FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/mss3.c
Date: 2024-11-20 23:03:26
Exec Total Coverage
Lines: 0 480 0.0%
Functions: 0 27 0.0%
Branches: 0 215 0.0%

Line Branch Exec Source
1 /*
2 * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
3 * Copyright (c) 2012 Konstantin Shishkov
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * Microsoft Screen 3 (aka Microsoft ATC Screen) decoder
25 */
26
27 #include "libavutil/mem.h"
28 #include "avcodec.h"
29 #include "bytestream.h"
30 #include "codec_internal.h"
31 #include "decode.h"
32 #include "mathops.h"
33 #include "mss34dsp.h"
34
35 #define HEADER_SIZE 27
36
37 #define MODEL2_SCALE 13
38 #define MODEL_SCALE 15
39 #define MODEL256_SEC_SCALE 9
40
41 typedef struct Model2 {
42 int upd_val, till_rescale;
43 unsigned zero_freq, zero_weight;
44 unsigned total_freq, total_weight;
45 } Model2;
46
47 typedef struct Model {
48 int weights[16], freqs[16];
49 int num_syms;
50 int tot_weight;
51 int upd_val, max_upd_val, till_rescale;
52 } Model;
53
54 typedef struct Model256 {
55 int weights[256], freqs[256];
56 int tot_weight;
57 int secondary[68];
58 int sec_size;
59 int upd_val, max_upd_val, till_rescale;
60 } Model256;
61
62 #define RAC_BOTTOM 0x01000000
63 typedef struct RangeCoder {
64 const uint8_t *src, *src_end;
65
66 uint32_t range, low;
67 int got_error;
68 } RangeCoder;
69
70 enum BlockType {
71 FILL_BLOCK = 0,
72 IMAGE_BLOCK,
73 DCT_BLOCK,
74 HAAR_BLOCK,
75 SKIP_BLOCK
76 };
77
78 typedef struct BlockTypeContext {
79 int last_type;
80 Model bt_model[5];
81 } BlockTypeContext;
82
83 typedef struct FillBlockCoder {
84 int fill_val;
85 Model coef_model;
86 } FillBlockCoder;
87
88 typedef struct ImageBlockCoder {
89 Model256 esc_model, vec_entry_model;
90 Model vec_size_model;
91 Model vq_model[125];
92 } ImageBlockCoder;
93
94 typedef struct DCTBlockCoder {
95 int *prev_dc;
96 ptrdiff_t prev_dc_stride;
97 int prev_dc_height;
98 int quality;
99 uint16_t qmat[64];
100 Model dc_model;
101 Model2 sign_model;
102 Model256 ac_model;
103 } DCTBlockCoder;
104
105 typedef struct HaarBlockCoder {
106 int quality, scale;
107 Model256 coef_model;
108 Model coef_hi_model;
109 } HaarBlockCoder;
110
111 typedef struct MSS3Context {
112 AVCodecContext *avctx;
113 AVFrame *pic;
114
115 int got_error;
116 RangeCoder coder;
117 BlockTypeContext btype[3];
118 FillBlockCoder fill_coder[3];
119 ImageBlockCoder image_coder[3];
120 DCTBlockCoder dct_coder[3];
121 HaarBlockCoder haar_coder[3];
122
123 int dctblock[64];
124 int hblock[16 * 16];
125 } MSS3Context;
126
127
128 static void model2_reset(Model2 *m)
129 {
130 m->zero_weight = 1;
131 m->total_weight = 2;
132 m->zero_freq = 0x1000;
133 m->total_freq = 0x2000;
134 m->upd_val = 4;
135 m->till_rescale = 4;
136 }
137
138 static void model2_update(Model2 *m, int bit)
139 {
140 unsigned scale;
141
142 if (!bit)
143 m->zero_weight++;
144 m->till_rescale--;
145 if (m->till_rescale)
146 return;
147
148 m->total_weight += m->upd_val;
149 if (m->total_weight > 0x2000) {
150 m->total_weight = (m->total_weight + 1) >> 1;
