Line |
Branch |
Exec |
Source |
1 |
|
|
/* |
2 |
|
|
* Copyright (c) 2013, The WebRTC project authors. All rights reserved. |
3 |
|
|
* |
4 |
|
|
* Redistribution and use in source and binary forms, with or without |
5 |
|
|
* modification, are permitted provided that the following conditions are |
6 |
|
|
* met: |
7 |
|
|
* |
8 |
|
|
* * Redistributions of source code must retain the above copyright |
9 |
|
|
* notice, this list of conditions and the following disclaimer. |
10 |
|
|
* |
11 |
|
|
* * Redistributions in binary form must reproduce the above copyright |
12 |
|
|
* notice, this list of conditions and the following disclaimer in |
13 |
|
|
* the documentation and/or other materials provided with the |
14 |
|
|
* distribution. |
15 |
|
|
* |
16 |
|
|
* * Neither the name of Google nor the names of its contributors may |
17 |
|
|
* be used to endorse or promote products derived from this software |
18 |
|
|
* without specific prior written permission. |
19 |
|
|
* |
20 |
|
|
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS |
21 |
|
|
* "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT |
22 |
|
|
* LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR |
23 |
|
|
* A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT |
24 |
|
|
* HOLDER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, |
25 |
|
|
* SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT |
26 |
|
|
* LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, |
27 |
|
|
* DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY |
28 |
|
|
* THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT |
29 |
|
|
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE |
30 |
|
|
* OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
31 |
|
|
*/ |
32 |
|
|
|
33 |
|
|
#include "libavutil/channel_layout.h" |
34 |
|
|
#include "avcodec.h" |
35 |
|
|
#include "codec_internal.h" |
36 |
|
|
#include "decode.h" |
37 |
|
|
#include "get_bits.h" |
38 |
|
|
#include "ilbcdata.h" |
39 |
|
|
|
40 |
|
|
#define LPC_N_20MS 1 |
41 |
|
|
#define LPC_N_30MS 2 |
42 |
|
|
#define LPC_N_MAX 2 |
43 |
|
|
#define LSF_NSPLIT 3 |
44 |
|
|
#define NASUB_MAX 4 |
45 |
|
|
#define LPC_FILTERORDER 10 |
46 |
|
|
#define NSUB_MAX 6 |
47 |
|
|
#define SUBL 40 |
48 |
|
|
|
49 |
|
|
#define ST_MEM_L_TBL 85 |
50 |
|
|
#define MEM_LF_TBL 147 |
51 |
|
|
#define STATE_SHORT_LEN_20MS 57 |
52 |
|
|
#define STATE_SHORT_LEN_30MS 58 |
53 |
|
|
|
54 |
|
|
#define BLOCKL_MAX 240 |
55 |
|
|
#define CB_MEML 147 |
56 |
|
|
#define CB_NSTAGES 3 |
57 |
|
|
#define CB_HALFFILTERLEN 4 |
58 |
|
|
#define CB_FILTERLEN 8 |
59 |
|
|
|
60 |
|
|
#define ENH_NBLOCKS_TOT 8 |
61 |
|
|
#define ENH_BLOCKL 80 |
62 |
|
|
#define ENH_BUFL (ENH_NBLOCKS_TOT)*ENH_BLOCKL |
63 |
|
|
#define ENH_BUFL_FILTEROVERHEAD 3 |
64 |
|
|
#define BLOCKL_MAX 240 |
65 |
|
|
#define NSUB_20MS 4 |
66 |
|
|
#define NSUB_30MS 6 |
67 |
|
|
#define NSUB_MAX 6 |
68 |
|
|
#define NASUB_20MS 2 |
69 |
|
|
#define NASUB_30MS 4 |
70 |
|
|
#define NASUB_MAX 4 |
71 |
|
|
#define STATE_LEN 80 |
72 |
|
|
#define STATE_SHORT_LEN_30MS 58 |
73 |
|
|
#define STATE_SHORT_LEN_20MS 57 |
74 |
|
|
|
75 |
|
|
#define SPL_MUL_16_16(a, b) ((int32_t) (((int16_t)(a)) * ((int16_t)(b)))) |
76 |
|
|
#define SPL_MUL_16_16_RSFT(a, b, c) (SPL_MUL_16_16(a, b) >> (c)) |
77 |
|
|
|
78 |
|
|
typedef struct ILBCFrame { |
79 |
|
|
int16_t lsf[LSF_NSPLIT*LPC_N_MAX]; |
80 |
