Line | Branch | Exec | Source |
---|---|---|---|
1 | /* | ||
2 | * This file is part of the Independent JPEG Group's software. | ||
3 | * | ||
4 | * The authors make NO WARRANTY or representation, either express or implied, | ||
5 | * with respect to this software, its quality, accuracy, merchantability, or | ||
6 | * fitness for a particular purpose. This software is provided "AS IS", and | ||
7 | * you, its user, assume the entire risk as to its quality and accuracy. | ||
8 | * | ||
9 | * This software is copyright (C) 1994-1996, Thomas G. Lane. | ||
10 | * All Rights Reserved except as specified below. | ||
11 | * | ||
12 | * Permission is hereby granted to use, copy, modify, and distribute this | ||
13 | * software (or portions thereof) for any purpose, without fee, subject to | ||
14 | * these conditions: | ||
15 | * (1) If any part of the source code for this software is distributed, then | ||
16 | * this README file must be included, with this copyright and no-warranty | ||
17 | * notice unaltered; and any additions, deletions, or changes to the original | ||
18 | * files must be clearly indicated in accompanying documentation. | ||
19 | * (2) If only executable code is distributed, then the accompanying | ||
20 | * documentation must state that "this software is based in part on the work | ||
21 | * of the Independent JPEG Group". | ||
22 | * (3) Permission for use of this software is granted only if the user accepts | ||
23 | * full responsibility for any undesirable consequences; the authors accept | ||
24 | * NO LIABILITY for damages of any kind. | ||
25 | * | ||
26 | * These conditions apply to any software derived from or based on the IJG | ||
27 | * code, not just to the unmodified library. If you use our work, you ought | ||
28 | * to acknowledge us. | ||
29 | * | ||
30 | * Permission is NOT granted for the use of any IJG author's name or company | ||
31 | * name in advertising or publicity relating to this software or products | ||
32 | * derived from it. This software may be referred to only as "the Independent | ||
33 | * JPEG Group's software". | ||
34 | * | ||
35 | * We specifically permit and encourage the use of this software as the basis | ||
36 | * of commercial products, provided that all warranty or liability claims are | ||
37 | * assumed by the product vendor. | ||
38 | * | ||
39 | * This file contains a fast, not so accurate integer implementation of the | ||
40 | * forward DCT (Discrete Cosine Transform). | ||
41 | * | ||
42 | * A 2-D DCT can be done by 1-D DCT on each row followed by 1-D DCT | ||
43 | * on each column. Direct algorithms are also available, but they are | ||
44 | * much more complex and seem not to be any faster when reduced to code. | ||
45 | * | ||
46 | * This implementation is based on Arai, Agui, and Nakajima's algorithm for | ||
47 | * scaled DCT. Their original paper (Trans. IEICE E-71(11):1095) is in | ||
48 | * Japanese, but the algorithm is described in the Pennebaker & Mitchell | ||
49 | * JPEG textbook (see REFERENCES section in file README). The following code | ||
50 | * is based directly on figure 4-8 in P&M. | ||
51 | * While an 8-point DCT cannot be done in less than 11 multiplies, it is | ||
52 | * possible to arrange the computation so that many of the multiplies are | ||
53 | * simple scalings of the final outputs. These multiplies can then be | ||
54 | * folded into the multiplications or divisions by the JPEG quantization | ||
55 | * table entries. The AA&N method leaves only 5 multiplies and 29 adds | ||
56 | * to be done in the DCT itself. | ||
57 | * The primary disadvantage of this method is that with fixed-point math, | ||
58 | * accuracy is lost due to imprecise representation of the scaled | ||
59 | * quantization values. The smaller the quantization table entry, the less | ||
60 | * precise the scaled value, so this implementation does worse with high- | ||