151 m->zero_weight = (m->zero_weight + 1) >> 1;
152 if (m->total_weight == m->zero_weight)
153 m->total_weight = m->zero_weight + 1;
154 }
155 m->upd_val = m->upd_val * 5 >> 2;
156 if (m->upd_val > 64)
157 m->upd_val = 64;
158 scale = 0x80000000u / m->total_weight;
159 m->zero_freq = m->zero_weight * scale >> 18;
160 m->total_freq = m->total_weight * scale >> 18;
161 m->till_rescale = m->upd_val;
162 }
163
164 static void model_update(Model *m, int val)
165 {
166 int i, sum = 0;
167 unsigned scale;
168
169 m->weights[val]++;
170 m->till_rescale--;
171 if (m->till_rescale)
172 return;
173 m->tot_weight += m->upd_val;
174
175 if (m->tot_weight > 0x8000) {
176 m->tot_weight = 0;
177 for (i = 0; i < m->num_syms; i++) {
178 m->weights[i] = (m->weights[i] + 1) >> 1;
179 m->tot_weight += m->weights[i];
180 }
181 }
182 scale = 0x80000000u / m->tot_weight;
183 for (i = 0; i < m->num_syms; i++) {
184 m->freqs[i] = sum * scale >> 16;
185 sum += m->weights[i];
186 }
187
188 m->upd_val = m->upd_val * 5 >> 2;
189 if (m->upd_val > m->max_upd_val)
190 m->upd_val = m->max_upd_val;
191 m->till_rescale = m->upd_val;
192 }
193
194 static void model_reset(Model *m)
195 {
196 int i;
197
198 m->tot_weight = 0;
199 for (i = 0; i < m->num_syms - 1; i++)
200 m->weights[i] = 1;
201 m->weights[m->num_syms - 1] = 0;
202
203 m->upd_val = m->num_syms;
204 m->till_rescale = 1;
205 model_update(m, m->num_syms - 1);
206 m->till_rescale =
207 m->upd_val = (m->num_syms + 6) >> 1;
208 }
209
210 static av_cold void model_init(Model *m, int num_syms)
211 {
212 m->num_syms = num_syms;
213 m->max_upd_val = 8 * num_syms + 48;
214
215 model_reset(m);
216 }
217
218 static void model256_update(Model256 *m, int val)
219 {
220 int i, sum = 0;
221 unsigned scale;
222 int send, sidx = 1;
223
224 m->weights[val]++;
225 m->till_rescale--;
226 if (m->till_rescale)
227 return;
228 m->tot_weight += m->upd_val;
229
230 if (m->tot_weight > 0x8000) {
231 m->tot_weight = 0;
232 for (i = 0; i < 256; i++) {
233 m->weights[i] = (m->weights[i] + 1) >> 1;
234 m->tot_weight += m->weights[i];
235 }
236 }
237 scale = 0x80000000u / m->tot_weight;
238 m->secondary[0] = 0;
239 for (i = 0; i < 256; i++) {
240 m->freqs[i] = sum * scale >> 16;
241 sum += m->weights[i];
242 send = m->freqs[i] >> MODEL256_SEC_SCALE;
243 while (sidx <= send)
244 m->secondary[sidx++] = i - 1;
245 }
246 while (sidx < m->sec_size)
247 m->secondary[sidx++] = 255;
248
249 m->upd_val = m->upd_val * 5 >> 2;
250 if (m->upd_val > m->max_upd_val)
251 m->upd_val = m->max_upd_val;
252 m->till_rescale = m->upd_val;
253 }
254
255 static void model256_reset(Model256 *m)
256 {
257 int i;
258
259 for (i = 0; i < 255; i++)
260 m->weights[i] = 1;
261 m->weights[255] = 0;
262
263 m->tot_weight = 0;
264 m->upd_val = 256;
265 m->till_rescale = 1;
266 model256_update(m, 255);
267 m->till_rescale =
268 m->upd_val = (256 + 6) >> 1;
269 }
270
271 static av_cold void model256_init(Model256 *m)
272 {
273 m->max_upd_val = 8 * 256 + 48;
274 m->sec_size = (1 << 6) + 2;
275
276 model256_reset(m);
277 }
