branch 1 taken 387200 times.
✓ Branch 2 taken 48661 times.
✓ Branch 3 taken 140074 times.
575935 if (stereo && N == 2)
253 48661 N2--;
254
255 /* The upper limit ensures that in a stereo split with itheta==16384, we'll
256 * always have enough bits left over to code at least one pulse in the
257 * side; otherwise it would collapse, since it doesn't get folded. */
258 575935 qb = FFMIN3(b - pulse_cap - (4 << 3), (b + N2 * offset) / N2, 8 << 3);
259
2/2
✓ Branch 0 taken 574220 times.
✓ Branch 1 taken 1715 times.
575935 qn = (qb < (1 << 3 >> 1)) ? 1 : ((ff_celt_qn_exp2[qb & 0x7] >> (14 - (qb >> 3))) + 1) >> 1 << 1;
260 575935 return qn;
261 }
262
263 /* Convert the quantized vector to an index */
264 static inline uint32_t celt_icwrsi(uint32_t N, uint32_t K, const int *y)
265 {
266 int i, idx = 0, sum = 0;
267 for (i = N - 1; i >= 0; i--) {
268 const uint32_t i_s = CELT_PVQ_U(N - i, sum + FFABS(y[i]) + 1);
269 idx += CELT_PVQ_U(N - i, sum) + (y[i] < 0)*i_s;
270 sum += FFABS(y[i]);
271 }
272 return idx;
273 }
274
275 // this code was adapted from libopus
276 868892 static inline uint64_t celt_cwrsi(uint32_t N, uint32_t K, uint32_t i, int *y)
277 {
278 868892 uint64_t norm = 0;
279 uint32_t q, p;
280 int s, val;
281 int k0;
282
283
2/2
✓ Branch 0 taken 5613148 times.
✓ Branch 1 taken 868892 times.
6482040 while (N > 2) {
284 /*Lots of pulses case:*/
285
2/2
✓ Branch 0 taken 1668292 times.
✓ Branch 1 taken 3944856 times.
5613148 if (K >= N) {
286 1668292 const uint32_t *row = ff_celt_pvq_u_row[N];
287
288 /* Are the pulses in this dimension negative? */
289 1668292 p = row[K + 1];
290 1668292 s = -(i >= p);
291 1668292 i -= p & s;
292
293 /*Count how many pulses were placed in this dimension.*/
294 1668292 k0 = K;
295 1668292 q = row[N];
296
2/2
✓ Branch 0 taken 269151 times.
✓ Branch 1 taken 1399141 times.
1668292 if (q > i) {
297 269151 K = N;
298 do {
299 387560 p = ff_celt_pvq_u_row[--K][N];
300
2/2
✓ Branch 0 taken 118409 times.
✓ Branch 1 taken 269151 times.
387560 } while (p > i);
301 } else
302
2/2
✓ Branch 0 taken 7353979 times.
✓ Branch 1 taken 1399141 times.
8753120 for (p = row[K]; p > i; p = row[K])
303 7353979 K--;
304
305 1668292 i -= p;
306 1668292 val = (k0 - K + s) ^ s;
307 1668292 norm += val * val;
308 1668292 *y++ = val;
309 } else { /*Lots of dimensions case:*/
310 /*Are there any pulses in this dimension at all?*/
311 3944856 p = ff_celt_pvq_u_row[K ][N];
312 3944856 q = ff_celt_pvq_u_row[K + 1][N];
313
314
4/4
✓ Branch 0 taken 3392797 times.
✓ Branch 1 taken 552059 times.
✓ Branch 2 taken 2840145 times.
✓ Branch 3 taken 552652 times.
3944856 if (p <= i && i < q) {
315 2840145 i -= p;
316 2840145 *y++ = 0;
317 } else {
318 /*Are the pulses in this dimension negative?*/
319 1104711 s = -(i >= q);
320 1104711 i -= q & s;
321
322 /*Count how many pulses were placed in this dimension.*/
323 1104711 k0 = K;
324 1286305 do p = ff_celt_pvq_u_row[--K][N];
325
2/2
✓ Branch 0 taken 181594 times.
✓ Branch 1 taken 1104711 times.
1286305 while (p > i);
326
327 1104711 i -= p;
328 1104711 val = (k0 - K + s) ^ s;
329 1104711 norm += val * val;
330 1104711 *y++ = val;
331 }
332 }
333 5613148 N--;
334 }
335
336 /* N == 2 */
337 868892 p = 2 * K + 1;
338 868892 s = -(i >= p);
339 868892 i -= p & s;
340 868892 k0 = K;
341 868892 K = (i + 1) / 2;
342
343
2/2
✓ Branch 0 taken 612521 times.
