FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/lsp.c
Date: 2024-11-20 23:03:26
Exec Total Coverage
Lines: 50 93 53.8%
Functions: 6 12 50.0%
Branches: 20 38 52.6%

Line Branch Exec Source
1 /*
2 * LSP routines for ACELP-based codecs
3 *
4 * Copyright (c) 2007 Reynaldo H. Verdejo Pinochet (QCELP decoder)
5 * Copyright (c) 2008 Vladimir Voroshilov
6 *
7 * This file is part of FFmpeg.
8 *
9 * FFmpeg is free software; you can redistribute it and/or
10 * modify it under the terms of the GNU Lesser General Public
11 * License as published by the Free Software Foundation; either
12 * version 2.1 of the License, or (at your option) any later version.
13 *
14 * FFmpeg is distributed in the hope that it will be useful,
15 * but WITHOUT ANY WARRANTY; without even the implied warranty of
16 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
17 * Lesser General Public License for more details.
18 *
19 * You should have received a copy of the GNU Lesser General Public
20 * License along with FFmpeg; if not, write to the Free Software
21 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
22 */
23
24 #include <math.h>
25
26 #include "config.h"
27
28 #define FRAC_BITS 14
29 #include "libavutil/macros.h"
30 #include "mathops.h"
31 #include "lsp.h"
32 #if ARCH_MIPS
33 #include "libavcodec/mips/lsp_mips.h"
34 #endif /* ARCH_MIPS */
35 #include "libavutil/avassert.h"
36
37 void ff_acelp_reorder_lsf(int16_t* lsfq, int lsfq_min_distance, int lsfq_min, int lsfq_max, int lp_order)
38 {
39 int i, j;
40
41 /* sort lsfq in ascending order. float bubble algorithm,
42 O(n) if data already sorted, O(n^2) - otherwise */
43 for(i=0; i<lp_order-1; i++)
44 for(j=i; j>=0 && lsfq[j] > lsfq[j+1]; j--)
45 FFSWAP(int16_t, lsfq[j], lsfq[j+1]);
46
47 for(i=0; i<lp_order; i++)
48 {
49 lsfq[i] = FFMAX(lsfq[i], lsfq_min);
50 lsfq_min = lsfq[i] + lsfq_min_distance;
51 }
52 lsfq[lp_order-1] = FFMIN(lsfq[lp_order-1], lsfq_max);//Is warning required ?
53 }
54
55 17287 void ff_set_min_dist_lsf(float *lsf, double min_spacing, int size)
56 {
57 int i;
58 17287 float prev = 0.0;
59
2/2
✓ Branch 0 taken 218580 times.
✓ Branch 1 taken 17287 times.
235867 for (i = 0; i < size; i++)
60
2/2
✓ Branch 0 taken 218198 times.
✓ Branch 1 taken 382 times.
218580 prev = lsf[i] = FFMAX(lsf[i], prev + min_spacing);
61 17287 }
62
63
64 /* Cosine table: base_cos[i] = (1 << 15) * cos(i * PI / 64) */
65 static const int16_t tab_cos[65] =
66 {
67 32767, 32738, 32617, 32421, 32145, 31793, 31364, 30860,
68 30280, 29629, 28905, 28113, 27252, 26326, 25336, 24285,
69 23176, 22011, 20793, 19525, 18210, 16851, 15451, 14014,
70 12543, 11043, 9515, 7965, 6395, 4810, 3214, 1609,
71 1, -1607, -3211, -4808, -6393, -7962, -9513, -11040,
72 -12541, -14012, -15449, -16848, -18207, -19523, -20791, -22009,
73 -23174, -24283, -25334, -26324, -27250, -28111, -28904, -29627,
74 -30279, -30858, -31363, -31792, -32144, -32419, -32616, -32736, -32768,
75 };
76
77 static int16_t ff_cos(uint16_t arg)
78 {
79 uint8_t offset= arg;
80 uint8_t ind = arg >> 8;
81
82 av_assert2(arg <= 0x3fff);
83
84 return tab_cos[ind] + (offset * (tab_cos[ind+1] - tab_cos[ind]) >> 8);
85 }
86
87 void ff_acelp_lsf2lsp(int16_t *lsp, const int16_t *lsf, int lp_order)
88 {
89 int i;
90
91 /* Convert LSF to LSP, lsp=cos(lsf) */
92 for(i=0; i<lp_order; i++)
93 // 20861 = 2.0 / PI in (0.15)
94 lsp[i] = ff_cos(lsf[i] * 20861 >> 15); // divide by PI and (0,13) -> (0,14)
95 }
96
97 10889 void ff_acelp_lsf2lspd(double *lsp, const float *lsf, int lp_order)
98 {
99 int i;
100
101
2/2
✓ Branch 0 taken 167018 times.