|
|
int16_t cb_index[CB_NSTAGES*(NASUB_MAX + 1)]; |
81 |
|
|
int16_t gain_index[CB_NSTAGES*(NASUB_MAX + 1)]; |
82 |
|
|
int16_t ifm; |
83 |
|
|
int16_t state_first; |
84 |
|
|
int16_t idx[STATE_SHORT_LEN_30MS]; |
85 |
|
|
int16_t firstbits; |
86 |
|
|
int16_t start; |
87 |
|
|
} ILBCFrame; |
88 |
|
|
|
89 |
|
|
typedef struct ILBCContext { |
90 |
|
|
AVClass *class; |
91 |
|
|
int enhancer; |
92 |
|
|
|
93 |
|
|
int mode; |
94 |
|
|
ILBCFrame frame; |
95 |
|
|
|
96 |
|
|
int prev_enh_pl; |
97 |
|
|
int consPLICount; |
98 |
|
|
int last_lag; |
99 |
|
|
int state_short_len; |
100 |
|
|
int lpc_n; |
101 |
|
|
int16_t nasub; |
102 |
|
|
int16_t nsub; |
103 |
|
|
int block_samples; |
104 |
|
|
int16_t no_of_words; |
105 |
|
|
int16_t no_of_bytes; |
106 |
|
|
int16_t lsfdeq[LPC_FILTERORDER*LPC_N_MAX]; |
107 |
|
|
int16_t lsfold[LPC_FILTERORDER]; |
108 |
|
|
int16_t syntMem[LPC_FILTERORDER]; |
109 |
|
|
int16_t lsfdeqold[LPC_FILTERORDER]; |
110 |
|
|
int16_t weightdenum[(LPC_FILTERORDER + 1) * NSUB_MAX]; |
111 |
|
|
int16_t syntdenum[NSUB_MAX * (LPC_FILTERORDER + 1)]; |
112 |
|
|
int16_t old_syntdenum[NSUB_MAX * (LPC_FILTERORDER + 1)]; |
113 |
|
|
int16_t enh_buf[ENH_BUFL+ENH_BUFL_FILTEROVERHEAD]; |
114 |
|
|
int16_t enh_period[ENH_NBLOCKS_TOT]; |
115 |
|
|
int16_t prevResidual[NSUB_MAX*SUBL]; |
116 |
|
|
int16_t decresidual[BLOCKL_MAX]; |
117 |
|
|
int16_t plc_residual[BLOCKL_MAX + LPC_FILTERORDER]; |
118 |
|
|
int16_t seed; |
119 |
|
|
int16_t prevPLI; |
120 |
|
|
int16_t prevScale; |
121 |
|
|
int16_t prevLag; |
122 |
|
|
int16_t per_square; |
123 |
|
|
int16_t prev_lpc[LPC_FILTERORDER + 1]; |
124 |
|
|
int16_t plc_lpc[LPC_FILTERORDER + 1]; |
125 |
|
|
int16_t hpimemx[2]; |
126 |
|
|
int16_t hpimemy[4]; |
127 |
|
|
} ILBCContext; |
128 |
|
|
|
129 |
|
✗ |
static int unpack_frame(ILBCContext *s, const uint8_t *buf, int size) |
130 |
|
|
{ |
131 |
|
✗ |
ILBCFrame *frame = &s->frame; |
132 |
|
✗ |
GetBitContext gb0, *const gb = &gb0; |
133 |
|
|
int j, ret; |
134 |
|
|
|
135 |
|
✗ |
if ((ret = init_get_bits8(gb, buf, size)) < 0) |
136 |
|
✗ |
return ret; |
137 |
|
|
|
138 |
|
✗ |
frame->lsf[0] = get_bits(gb, 6); |
139 |
|
✗ |
frame->lsf[1] = get_bits(gb, 7); |
140 |
|
✗ |
frame->lsf[2] = get_bits(gb, 7); |
141 |
|
|
|
142 |
|
✗ |
if (s->mode == 20) { |
143 |
|
✗ |
frame->start = get_bits(gb, 2); |
144 |
|
✗ |
frame->state_first = get_bits1(gb); |
145 |
|
✗ |
frame->ifm = get_bits(gb, 6); |
146 |
|
✗ |
frame->cb_index[0] = get_bits(gb, 6) << 1; |
147 |
|
✗ |
frame->gain_index[0] = get_bits(gb, 2) << 3; |
148 |
|
✗ |
frame->gain_index[1] = get_bits1(gb) << 3; |
149 |
|
✗ |
frame->cb_index[3] = get_bits(gb, 7) << 1; |
150 |
|
✗ |
frame->gain_index[3] = get_bits1(gb) << 4; |
151 |
|
✗ |
frame->gain_index[4] = get_bits1(gb) << 3; |
152 |
|
✗ |
frame->gain_index[6] = get_bits1(gb) << 4; |
153 |
|
|
} else { |
154 |
|
✗ |
frame->lsf[3] = get_bits(gb, 6); |
155 |
|
✗ |
frame->lsf[4] = get_bits(gb, 7); |
156 |
|
✗ |
frame->lsf[5] = get_bits(gb, 7); |
157 |
|
✗ |
frame->start = get_bits(gb, 3); |
158 |
|
✗ |
frame->state_first = get_bits1(gb); |
159 |
|
✗ |
frame->ifm = get_bits(gb, 6); |
160 |
|
✗ |
frame->cb_index[0] = get_bits(gb, 4) << 3; |
161 |
|
✗ |
frame->gain_index[0] = get_bits1(gb) << 4; |
162 |
|
✗ |
frame->gain_index[1] = get_bits1(gb) << 3; |
163 |
|
✗ |
frame->cb_index[3] = get_bits(gb, 6) << 2; |
164 |
|
✗ |