✓ Branch 1 taken 256371 times.
868892 if (K)
344 612521 i -= 2 * K - 1;
345
346 868892 val = (k0 - K + s) ^ s;
347 868892 norm += val * val;
348 868892 *y++ = val;
349
350 /* N==1 */
351 868892 s = -i;
352 868892 val = (K + s) ^ s;
353 868892 norm += val * val;
354 868892 *y = val;
355
356 868892 return norm;
357 }
358
359 static inline void celt_encode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
360 {
361 ff_opus_rc_enc_uint(rc, celt_icwrsi(N, K, y), CELT_PVQ_V(N, K));
362 }
363
364 868892 static inline float celt_decode_pulses(OpusRangeCoder *rc, int *y, uint32_t N, uint32_t K)
365 {
366
4/4
✓ Branch 0 taken 313633 times.
✓ Branch 1 taken 555259 times.
✓ Branch 2 taken 281486 times.
✓ Branch 3 taken 587406 times.
868892 const uint32_t idx = ff_opus_rc_dec_uint(rc, CELT_PVQ_V(N, K));
367 868892 return celt_cwrsi(N, K, idx, y);
368 }
369
370 #if CONFIG_OPUS_ENCODER
371 /*
372 * Faster than libopus's search, operates entirely in the signed domain.
373 * Slightly worse/better depending on N, K and the input vector.
374 */
375 static float ppp_pvq_search_c(float *X, int *y, int K, int N)
376 {
377 int i, y_norm = 0;
378 float res = 0.0f, xy_norm = 0.0f;
379
380 for (i = 0; i < N; i++)
381 res += FFABS(X[i]);
382
383 res = K/(res + FLT_EPSILON);
384
385 for (i = 0; i < N; i++) {
386 y[i] = lrintf(res*X[i]);
387 y_norm += y[i]*y[i];
388 xy_norm += y[i]*X[i];
389 K -= FFABS(y[i]);
390 }
391
392 while (K) {
393 int max_idx = 0, phase = FFSIGN(K);
394 float max_num = 0.0f;
395 float max_den = 1.0f;
396 y_norm += 1.0f;
397
398 for (i = 0; i < N; i++) {
399 /* If the sum has been overshot and the best place has 0 pulses allocated
400 * to it, attempting to decrease it further will actually increase the
401 * sum. Prevent this by disregarding any 0 positions when decrementing. */
402 const int ca = 1 ^ ((y[i] == 0) & (phase < 0));
403 const int y_new = y_norm + 2*phase*FFABS(y[i]);
404 float xy_new = xy_norm + 1*phase*FFABS(X[i]);
405 xy_new = xy_new * xy_new;
406 if (ca && (max_den*xy_new) > (y_new*max_num)) {
407 max_den = y_new;
408 max_num = xy_new;
409 max_idx = i;
410 }
411 }
412
413 K -= phase;
414
415 phase *= FFSIGN(X[max_idx]);
416 xy_norm += 1*phase*X[max_idx];
417 y_norm += 2*phase*y[max_idx];
418 y[max_idx] += phase;
419 }
420
421 return (float)y_norm;
422 }
423 #endif
424
425 static uint32_t celt_alg_quant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
426 enum CeltSpread spread, uint32_t blocks, float gain,
427 CeltPVQ *pvq)
428 {
429 int *y = pvq->qcoeff;
430
431 celt_exp_rotation(X, N, blocks, K, spread, 1);
432 gain /= sqrtf(pvq->pvq_search(X, y, K, N));
433 celt_encode_pulses(rc, y, N, K);
434 celt_normalize_residual(y, X, N, gain);
435 celt_exp_rotation(X, N, blocks, K, spread, 0);
436 return celt_extract_collapse_mask(y, N, blocks);
437 }
438
439 /** Decode pulse vector and combine the result with the pitch vector to produce
440 the final normalised signal in the current band. */
441 868892 static uint32_t celt_alg_unquant(OpusRangeCoder *rc, float *X, uint32_t N, uint32_t K,
442 enum CeltSpread spread, uint32_t blocks, float gain,
443 CeltPVQ *pvq)
444 {
445 868892 int *y = pvq->qcoeff;
446
447 868892 gain /= sqrtf(celt_decode_pulses(rc, y, N, K));
448 868892 celt_normalize_residual(y, X, N, gain);
449 868892 celt_exp_rotation(X, N, blocks, K, spread, 0);
450 868892 return celt_extract_collapse_mask(y, N, blocks);
451 }
452