61 | * quality-setting files than with low-quality ones. | ||
62 | */ | ||
63 | |||
64 | /** | ||
65 | * @file | ||
66 | * Independent JPEG Group's fast AAN dct. | ||
67 | */ | ||
68 | |||
69 | #include <stdint.h> | ||
70 | #include "libavutil/attributes.h" | ||
71 | #include "fdctdsp.h" | ||
72 | |||
73 | #define DCTSIZE 8 | ||
74 | #define GLOBAL(x) x | ||
75 | #define RIGHT_SHIFT(x, n) ((x) >> (n)) | ||
76 | |||
77 | /* | ||
78 | * This module is specialized to the case DCTSIZE = 8. | ||
79 | */ | ||
80 | |||
81 | #if DCTSIZE != 8 | ||
82 | Sorry, this code only copes with 8x8 DCTs. /* deliberate syntax err */ | ||
83 | #endif | ||
84 | |||
85 | |||
86 | /* Scaling decisions are generally the same as in the LL&M algorithm; | ||
87 | * see jfdctint.c for more details. However, we choose to descale | ||
88 | * (right shift) multiplication products as soon as they are formed, | ||
89 | * rather than carrying additional fractional bits into subsequent additions. | ||
90 | * This compromises accuracy slightly, but it lets us save a few shifts. | ||
91 | * More importantly, 16-bit arithmetic is then adequate (for 8-bit samples) | ||
92 | * everywhere except in the multiplications proper; this saves a good deal | ||
93 | * of work on 16-bit-int machines. | ||
94 | * | ||
95 | * Again to save a few shifts, the intermediate results between pass 1 and | ||
96 | * pass 2 are not upscaled, but are represented only to integral precision. | ||
97 | * | ||
98 | * A final compromise is to represent the multiplicative constants to only | ||
99 | * 8 fractional bits, rather than 13. This saves some shifting work on some | ||
100 | * machines, and may also reduce the cost of multiplication (since there | ||
101 | * are fewer one-bits in the constants). | ||
102 | */ | ||
103 | |||
104 | #define CONST_BITS 8 | ||
105 | |||
106 | |||
107 | /* Some C compilers fail to reduce "FIX(constant)" at compile time, thus | ||
108 | * causing a lot of useless floating-point operations at run time. | ||
109 | * To get around this we use the following pre-calculated constants. | ||
110 | * If you change CONST_BITS you may want to add appropriate values. | ||
111 | * (With a reasonable C compiler, you can just rely on the FIX() macro...) | ||
112 | */ | ||
113 | |||
114 | #if CONST_BITS == 8 | ||
115 | #define FIX_0_382683433 ((int32_t) 98) /* FIX(0.382683433) */ | ||
116 | #define FIX_0_541196100 ((int32_t) 139) /* FIX(0.541196100) */ | ||
117 | #define FIX_0_707106781 ((int32_t) 181) /* FIX(0.707106781) */ | ||
118 | #define FIX_1_306562965 ((int32_t) 334) /* FIX(1.306562965) */ | ||
119 | #else | ||
120 | #define FIX_0_382683433 FIX(0.382683433) | ||
121 | #define FIX_0_541196100 FIX(0.541196100) | ||
122 | #define FIX_0_707106781 FIX(0.707106781) | ||
123 | #define FIX_1_306562965 FIX(1.306562965) | ||
124 | #endif | ||
125 | |||
126 | |||
127 | /* We can gain a little more speed, with a further compromise in accuracy, | ||
128 | * by omitting the addition in a descaling shift. This yields an incorrectly | ||
129 | * rounded result half the time... | ||
130 | */ | ||
131 | |||
132 | #ifndef USE_ACCURATE_ROUNDING | ||
133 | #undef DESCALE | ||
134 | #define DESCALE(x,n) RIGHT_SHIFT(x, n) | ||
135 | #endif | ||
136 | |||
137 | |||
138 | /* Multiply a int16_t variable by an int32_t constant, and immediately | ||
139 | * descale to yield a int16_t result. | ||
140 | */ | ||
141 | |||
142 | #define MULTIPLY(var,const) ((int16_t) DESCALE((var) * (const), CONST_BITS)) | ||
143 | |||
144 | 103063916 | static av_always_inline void row_fdct(int16_t * data){ | |
145 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | ||
146 | int tmp10, tmp11, tmp12, tmp13; | ||
147 | int z1, z2, z3, z4, z5, z11, z13; | ||
148 | int16_t *dataptr; | ||
149 | int ctr; | ||
150 | |||
151 | /* Pass 1: process rows. */ | ||
152 | |||
153 | 103063916 | dataptr = data; | |
154 |
2/2✓ Branch 0 taken 824511328 times.
✓ Branch 1 taken 103063916 times.