278
279 static void rac_init(RangeCoder *c, const uint8_t *src, int size)
280 {
281 int i;
282
283 c->src = src;
284 c->src_end = src + size;
285 c->low = 0;
286 for (i = 0; i < FFMIN(size, 4); i++)
287 c->low = (c->low << 8) | *c->src++;
288 c->range = 0xFFFFFFFF;
289 c->got_error = 0;
290 }
291
292 static void rac_normalise(RangeCoder *c)
293 {
294 for (;;) {
295 c->range <<= 8;
296 c->low <<= 8;
297 if (c->src < c->src_end) {
298 c->low |= *c->src++;
299 } else if (!c->low) {
300 c->got_error = 1;
301 c->low = 1;
302 }
303 if (c->low > c->range) {
304 c->got_error = 1;
305 c->low = 1;
306 }
307 if (c->range >= RAC_BOTTOM)
308 return;
309 }
310 }
311
312 static int rac_get_bit(RangeCoder *c)
313 {
314 int bit;
315
316 c->range >>= 1;
317
318 bit = (c->range <= c->low);
319 if (bit)
320 c->low -= c->range;
321
322 if (c->range < RAC_BOTTOM)
323 rac_normalise(c);
324
325 return bit;
326 }
327
328 static int rac_get_bits(RangeCoder *c, int nbits)
329 {
330 int val;
331
332 c->range >>= nbits;
333 val = c->low / c->range;
334 c->low -= c->range * val;
335
336 if (c->range < RAC_BOTTOM)
337 rac_normalise(c);
338
339 return val;
340 }
341
342 static int rac_get_model2_sym(RangeCoder *c, Model2 *m)
343 {
344 int bit, helper;
345
346 helper = m->zero_freq * (c->range >> MODEL2_SCALE);
347 bit = (c->low >= helper);
348 if (bit) {
349 c->low -= helper;
350 c->range -= helper;
351 } else {
352 c->range = helper;
353 }
354
355 if (c->range < RAC_BOTTOM)
356 rac_normalise(c);
357
358 model2_update(m, bit);
359
360 return bit;
361 }
362
363 static int rac_get_model_sym(RangeCoder *c, Model *m)
364 {
365 int val;
366 int end, end2;
367 unsigned prob, prob2, helper;
368
369 prob = 0;
370 prob2 = c->range;
371 c->range >>= MODEL_SCALE;
372 val = 0;
373 end = m->num_syms >> 1;
374 end2 = m->num_syms;
375 do {
376 helper = m->freqs[end] * c->range;
377 if (helper <= c->low) {
378 val = end;
379 prob = helper;
380 } else {
381 end2 = end;
382 prob2 = helper;
383 }
384 end = (end2 + val) >> 1;
385 } while (end != val);
386 c->low -= prob;
387 c->range = prob2 - prob;
388 if (c->range < RAC_BOTTOM)
389 rac_normalise(c);
390
391 model_update(m, val);
392
393 return val;
394 }
395
396 static int rac_get_model256_sym(RangeCoder *c, Model256 *m)
397 {
398 int val;
399 int start, end;
400 int ssym;
401 unsigned prob, prob2, helper;
402
403 prob2 = c->range;
404 c->range >>= MODEL_SCALE;
405
406 helper = c->low / c->range;
407 ssym = helper >> MODEL256_SEC_SCALE;
408 val = m->secondary[ssym];
409
410 end = start = m->secondary[ssym + 1] + 1;
411 while (end > val + 1) {
412 ssym = (end + val) >> 1;
413 if (m->freqs[ssym] <= helper) {
414 end = start;
415 val = ssym;
416 } else {
417 end = (end + val) >> 1;
418 start = ssym;
419 }
420 }
421 prob = m->freqs[val] * c->range;
422 if (val != 255)
423 prob2 = m->freqs[val + 1] * c->range;
424
425 c->low -= prob;
426 c->range = prob2 - prob;
427 if (c->range < RAC_BOTTOM)
428 rac_normalise(c);
429
430 model256_update(m, val);
431
432 return val;
433 }
434