453 static int celt_calc_theta(const float *X, const float *Y, int coupling, int N)
454 {
455 int i;
456 float e[2] = { 0.0f, 0.0f };
457 if (coupling) { /* Coupling case */
458 for (i = 0; i < N; i++) {
459 e[0] += (X[i] + Y[i])*(X[i] + Y[i]);
460 e[1] += (X[i] - Y[i])*(X[i] - Y[i]);
461 }
462 } else {
463 for (i = 0; i < N; i++) {
464 e[0] += X[i]*X[i];
465 e[1] += Y[i]*Y[i];
466 }
467 }
468 return lrintf(32768.0f*atan2f(sqrtf(e[1]), sqrtf(e[0]))/M_PI);
469 }
470
471 static void celt_stereo_is_decouple(float *X, float *Y, float e_l, float e_r, int N)
472 {
473 int i;
474 const float energy_n = 1.0f/(sqrtf(e_l*e_l + e_r*e_r) + FLT_EPSILON);
475 e_l *= energy_n;
476 e_r *= energy_n;
477 for (i = 0; i < N; i++)
478 X[i] = e_l*X[i] + e_r*Y[i];
479 }
480
481 static void celt_stereo_ms_decouple(float *X, float *Y, int N)
482 {
483 int i;
484 for (i = 0; i < N; i++) {
485 const float Xret = X[i];
486 X[i] = (X[i] + Y[i])*M_SQRT1_2;
487 Y[i] = (Y[i] - Xret)*M_SQRT1_2;
488 }
489 }
490
491 1745036 static av_always_inline uint32_t quant_band_template(CeltPVQ *pvq, CeltFrame *f,
492 OpusRangeCoder *rc,
493 const int band, float *X,
494 float *Y, int N, int b,
495 uint32_t blocks, float *lowband,
496 int duration, float *lowband_out,
497 int level, float gain,
498 float *lowband_scratch,
499 int fill, int quant)
500 {
501 int i;
502 const uint8_t *cache;
503 1745036 int stereo = !!Y, split = stereo;
504 1745036 int imid = 0, iside = 0;
505 1745036 uint32_t N0 = N;
506 1745036 int N_B = N / blocks;
507 1745036 int N_B0 = N_B;
508 1745036 int B0 = blocks;
509 1745036 int time_divide = 0;
510 1745036 int recombine = 0;
511 1745036 int inv = 0;
512 1745036 float mid = 0, side = 0;
513 1745036 int longblocks = (B0 == 1);
514 1745036 uint32_t cm = 0;
515
516
2/2
✓ Branch 0 taken 109648 times.
✓ Branch 1 taken 1635388 times.
1745036 if (N == 1) {
517 109648 float *x = X;
518
2/2
✓ Branch 0 taken 176024 times.
✓ Branch 1 taken 109648 times.
285672 for (i = 0; i <= stereo; i++) {
519 176024 int sign = 0;
520
2/2
✓ Branch 0 taken 169213 times.
✓ Branch 1 taken 6811 times.
176024 if (f->remaining2 >= 1 << 3) {
521
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 169213 times.
169213 if (quant) {
522 sign = x[0] < 0;
523 ff_opus_rc_put_raw(rc, sign, 1);
524 } else {
525 169213 sign = ff_opus_rc_get_raw(rc, 1);
526 }
527 169213 f->remaining2 -= 1 << 3;
528 }
529 176024 x[0] = 1.0f - 2.0f*sign;
530 176024 x = Y;
531 }
532
1/2
✓ Branch 0 taken 109648 times.
✗ Branch 1 not taken.
109648 if (lowband_out)
533 109648 lowband_out[0] = X[0];
534 109648 return 1;
535 }
536
537
4/4
✓ Branch 0 taken 1394894 times.
✓ Branch 1 taken 240494 times.
✓ Branch 2 taken 620494 times.
✓ Branch 3 taken 774400 times.
1635388 if (!stereo && level == 0) {
538 620494 int tf_change = f->tf_change[band];
539 int k;
540
2/2
✓ Branch 0 taken 40217 times.
✓ Branch 1 taken 580277 times.
620494 if (tf_change > 0)
541 40217 recombine = tf_change;
542 /* Band recombining to increase frequency resolution */
543
544
4/4
✓ Branch 0 taken 371425 times.
✓ Branch 1 taken 249069 times.
✓ Branch 2 taken 345583 times.
✓ Branch 3 taken 25842 times.
620494 if (lowband &&
545
6/6
✓ Branch 0 taken 334650 times.
✓ Branch 1 taken 10933 times.
✓ Branch 2 taken 275618 times.
✓ Branch 3 taken 59032 times.
✓ Branch 4 taken 23601 times.
✓ Branch 5 taken 262950 times.
345583 (recombine || ((N_B & 1) == 0 && tf_change < 0) || B0 > 1)) {
546
2/2
✓ Branch 0 taken 2682290 times.
