FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/magicyuvenc.c
Date: 2022-07-04 19:11:22
Exec Total Coverage
Lines: 0 295 0.0%
Branches: 0 154 0.0%

Line Branch Exec Source
1 /*
2 * MagicYUV encoder
3 * Copyright (c) 2017 Paul B Mahol
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <stdlib.h>
23 #include <string.h>
24
25 #include "libavutil/opt.h"
26 #include "libavutil/pixdesc.h"
27 #include "libavutil/qsort.h"
28
29 #include "avcodec.h"
30 #include "bytestream.h"
31 #include "codec_internal.h"
32 #include "encode.h"
33 #include "put_bits.h"
34 #include "thread.h"
35 #include "lossless_videoencdsp.h"
36
37 #define MAGICYUV_EXTRADATA_SIZE 32
38
39 typedef enum Prediction {
40 LEFT = 1,
41 GRADIENT,
42 MEDIAN,
43 } Prediction;
44
45 typedef struct HuffEntry {
46 uint8_t len;
47 uint32_t code;
48 } HuffEntry;
49
50 typedef struct PTable {
51 int value; ///< input value
52 int64_t prob; ///< number of occurences of this value in input
53 } PTable;
54
55 typedef struct MagicYUVContext {
56 const AVClass *class;
57 int frame_pred;
58 PutBitContext pb;
59 int planes;
60 uint8_t format;
61 int slice_height;
62 int nb_slices;
63 int correlate;
64 int hshift[4];
65 int vshift[4];
66 uint8_t *slices[4];
67 unsigned slice_pos[4];
68 unsigned tables_size;
69 uint8_t *decorrelate_buf[2];
70 HuffEntry he[4][256];
71 LLVidEncDSPContext llvidencdsp;
72 void (*predict)(struct MagicYUVContext *s, const uint8_t *src, uint8_t *dst,
73 ptrdiff_t stride, int width, int height);
74 } MagicYUVContext;
75
76 static void left_predict(MagicYUVContext *s,
77 const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
78 int width, int height)
79 {
80 uint8_t prev = 0;
81 int i, j;
82
83 for (i = 0; i < width; i++) {
84 dst[i] = src[i] - prev;
85 prev = src[i];
86 }
87 dst += width;
88 src += stride;
89 for (j = 1; j < height; j++) {
90 prev = src[-stride];
91 for (i = 0; i < width; i++) {
92 dst[i] = src[i] - prev;
93 prev = src[i];
94 }
95 dst += width;
96 src += stride;
97 }
98 }
99
100 static void gradient_predict(MagicYUVContext *s,
101 const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
102 int width, int height)
103 {
104 int left = 0, top, lefttop;
105 int i, j;
106
107 for (i = 0; i < width; i++) {
108 dst[i] = src[i] - left;
109 left = src[i];
110 }
111 dst += width;
112 src += stride;
113 for (j = 1; j < height; j++) {
114 top = src[-stride];
115 left = src[0] - top;
116 dst[0] = left;
117 for (i = 1; i < width; i++) {
118 top = src[i - stride];
119 lefttop = src[i - (stride + 1)];
120 left = src[i-1];
121 dst[i] = (src[i] - top) - left + lefttop;
122 }
123 dst += width;
124 src += stride;
125 }
126 }
127
128 static void median_predict(MagicYUVContext *s,
129 const uint8_t *src, uint8_t *dst, ptrdiff_t stride,
130 int width, int height)
131 {
132 int left = 0, lefttop;
133 int i, j;
134
135 for (i = 0; i < width; i++) {
136 dst[i] = src[i] - left;
137 left = src[i];
138 }
139 dst += width;
140 src += stride;
141 for (j = 1; j < height; j++) {
142 left = lefttop = src[-stride];
143 s->llvidencdsp.sub_median_pred(dst, src - stride, src, width, &left, &lefttop);
144 dst += width;
145 src += stride;
146 }
147 }
148
149 static av_cold int magy_encode_init(AVCodecContext *avctx)