frame->gain_index[3] = get_bits1(gb) << 4; |
165 |
|
✗ |
frame->gain_index[4] = get_bits1(gb) << 3; |
166 |
|
|
} |
167 |
|
|
|
168 |
|
✗ |
for (j = 0; j < 48; j++) |
169 |
|
✗ |
frame->idx[j] = get_bits1(gb) << 2; |
170 |
|
|
|
171 |
|
✗ |
if (s->mode == 20) { |
172 |
|
✗ |
for (; j < 57; j++) |
173 |
|
✗ |
frame->idx[j] = get_bits1(gb) << 2; |
174 |
|
|
|
175 |
|
✗ |
frame->gain_index[1] |= get_bits1(gb) << 2; |
176 |
|
✗ |
frame->gain_index[3] |= get_bits(gb, 2) << 2; |
177 |
|
✗ |
frame->gain_index[4] |= get_bits1(gb) << 2; |
178 |
|
✗ |
frame->gain_index[6] |= get_bits1(gb) << 3; |
179 |
|
✗ |
frame->gain_index[7] = get_bits(gb, 2) << 2; |
180 |
|
|
} else { |
181 |
|
✗ |
for (; j < 58; j++) |
182 |
|
✗ |
frame->idx[j] = get_bits1(gb) << 2; |
183 |
|
|
|
184 |
|
✗ |
frame->cb_index[0] |= get_bits(gb, 2) << 1; |
185 |
|
✗ |
frame->gain_index[0] |= get_bits1(gb) << 3; |
186 |
|
✗ |
frame->gain_index[1] |= get_bits1(gb) << 2; |
187 |
|
✗ |
frame->cb_index[3] |= get_bits1(gb) << 1; |
188 |
|
✗ |
frame->cb_index[6] = get_bits1(gb) << 7; |
189 |
|
✗ |
frame->cb_index[6] |= get_bits(gb, 6) << 1; |
190 |
|
✗ |
frame->cb_index[9] = get_bits(gb, 7) << 1; |
191 |
|
✗ |
frame->cb_index[12] = get_bits(gb, 3) << 5; |
192 |
|
✗ |
frame->cb_index[12] |= get_bits(gb, 4) << 1; |
193 |
|
✗ |
frame->gain_index[3] |= get_bits(gb, 2) << 2; |
194 |
|
✗ |
frame->gain_index[4] |= get_bits(gb, 2) << 1; |
195 |
|
✗ |
frame->gain_index[6] = get_bits(gb, 2) << 3; |
196 |
|
✗ |
frame->gain_index[7] = get_bits(gb, 2) << 2; |
197 |
|
✗ |
frame->gain_index[9] = get_bits1(gb) << 4; |
198 |
|
✗ |
frame->gain_index[10] = get_bits1(gb) << 3; |
199 |
|
✗ |
frame->gain_index[12] = get_bits1(gb) << 4; |
200 |
|
✗ |
frame->gain_index[13] = get_bits1(gb) << 3; |
201 |
|
|
} |
202 |
|
|
|
203 |
|
✗ |
for (j = 0; j < 56; j++) |
204 |
|
✗ |
frame->idx[j] |= get_bits(gb, 2); |
205 |
|
|
|
206 |
|
✗ |
if (s->mode == 20) { |
207 |
|
✗ |
frame->idx[56] |= get_bits(gb, 2); |
208 |
|
✗ |
frame->cb_index[0] |= get_bits1(gb); |
209 |
|
✗ |
frame->cb_index[1] = get_bits(gb, 7); |
210 |
|
✗ |
frame->cb_index[2] = get_bits(gb, 6) << 1; |
211 |
|
✗ |
frame->cb_index[2] |= get_bits1(gb); |
212 |
|
✗ |
frame->gain_index[0] |= get_bits(gb, 3); |
213 |
|
✗ |
frame->gain_index[1] |= get_bits(gb, 2); |
214 |
|
✗ |
frame->gain_index[2] = get_bits(gb, 3); |
215 |
|
✗ |
frame->cb_index[3] |= get_bits1(gb); |
216 |
|
✗ |
frame->cb_index[4] = get_bits(gb, 6) << 1; |
217 |
|
✗ |
frame->cb_index[4] |= get_bits1(gb); |
218 |
|
✗ |
frame->cb_index[5] = get_bits(gb, 7); |
219 |
|
✗ |
frame->cb_index[6] = get_bits(gb, 8); |
220 |
|
✗ |
frame->cb_index[7] = get_bits(gb, 8); |
221 |
|
✗ |
frame->cb_index[8] = get_bits(gb, 8); |
222 |
|
✗ |
frame->gain_index[3] |= get_bits(gb, 2); |
223 |
|
✗ |
frame->gain_index[4] |= get_bits(gb, 2); |
224 |
|
✗ |
frame->gain_index[5] = get_bits(gb, 3); |
225 |
|
✗ |
frame->gain_index[6] |= get_bits(gb, 3); |
226 |
|
✗ |
frame->gain_index[7] |= get_bits(gb, 2); |
227 |
|
✗ |
frame->gain_index[8] = get_bits(gb, 3); |
228 |
|
|
} else { |
229 |
|
✗ |
frame->idx[56] |= get_bits(gb, 2); |
230 |
|
✗ |
frame->idx[57] |= get_bits(gb, 2); |
231 |
|
✗ |
frame->cb_index[0] |= get_bits1(gb); |
232 |
|
✗ |
frame->cb_index[1] = get_bits(gb, 7); |
233 |
|
✗ |
frame->cb_index[2] = get_bits(gb, 4) << 3; |
234 |
|
✗ |
frame->cb_index[2] |= get_bits(gb, 3); |
235 |
|
✗ |
frame->gain_index[0] |= get_bits(gb, 3); |