✓ Branch 1 taken 108475 times.
2790765 for (i = 0; i < N; i++)
547 2682290 lowband_scratch[i] = lowband[i];
548 108475 lowband = lowband_scratch;
549 }
550
551
2/2
✓ Branch 0 taken 67800 times.
✓ Branch 1 taken 620494 times.
688294 for (k = 0; k < recombine; k++) {
552
3/4
✓ Branch 0 taken 67800 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 42647 times.
✓ Branch 3 taken 25153 times.
67800 if (quant || lowband)
553
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 42647 times.
42647 celt_haar1(quant ? X : lowband, N >> k, 1 << k);
554 67800 fill = ff_celt_bit_interleave[fill & 0xF] | ff_celt_bit_interleave[fill >> 4] << 2;
555 }
556 620494 blocks >>= recombine;
557 620494 N_B <<= recombine;
558
559 /* Increasing the time resolution */
560
4/4
✓ Branch 0 taken 719652 times.
✓ Branch 1 taken 50519 times.
✓ Branch 2 taken 149677 times.
✓ Branch 3 taken 569975 times.
770171 while ((N_B & 1) == 0 && tf_change < 0) {
561
3/4
✓ Branch 0 taken 149677 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 96873 times.
✓ Branch 3 taken 52804 times.
149677 if (quant || lowband)
562
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 96873 times.
96873 celt_haar1(quant ? X : lowband, N_B, blocks);
563 149677 fill |= fill << blocks;
564 149677 blocks <<= 1;
565 149677 N_B >>= 1;
566 149677 time_divide++;
567 149677 tf_change++;
568 }
569 620494 B0 = blocks;
570 620494 N_B0 = N_B;
571
572 /* Reorganize the samples in time order instead of frequency order */
573
5/6
✓ Branch 0 taken 140404 times.
✓ Branch 1 taken 480090 times.
✓ Branch 2 taken 140404 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 91020 times.
✓ Branch 5 taken 49384 times.
620494 if (B0 > 1 && (quant || lowband))
574
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 91020 times.
91020 celt_deinterleave_hadamard(pvq->hadamard_tmp, quant ? X : lowband,
575 N_B >> recombine, B0 << recombine,
576 longblocks);
577 }
578
579 /* If we need 1.5 more bit than we can produce, split the band in two. */
580 1635388 cache = ff_celt_cache_bits +
581 1635388 ff_celt_cache_index[(duration + 1) * CELT_MAX_BANDS + band];
582
8/8
✓ Branch 0 taken 1394894 times.
✓ Branch 1 taken 240494 times.
✓ Branch 2 taken 1195112 times.
✓ Branch 3 taken 199782 times.
✓ Branch 4 taken 441684 times.
✓ Branch 5 taken 753428 times.
✓ Branch 6 taken 387200 times.
✓ Branch 7 taken 54484 times.
1635388 if (!stereo && duration >= 0 && b > cache[cache[0]] + 12 && N > 2) {
583 387200 N >>= 1;
584 387200 Y = X + N;
585 387200 split = 1;
586 387200 duration -= 1;
587
2/2
✓ Branch 0 taken 245873 times.
✓ Branch 1 taken 141327 times.
387200 if (blocks == 1)
588 245873 fill = (fill & 1) | (fill << 1);
589 387200 blocks = (blocks + 1) >> 1;
590 }
591
592
2/2
✓ Branch 0 taken 627694 times.
✓ Branch 1 taken 1007694 times.
1635388 if (split) {
593 int qn;
594
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 627694 times.
627694 int itheta = quant ? celt_calc_theta(X, Y, stereo, N) : 0;
595 int mbits, sbits, delta;
596 int qalloc;
597 int pulse_cap;
598 int offset;
599 int orig_fill;
600 int tell;
601
602 /* Decide on the resolution to give to the split parameter theta */
603 627694 pulse_cap = ff_celt_log_freq_range[band] + duration * 8;
604
4/4
✓ Branch 0 taken 240494 times.
✓ Branch 1 taken 387200 times.
✓ Branch 2 taken 54195 times.
✓ Branch 3 taken 186299 times.
627694 offset = (pulse_cap >> 1) - (stereo && N == 2 ? CELT_QTHETA_OFFSET_TWOPHASE :
605 CELT_QTHETA_OFFSET);
606
4/4
✓ Branch 0 taken 240494 times.
✓ Branch 1 taken 387200 times.
✓ Branch 2 taken 188735 times.
✓ Branch 3 taken 51759 times.
