Line | Branch | Exec | Source |
---|---|---|---|
1 | /* | ||
2 | * This file is part of the Independent JPEG Group's software. | ||
3 | * | ||
4 | * The authors make NO WARRANTY or representation, either express or implied, | ||
5 | * with respect to this software, its quality, accuracy, merchantability, or | ||
6 | * fitness for a particular purpose. This software is provided "AS IS", and | ||
7 | * you, its user, assume the entire risk as to its quality and accuracy. | ||
8 | * | ||
9 | * This software is copyright (C) 1991-1996, Thomas G. Lane. | ||
10 | * All Rights Reserved except as specified below. | ||
11 | * | ||
12 | * Permission is hereby granted to use, copy, modify, and distribute this | ||
13 | * software (or portions thereof) for any purpose, without fee, subject to | ||
14 | * these conditions: | ||
15 | * (1) If any part of the source code for this software is distributed, then | ||
16 | * this README file must be included, with this copyright and no-warranty | ||
17 | * notice unaltered; and any additions, deletions, or changes to the original | ||
18 | * files must be clearly indicated in accompanying documentation. | ||
19 | * (2) If only executable code is distributed, then the accompanying | ||
20 | * documentation must state that "this software is based in part on the work | ||
21 | * of the Independent JPEG Group". | ||
22 | * (3) Permission for use of this software is granted only if the user accepts | ||
23 | * full responsibility for any undesirable consequences; the authors accept | ||
24 | * NO LIABILITY for damages of any kind. | ||
25 | * | ||
26 | * These conditions apply to any software derived from or based on the IJG | ||
27 | * code, not just to the unmodified library. If you use our work, you ought | ||
28 | * to acknowledge us. | ||
29 | * | ||
30 | * Permission is NOT granted for the use of any IJG author's name or company | ||
31 | * name in advertising or publicity relating to this software or products | ||
32 | * derived from it. This software may be referred to only as "the Independent | ||
33 | * JPEG Group's software". | ||
34 | * | ||
35 | * We specifically permit and encourage the use of this software as the basis | ||
36 | * of commercial products, provided that all warranty or liability claims are | ||
37 | * assumed by the product vendor. | ||
38 | * | ||
39 | * This file contains a slow-but-accurate integer implementation of the | ||
40 | * forward DCT (Discrete Cosine Transform). | ||
41 | * | ||
42 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | ||
43 | * on each column. Direct algorithms are also available, but they are | ||
44 | * much more complex and seem not to be any faster when reduced to code. | ||
45 | * | ||
46 | * This implementation is based on an algorithm described in | ||
47 | * C. Loeffler, A. Ligtenberg and G. Moschytz, "Practical Fast 1-D DCT | ||
48 | * Algorithms with 11 Multiplications", Proc. Int'l. Conf. on Acoustics, | ||
49 | * Speech, and Signal Processing 1989 (ICASSP '89), pp. 988-991. | ||
50 | * The primary algorithm described there uses 11 multiplies and 29 adds. | ||
51 | * We use their alternate method with 12 multiplies and 32 adds. | ||
52 | * The advantage of this method is that no data path contains more than one | ||
53 | * multiplication; this allows a very simple and accurate implementation in | ||