150 {
151 MagicYUVContext *s = avctx->priv_data;
152 PutByteContext pb;
153 int i;
154
155 switch (avctx->pix_fmt) {
156 case AV_PIX_FMT_GBRP:
157 avctx->codec_tag = MKTAG('M', '8', 'R', 'G');
158 s->correlate = 1;
159 s->format = 0x65;
160 break;
161 case AV_PIX_FMT_GBRAP:
162 avctx->codec_tag = MKTAG('M', '8', 'R', 'A');
163 s->correlate = 1;
164 s->format = 0x66;
165 break;
166 case AV_PIX_FMT_YUV420P:
167 avctx->codec_tag = MKTAG('M', '8', 'Y', '0');
168 s->hshift[1] =
169 s->vshift[1] =
170 s->hshift[2] =
171 s->vshift[2] = 1;
172 s->format = 0x69;
173 break;
174 case AV_PIX_FMT_YUV422P:
175 avctx->codec_tag = MKTAG('M', '8', 'Y', '2');
176 s->hshift[1] =
177 s->hshift[2] = 1;
178 s->format = 0x68;
179 break;
180 case AV_PIX_FMT_YUV444P:
181 avctx->codec_tag = MKTAG('M', '8', 'Y', '4');
182 s->format = 0x67;
183 break;
184 case AV_PIX_FMT_YUVA444P:
185 avctx->codec_tag = MKTAG('M', '8', 'Y', 'A');
186 s->format = 0x6a;
187 break;
188 case AV_PIX_FMT_GRAY8:
189 avctx->codec_tag = MKTAG('M', '8', 'G', '0');
190 s->format = 0x6b;
191 break;
192 }
193 if (s->correlate) {
194 s->decorrelate_buf[0] = av_calloc(2U * avctx->height, FFALIGN(avctx->width, 16));
195 if (!s->decorrelate_buf[0])
196 return AVERROR(ENOMEM);
197 s->decorrelate_buf[1] = s->decorrelate_buf[0] + avctx->height * FFALIGN(avctx->width, 16);
198 }
199
200 ff_llvidencdsp_init(&s->llvidencdsp);
201
202 s->planes = av_pix_fmt_count_planes(avctx->pix_fmt);
203
204 s->nb_slices = 1;
205
206 for (i = 0; i < s->planes; i++) {
207 s->slices[i] = av_malloc(avctx->width * (avctx->height + 2) +
208 AV_INPUT_BUFFER_PADDING_SIZE);
209 if (!s->slices[i]) {
210 av_log(avctx, AV_LOG_ERROR, "Cannot allocate temporary buffer.\n");
211 return AVERROR(ENOMEM);
212 }
213 }
214
215 switch (s->frame_pred) {
216 case LEFT: s->predict = left_predict; break;
217 case GRADIENT: s->predict = gradient_predict; break;
218 case MEDIAN: s->predict = median_predict; break;
219 }
220
221 avctx->extradata_size = MAGICYUV_EXTRADATA_SIZE;
222
223 avctx->extradata = av_mallocz(avctx->extradata_size +
224 AV_INPUT_BUFFER_PADDING_SIZE);
225
226 if (!avctx->extradata) {
227 av_log(avctx, AV_LOG_ERROR, "Could not allocate extradata.\n");
228 return AVERROR(ENOMEM);
229 }
230
231 bytestream2_init_writer(&pb, avctx->extradata, MAGICYUV_EXTRADATA_SIZE);
232 bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
233 bytestream2_put_le32(&pb, 32);
234 bytestream2_put_byte(&pb, 7);
235 bytestream2_put_byte(&pb, s->format);
236 bytestream2_put_byte(&pb, 12);
237 bytestream2_put_byte(&pb, 0);
238
239 bytestream2_put_byte(&pb, 0);
240 bytestream2_put_byte(&pb, 0);
241 bytestream2_put_byte(&pb, 32);
242 bytestream2_put_byte(&pb, 0);
243
244 bytestream2_put_le32(&pb, avctx->width);
245 bytestream2_put_le32(&pb, avctx->height);
246 bytestream2_put_le32(&pb, avctx->width);
247 bytestream2_put_le32(&pb, avctx->height);
248
249 return 0;
250 }
251
252 static void calculate_codes(HuffEntry *he, uint16_t codes_count[33])
253 {
254 for (unsigned i = 32, nb_codes = 0; i > 0; i--) {
255 uint16_t curr = codes_count[i]; // # of leafs of length i
256 codes_count[i] = nb_codes / 2; // # of non-leaf nodes on level i