627694 qn = (stereo && band >= f->intensity_stereo) ? 1 :
607 575935 celt_compute_qn(N, b, offset, pulse_cap, stereo);
608 627694 tell = opus_rc_tell_frac(rc);
609
2/2
✓ Branch 0 taken 574220 times.
✓ Branch 1 taken 53474 times.
627694 if (qn != 1) {
610
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 574220 times.
574220 if (quant)
611 itheta = (itheta*qn + 8192) >> 14;
612 /* Entropy coding of the angle. We use a uniform pdf for the
613 * time split, a step for stereo, and a triangular one for the rest. */
614
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 574220 times.
574220 if (quant) {
615 if (stereo && N > 2)
616 ff_opus_rc_enc_uint_step(rc, itheta, qn / 2);
617 else if (stereo || B0 > 1)
618 ff_opus_rc_enc_uint(rc, itheta, qn + 1);
619 else
620 ff_opus_rc_enc_uint_tri(rc, itheta, qn);
621 itheta = itheta * 16384 / qn;
622 if (stereo) {
623 if (itheta == 0)
624 celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
625 f->block[1].lin_energy[band], N);
626 else
627 celt_stereo_ms_decouple(X, Y, N);
628 }
629 } else {
630
4/4
✓ Branch 0 taken 187020 times.
✓ Branch 1 taken 387200 times.
✓ Branch 2 taken 138861 times.
✓ Branch 3 taken 48159 times.
574220 if (stereo && N > 2)
631 138861 itheta = ff_opus_rc_dec_uint_step(rc, qn / 2);
632
4/4
✓ Branch 0 taken 387200 times.
✓ Branch 1 taken 48159 times.
✓ Branch 2 taken 141327 times.
✓ Branch 3 taken 245873 times.
435359 else if (stereo || B0 > 1)
633 189486 itheta = ff_opus_rc_dec_uint(rc, qn+1);
634 else
635 245873 itheta = ff_opus_rc_dec_uint_tri(rc, qn);
636 574220 itheta = itheta * 16384 / qn;
637 }
638
1/2
✓ Branch 0 taken 53474 times.
✗ Branch 1 not taken.
53474 } else if (stereo) {
639
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 53474 times.
53474 if (quant) {
640 inv = f->apply_phase_inv ? itheta > 8192 : 0;
641 if (inv) {
642 for (i = 0; i < N; i++)
643 Y[i] *= -1;
644 }
645 celt_stereo_is_decouple(X, Y, f->block[0].lin_energy[band],
646 f->block[1].lin_energy[band], N);
647
648 if (b > 2 << 3 && f->remaining2 > 2 << 3) {
649 ff_opus_rc_enc_log(rc, inv, 2);
650 } else {
651 inv = 0;
652 }
653 } else {
654
3/4
✓ Branch 0 taken 19635 times.
✓ Branch 1 taken 33839 times.
✓ Branch 2 taken 19635 times.
✗ Branch 3 not taken.
53474 inv = (b > 2 << 3 && f->remaining2 > 2 << 3) ? ff_opus_rc_dec_log(rc, 2) : 0;
655
1/2
✓ Branch 0 taken 53474 times.
✗ Branch 1 not taken.
53474 inv = f->apply_phase_inv ? inv : 0;
656 }
657 53474 itheta = 0;
658 }
659 627694 qalloc = opus_rc_tell_frac(rc) - tell;
660 627694 b -= qalloc;
661
662 627694 orig_fill = fill;
663
2/2
✓ Branch 0 taken 105759 times.
✓ Branch 1 taken 521935 times.
627694 if (itheta == 0) {
664 105759 imid = 32767;
665 105759 iside = 0;
666 105759 fill = av_mod_uintp2(fill, blocks);
667 105759 delta = -16384;
668
2/2
✓ Branch 0 taken 2384 times.
✓ Branch 1 taken 519551 times.
521935 } else if (itheta == 16384) {
669 2384 imid = 0;
670 2384 iside = 32767;
671 2384 fill &= ((1 << blocks) - 1) << blocks;
672 2384 delta = 16384;
673 } else {
674 519551 imid = celt_cos(itheta);
675 519551 iside = celt_cos(16384-itheta);
676 /* This is the mid vs side allocation that minimizes squared error
677 in that band. */
678 519551 delta = ROUND_MUL16((N - 1) << 7, celt_log2tan(iside, imid));
679 }
680
681 627694 mid = imid / 32768.0f;
682 627694 side = iside / 32768.0f;
683
684 /* This is a special case for N=2 that only works for stereo and takes
685 advantage of the fact that mid and side are orthogonal to encode
686 the side with just one bit. */
687
4/4
✓ Branch 0 taken 104284 times.
✓ Branch 1 taken 523410 times.