435 static int decode_block_type(RangeCoder *c, BlockTypeContext *bt)
436 {
437 bt->last_type = rac_get_model_sym(c, &bt->bt_model[bt->last_type]);
438
439 return bt->last_type;
440 }
441
442 static int decode_coeff(RangeCoder *c, Model *m)
443 {
444 int val, sign;
445
446 val = rac_get_model_sym(c, m);
447 if (val) {
448 sign = rac_get_bit(c);
449 if (val > 1) {
450 val--;
451 val = (1 << val) + rac_get_bits(c, val);
452 }
453 if (!sign)
454 val = -val;
455 }
456
457 return val;
458 }
459
460 static void decode_fill_block(RangeCoder *c, FillBlockCoder *fc,
461 uint8_t *dst, ptrdiff_t stride, int block_size)
462 {
463 int i;
464
465 fc->fill_val += decode_coeff(c, &fc->coef_model);
466
467 for (i = 0; i < block_size; i++, dst += stride)
468 memset(dst, fc->fill_val, block_size);
469 }
470
471 static void decode_image_block(RangeCoder *c, ImageBlockCoder *ic,
472 uint8_t *dst, ptrdiff_t stride, int block_size)
473 {
474 int i, j;
475 int vec_size;
476 int vec[4];
477 int prev_line[16];
478 int A, B, C;
479
480 vec_size = rac_get_model_sym(c, &ic->vec_size_model) + 2;
481 for (i = 0; i < vec_size; i++)
482 vec[i] = rac_get_model256_sym(c, &ic->vec_entry_model);
483 for (; i < 4; i++)
484 vec[i] = 0;
485 memset(prev_line, 0, sizeof(prev_line));
486
487 for (j = 0; j < block_size; j++) {
488 A = 0;
489 B = 0;
490 for (i = 0; i < block_size; i++) {
491 C = B;
492 B = prev_line[i];
493 A = rac_get_model_sym(c, &ic->vq_model[A + B * 5 + C * 25]);
494
495 prev_line[i] = A;
496 if (A < 4)
497 dst[i] = vec[A];
498 else
499 dst[i] = rac_get_model256_sym(c, &ic->esc_model);
500 }
501 dst += stride;
502 }
503 }
504
505 static int decode_dct(RangeCoder *c, DCTBlockCoder *bc, int *block,
506 int bx, int by)
507 {
508 int skip, val, sign, pos = 1, zz_pos, dc;
509 int blk_pos = bx + by * bc->prev_dc_stride;
510
511 memset(block, 0, sizeof(*block) * 64);
512
513 dc = decode_coeff(c, &bc->dc_model);
514 if (by) {
515 if (bx) {
516 int l, tl, t;
517
518 l = bc->prev_dc[blk_pos - 1];
519 tl = bc->prev_dc[blk_pos - 1 - bc->prev_dc_stride];
520 t = bc->prev_dc[blk_pos - bc->prev_dc_stride];
521
522 if (FFABS(t - tl) <= FFABS(l - tl))
523 dc += l;
524 else
525 dc += t;
526 } else {
527 dc += bc->prev_dc[blk_pos - bc->prev_dc_stride];
528 }
529 } else if (bx) {
530 dc += bc->prev_dc[bx - 1];
531 }
532 bc->prev_dc[blk_pos] = dc;
533 block[0] = dc * bc->qmat[0];
534
535 while (pos < 64) {
536 val = rac_get_model256_sym(c, &bc->ac_model);
537 if (!val)
538 return 0;
539 if (val == 0xF0) {
540 pos += 16;
541 continue;
542 }
543 skip = val >> 4;
544 val = val & 0xF;
545 if (!val)
546 return -1;
547 pos += skip;
548 if (pos >= 64)
549 return -1;
550
551 sign = rac_get_model2_sym(c, &bc->sign_model);
552 if (val > 1) {
553 val--;
554 val = (1 << val) + rac_get_bits(c, val);
555 }
556 if (!sign)
557 val = -val;
558
559 zz_pos = ff_zigzag_direct[pos];
560 block[zz_pos] = val * bc->qmat[zz_pos];
561 pos++;
562 }
563
564 return pos == 64 ? 0 : -1;
565 }
566
567 static void decode_dct_block(RangeCoder *c, DCTBlockCoder *bc,
568 uint8_t *dst, ptrdiff_t stride, int block_size,