236 |
|
✗ |
frame->gain_index[1] |= get_bits(gb, 2); |
237 |
|
✗ |
frame->gain_index[2] = get_bits(gb, 3); |
238 |
|
✗ |
frame->cb_index[3] |= get_bits1(gb); |
239 |
|
✗ |
frame->cb_index[4] = get_bits(gb, 4) << 3; |
240 |
|
✗ |
frame->cb_index[4] |= get_bits(gb, 3); |
241 |
|
✗ |
frame->cb_index[5] = get_bits(gb, 7); |
242 |
|
✗ |
frame->cb_index[6] |= get_bits1(gb); |
243 |
|
✗ |
frame->cb_index[7] = get_bits(gb, 5) << 3; |
244 |
|
✗ |
frame->cb_index[7] |= get_bits(gb, 3); |
245 |
|
✗ |
frame->cb_index[8] = get_bits(gb, 8); |
246 |
|
✗ |
frame->cb_index[9] |= get_bits1(gb); |
247 |
|
✗ |
frame->cb_index[10] = get_bits(gb, 4) << 4; |
248 |
|
✗ |
frame->cb_index[10] |= get_bits(gb, 4); |
249 |
|
✗ |
frame->cb_index[11] = get_bits(gb, 8); |
250 |
|
✗ |
frame->cb_index[12] |= get_bits1(gb); |
251 |
|
✗ |
frame->cb_index[13] = get_bits(gb, 3) << 5; |
252 |
|
✗ |
frame->cb_index[13] |= get_bits(gb, 5); |
253 |
|
✗ |
frame->cb_index[14] = get_bits(gb, 8); |
254 |
|
✗ |
frame->gain_index[3] |= get_bits(gb, 2); |
255 |
|
✗ |
frame->gain_index[4] |= get_bits1(gb); |
256 |
|
✗ |
frame->gain_index[5] = get_bits(gb, 3); |
257 |
|
✗ |
frame->gain_index[6] |= get_bits(gb, 3); |
258 |
|
✗ |
frame->gain_index[7] |= get_bits(gb, 2); |
259 |
|
✗ |
frame->gain_index[8] = get_bits(gb, 3); |
260 |
|
✗ |
frame->gain_index[9] |= get_bits(gb, 4); |
261 |
|
✗ |
frame->gain_index[10] |= get_bits1(gb) << 2; |
262 |
|
✗ |
frame->gain_index[10] |= get_bits(gb, 2); |
263 |
|
✗ |
frame->gain_index[11] = get_bits(gb, 3); |
264 |
|
✗ |
frame->gain_index[12] |= get_bits(gb, 4); |
265 |
|
✗ |
frame->gain_index[13] |= get_bits(gb, 3); |
266 |
|
✗ |
frame->gain_index[14] = get_bits(gb, 3); |
267 |
|
|
} |
268 |
|
|
|
269 |
|
✗ |
return get_bits1(gb); |
270 |
|
|
} |
271 |
|
|
|
272 |
|
✗ |
static void index_conv(int16_t *index) |
273 |
|
|
{ |
274 |
|
|
int k; |
275 |
|
|
|
276 |
|
✗ |
for (k = 4; k < 6; k++) { |
277 |
|
✗ |
if (index[k] >= 44 && index[k] < 108) { |
278 |
|
✗ |
index[k] += 64; |
279 |
|
✗ |
} else if (index[k] >= 108 && index[k] < 128) { |
280 |
|
✗ |
index[k] += 128; |
281 |
|
|
} |
282 |
|
|
} |
283 |
|
✗ |
} |
284 |
|
|
|
285 |
|
✗ |
static void lsf_dequantization(int16_t *lsfdeq, int16_t *index, int16_t lpc_n) |
286 |
|
|
{ |
287 |
|
✗ |
int i, j, pos = 0, cb_pos = 0; |
288 |
|
|
|
289 |
|
✗ |
for (i = 0; i < LSF_NSPLIT; i++) { |
290 |
|
✗ |
for (j = 0; j < lsf_dim_codebook[i]; j++) { |
291 |
|
✗ |
lsfdeq[pos + j] = lsf_codebook[cb_pos + index[i] * lsf_dim_codebook[i] + j]; |
292 |
|
|
} |
293 |
|
|
|
294 |
|
✗ |
pos += lsf_dim_codebook[i]; |
295 |
|
✗ |
cb_pos += lsf_size_codebook[i] * lsf_dim_codebook[i]; |
296 |
|
|
} |
297 |
|
|
|
298 |
|
✗ |
if (lpc_n > 1) { |
299 |
|
✗ |
pos = 0; |
300 |
|
✗ |
cb_pos = 0; |
301 |
|
✗ |
for (i = 0; i < LSF_NSPLIT; i++) { |
302 |
|
✗ |
for (j = 0; j < lsf_dim_codebook[i]; j++) { |
303 |
|
✗ |
lsfdeq[LPC_FILTERORDER + pos + j] = lsf_codebook[cb_pos + |
304 |
|
✗ |
index[LSF_NSPLIT + i] * lsf_dim_codebook[i] + j]; |
305 |
|
|
} |
306 |
|
|
|
307 |
|
✗ |
pos += lsf_dim_codebook[i]; |
308 |
|
✗ |
cb_pos += lsf_size_codebook[i] * lsf_dim_codebook[i]; |
309 |
|
|
} |
310 |
|
|
} |
311 |
|
✗ |
} |
312 |
|
|
|
313 |
|
✗ |
static void lsf_check_stability(int16_t *lsf, int dim, int nb_vectors) |
314 |
|
|
{ |
315 |
|
✗ |
for (int n = 0; n < 2; n++) { |
316 |
|
✗ |
for (int m = 0; m < nb_vectors; m++) { |