✓ Branch 2 taken 54195 times.
✓ Branch 3 taken 50089 times.
627694 if (N == 2 && stereo) {
688 int c;
689 54195 int sign = 0;
690 float tmp;
691 float *x2, *y2;
692 54195 mbits = b;
693 /* Only need one bit for the side */
694
4/4
✓ Branch 0 taken 30179 times.
✓ Branch 1 taken 24016 times.
✓ Branch 2 taken 28840 times.
✓ Branch 3 taken 1339 times.
54195 sbits = (itheta != 0 && itheta != 16384) ? 1 << 3 : 0;
695 54195 mbits -= sbits;
696 54195 c = (itheta > 8192);
697 54195 f->remaining2 -= qalloc+sbits;
698
699
2/2
✓ Branch 0 taken 11376 times.
✓ Branch 1 taken 42819 times.
54195 x2 = c ? Y : X;
700
2/2
✓ Branch 0 taken 11376 times.
✓ Branch 1 taken 42819 times.
54195 y2 = c ? X : Y;
701
2/2
✓ Branch 0 taken 28840 times.
✓ Branch 1 taken 25355 times.
54195 if (sbits) {
702
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 28840 times.
28840 if (quant) {
703 sign = x2[0]*y2[1] - x2[1]*y2[0] < 0;
704 ff_opus_rc_put_raw(rc, sign, 1);
705 } else {
706 28840 sign = ff_opus_rc_get_raw(rc, 1);
707 }
708 }
709 54195 sign = 1 - 2 * sign;
710 /* We use orig_fill here because we want to fold the side, but if
711 itheta==16384, we'll have cleared the low bits of fill. */
712 54195 cm = pvq->quant_band(pvq, f, rc, band, x2, NULL, N, mbits, blocks, lowband, duration,
713 lowband_out, level, gain, lowband_scratch, orig_fill);
714 /* We don't split N=2 bands, so cm is either 1 or 0 (for a fold-collapse),
715 and there's no need to worry about mixing with the other channel. */
716 54195 y2[0] = -sign * x2[1];
717 54195 y2[1] = sign * x2[0];
718 54195 X[0] *= mid;
719 54195 X[1] *= mid;
720 54195 Y[0] *= side;
721 54195 Y[1] *= side;
722 54195 tmp = X[0];
723 54195 X[0] = tmp - Y[0];
724 54195 Y[0] = tmp + Y[0];
725 54195 tmp = X[1];
726 54195 X[1] = tmp - Y[1];
727 54195 Y[1] = tmp + Y[1];
728 } else {
729 /* "Normal" split code */
730 573499 float *next_lowband2 = NULL;
731 573499 float *next_lowband_out1 = NULL;
732 573499 int next_level = 0;
733 int rebalance;
734 uint32_t cmt;
735
736 /* Give more bits to low-energy MDCTs than they would
737 * otherwise deserve */
738
6/6
✓ Branch 0 taken 170425 times.
✓ Branch 1 taken 403074 times.
✓ Branch 2 taken 141327 times.
✓ Branch 3 taken 29098 times.
✓ Branch 4 taken 140343 times.
✓ Branch 5 taken 984 times.
573499 if (B0 > 1 && !stereo && (itheta & 0x3fff)) {
739
2/2
✓ Branch 0 taken 61276 times.
✓ Branch 1 taken 79067 times.
140343 if (itheta > 8192)
740 /* Rough approximation for pre-echo masking */
741 61276 delta -= delta >> (4 - duration);
742 else
743 /* Corresponds to a forward-masking slope of
744 * 1.5 dB per 10 ms */
745 79067 delta = FFMIN(0, delta + (N << 3 >> (5 - duration)));
746 }
747 573499 mbits = av_clip((b - delta) / 2, 0, b);
748 573499 sbits = b - mbits;
749 573499 f->remaining2 -= qalloc;
750
751
4/4
✓ Branch 0 taken 452857 times.
✓ Branch 1 taken 120642 times.
✓ Branch 2 taken 292705 times.
✓ Branch 3 taken 160152 times.
573499 if (lowband && !stereo)
752 292705 next_lowband2 = lowband + N; /* >32-bit split case */
753
754 /* Only stereo needs to pass on lowband_out.
755 * Otherwise, it's handled at the end */
756
2/2
✓ Branch 0 taken 186299 times.
✓ Branch 1 taken 387200 times.
573499 if (stereo)
757 186299 next_lowband_out1 = lowband_out;
758 else
759 387200 next_level = level + 1;
760
761 573499 rebalance = f->remaining2;
762
2/2
✓ Branch 0 taken 351878 times.
✓ Branch 1 taken 221621 times.