569 int *block, int mb_x, int mb_y)
570 {
571 int i, j;
572 int bx, by;
573 int nblocks = block_size >> 3;
574
575 bx = mb_x * nblocks;
576 by = mb_y * nblocks;
577
578 for (j = 0; j < nblocks; j++) {
579 for (i = 0; i < nblocks; i++) {
580 if (decode_dct(c, bc, block, bx + i, by + j)) {
581 c->got_error = 1;
582 return;
583 }
584 ff_mss34_dct_put(dst + i * 8, stride, block);
585 }
586 dst += 8 * stride;
587 }
588 }
589
590 static void decode_haar_block(RangeCoder *c, HaarBlockCoder *hc,
591 uint8_t *dst, ptrdiff_t stride,
592 int block_size, int *block)
593 {
594 const int hsize = block_size >> 1;
595 int A, B, C, D, t1, t2, t3, t4;
596 int i, j;
597
598 for (j = 0; j < block_size; j++) {
599 for (i = 0; i < block_size; i++) {
600 if (i < hsize && j < hsize)
601 block[i] = rac_get_model256_sym(c, &hc->coef_model);
602 else
603 block[i] = decode_coeff(c, &hc->coef_hi_model);
604 block[i] *= hc->scale;
605 }
606 block += block_size;
607 }
608 block -= block_size * block_size;
609
610 for (j = 0; j < hsize; j++) {
611 for (i = 0; i < hsize; i++) {
612 A = block[i];
613 B = block[i + hsize];
614 C = block[i + hsize * block_size];
615 D = block[i + hsize * block_size + hsize];
616
617 t1 = A - B;
618 t2 = C - D;
619 t3 = A + B;
620 t4 = C + D;
621 dst[i * 2] = av_clip_uint8(t1 - t2);
622 dst[i * 2 + stride] = av_clip_uint8(t1 + t2);
623 dst[i * 2 + 1] = av_clip_uint8(t3 - t4);
624 dst[i * 2 + 1 + stride] = av_clip_uint8(t3 + t4);
625 }
626 block += block_size;
627 dst += stride * 2;
628 }
629 }
630
631 static void reset_coders(MSS3Context *ctx, int quality)
632 {
633 int i, j;
634
635 for (i = 0; i < 3; i++) {
636 ctx->btype[i].last_type = SKIP_BLOCK;
637 for (j = 0; j < 5; j++)
638 model_reset(&ctx->btype[i].bt_model[j]);
639 ctx->fill_coder[i].fill_val = 0;
640 model_reset(&ctx->fill_coder[i].coef_model);
641 model256_reset(&ctx->image_coder[i].esc_model);
642 model256_reset(&ctx->image_coder[i].vec_entry_model);
643 model_reset(&ctx->image_coder[i].vec_size_model);
644 for (j = 0; j < 125; j++)
645 model_reset(&ctx->image_coder[i].vq_model[j]);
646 if (ctx->dct_coder[i].quality != quality) {
647 ctx->dct_coder[i].quality = quality;
648 ff_mss34_gen_quant_mat(ctx->dct_coder[i].qmat, quality, !i);
649 }
650 memset(ctx->dct_coder[i].prev_dc, 0,
651 sizeof(*ctx->dct_coder[i].prev_dc) *
652 ctx->dct_coder[i].prev_dc_stride *
653 ctx->dct_coder[i].prev_dc_height);
654 model_reset(&ctx->dct_coder[i].dc_model);
655 model2_reset(&ctx->dct_coder[i].sign_model);
656 model256_reset(&ctx->dct_coder[i].ac_model);
657 if (ctx->haar_coder[i].quality != quality) {
658 ctx->haar_coder[i].quality = quality;
659 ctx->haar_coder[i].scale = 17 - 7 * quality / 50;
660 }
661 model_reset(&ctx->haar_coder[i].coef_hi_model);
662 model256_reset(&ctx->haar_coder[i].coef_model);
663 }
664 }
665
666 static av_cold void init_coders(MSS3Context *ctx)
667 {
668 int i, j;
669
670 for (i = 0; i < 3; i++) {
671 for (j = 0; j < 5; j++)
672 model_init(&ctx->btype[i].bt_model[j], 5);
673 model_init(&ctx->fill_coder[i].coef_model, 12);