317 |
|
✗ |
for (int k = 0; k < dim - 1; k++) { |
318 |
|
✗ |
int i = m * dim + k; |
319 |
|
|
|
320 |
|
✗ |
if ((lsf[i + 1] - lsf[i]) < 319) { |
321 |
|
✗ |
if (lsf[i + 1] < lsf[i]) { |
322 |
|
✗ |
lsf[i + 1] = lsf[i] + 160; |
323 |
|
✗ |
lsf[i] = lsf[i + 1] - 160; |
324 |
|
|
} else { |
325 |
|
✗ |
lsf[i] -= 160; |
326 |
|
✗ |
lsf[i + 1] += 160; |
327 |
|
|
} |
328 |
|
|
} |
329 |
|
|
|
330 |
|
✗ |
lsf[i] = av_clip(lsf[i], 82, 25723); |
331 |
|
|
} |
332 |
|
|
} |
333 |
|
|
} |
334 |
|
✗ |
} |
335 |
|
|
|
336 |
|
✗ |
static void lsf_interpolate(int16_t *out, const int16_t *in1, |
337 |
|
|
const int16_t *in2, int16_t coef, |
338 |
|
|
int size) |
339 |
|
|
{ |
340 |
|
✗ |
int invcoef = 16384 - coef, i; |
341 |
|
|
|
342 |
|
✗ |
for (i = 0; i < size; i++) |
343 |
|
✗ |
out[i] = (coef * in1[i] + invcoef * in2[i] + 8192) >> 14; |
344 |
|
✗ |
} |
345 |
|
|
|
346 |
|
✗ |
static void lsf2lsp(const int16_t *lsf, int16_t *lsp, int order) |
347 |
|
|
{ |
348 |
|
|
int16_t diff, freq; |
349 |
|
|
int32_t tmp; |
350 |
|
|
int i, k; |
351 |
|
|
|
352 |
|
✗ |
for (i = 0; i < order; i++) { |
353 |
|
✗ |
freq = (lsf[i] * 20861) >> 15; |
354 |
|
|
/* 20861: 1.0/(2.0*PI) in Q17 */ |
355 |
|
|
/* |
356 |
|
|
Upper 8 bits give the index k and |
357 |
|
|
Lower 8 bits give the difference, which needs |
358 |
|
|
to be approximated linearly |
359 |
|
|
*/ |
360 |
|
✗ |
k = FFMIN(freq >> 8, 63); |
361 |
|
✗ |
diff = freq & 0xFF; |
362 |
|
|
|
363 |
|
|
/* Calculate linear approximation */ |
364 |
|
✗ |
tmp = cos_derivative_tbl[k] * diff; |
365 |
|
✗ |
lsp[i] = cos_tbl[k] + (tmp >> 12); |
366 |
|
|
} |
367 |
|
✗ |
} |
368 |
|
|
|
369 |
|
✗ |
static void get_lsp_poly(const int16_t *lsp, int32_t *f) |
370 |
|
|
{ |
371 |
|
|
int16_t high, low; |
372 |
|
|
int i, j, k, l; |
373 |
|
|
int32_t tmp; |
374 |
|
|
|
375 |
|
✗ |
f[0] = 16777216; |
376 |
|
✗ |
f[1] = lsp[0] * -1024; |
377 |
|
|
|
378 |
|
✗ |
for (i = 2, k = 2, l = 2; i <= 5; i++, k += 2) { |
379 |
|
✗ |
f[l] = f[l - 2]; |
380 |
|
|
|
381 |
|
✗ |
for (j = i; j > 1; j--, l--) { |
382 |
|
✗ |
high = f[l - 1] >> 16; |
383 |
|
✗ |
low = (f[l - 1] - (high * (1 << 16))) >> 1; |
384 |
|
|
|
385 |
|
✗ |
tmp = ((high * lsp[k]) * 4) + (((low * lsp[k]) >> 15) * 4); |
386 |
|
|
|
387 |
|
✗ |
f[l] += f[l - 2]; |
388 |
|
✗ |
f[l] -= (unsigned)tmp; |
389 |
|
|
} |
390 |
|
|
|
391 |
|
✗ |
f[l] -= lsp[k] * (1 << 10); |
392 |
|
✗ |
l += i; |
393 |
|
|
} |
394 |
|
✗ |
} |
395 |
|
|
|
396 |
|
✗ |
static void lsf2poly(int16_t *a, const int16_t *lsf) |
397 |
|
|
{ |
398 |
|
|
int32_t f[2][6]; |
399 |
|
|
int16_t lsp[10]; |
400 |
|
|
int32_t tmp; |
401 |
|
|
int i; |
402 |
|
|
|
403 |
|
✗ |
lsf2lsp(lsf, lsp, LPC_FILTERORDER); |
404 |
|
|
|
405 |
|
✗ |
get_lsp_poly(&lsp[0], f[0]); |
406 |
|
✗ |
get_lsp_poly(&lsp[1], f[1]); |
407 |
|
|
|
408 |
|
✗ |
for (i = 5; i > 0; i--) { |
409 |
|
✗ |
f[0][i] += (unsigned)f[0][i - 1]; |
410 |
|
✗ |
f[1][i] -= (unsigned)f[1][i - 1]; |
411 |
|
|
} |
412 |
|
|
|
413 |
|
✗ |
a[0] = 4096; |
414 |
|
✗ |
for (i = 5; i > 0; i--) { |
415 |
|
✗ |
tmp = f[0][6 - i] + (unsigned)f[1][6 - i] + 4096; |
416 |
|
✗ |
a[6 - i] = tmp >> 13; |
417 |
|
|
|
418 |
|
✗ |
tmp = f[0][6 - i] - (unsigned)f[1][6 - i] + 4096; |
419 |
|
✗ |
a[5 + i] = tmp >> 13; |
420 |
|
|
} |
421 |
|
✗ |
} |
422 |
|
|
|
423 |
|
✗ |
static void lsp_interpolate2polydec(int16_t *a, const int16_t *lsf1, |
424 |
|
|