257 nb_codes = codes_count[i] + curr; // # of nodes on level i
258 }
259
260 for (unsigned i = 0; i < 256; i++) {
261 he[i].code = codes_count[he[i].len];
262 codes_count[he[i].len]++;
263 }
264 }
265
266 static void count_usage(uint8_t *src, int width,
267 int height, PTable *counts)
268 {
269 int i, j;
270
271 for (j = 0; j < height; j++) {
272 for (i = 0; i < width; i++) {
273 counts[src[i]].prob++;
274 }
275 src += width;
276 }
277 }
278
279 typedef struct PackageMergerList {
280 int nitems; ///< number of items in the list and probability ex. 4
281 int item_idx[515]; ///< index range for each item in items 0, 2, 5, 9, 13
282 int probability[514]; ///< probability of each item 3, 8, 18, 46
283 int items[257 * 16]; ///< chain of all individual values that make up items A, B, A, B, C, A, B, C, D, C, D, D, E
284 } PackageMergerList;
285
286 static int compare_by_prob(const void *a, const void *b)
287 {
288 const PTable *a2 = a;
289 const PTable *b2 = b;
290 return a2->prob - b2->prob;
291 }
292
293 static void magy_huffman_compute_bits(PTable *prob_table, HuffEntry *distincts,
294 uint16_t codes_counts[33],
295 int size, int max_length)
296 {
297 PackageMergerList list_a, list_b, *to = &list_a, *from = &list_b, *temp;
298 int times, i, j, k;
299 int nbits[257] = {0};
300 int min;
301
302 av_assert0(max_length > 0);
303
304 to->nitems = 0;
305 from->nitems = 0;
306 to->item_idx[0] = 0;
307 from->item_idx[0] = 0;
308 AV_QSORT(prob_table, size, PTable, compare_by_prob);
309
310 for (times = 0; times <= max_length; times++) {
311 to->nitems = 0;
312 to->item_idx[0] = 0;
313
314 j = 0;
315 k = 0;
316
317 if (times < max_length) {
318 i = 0;
319 }
320 while (i < size || j + 1 < from->nitems) {
321 to->nitems++;
322 to->item_idx[to->nitems] = to->item_idx[to->nitems - 1];
323 if (i < size &&
324 (j + 1 >= from->nitems ||
325 prob_table[i].prob <
326 from->probability[j] + from->probability[j + 1])) {
327 to->items[to->item_idx[to->nitems]++] = prob_table[i].value;
328 to->probability[to->nitems - 1] = prob_table[i].prob;
329 i++;
330 } else {
331 for (k = from->item_idx[j]; k < from->item_idx[j + 2]; k++) {
332 to->items[to->item_idx[to->nitems]++] = from->items[k];
333 }
334 to->probability[to->nitems - 1] =
335 from->probability[j] + from->probability[j + 1];
336 j += 2;
337 }
338 }
339 temp = to;
340 to = from;
341 from = temp;
342 }
343
344 min = (size - 1 < from->nitems) ? size - 1 : from->nitems;
345 for (i = 0; i < from->item_idx[min]; i++) {
346 nbits[from->items[i]]++;
347 }
348
349 for (i = 0; i < size; i++) {
350 distincts[i].len = nbits[i];
351 codes_counts[nbits[i]]++;
352 }
353 }
354
355 static int encode_table(AVCodecContext *avctx, uint8_t *dst,
356 int width, int height,
357 PutBitContext *pb, HuffEntry *he)
358 {
359 PTable counts[256] = { {0} };
360 uint16_t codes_counts[33] = { 0 };
361 int i;
362
363 count_usage(dst, width, height, counts);
364
365 for (i = 0; i < 256; i++) {
366 counts[i].prob++;
367 counts[i].value = i;
368 }
369
370 magy_huffman_compute_bits(counts, he, codes_counts, 256, 12);
371
372 calculate_codes(he, codes_counts);
373
374 for (i = 0; i < 256; i++) {
375 put_bits(pb, 1, 0);
376 put_bits(pb, 7, he[i].len);
377 }
378