|
927575244 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
155 | 824511328 | tmp0 = dataptr[0] + dataptr[7]; | |
156 | 824511328 | tmp7 = dataptr[0] - dataptr[7]; | |
157 | 824511328 | tmp1 = dataptr[1] + dataptr[6]; | |
158 | 824511328 | tmp6 = dataptr[1] - dataptr[6]; | |
159 | 824511328 | tmp2 = dataptr[2] + dataptr[5]; | |
160 | 824511328 | tmp5 = dataptr[2] - dataptr[5]; | |
161 | 824511328 | tmp3 = dataptr[3] + dataptr[4]; | |
162 | 824511328 | tmp4 = dataptr[3] - dataptr[4]; | |
163 | |||
164 | /* Even part */ | ||
165 | |||
166 | 824511328 | tmp10 = tmp0 + tmp3; /* phase 2 */ | |
167 | 824511328 | tmp13 = tmp0 - tmp3; | |
168 | 824511328 | tmp11 = tmp1 + tmp2; | |
169 | 824511328 | tmp12 = tmp1 - tmp2; | |
170 | |||
171 | 824511328 | dataptr[0] = tmp10 + tmp11; /* phase 3 */ | |
172 | 824511328 | dataptr[4] = tmp10 - tmp11; | |
173 | |||
174 | 824511328 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | |
175 | 824511328 | dataptr[2] = tmp13 + z1; /* phase 5 */ | |
176 | 824511328 | dataptr[6] = tmp13 - z1; | |
177 | |||
178 | /* Odd part */ | ||
179 | |||
180 | 824511328 | tmp10 = tmp4 + tmp5; /* phase 2 */ | |
181 | 824511328 | tmp11 = tmp5 + tmp6; | |
182 | 824511328 | tmp12 = tmp6 + tmp7; | |
183 | |||
184 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | ||
185 | 824511328 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | |
186 | 824511328 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | |
187 | 824511328 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | |
188 | 824511328 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | |
189 | |||
190 | 824511328 | z11 = tmp7 + z3; /* phase 5 */ | |
191 | 824511328 | z13 = tmp7 - z3; | |
192 | |||
193 | 824511328 | dataptr[5] = z13 + z2; /* phase 6 */ | |
194 | 824511328 | dataptr[3] = z13 - z2; | |
195 | 824511328 | dataptr[1] = z11 + z4; | |
196 | 824511328 | dataptr[7] = z11 - z4; | |
197 | |||
198 | 824511328 | dataptr += DCTSIZE; /* advance pointer to next row */ | |
199 | } | ||
200 | 103063916 | } | |
201 | |||
202 | /* | ||
203 | * Perform the forward DCT on one block of samples. | ||
204 | */ | ||
205 | |||
206 | GLOBAL(void) | ||
207 | 103063916 | ff_fdct_ifast (int16_t * data) | |
208 | { | ||
209 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | ||
210 | int tmp10, tmp11, tmp12, tmp13; | ||
211 | int z1, z2, z3, z4, z5, z11, z13; | ||
212 | int16_t *dataptr; | ||
213 | int ctr; | ||
214 | |||
215 | 103063916 | row_fdct(data); | |
216 | |||
217 | /* Pass 2: process columns. */ | ||
218 | |||
219 | 103063916 | dataptr = data; | |
220 |
2/2✓ Branch 0 taken 824511328 times.
✓ Branch 1 taken 103063916 times.
|
927575244 | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { |
221 | 824511328 | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*7]; | |
222 | 824511328 | tmp7 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*7]; | |
223 | 824511328 | tmp1 = dataptr[DCTSIZE*1] + dataptr[DCTSIZE*6]; | |
224 | 824511328 | tmp6 = dataptr[DCTSIZE*1] - dataptr[DCTSIZE*6]; | |
225 | 824511328 | tmp2 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*5]; | |
226 | 824511328 | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*5]; | |
227 | 824511328 | tmp3 = dataptr[DCTSIZE*3] + dataptr[DCTSIZE*4]; | |
228 | 824511328 | tmp4 = dataptr[DCTSIZE*3] - dataptr[DCTSIZE*4]; | |
229 | |||
230 | /* Even part */ | ||
231 | |||
232 | 824511328 | tmp10 = tmp0 + tmp3; /* phase 2 */ | |
233 | 824511328 | tmp13 = tmp0 - tmp3; | |
234 | 824511328 | tmp11 = tmp1 + tmp2; | |
235 | 824511328 | tmp12 = tmp1 - tmp2; | |
236 | |||