54 | * scaled fixed-point arithmetic, with a minimal number of shifts. | ||
55 | */ | ||
56 | |||
57 | /** | ||
58 | * @file | ||
59 | * Independent JPEG Group's slow & accurate dct. | ||
60 | */ | ||
61 | |||
62 | #include "libavutil/common.h" | ||
63 | #include "fdctdsp.h" | ||
64 | |||
65 | #include "bit_depth_template.c" | ||
66 | |||
67 | #define DCTSIZE 8 | ||
68 | #define BITS_IN_JSAMPLE BIT_DEPTH | ||
69 | #define GLOBAL(x) x | ||
70 | #define RIGHT_SHIFT(x, n) ((x) >> (n)) | ||
71 | #define MULTIPLY16C16(var,const) ((var)*(const)) | ||
72 | #define DESCALE(x,n) RIGHT_SHIFT((int)(x) + (1 << ((n) - 1)), n) | ||
73 | |||
74 | |||
75 | /* | ||
76 | * This module is specialized to the case DCTSIZE = 8. | ||
77 | */ | ||
78 | |||
79 | #if DCTSIZE != 8 | ||
80 | #error "Sorry, this code only copes with 8x8 DCTs." | ||
81 | #endif | ||
82 | |||
83 | |||
84 | /* | ||
85 | * The poop on this scaling stuff is as follows: | ||
86 | * | ||
87 | * Each 1-D DCT step produces outputs which are a factor of sqrt(N) | ||
88 | * larger than the true DCT outputs. The final outputs are therefore | ||
89 | * a factor of N larger than desired; since N=8 this can be cured by | ||
90 | * a simple right shift at the end of the algorithm. The advantage of | ||
91 | * this arrangement is that we save two multiplications per 1-D DCT, | ||
92 | * because the y0 and y4 outputs need not be divided by sqrt(N). | ||
93 | * In the IJG code, this factor of 8 is removed by the quantization step | ||
94 | * (in jcdctmgr.c), NOT in this module. | ||
95 | * | ||
96 | * We have to do addition and subtraction of the integer inputs, which | ||
97 | * is no problem, and multiplication by fractional constants, which is | ||
98 | * a problem to do in integer arithmetic. We multiply all the constants | ||
99 | * by CONST_SCALE and convert them to integer constants (thus retaining | ||
100 | * CONST_BITS bits of precision in the constants). After doing a | ||
101 | * multiplication we have to divide the product by CONST_SCALE, with proper | ||
102 | * rounding, to produce the correct output. This division can be done | ||
103 | * cheaply as a right shift of CONST_BITS bits. We postpone shifting | ||
104 | * as long as possible so that partial sums can be added together with | ||
105 | * full fractional precision. | ||
106 | * | ||
107 | * The outputs of the first pass are scaled up by PASS1_BITS bits so that | ||
108 | * they are represented to better-than-integral precision. These outputs | ||
109 | * require BITS_IN_JSAMPLE + PASS1_BITS + 3 bits; this fits in a 16-bit word | ||
110 | * with the recommended scaling. (For 12-bit sample data, the intermediate | ||
111 | * array is int32_t anyway.) | ||
112 | * | ||
113 | * To avoid overflow of the 32-bit intermediate results in pass 2, we must | ||
114 | * have BITS_IN_JSAMPLE + CONST_BITS + PASS1_BITS <= 26. Error analysis | ||
115 | * shows that the values given below are the most effective. | ||
116 | */ | ||
117 | |||
118 | #undef CONST_BITS | ||
119 | #undef PASS1_BITS | ||
120 | #undef OUT_SHIFT | ||
121 | |||
122 | #if BITS_IN_JSAMPLE == 8 | ||
123 | #define CONST_BITS 13 | ||
124 | #define PASS1_BITS 4 /* set this to 2 if 16x16 multiplies are faster */ | ||
125 | #define OUT_SHIFT PASS1_BITS | ||
126 | #else | ||
127 | #define CONST_BITS 13 | ||
128 | #define PASS1_BITS 1 /* lose a little precision to avoid overflow */ | ||