573499 if (mbits >= sbits) {
763 /* In stereo mode, we do not apply a scaling to the mid
764 * because we need the normalized mid for folding later */
765
2/2
✓ Branch 0 taken 202679 times.
✓ Branch 1 taken 149199 times.
351878 cm = pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
766 lowband, duration, next_lowband_out1, next_level,
767 stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
768 351878 rebalance = mbits - (rebalance - f->remaining2);
769
4/4
✓ Branch 0 taken 95802 times.
✓ Branch 1 taken 256076 times.
✓ Branch 2 taken 86613 times.
✓ Branch 3 taken 9189 times.
351878 if (rebalance > 3 << 3 && itheta != 0)
770 86613 sbits += rebalance - (3 << 3);
771
772 /* For a stereo split, the high bits of fill are always zero,
773 * so no folding will be done to the side. */
774 351878 cmt = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
775 next_lowband2, duration, NULL, next_level,
776 gain * side, NULL, fill >> blocks);
777 351878 cm |= cmt << ((B0 >> 1) & (stereo - 1));
778 } else {
779 /* For a stereo split, the high bits of fill are always zero,
780 * so no folding will be done to the side. */
781 221621 cm = pvq->quant_band(pvq, f, rc, band, Y, NULL, N, sbits, blocks,
782 next_lowband2, duration, NULL, next_level,
783 gain * side, NULL, fill >> blocks);
784 221621 cm <<= ((B0 >> 1) & (stereo - 1));
785 221621 rebalance = sbits - (rebalance - f->remaining2);
786
4/4
✓ Branch 0 taken 81295 times.
✓ Branch 1 taken 140326 times.
✓ Branch 2 taken 81050 times.
✓ Branch 3 taken 245 times.
221621 if (rebalance > 3 << 3 && itheta != 16384)
787 81050 mbits += rebalance - (3 << 3);
788
789 /* In stereo mode, we do not apply a scaling to the mid because
790 * we need the normalized mid for folding later */
791
2/2
✓ Branch 0 taken 184521 times.
✓ Branch 1 taken 37100 times.
221621 cm |= pvq->quant_band(pvq, f, rc, band, X, NULL, N, mbits, blocks,
792 lowband, duration, next_lowband_out1, next_level,
793 stereo ? 1.0f : (gain * mid), lowband_scratch, fill);
794 }
795 }
796 } else {
797 /* This is the basic no-split case */
798 1007694 uint32_t q = celt_bits2pulses(cache, b);
799 1007694 uint32_t curr_bits = celt_pulses2bits(cache, q);
800 1007694 f->remaining2 -= curr_bits;
801
802 /* Ensures we can never bust the budget */
803
4/4
✓ Branch 0 taken 14994 times.
✓ Branch 1 taken 1004459 times.
✓ Branch 2 taken 11759 times.
✓ Branch 3 taken 3235 times.
1019453 while (f->remaining2 < 0 && q > 0) {
804 11759 f->remaining2 += curr_bits;
805 11759 curr_bits = celt_pulses2bits(cache, --q);
806 11759 f->remaining2 -= curr_bits;
807 }
808
809
2/2
✓ Branch 0 taken 868892 times.
✓ Branch 1 taken 138802 times.
1007694 if (q != 0) {
810 /* Finally do the actual (de)quantization */
811
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 868892 times.
868892 if (quant) {
812 cm = celt_alg_quant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
813 f->spread, blocks, gain, pvq);
814 } else {
815
2/2
✓ Branch 0 taken 558333 times.
✓ Branch 1 taken 310559 times.
868892 cm = celt_alg_unquant(rc, X, N, (q < 8) ? q : (8 + (q & 7)) << ((q >> 3) - 1),
816 f->spread, blocks, gain, pvq);
817 }
818 } else {
819 /* If there's no pulse, fill the band anyway */
820 138802 uint32_t cm_mask = (1 << blocks) - 1;
821 138802 fill &= cm_mask;
822
2/2
✓ Branch 0 taken 54173 times.
✓ Branch 1 taken 84629 times.
138802 if (fill) {
823
2/2
✓ Branch 0 taken 9195 times.
✓ Branch 1 taken 44978 times.
54173 if (!lowband) {
824 /* Noise */
825
2/2
✓ Branch 0 taken 212472 times.
✓ Branch 1 taken 9195 times.
221667 for (i = 0; i < N; i++)
826 212472 X[i] = (((int32_t)celt_rng(f)) >> 20);
827 9195 cm = cm_mask;
828 } else {
829 /* Folded spectrum */
830
2/2
✓ Branch 0 taken 1772186 times.
✓ Branch 1 taken 44978 times.