✓ Branch 1 taken 10889 times.
177907 for(i = 0; i < lp_order; i++)
102 167018 lsp[i] = cos(2.0 * M_PI * lsf[i]);
103 10889 }
104
105 /**
106 * @brief decodes polynomial coefficients from LSP
107 * @param[out] f decoded polynomial coefficients (-0x20000000 <= (3.22) <= 0x1fffffff)
108 * @param lsp LSP coefficients (-0x8000 <= (0.15) <= 0x7fff)
109 */
110 static void lsp2poly(int* f, const int16_t* lsp, int lp_half_order)
111 {
112 int i, j;
113
114 f[0] = 0x400000; // 1.0 in (3.22)
115 f[1] = -lsp[0] * 256; // *2 and (0.15) -> (3.22)
116
117 for(i=2; i<=lp_half_order; i++)
118 {
119 f[i] = f[i-2];
120 for(j=i; j>1; j--)
121 f[j] -= MULL(f[j-1], lsp[2*i-2], FRAC_BITS) - f[j-2];
122
123 f[1] -= lsp[2*i-2] * 256;
124 }
125 }
126
127 #ifndef lsp2polyf
128 /**
129 * Compute the Pa / (1 + z(-1)) or Qa / (1 - z(-1)) coefficients
130 * needed for LSP to LPC conversion.
131 * We only need to calculate the 6 first elements of the polynomial.
132 *
133 * @param lsp line spectral pairs in cosine domain
134 * @param[out] f polynomial input/output as a vector
135 *
136 * TIA/EIA/IS-733 2.4.3.3.5-1/2
137 */
138 157154 static void lsp2polyf(const double *lsp, double *f, int lp_half_order)
139 {
140 157154 f[0] = 1.0;
141 157154 f[1] = -2 * lsp[0];
142 157154 lsp -= 2;
143
2/2
✓ Branch 0 taken 847392 times.
✓ Branch 1 taken 157154 times.
1004546 for (int i = 2; i <= lp_half_order; i++) {
144 847392 double val = -2 * lsp[2*i];
145 847392 f[i] = val * f[i-1] + 2*f[i-2];
146
2/2
✓ Branch 0 taken 2059932 times.
✓ Branch 1 taken 847392 times.
2907324 for (int j = i-1; j > 1; j--)
147 2059932 f[j] += f[j-1] * val + f[j-2];
148 847392 f[1] += val;
149 }
150 157154 }
151 #endif /* lsp2polyf */
152
153 void ff_acelp_lsp2lpc(int16_t* lp, const int16_t* lsp, int lp_half_order)
154 {
155 int i;
156 int f1[MAX_LP_HALF_ORDER+1]; // (3.22)
157 int f2[MAX_LP_HALF_ORDER+1]; // (3.22)
158
159 lsp2poly(f1, lsp , lp_half_order);
160 lsp2poly(f2, lsp+1, lp_half_order);
161
162 /* 3.2.6 of G.729, Equations 25 and 26*/
163 lp[0] = 4096;
164 for(i=1; i<lp_half_order+1; i++)
165 {
166 int ff1 = f1[i] + f1[i-1]; // (3.22)
167 int ff2 = f2[i] - f2[i-1]; // (3.22)
168
169 ff1 += 1 << 10; // for rounding
170 lp[i] = (ff1 + ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
171 lp[(lp_half_order << 1) + 1 - i] = (ff1 - ff2) >> 11; // divide by 2 and (3.22) -> (3.12)
172 }
173 }
174
175 44042 void ff_amrwb_lsp2lpc(const double *lsp, float *lp, int lp_order)
176 {
177 44042 int lp_half_order = lp_order >> 1;
178 double buf[MAX_LP_HALF_ORDER + 1];
179 double pa[MAX_LP_HALF_ORDER + 1];
180 44042 double *qa = buf + 1;
181 int i,j;
182
183 44042 qa[-1] = 0.0;
184
185 44042 lsp2polyf(lsp , pa, lp_half_order );
186 44042 lsp2polyf(lsp + 1, qa, lp_half_order - 1);
187
188
2/2
✓ Branch 0 taken 261644 times.