379 return 0;
380 }
381
382 static int encode_slice(uint8_t *src, uint8_t *dst, int dst_size,
383 int width, int height, HuffEntry *he, int prediction)
384 {
385 PutBitContext pb;
386 int i, j;
387 int count;
388
389 init_put_bits(&pb, dst, dst_size);
390
391 put_bits(&pb, 8, 0);
392 put_bits(&pb, 8, prediction);
393
394 for (j = 0; j < height; j++) {
395 for (i = 0; i < width; i++) {
396 const int idx = src[i];
397 put_bits(&pb, he[idx].len, he[idx].code);
398 }
399
400 src += width;
401 }
402
403 count = put_bits_count(&pb) & 0x1F;
404
405 if (count)
406 put_bits(&pb, 32 - count, 0);
407
408 flush_put_bits(&pb);
409
410 return put_bytes_output(&pb);
411 }
412
413 static int magy_encode_frame(AVCodecContext *avctx, AVPacket *pkt,
414 const AVFrame *frame, int *got_packet)
415 {
416 MagicYUVContext *s = avctx->priv_data;
417 PutByteContext pb;
418 const int width = avctx->width, height = avctx->height;
419 int pos, slice, i, j, ret = 0;
420
421 ret = ff_alloc_packet(avctx, pkt, (256 + 4 * s->nb_slices + width * height) *
422 s->planes + 256);
423 if (ret < 0)
424 return ret;
425
426 bytestream2_init_writer(&pb, pkt->data, pkt->size);
427 bytestream2_put_le32(&pb, MKTAG('M', 'A', 'G', 'Y'));
428 bytestream2_put_le32(&pb, 32); // header size
429 bytestream2_put_byte(&pb, 7); // version
430 bytestream2_put_byte(&pb, s->format);
431 bytestream2_put_byte(&pb, 12); // max huffman length
432 bytestream2_put_byte(&pb, 0);
433
434 bytestream2_put_byte(&pb, 0);
435 bytestream2_put_byte(&pb, 0);
436 bytestream2_put_byte(&pb, 32); // coder type
437 bytestream2_put_byte(&pb, 0);
438
439 bytestream2_put_le32(&pb, avctx->width);
440 bytestream2_put_le32(&pb, avctx->height);
441 bytestream2_put_le32(&pb, avctx->width);
442 bytestream2_put_le32(&pb, avctx->height);
443 bytestream2_put_le32(&pb, 0);
444
445 for (i = 0; i < s->planes; i++) {
446 bytestream2_put_le32(&pb, 0);
447 for (j = 1; j < s->nb_slices; j++) {
448 bytestream2_put_le32(&pb, 0);
449 }
450 }
451
452 bytestream2_put_byte(&pb, s->planes);
453
454 for (i = 0; i < s->planes; i++) {
455 for (slice = 0; slice < s->nb_slices; slice++) {
456 bytestream2_put_byte(&pb, i);
457 }
458 }
459
460 if (s->correlate) {
461 uint8_t *r, *g, *b, *decorrelated[2] = { s->decorrelate_buf[0],
462 s->decorrelate_buf[1] };
463 const int decorrelate_linesize = FFALIGN(width, 16);
464 const uint8_t *const data[4] = { decorrelated[0], frame->data[0],
465 decorrelated[1], frame->data[3] };
466 const int linesize[4] = { decorrelate_linesize, frame->linesize[0],
467 decorrelate_linesize, frame->linesize[3] };
468
469 g = frame->data[0];
470 b = frame->data[1];
471 r = frame->data[2];
472
473 for (i = 0; i < height; i++) {
474 s->llvidencdsp.diff_bytes(decorrelated[0], b, g, width);
475 s->llvidencdsp.diff_bytes(decorrelated[1], r, g, width);
476 g += frame->linesize[0];
477 b += frame->linesize[1];
478 r += frame->linesize[2];
479 decorrelated[0] += decorrelate_linesize;
480 decorrelated[1] += decorrelate_linesize;
481 }
482
483 for (i = 0; i < s->planes; i++) {
484 for (slice = 0; slice < s->nb_slices; slice++) {
485 s->predict(s, data[i], s->slices[i], linesize[i],
486 frame->width, frame->height);
487 }
488 }
489 } else {