129 | #define OUT_SHIFT (PASS1_BITS + 1) | ||
130 | #endif | ||
131 | |||
132 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | ||
133 | * causing a lot of useless floating-point operations at run time. | ||
134 | * To get around this we use the following pre-calculated constants. | ||
135 | * If you change CONST_BITS you may want to add appropriate values. | ||
136 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) | ||
137 | */ | ||
138 | |||
139 | #if CONST_BITS == 13 | ||
140 | #define FIX_0_298631336 ((int32_t) 2446) /* FIX(0.298631336) */ | ||
141 | #define FIX_0_390180644 ((int32_t) 3196) /* FIX(0.390180644) */ | ||
142 | #define FIX_0_541196100 ((int32_t) 4433) /* FIX(0.541196100) */ | ||
143 | #define FIX_0_765366865 ((int32_t) 6270) /* FIX(0.765366865) */ | ||
144 | #define FIX_0_899976223 ((int32_t) 7373) /* FIX(0.899976223) */ | ||
145 | #define FIX_1_175875602 ((int32_t) 9633) /* FIX(1.175875602) */ | ||
146 | #define FIX_1_501321110 ((int32_t) 12299) /* FIX(1.501321110) */ | ||
147 | #define FIX_1_847759065 ((int32_t) 15137) /* FIX(1.847759065) */ | ||
148 | #define FIX_1_961570560 ((int32_t) 16069) /* FIX(1.961570560) */ | ||
149 | #define FIX_2_053119869 ((int32_t) 16819) /* FIX(2.053119869) */ | ||
150 | #define FIX_2_562915447 ((int32_t) 20995) /* FIX(2.562915447) */ | ||
151 | #define FIX_3_072711026 ((int32_t) 25172) /* FIX(3.072711026) */ | ||
152 | #else | ||
153 | #define FIX_0_298631336 FIX(0.298631336) | ||
154 | #define FIX_0_390180644 FIX(0.390180644) | ||
155 | #define FIX_0_541196100 FIX(0.541196100) | ||
156 | #define FIX_0_765366865 FIX(0.765366865) | ||
157 | #define FIX_0_899976223 FIX(0.899976223) | ||
158 | #define FIX_1_175875602 FIX(1.175875602) | ||
159 | #define FIX_1_501321110 FIX(1.501321110) | ||
160 | #define FIX_1_847759065 FIX(1.847759065) | ||
161 | #define FIX_1_961570560 FIX(1.961570560) | ||
162 | #define FIX_2_053119869 FIX(2.053119869) | ||
163 | #define FIX_2_562915447 FIX(2.562915447) | ||
164 | #define FIX_3_072711026 FIX(3.072711026) | ||
165 | #endif | ||
166 | |||
167 | |||
168 | /* Multiply an int32_t variable by an int32_t constant to yield an int32_t result. | ||
169 | * For 8-bit samples with the recommended scaling, all the variable | ||
170 | * and constant values involved are no more than 16 bits wide, so a | ||
171 | * 16x16->32 bit multiply can be used instead of a full 32x32 multiply. | ||
172 | * For 12-bit samples, a full 32-bit multiplication will be needed. | ||
173 | */ | ||
174 | |||
175 | #if BITS_IN_JSAMPLE == 8 && CONST_BITS<=13 && PASS1_BITS<=2 | ||
176 | #define MULTIPLY(var,const) MULTIPLY16C16(var,const) | ||
177 | #else | ||
178 | #define MULTIPLY(var,const) (int)((var) * (unsigned)(const)) | ||
179 | #endif | ||
180 | |||
181 | |||
182 | 54317198 | static av_always_inline void FUNC(row_fdct)(int16_t *data) | |
183 | { | ||
184 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | ||
185 | int tmp10, tmp11, tmp12, tmp13; | ||
186 | unsigned z1, z2, z3, z4, z5; | ||
187 | int16_t *dataptr; | ||
188 | int ctr; | ||
189 | |||
190 | /* Pass 1: process rows. */ | ||
191 | /* Note results are scaled up by sqrt(8) compared to a true DCT; */ | ||
192 | /* furthermore, we scale the results by 2**PASS1_BITS. */ | ||
193 | |||
194 | 54317198 | dataptr = data; | |
195 |
2/2✓ Branch 0 taken 217268792 times.