1817164 for (i = 0; i < N; i++) {
831 /* About 48 dB below the "normal" folding level */
832
2/2
✓ Branch 1 taken 887413 times.
✓ Branch 2 taken 884773 times.
1772186 X[i] = lowband[i] + (((celt_rng(f)) & 0x8000) ? 1.0f / 256 : -1.0f / 256);
833 }
834 44978 cm = fill;
835 }
836 54173 celt_renormalize_vector(X, N, gain);
837 } else {
838 84629 memset(X, 0, N*sizeof(float));
839 }
840 }
841 }
842
843 /* This code is used by the decoder and by the resynthesis-enabled encoder */
844
2/2
✓ Branch 0 taken 240494 times.
✓ Branch 1 taken 1394894 times.
1635388 if (stereo) {
845
2/2
✓ Branch 0 taken 186299 times.
✓ Branch 1 taken 54195 times.
240494 if (N > 2)
846 186299 celt_stereo_merge(X, Y, mid, N);
847
2/2
✓ Branch 0 taken 6978 times.
✓ Branch 1 taken 233516 times.
240494 if (inv) {
848
2/2
✓ Branch 0 taken 391242 times.
✓ Branch 1 taken 6978 times.
398220 for (i = 0; i < N; i++)
849 391242 Y[i] *= -1;
850 }
851
2/2
✓ Branch 0 taken 620494 times.
✓ Branch 1 taken 774400 times.
1394894 } else if (level == 0) {
852 int k;
853
854 /* Undo the sample reorganization going from time order to frequency order */
855
2/2
✓ Branch 0 taken 140404 times.
✓ Branch 1 taken 480090 times.
620494 if (B0 > 1)
856 140404 celt_interleave_hadamard(pvq->hadamard_tmp, X, N_B >> recombine,
857 B0 << recombine, longblocks);
858
859 /* Undo time-freq changes that we did earlier */
860 620494 N_B = N_B0;
861 620494 blocks = B0;
862
2/2
✓ Branch 0 taken 149677 times.
✓ Branch 1 taken 620494 times.
770171 for (k = 0; k < time_divide; k++) {
863 149677 blocks >>= 1;
864 149677 N_B <<= 1;
865 149677 cm |= cm >> blocks;
866 149677 celt_haar1(X, N_B, blocks);
867 }
868
869
2/2
✓ Branch 0 taken 67800 times.
✓ Branch 1 taken 620494 times.
688294 for (k = 0; k < recombine; k++) {
870 67800 cm = ff_celt_bit_deinterleave[cm];
871 67800 celt_haar1(X, N0>>k, 1<<k);
872 }
873 620494 blocks <<= recombine;
874
875 /* Scale output for later folding */
876
2/2
✓ Branch 0 taken 434195 times.
✓ Branch 1 taken 186299 times.
620494 if (lowband_out) {
877 434195 float n = sqrtf(N0);
878
2/2
✓ Branch 0 taken 7769770 times.
✓ Branch 1 taken 434195 times.
8203965 for (i = 0; i < N0; i++)
879 7769770 lowband_out[i] = n * X[i];
880 }
881 620494 cm = av_mod_uintp2(cm, blocks);
882 }
883
884 1635388 return cm;
885 }
886
887 1745036 static QUANT_FN(pvq_decode_band)
888 {
889 #if CONFIG_OPUS_DECODER
890 1745036 return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
891 lowband_out, level, gain, lowband_scratch, fill, 0);
892 #else
893 return 0;
894 #endif
895 }
896
897 static QUANT_FN(pvq_encode_band)
898 {
899 #if CONFIG_OPUS_ENCODER
900 return quant_band_template(pvq, f, rc, band, X, Y, N, b, blocks, lowband, duration,
901 lowband_out, level, gain, lowband_scratch, fill, 1);
902 #else
903 return 0;
904 #endif
905 }
906
907 58 int av_cold ff_celt_pvq_init(CeltPVQ **pvq, int encode)
908 {
909 58 CeltPVQ *s = av_malloc(sizeof(CeltPVQ));
910
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 58 times.
58 if (!s)
911 return AVERROR(ENOMEM);
912
913
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 58 times.
58 s->quant_band = encode ? pvq_encode_band : pvq_decode_band;
914
915 #if CONFIG_OPUS_ENCODER
916 58 s->pvq_search = ppp_pvq_search_c;
917 #if ARCH_X86
918 58 ff_celt_pvq_init_x86(s);
919 #endif
920 #endif
921
922 58 *pvq = s;
923
924 58 return 0;
925 }
926
927 58 void av_cold ff_celt_pvq_uninit(CeltPVQ **pvq)
928 {
929 58 av_freep(pvq);
930 58 }
931