const int16_t *lsf2, int coef, int length) |
425 |
|
|
{ |
426 |
|
|
int16_t lsftmp[LPC_FILTERORDER]; |
427 |
|
|
|
428 |
|
✗ |
lsf_interpolate(lsftmp, lsf1, lsf2, coef, length); |
429 |
|
✗ |
lsf2poly(a, lsftmp); |
430 |
|
✗ |
} |
431 |
|
|
|
432 |
|
✗ |
static void bw_expand(int16_t *out, const int16_t *in, const int16_t *coef, int length) |
433 |
|
|
{ |
434 |
|
|
int i; |
435 |
|
|
|
436 |
|
✗ |
out[0] = in[0]; |
437 |
|
✗ |
for (i = 1; i < length; i++) |
438 |
|
✗ |
out[i] = (coef[i] * in[i] + 16384) >> 15; |
439 |
|
✗ |
} |
440 |
|
|
|
441 |
|
✗ |
static void lsp_interpolate(int16_t *syntdenum, int16_t *weightdenum, |
442 |
|
|
const int16_t *lsfdeq, int16_t length, |
443 |
|
|
ILBCContext *s) |
444 |
|
|
{ |
445 |
|
|
int16_t lp[LPC_FILTERORDER + 1]; |
446 |
|
✗ |
const int16_t *const lsfdeq2 = lsfdeq + length; |
447 |
|
|
int i, pos, lp_length; |
448 |
|
|
|
449 |
|
✗ |
lp_length = length + 1; |
450 |
|
|
|
451 |
|
✗ |
if (s->mode == 30) { |
452 |
|
✗ |
lsp_interpolate2polydec(lp, (*s).lsfdeqold, lsfdeq, lsf_weight_30ms[0], length); |
453 |
|
✗ |
memcpy(syntdenum, lp, lp_length * 2); |
454 |
|
✗ |
bw_expand(weightdenum, lp, kLpcChirpSyntDenum, lp_length); |
455 |
|
|
|
456 |
|
✗ |
pos = lp_length; |
457 |
|
✗ |
for (i = 1; i < 6; i++) { |
458 |
|
✗ |
lsp_interpolate2polydec(lp, lsfdeq, lsfdeq2, |
459 |
|
✗ |
lsf_weight_30ms[i], |
460 |
|
|
length); |
461 |
|
✗ |
memcpy(syntdenum + pos, lp, lp_length * 2); |
462 |
|
✗ |
bw_expand(weightdenum + pos, lp, kLpcChirpSyntDenum, lp_length); |
463 |
|
✗ |
pos += lp_length; |
464 |
|
|
} |
465 |
|
|
} else { |
466 |
|
✗ |
pos = 0; |
467 |
|
✗ |
for (i = 0; i < s->nsub; i++) { |
468 |
|
✗ |
lsp_interpolate2polydec(lp, s->lsfdeqold, lsfdeq, |
469 |
|
✗ |
lsf_weight_20ms[i], length); |
470 |
|
✗ |
memcpy(syntdenum + pos, lp, lp_length * 2); |
471 |
|
✗ |
bw_expand(weightdenum + pos, lp, kLpcChirpSyntDenum, lp_length); |
472 |
|
✗ |
pos += lp_length; |
473 |
|
|
} |
474 |
|
|
} |
475 |
|
|
|
476 |
|
✗ |
if (s->mode == 30) { |
477 |
|
✗ |
memcpy(s->lsfdeqold, lsfdeq2, length * 2); |
478 |
|
|
} else { |
479 |
|
✗ |
memcpy(s->lsfdeqold, lsfdeq, length * 2); |
480 |
|
|
} |
481 |
|
✗ |
} |
482 |
|
|
|
483 |
|
✗ |
static void filter_mafq12(const int16_t *in_ptr, int16_t *out_ptr, |
484 |
|
|
const int16_t *B, int16_t B_length, |
485 |
|
|
int16_t length) |
486 |
|
|
{ |
487 |
|
|
int o, i, j; |
488 |
|
|
|
489 |
|
✗ |
for (i = 0; i < length; i++) { |
490 |
|
✗ |
const int16_t *b_ptr = &B[0]; |
491 |
|
✗ |
const int16_t *x_ptr = &in_ptr[i]; |
492 |
|
|
|
493 |
|
✗ |
o = 0; |
494 |
|
✗ |
for (j = 0; j < B_length; j++) |
495 |
|
✗ |
o += b_ptr[j] * *x_ptr--; |
496 |
|
|
|
497 |
|
✗ |
o = av_clip(o, -134217728, 134215679); |
498 |
|
|
|
499 |
|
✗ |
out_ptr[i] = ((o + 2048) >> 12); |
500 |
|
|
} |
501 |
|
✗ |
} |
502 |
|
|
|
503 |
|
✗ |
static void filter_arfq12(const int16_t *data_in, |
504 |
|
|
int16_t *data_out, |
505 |
|
|
const int16_t *coefficients, |
506 |
|
|
int coefficients_length, |
507 |
|
|
int data_length) |
508 |
|
|
{ |
509 |
|
|
int i, j; |
510 |
|
|
|
511 |
|
✗ |
for (i = 0; i < data_length; i++) { |
512 |
|
✗ |
int output = 0, sum = 0; |
513 |
|
|
|
514 |
|
✗ |
for (j = coefficients_length - 1; j > 0; j--) { |
515 |
|
✗ |
sum += (unsigned)(coefficients[j] * data_out[i - j]); |
516 |
|
|
} |
517 |
|
|
|
518 |
|
✗ |
output = coefficients[0] * data_in[i] - (unsigned)sum; |
519 |
|
✗ |