✓ Branch 1 taken 27158599 times.
|
488854782 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
196 | 434537584 | tmp0 = dataptr[0] + dataptr[7]; | |
197 | 434537584 | tmp7 = dataptr[0] - dataptr[7]; | |
198 | 434537584 | tmp1 = dataptr[1] + dataptr[6]; | |
199 | 434537584 | tmp6 = dataptr[1] - dataptr[6]; | |
200 | 434537584 | tmp2 = dataptr[2] + dataptr[5]; | |
201 | 434537584 | tmp5 = dataptr[2] - dataptr[5]; | |
202 | 434537584 | tmp3 = dataptr[3] + dataptr[4]; | |
203 | 434537584 | tmp4 = dataptr[3] - dataptr[4]; | |
204 | |||
205 | /* Even part per LL&M figure 1 --- note that published figure is faulty; | ||
206 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". | ||
207 | */ | ||
208 | |||
209 | 434537584 | tmp10 = tmp0 + tmp3; | |
210 | 434537584 | tmp13 = tmp0 - tmp3; | |
211 | 434537584 | tmp11 = tmp1 + tmp2; | |
212 | 434537584 | tmp12 = tmp1 - tmp2; | |
213 | |||
214 | 434537584 | dataptr[0] = (int16_t) ((tmp10 + tmp11) * (1 << PASS1_BITS)); | |
215 | 434537584 | dataptr[4] = (int16_t) ((tmp10 - tmp11) * (1 << PASS1_BITS)); | |
216 | |||
217 | 434537584 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); | |
218 | 434537584 | dataptr[2] = (int16_t) DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), | |
219 | CONST_BITS-PASS1_BITS); | ||
220 | 434537584 | dataptr[6] = (int16_t) DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), | |
221 | CONST_BITS-PASS1_BITS); | ||
222 | |||
223 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). | ||
224 | * cK represents cos(K*pi/16). | ||
225 | * i0..i3 in the paper are tmp4..tmp7 here. | ||
226 | */ | ||
227 | |||
228 | 434537584 | z1 = tmp4 + tmp7; | |
229 | 434537584 | z2 = tmp5 + tmp6; | |
230 | 434537584 | z3 = tmp4 + tmp6; | |
231 | 434537584 | z4 = tmp5 + tmp7; | |
232 | 434537584 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ | |
233 | |||
234 | 434537584 | tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ | |
235 | 434537584 | tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ | |
236 | 434537584 | tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ | |
237 | 434537584 | tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ | |
238 | 434537584 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ | |
239 | 434537584 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ | |
240 | 434537584 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ | |
241 | 434537584 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ | |
242 | |||
243 | 434537584 | z3 += z5; | |
244 | 434537584 | z4 += z5; | |
245 | |||
246 | 434537584 | dataptr[7] = (int16_t) DESCALE(tmp4 + z1 + z3, CONST_BITS-PASS1_BITS); | |
247 | 434537584 | dataptr[5] = (int16_t) DESCALE(tmp5 + z2 + z4, CONST_BITS-PASS1_BITS); | |
248 | 434537584 | dataptr[3] = (int16_t) DESCALE(tmp6 + z2 + z3, CONST_BITS-PASS1_BITS); | |
249 | 434537584 | dataptr[1] = (int16_t) DESCALE(tmp7 + z1 + z4, CONST_BITS-PASS1_BITS); | |
250 | |||
251 | 434537584 | dataptr += DCTSIZE; /* advance pointer to next row */ | |
252 | } | ||
253 | 54317198 | } | |
254 | |||
255 | /* | ||
256 | * Perform the forward DCT on one block of samples. | ||
257 | */ | ||
258 | |||
259 | GLOBAL(void) | ||
260 | 54317198 | FUNC(ff_jpeg_fdct_islow)(int16_t *data) | |
261 | { | ||
262 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | ||
263 | int tmp10, tmp11, tmp12, tmp13; | ||
264 | unsigned z1, z2, z3, z4, z5; | ||
265 | int16_t *dataptr; | ||
266 | int ctr; | ||
267 | |||
268 | 54317198 | FUNC(row_fdct)(data); | |
269 | |||
270 | /* Pass 2: process columns. | ||
271 | * We remove the PASS1_BITS scaling, but leave the results scaled up | ||
272 | * by an overall factor of 8. | ||
273 | */ | ||
274 | |||
275 | 54317198 | dataptr = data; | |
276 |
2/2✓ Branch 0 taken 217268792 times.