✓ Branch 1 taken 44042 times.
305686 for (i = 1, j = lp_order - 1; i < lp_half_order; i++, j--) {
189 261644 double paf = pa[i] * (1 + lsp[lp_order - 1]);
190 261644 double qaf = (qa[i] - qa[i-2]) * (1 - lsp[lp_order - 1]);
191 261644 lp[i-1] = (paf + qaf) * 0.5;
192 261644 lp[j-1] = (paf - qaf) * 0.5;
193 }
194
195 44042 lp[lp_half_order - 1] = (1.0 + lsp[lp_order - 1]) *
196 44042 pa[lp_half_order] * 0.5;
197
198 44042 lp[lp_order - 1] = lsp[lp_order - 1];
199 44042 }
200
201 void ff_acelp_lp_decode(int16_t* lp_1st, int16_t* lp_2nd, const int16_t* lsp_2nd, const int16_t* lsp_prev, int lp_order)
202 {
203 int16_t lsp_1st[MAX_LP_ORDER]; // (0.15)
204 int i;
205
206 /* LSP values for first subframe (3.2.5 of G.729, Equation 24)*/
207 for(i=0; i<lp_order; i++)
208 #ifdef G729_BITEXACT
209 lsp_1st[i] = (lsp_2nd[i] >> 1) + (lsp_prev[i] >> 1);
210 #else
211 lsp_1st[i] = (lsp_2nd[i] + lsp_prev[i]) >> 1;
212 #endif
213
214 ff_acelp_lsp2lpc(lp_1st, lsp_1st, lp_order >> 1);
215
216 /* LSP values for second subframe (3.2.5 of G.729)*/
217 ff_acelp_lsp2lpc(lp_2nd, lsp_2nd, lp_order >> 1);
218 }
219
220 34535 void ff_acelp_lspd2lpc(const double *lsp, float *lpc, int lp_half_order)
221 {
222 double pa[MAX_LP_HALF_ORDER+1], qa[MAX_LP_HALF_ORDER+1];
223 34535 float *lpc2 = lpc + (lp_half_order << 1) - 1;
224
225 av_assert2(lp_half_order <= MAX_LP_HALF_ORDER);
226
227 34535 lsp2polyf(lsp, pa, lp_half_order);
228 34535 lsp2polyf(lsp + 1, qa, lp_half_order);
229
230
2/2
✓ Branch 0 taken 218608 times.
✓ Branch 1 taken 34535 times.
253143 while (lp_half_order--) {
231 218608 double paf = pa[lp_half_order+1] + pa[lp_half_order];
232 218608 double qaf = qa[lp_half_order+1] - qa[lp_half_order];
233
234 218608 lpc [ lp_half_order] = 0.5*(paf+qaf);
235 218608 lpc2[-lp_half_order] = 0.5*(paf-qaf);
236 }
237 34535 }
238
239 7780 void ff_sort_nearly_sorted_floats(float *vals, int len)
240 {
241 int i,j;
242
243
2/2
✓ Branch 0 taken 80370 times.
✓ Branch 1 taken 7780 times.
88150 for (i = 0; i < len - 1; i++)
244
4/4
✓ Branch 0 taken 80370 times.
✓ Branch 1 taken 1 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 80369 times.
80371 for (j = i; j >= 0 && vals[j] > vals[j+1]; j--)
245 1 FFSWAP(float, vals[j], vals[j+1]);
246 7780 }
247