output = av_clip(output, -134217728, 134215679); |
520 |
|
|
|
521 |
|
✗ |
data_out[i] = (output + 2048) >> 12; |
522 |
|
|
} |
523 |
|
✗ |
} |
524 |
|
|
|
525 |
|
✗ |
static void state_construct(int16_t ifm, const int16_t *idx, |
526 |
|
|
const int16_t *synt_denum, int16_t *Out_fix, |
527 |
|
|
int16_t len) |
528 |
|
|
{ |
529 |
|
|
int k; |
530 |
|
|
int16_t maxVal; |
531 |
|
|
int16_t *tmp1, *tmp3; |
532 |
|
|
const int16_t *tmp2; |
533 |
|
|
/* Stack based */ |
534 |
|
|
int16_t numerator[1 + LPC_FILTERORDER]; |
535 |
|
|
int16_t sampleValVec[2 * STATE_SHORT_LEN_30MS + LPC_FILTERORDER]; |
536 |
|
|
int16_t sampleMaVec[2 * STATE_SHORT_LEN_30MS + LPC_FILTERORDER]; |
537 |
|
✗ |
int16_t *sampleVal = &sampleValVec[LPC_FILTERORDER]; |
538 |
|
✗ |
int16_t *sampleMa = &sampleMaVec[LPC_FILTERORDER]; |
539 |
|
✗ |
int16_t *sampleAr = &sampleValVec[LPC_FILTERORDER]; |
540 |
|
|
|
541 |
|
|
/* initialization of coefficients */ |
542 |
|
|
|
543 |
|
✗ |
for (k = 0; k < LPC_FILTERORDER + 1; k++) { |
544 |
|
✗ |
numerator[k] = synt_denum[LPC_FILTERORDER - k]; |
545 |
|
|
} |
546 |
|
|
|
547 |
|
|
/* decoding of the maximum value */ |
548 |
|
|
|
549 |
|
✗ |
maxVal = frg_quant_mod[ifm]; |
550 |
|
|
|
551 |
|
|
/* decoding of the sample values */ |
552 |
|
✗ |
tmp1 = sampleVal; |
553 |
|
✗ |
tmp2 = &idx[len - 1]; |
554 |
|
|
|
555 |
|
✗ |
if (ifm < 37) { |
556 |
|
✗ |
for (k = 0; k < len; k++) { |
557 |
|
|
/*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 2097152 (= 0.5 << 22) |
558 |
|
|
maxVal is in Q8 and result is in Q(-1) */ |
559 |
|
✗ |
(*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 2097152) >> 22); |
560 |
|
✗ |
tmp1++; |
561 |
|
✗ |
tmp2--; |
562 |
|
|
} |
563 |
|
✗ |
} else if (ifm < 59) { |
564 |
|
✗ |
for (k = 0; k < len; k++) { |
565 |
|
|
/*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 262144 (= 0.5 << 19) |
566 |
|
|
maxVal is in Q5 and result is in Q(-1) */ |
567 |
|
✗ |
(*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 262144) >> 19); |
568 |
|
✗ |
tmp1++; |
569 |
|
✗ |
tmp2--; |
570 |
|
|
} |
571 |
|
|
} else { |
572 |
|
✗ |
for (k = 0; k < len; k++) { |
573 |
|
|
/*the shifting is due to the Q13 in sq4_fixQ13[i], also the adding of 65536 (= 0.5 << 17) |
574 |
|
|
maxVal is in Q3 and result is in Q(-1) */ |
575 |
|
✗ |
(*tmp1) = (int16_t) ((SPL_MUL_16_16(maxVal, ilbc_state[(*tmp2)]) + 65536) >> 17); |
576 |
|
✗ |
tmp1++; |
577 |
|
✗ |
tmp2--; |
578 |
|
|
} |
579 |
|
|
} |
580 |
|
|
|
581 |
|
|
/* Set the rest of the data to zero */ |
582 |
|
✗ |
memset(&sampleVal[len], 0, len * 2); |
583 |
|
|
|
584 |
|
|
/* circular convolution with all-pass filter */ |
585 |
|
|
|
586 |
|
|
/* Set the state to zero */ |
587 |
|
✗ |
memset(sampleValVec, 0, LPC_FILTERORDER * 2); |
588 |
|
|
|
589 |
|
|
/* Run MA filter + AR filter */ |
590 |
|
✗ |
filter_mafq12(sampleVal, sampleMa, numerator, LPC_FILTERORDER + 1, len + LPC_FILTERORDER); |
591 |
|
✗ |
memset(&sampleMa[len + LPC_FILTERORDER], 0, (len - LPC_FILTERORDER) * 2); |
592 |
|
✗ |
filter_arfq12(sampleMa, sampleAr, synt_denum, LPC_FILTERORDER + 1, 2 * len); |
593 |
|
|
|
594 |
|
✗ |
tmp1 = &sampleAr[len - 1]; |
595 |
|
✗ |
tmp2 = &sampleAr[2 * len - 1]; |
596 |
|
✗ |
tmp3 = Out_fix; |
597 |
|
✗ |
for (k = 0; k < len; k++) { |
598 |
|
✗ |
(*tmp3) = (*tmp1) + (*tmp2); |
599 |
|
✗ |
tmp1--; |
600 |
|
✗ |
tmp2--; |
601 |
|
✗ |
tmp3++; |
602 |
|
|
} |
603 |
|
✗ |
} |
604 |