✓ Branch 1 taken 27158599 times.
|
488854782 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
277 | 434537584 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |
278 | 434537584 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |
279 | 434537584 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |
280 | 434537584 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |
281 | 434537584 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |
282 | 434537584 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |
283 | 434537584 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |
284 | 434537584 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |
285 | |||
286 | /* Even part per LL&M figure 1 --- note that published figure is faulty; | ||
287 | * rotator "sqrt(2)*c1" should be "sqrt(2)*c6". | ||
288 | */ | ||
289 | |||
290 | 434537584 | tmp10 = tmp0 + tmp3; | |
291 | 434537584 | tmp13 = tmp0 - tmp3; | |
292 | 434537584 | tmp11 = tmp1 + tmp2; | |
293 | 434537584 | tmp12 = tmp1 - tmp2; | |
294 | |||
295 | 434537584 | dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT); | |
296 | 434537584 | dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT); | |
297 | |||
298 | 434537584 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); | |
299 | 434537584 | dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), | |
300 | CONST_BITS + OUT_SHIFT); | ||
301 | 434537584 | dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), | |
302 | CONST_BITS + OUT_SHIFT); | ||
303 | |||
304 | /* Odd part per figure 8 --- note paper omits factor of sqrt(2). | ||
305 | * cK represents cos(K*pi/16). | ||
306 | * i0..i3 in the paper are tmp4..tmp7 here. | ||
307 | */ | ||
308 | |||
309 | 434537584 | z1 = tmp4 + tmp7; | |
310 | 434537584 | z2 = tmp5 + tmp6; | |
311 | 434537584 | z3 = tmp4 + tmp6; | |
312 | 434537584 | z4 = tmp5 + tmp7; | |
313 | 434537584 | z5 = MULTIPLY(z3 + z4, FIX_1_175875602); /* sqrt(2) * c3 */ | |
314 | |||
315 | 434537584 | tmp4 = MULTIPLY(tmp4, FIX_0_298631336); /* sqrt(2) * (-c1+c3+c5-c7) */ | |
316 | 434537584 | tmp5 = MULTIPLY(tmp5, FIX_2_053119869); /* sqrt(2) * ( c1+c3-c5+c7) */ | |
317 | 434537584 | tmp6 = MULTIPLY(tmp6, FIX_3_072711026); /* sqrt(2) * ( c1+c3+c5-c7) */ | |
318 | 434537584 | tmp7 = MULTIPLY(tmp7, FIX_1_501321110); /* sqrt(2) * ( c1+c3-c5-c7) */ | |
319 | 434537584 | z1 = MULTIPLY(z1, - FIX_0_899976223); /* sqrt(2) * (c7-c3) */ | |
320 | 434537584 | z2 = MULTIPLY(z2, - FIX_2_562915447); /* sqrt(2) * (-c1-c3) */ | |
321 | 434537584 | z3 = MULTIPLY(z3, - FIX_1_961570560); /* sqrt(2) * (-c3-c5) */ | |
322 | 434537584 | z4 = MULTIPLY(z4, - FIX_0_390180644); /* sqrt(2) * (c5-c3) */ | |
323 | |||
324 | 434537584 | z3 += z5; | |
325 | 434537584 | z4 += z5; | |
326 | |||
327 | 434537584 | dataptr[DCTSIZE*7] = DESCALE(tmp4 + z1 + z3, CONST_BITS + OUT_SHIFT); | |
328 | 434537584 | dataptr[DCTSIZE*5] = DESCALE(tmp5 + z2 + z4, CONST_BITS + OUT_SHIFT); | |
329 | 434537584 | dataptr[DCTSIZE*3] = DESCALE(tmp6 + z2 + z3, CONST_BITS + OUT_SHIFT); | |