674 model256_init(&ctx->image_coder[i].esc_model);
675 model256_init(&ctx->image_coder[i].vec_entry_model);
676 model_init(&ctx->image_coder[i].vec_size_model, 3);
677 for (j = 0; j < 125; j++)
678 model_init(&ctx->image_coder[i].vq_model[j], 5);
679 model_init(&ctx->dct_coder[i].dc_model, 12);
680 model256_init(&ctx->dct_coder[i].ac_model);
681 model_init(&ctx->haar_coder[i].coef_hi_model, 12);
682 model256_init(&ctx->haar_coder[i].coef_model);
683 }
684 }
685
686 static int mss3_decode_frame(AVCodecContext *avctx, AVFrame *rframe,
687 int *got_frame, AVPacket *avpkt)
688 {
689 const uint8_t *buf = avpkt->data;
690 int buf_size = avpkt->size;
691 MSS3Context *c = avctx->priv_data;
692 RangeCoder *acoder = &c->coder;
693 GetByteContext gb;
694 uint8_t *dst[3];
695 int dec_width, dec_height, dec_x, dec_y, quality, keyframe;
696 int x, y, i, mb_width, mb_height, blk_size, btype;
697 int ret;
698
699 if (buf_size < HEADER_SIZE) {
700 av_log(avctx, AV_LOG_ERROR,
701 "Frame should have at least %d bytes, got %d instead\n",
702 HEADER_SIZE, buf_size);
703 return AVERROR_INVALIDDATA;
704 }
705
706 bytestream2_init(&gb, buf, buf_size);
707 keyframe = bytestream2_get_be32(&gb);
708 if (keyframe & ~0x301) {
709 av_log(avctx, AV_LOG_ERROR, "Invalid frame type %X\n", keyframe);
710 return AVERROR_INVALIDDATA;
711 }
712 keyframe = !(keyframe & 1);
713 bytestream2_skip(&gb, 6);
714 dec_x = bytestream2_get_be16(&gb);
715 dec_y = bytestream2_get_be16(&gb);
716 dec_width = bytestream2_get_be16(&gb);
717 dec_height = bytestream2_get_be16(&gb);
718
719 if (dec_x + dec_width > avctx->width ||
720 dec_y + dec_height > avctx->height ||
721 (dec_width | dec_height) & 0xF) {
722 av_log(avctx, AV_LOG_ERROR, "Invalid frame dimensions %dx%d +%d,%d\n",
723 dec_width, dec_height, dec_x, dec_y);
724 return AVERROR_INVALIDDATA;
725 }
726 bytestream2_skip(&gb, 4);
727 quality = bytestream2_get_byte(&gb);
728 if (quality < 1 || quality > 100) {
729 av_log(avctx, AV_LOG_ERROR, "Invalid quality setting %d\n", quality);
730 return AVERROR_INVALIDDATA;
731 }
732 bytestream2_skip(&gb, 4);
733
734 if (keyframe && !bytestream2_get_bytes_left(&gb)) {
735 av_log(avctx, AV_LOG_ERROR, "Keyframe without data found\n");
736 return AVERROR_INVALIDDATA;
737 }
738 if (!keyframe && c->got_error)
739 return buf_size;
740 c->got_error = 0;
741
742 if ((ret = ff_reget_buffer(avctx, c->pic, 0)) < 0)
743 return ret;
744 if (keyframe)
745 c->pic->flags |= AV_FRAME_FLAG_KEY;
746 else
747 c->pic->flags &= ~AV_FRAME_FLAG_KEY;
748 c->pic->pict_type = keyframe ? AV_PICTURE_TYPE_I : AV_PICTURE_TYPE_P;
749 if (!bytestream2_get_bytes_left(&gb)) {
750 if ((ret = av_frame_ref(rframe, c->pic)) < 0)
751 return ret;
752 *got_frame = 1;
753
754 return buf_size;
755 }
756
757 reset_coders(c, quality);
758
759 rac_init(acoder, buf + HEADER_SIZE, buf_size - HEADER_SIZE);
760
761 mb_width = dec_width >> 4;
762 mb_height = dec_height >> 4;
763 dst[0] = c->pic->data[0] + dec_x + dec_y * c->pic->linesize[0];