237 | 824511328 | dataptr[DCTSIZE*0] = tmp10 + tmp11; /* phase 3 */ | |
238 | 824511328 | dataptr[DCTSIZE*4] = tmp10 - tmp11; | |
239 | |||
240 | 824511328 | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); /* c4 */ | |
241 | 824511328 | dataptr[DCTSIZE*2] = tmp13 + z1; /* phase 5 */ | |
242 | 824511328 | dataptr[DCTSIZE*6] = tmp13 - z1; | |
243 | |||
244 | /* Odd part */ | ||
245 | |||
246 | 824511328 | tmp10 = tmp4 + tmp5; /* phase 2 */ | |
247 | 824511328 | tmp11 = tmp5 + tmp6; | |
248 | 824511328 | tmp12 = tmp6 + tmp7; | |
249 | |||
250 | /* The rotator is modified from fig 4-8 to avoid extra negations. */ | ||
251 | 824511328 | z5 = MULTIPLY(tmp10 - tmp12, FIX_0_382683433); /* c6 */ | |
252 | 824511328 | z2 = MULTIPLY(tmp10, FIX_0_541196100) + z5; /* c2-c6 */ | |
253 | 824511328 | z4 = MULTIPLY(tmp12, FIX_1_306562965) + z5; /* c2+c6 */ | |
254 | 824511328 | z3 = MULTIPLY(tmp11, FIX_0_707106781); /* c4 */ | |
255 | |||
256 | 824511328 | z11 = tmp7 + z3; /* phase 5 */ | |
257 | 824511328 | z13 = tmp7 - z3; | |
258 | |||
259 | 824511328 | dataptr[DCTSIZE*5] = z13 + z2; /* phase 6 */ | |
260 | 824511328 | dataptr[DCTSIZE*3] = z13 - z2; | |
261 | 824511328 | dataptr[DCTSIZE*1] = z11 + z4; | |
262 | 824511328 | dataptr[DCTSIZE*7] = z11 - z4; | |
263 | |||
264 | 824511328 | dataptr++; /* advance pointer to next column */ | |
265 | } | ||
266 | 103063916 | } | |
267 | |||
268 | /* | ||
269 | * Perform the forward 2-4-8 DCT on one block of samples. | ||
270 | */ | ||
271 | |||
272 | GLOBAL(void) | ||
273 | ✗ | ff_fdct_ifast248 (int16_t * data) | |
274 | { | ||
275 | int tmp0, tmp1, tmp2, tmp3, tmp4, tmp5, tmp6, tmp7; | ||
276 | int tmp10, tmp11, tmp12, tmp13; | ||
277 | int z1; | ||
278 | int16_t *dataptr; | ||
279 | int ctr; | ||
280 | |||
281 | ✗ | row_fdct(data); | |
282 | |||
283 | /* Pass 2: process columns. */ | ||
284 | |||
285 | ✗ | dataptr = data; | |
286 | ✗ | for (ctr = DCTSIZE-1; ctr >= 0; ctr--) { | |
287 | ✗ | tmp0 = dataptr[DCTSIZE*0] + dataptr[DCTSIZE*1]; | |
288 | ✗ | tmp1 = dataptr[DCTSIZE*2] + dataptr[DCTSIZE*3]; | |
289 | ✗ | tmp2 = dataptr[DCTSIZE*4] + dataptr[DCTSIZE*5]; | |
290 | ✗ | tmp3 = dataptr[DCTSIZE*6] + dataptr[DCTSIZE*7]; | |
291 | ✗ | tmp4 = dataptr[DCTSIZE*0] - dataptr[DCTSIZE*1]; | |
292 | ✗ | tmp5 = dataptr[DCTSIZE*2] - dataptr[DCTSIZE*3]; | |
293 | ✗ | tmp6 = dataptr[DCTSIZE*4] - dataptr[DCTSIZE*5]; | |
294 | ✗ | tmp7 = dataptr[DCTSIZE*6] - dataptr[DCTSIZE*7]; | |
295 | |||
296 | /* Even part */ | ||
297 | |||
298 | ✗ | tmp10 = tmp0 + tmp3; | |
299 | ✗ | tmp11 = tmp1 + tmp2; | |
300 | ✗ | tmp12 = tmp1 - tmp2; | |
301 | ✗ | tmp13 = tmp0 - tmp3; | |
302 | |||
303 | ✗ | dataptr[DCTSIZE*0] = tmp10 + tmp11; | |
304 | ✗ | dataptr[DCTSIZE*4] = tmp10 - tmp11; | |
305 | |||
306 | ✗ | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); | |
307 | ✗ | dataptr[DCTSIZE*2] = tmp13 + z1; | |
308 | ✗ | dataptr[DCTSIZE*6] = tmp13 - z1; | |
309 | |||
310 | ✗ | tmp10 = tmp4 + tmp7; | |
311 | ✗ | tmp11 = tmp5 + tmp6; | |
312 | ✗ | tmp12 = tmp5 - tmp6; | |
313 | ✗ | tmp13 = tmp4 - tmp7; | |
314 | |||
315 | ✗ | dataptr[DCTSIZE*1] = tmp10 + tmp11; | |
316 | ✗ | dataptr[DCTSIZE*5] = tmp10 - tmp11; | |
317 | |||
318 | ✗ | z1 = MULTIPLY(tmp12 + tmp13, FIX_0_707106781); | |
319 | ✗ | dataptr[DCTSIZE*3] = tmp13 + z1; | |
320 | ✗ | dataptr[DCTSIZE*7] = tmp13 - z1; | |
321 | |||
322 | ✗ | dataptr++; /* advance pointer to next column */ | |
323 | } | ||
324 | ✗ | } | |
325 | |||
326 | |||
327 | #undef GLOBAL | ||
328 | #undef CONST_BITS | ||
329 | #undef DESCALE | ||
330 | #undef FIX_0_541196100 | ||
331 | #undef FIX_1_306562965 | ||
332 |