330 | 434537584 | dataptr[DCTSIZE*1] = DESCALE(tmp7 + z1 + z4, CONST_BITS + OUT_SHIFT); | |
331 | |||
332 | 434537584 | dataptr++; /* advance pointer to next column */ | |
333 | } | ||
334 | 54317198 | } | |
335 | |||
336 | /* | ||
337 | * The secret of DCT2-4-8 is really simple -- you do the usual 1-DCT | ||
338 | * on the rows and then, instead of doing even and odd, part on the columns | ||
339 | * you do even part two times. | ||
340 | */ | ||
341 | GLOBAL(void) | ||
342 | ✗ | FUNC(ff_fdct248_islow)(int16_t *data) | |
343 | { | ||
344 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | ||
345 | int tmp10, tmp11, tmp12, tmp13; | ||
346 | int z1; | ||
347 | int16_t *dataptr; | ||
348 | int ctr; | ||
349 | |||
350 | ✗ | FUNC(row_fdct)(data); | |
351 | |||
352 | /* Pass 2: process columns. | ||
353 | * We remove the PASS1_BITS scaling, but leave the results scaled up | ||
354 | * by an overall factor of 8. | ||
355 | */ | ||
356 | |||
357 | ✗ | dataptr = data; | |
358 | ✗ | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
359 | ✗ | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1]; | |
360 | ✗ | tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; | |
361 | ✗ | tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; | |
362 | ✗ | tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; | |
363 | ✗ | tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1]; | |
364 | ✗ | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; | |
365 | ✗ | tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; | |
366 | ✗ | tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; | |
367 | |||
368 | ✗ | tmp10 = tmp0 + tmp3; | |
369 | ✗ | tmp11 = tmp1 + tmp2; | |
370 | ✗ | tmp12 = tmp1 - tmp2; | |
371 | ✗ | tmp13 = tmp0 - tmp3; | |
372 | |||
373 | ✗ | dataptr[DCTSIZE*0] = DESCALE(tmp10 + tmp11, OUT_SHIFT); | |
374 | ✗ | dataptr[DCTSIZE*4] = DESCALE(tmp10 - tmp11, OUT_SHIFT); | |
375 | |||
376 | ✗ | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); | |
377 | ✗ | dataptr[DCTSIZE*2] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), | |
378 | CONST_BITS+OUT_SHIFT); | ||
379 | ✗ | dataptr[DCTSIZE*6] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), | |
380 | CONST_BITS+OUT_SHIFT); | ||
381 | |||
382 | ✗ | tmp10 = tmp4 + tmp7; | |
383 | ✗ | tmp11 = tmp5 + tmp6; | |
384 | ✗ | tmp12 = tmp5 - tmp6; | |
385 | ✗ | tmp13 = tmp4 - tmp7; | |
386 | |||
387 | ✗ | dataptr[DCTSIZE*1] = DESCALE(tmp10 + tmp11, OUT_SHIFT); | |
388 | ✗ | dataptr[DCTSIZE*5] = DESCALE(tmp10 - tmp11, OUT_SHIFT); | |
389 | |||
390 | ✗ | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_541196100); | |
391 | ✗ | dataptr[DCTSIZE*3] = DESCALE(z1 + MULTIPLY(tmp13, FIX_0_765366865), | |
392 | CONST_BITS + OUT_SHIFT); | ||
393 | ✗ | dataptr[DCTSIZE*7] = DESCALE(z1 + MULTIPLY(tmp12, - FIX_1_847759065), | |
394 | CONST_BITS + OUT_SHIFT); | ||
395 | |||
396 | ✗ | dataptr++; /* advance pointer to next column */ | |
397 | } | ||
398 | ✗ | } | |
399 |