764 dst[1] = c->pic->data[1] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[1];
765 dst[2] = c->pic->data[2] + dec_x / 2 + (dec_y / 2) * c->pic->linesize[2];
766 for (y = 0; y < mb_height; y++) {
767 for (x = 0; x < mb_width; x++) {
768 for (i = 0; i < 3; i++) {
769 blk_size = 8 << !i;
770
771 btype = decode_block_type(acoder, c->btype + i);
772 switch (btype) {
773 case FILL_BLOCK:
774 decode_fill_block(acoder, c->fill_coder + i,
775 dst[i] + x * blk_size,
776 c->pic->linesize[i], blk_size);
777 break;
778 case IMAGE_BLOCK:
779 decode_image_block(acoder, c->image_coder + i,
780 dst[i] + x * blk_size,
781 c->pic->linesize[i], blk_size);
782 break;
783 case DCT_BLOCK:
784 decode_dct_block(acoder, c->dct_coder + i,
785 dst[i] + x * blk_size,
786 c->pic->linesize[i], blk_size,
787 c->dctblock, x, y);
788 break;
789 case HAAR_BLOCK:
790 decode_haar_block(acoder, c->haar_coder + i,
791 dst[i] + x * blk_size,
792 c->pic->linesize[i], blk_size,
793 c->hblock);
794 break;
795 }
796 if (c->got_error || acoder->got_error) {
797 av_log(avctx, AV_LOG_ERROR, "Error decoding block %d,%d\n",
798 x, y);
799 c->got_error = 1;
800 return AVERROR_INVALIDDATA;
801 }
802 }
803 }
804 dst[0] += c->pic->linesize[0] * 16;
805 dst[1] += c->pic->linesize[1] * 8;
806 dst[2] += c->pic->linesize[2] * 8;
807 }
808
809 if ((ret = av_frame_ref(rframe, c->pic)) < 0)
810 return ret;
811
812 *got_frame = 1;
813
814 return buf_size;
815 }
816
817 static av_cold int mss3_decode_end(AVCodecContext *avctx)
818 {
819 MSS3Context * const c = avctx->priv_data;
820 int i;
821
822 av_frame_free(&c->pic);
823 for (i = 0; i < 3; i++)
824 av_freep(&c->dct_coder[i].prev_dc);
825
826 return 0;
827 }
828
829 static av_cold int mss3_decode_init(AVCodecContext *avctx)
830 {
831 MSS3Context * const c = avctx->priv_data;
832 int i;
833
834 c->avctx = avctx;
835
836 if ((avctx->width & 0xF) || (avctx->height & 0xF)) {
837 av_log(avctx, AV_LOG_ERROR,
838 "Image dimensions should be a multiple of 16.\n");
839 return AVERROR_INVALIDDATA;
840 }
841
842 c->got_error = 0;
843 for (i = 0; i < 3; i++) {
844 int b_width = avctx->width >> (2 + !!i);
845 int b_height = avctx->height >> (2 + !!i);
846 c->dct_coder[i].prev_dc_stride = b_width;
847 c->dct_coder[i].prev_dc_height = b_height;
848 c->dct_coder[i].prev_dc = av_malloc(sizeof(*c->dct_coder[i].prev_dc) *
849 b_width * b_height);
850 if (!c->dct_coder[i].prev_dc) {
851 av_log(avctx, AV_LOG_ERROR, "Cannot allocate buffer\n");
852 return AVERROR(ENOMEM);
853 }
854 }
855
856 c->pic = av_frame_alloc();
857 if (!c->pic)
858 return AVERROR(ENOMEM);
859
860 avctx->pix_fmt = AV_PIX_FMT_YUV420P;
861
862 init_coders(c);
863
864 return 0;
865 }
866
867 const FFCodec ff_msa1_decoder = {
868 .p.name = "msa1",
869 CODEC_LONG_NAME("MS ATC Screen"),
870 .p.type = AVMEDIA_TYPE_VIDEO,
871 .p.id = AV_CODEC_ID_MSA1,
872 .priv_data_size = sizeof(MSS3Context),
873 .init = mss3_decode_init,
874 .close = mss3_decode_end,
875 FF_CODEC_DECODE_CB(mss3_decode_frame),
876 .p.capabilities = AV_CODEC_CAP_DR1,
877 .caps_internal = FF_CODEC_CAP_INIT_CLEANUP,
878 };
879