490 for (i = 0; i < s->planes; i++) {
491 for (slice = 0; slice < s->nb_slices; slice++) {
492 s->predict(s, frame->data[i], s->slices[i], frame->linesize[i],
493 AV_CEIL_RSHIFT(frame->width, s->hshift[i]),
494 AV_CEIL_RSHIFT(frame->height, s->vshift[i]));
495 }
496 }
497 }
498
499 init_put_bits(&s->pb, pkt->data + bytestream2_tell_p(&pb), bytestream2_get_bytes_left_p(&pb));
500
501 for (i = 0; i < s->planes; i++) {
502 encode_table(avctx, s->slices[i],
503 AV_CEIL_RSHIFT(frame->width, s->hshift[i]),
504 AV_CEIL_RSHIFT(frame->height, s->vshift[i]),
505 &s->pb, s->he[i]);
506 }
507 s->tables_size = put_bytes_count(&s->pb, 1);
508 bytestream2_skip_p(&pb, s->tables_size);
509
510 for (i = 0; i < s->planes; i++) {
511 unsigned slice_size;
512
513 s->slice_pos[i] = bytestream2_tell_p(&pb);
514 slice_size = encode_slice(s->slices[i], pkt->data + bytestream2_tell_p(&pb),
515 bytestream2_get_bytes_left_p(&pb),
516 AV_CEIL_RSHIFT(frame->width, s->hshift[i]),
517 AV_CEIL_RSHIFT(frame->height, s->vshift[i]),
518 s->he[i], s->frame_pred);
519 bytestream2_skip_p(&pb, slice_size);
520 }
521
522 pos = bytestream2_tell_p(&pb);
523 bytestream2_seek_p(&pb, 32, SEEK_SET);
524 bytestream2_put_le32(&pb, s->slice_pos[0] - 32);
525 for (i = 0; i < s->planes; i++) {
526 bytestream2_put_le32(&pb, s->slice_pos[i] - 32);
527 }
528 bytestream2_seek_p(&pb, pos, SEEK_SET);
529
530 pkt->size = bytestream2_tell_p(&pb);
531
532 *got_packet = 1;
533
534 return 0;
535 }
536
537 static av_cold int magy_encode_close(AVCodecContext *avctx)
538 {
539 MagicYUVContext *s = avctx->priv_data;
540 int i;
541
542 for (i = 0; i < s->planes; i++)
543 av_freep(&s->slices[i]);
544 av_freep(&s->decorrelate_buf);
545
546 return 0;
547 }
548
549 #define OFFSET(x) offsetof(MagicYUVContext, x)
550 #define VE AV_OPT_FLAG_VIDEO_PARAM | AV_OPT_FLAG_ENCODING_PARAM
551 static const AVOption options[] = {
552 { "pred", "Prediction method", OFFSET(frame_pred), AV_OPT_TYPE_INT, {.i64=LEFT}, LEFT, MEDIAN, VE, "pred" },
553 { "left", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = LEFT }, 0, 0, VE, "pred" },
554 { "gradient", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = GRADIENT }, 0, 0, VE, "pred" },
555 { "median", NULL, 0, AV_OPT_TYPE_CONST, { .i64 = MEDIAN }, 0, 0, VE, "pred" },
556 { NULL},
557 };
558
559 static const AVClass magicyuv_class = {
560 .class_name = "magicyuv",
561 .item_name = av_default_item_name,
562 .option = options,
563 .version = LIBAVUTIL_VERSION_INT,
564 };
565
566 const FFCodec ff_magicyuv_encoder = {
567 .p.name = "magicyuv",
568 .p.long_name = NULL_IF_CONFIG_SMALL("MagicYUV video"),
569 .p.type = AVMEDIA_TYPE_VIDEO,
570 .p.id = AV_CODEC_ID_MAGICYUV,
571 .priv_data_size = sizeof(MagicYUVContext),
572 .p.priv_class = &magicyuv_class,
573 .init = magy_encode_init,
574 .close = magy_encode_close,
575 FF_CODEC_ENCODE_CB(magy_encode_frame),
576 .p.capabilities = AV_CODEC_CAP_FRAME_THREADS,
577 .p.pix_fmts = (const enum AVPixelFormat[]) {
578 AV_PIX_FMT_GBRP, AV_PIX_FMT_GBRAP, AV_PIX_FMT_YUV422P,
579 AV_PIX_FMT_YUV420P, AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_GRAY8,
580 AV_PIX_FMT_NONE
581 },
582 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
583 };
584