|
|
|
605 |
|
✗ |
static int16_t gain_dequantization(int index, int max_in, int stage) |
606 |
|
|
{ |
607 |
|
✗ |
int16_t scale = FFMAX(1638, FFABS(max_in)); |
608 |
|
|
|
609 |
|
✗ |
return ((scale * ilbc_gain[stage][index]) + 8192) >> 14; |
610 |
|
|
} |
611 |
|
|
|
612 |
|
✗ |
static void vector_rmultiplication(int16_t *out, const int16_t *in, |
613 |
|
|
const int16_t *win, |
614 |
|
|
int length, int shift) |
615 |
|
|
{ |
616 |
|
✗ |
for (int i = 0; i < length; i++) |
617 |
|
✗ |
out[i] = (in[i] * win[-i]) >> shift; |
618 |
|
✗ |
} |
619 |
|
|
|
620 |
|
✗ |
static void vector_multiplication(int16_t *out, const int16_t *in, |
621 |
|
|
const int16_t *win, int length, |
622 |
|
|
int shift) |
623 |
|
|
{ |
624 |
|
✗ |
for (int i = 0; i < length; i++) |
625 |
|
✗ |
out[i] = (in[i] * win[i]) >> shift; |
626 |
|
✗ |
} |
627 |
|
|
|
628 |
|
✗ |
static void add_vector_and_shift(int16_t *out, const int16_t *in1, |
629 |
|
|
const int16_t *in2, int length, |
630 |
|
|
int shift) |
631 |
|
|
{ |
632 |
|
✗ |
for (int i = 0; i < length; i++) |
633 |
|
✗ |
out[i] = (in1[i] + in2[i]) >> shift; |
634 |
|
✗ |
} |
635 |
|
|
|
636 |
|
✗ |
static void create_augmented_vector(int index, const int16_t *buffer, int16_t *cbVec) |
637 |
|
|
{ |
638 |
|
|
int16_t cbVecTmp[4]; |
639 |
|
✗ |
int interpolation_length = FFMIN(4, index); |
640 |
|
✗ |
int16_t ilow = index - interpolation_length; |
641 |
|
|
|
642 |
|
✗ |
memcpy(cbVec, buffer - index, index * 2); |
643 |
|
|
|
644 |
|
✗ |
vector_multiplication(&cbVec[ilow], buffer - index - interpolation_length, alpha, interpolation_length, 15); |
645 |
|
✗ |
vector_rmultiplication(cbVecTmp, buffer - interpolation_length, &alpha[interpolation_length - 1], interpolation_length, 15); |
646 |
|
✗ |
add_vector_and_shift(&cbVec[ilow], &cbVec[ilow], cbVecTmp, interpolation_length, 0); |
647 |
|
|
|
648 |
|
✗ |
memcpy(cbVec + index, buffer - index, FFMIN(SUBL - index, index) * sizeof(*cbVec)); |
649 |
|
✗ |
} |
650 |
|
|
|
651 |
|
✗ |
static void get_codebook(int16_t * cbvec, /* (o) Constructed codebook vector */ |
652 |
|
|
int16_t * mem, /* (i) Codebook buffer */ |
653 |
|
|
int16_t index, /* (i) Codebook index */ |
654 |
|
|
int16_t lMem, /* (i) Length of codebook buffer */ |
655 |
|
|
int16_t cbveclen /* (i) Codebook vector length */ |
656 |
|
|
) |
657 |
|
|
{ |
658 |
|
|
int16_t k, base_size; |
659 |
|
|
int16_t lag; |
660 |
|
|
/* Stack based */ |
661 |
|
✗ |
int16_t tempbuff2[SUBL + 5] = {0}; |
662 |
|
|
|
663 |
|
|
/* Determine size of codebook sections */ |
664 |
|
✗ |
base_size = lMem - cbveclen + 1; |
665 |
|
|
|
666 |
|
✗ |
if (cbveclen == SUBL) { |
667 |
|
✗ |
base_size += cbveclen / 2; |
668 |
|
|
} |
669 |
|
|
|
670 |
|
|
/* No filter -> First codebook section */ |
671 |
|
✗ |
if (index < lMem - cbveclen + 1) { |
672 |
|
|
/* first non-interpolated vectors */ |
673 |
|
|
|
674 |
|
✗ |
k = index + cbveclen; |
675 |
|
|
/* get vector */ |
676 |
|
✗ |
memcpy(cbvec, mem + lMem - k, cbveclen * 2); |
677 |
|
✗ |
} else if (index < base_size) { |
678 |
|
|
|
679 |
|
|
/* Calculate lag */ |
680 |
|
|
|
681 |
|
✗ |
k = (int16_t) SPL_MUL_16_16(2, (index - (lMem - cbveclen + 1))) + cbveclen; |
682 |
|
|
|
683 |
|
✗ |
lag = k / 2; |
684 |
|
|
|
685 |
|
✗ |
create_augmented_vector(lag, mem + lMem, cbvec); |
686 |
|
|
} else { |
687 |
|
|
int16_t memIndTest; |
688 |
|
|
|
689 |
|
|
/* first non-interpolated vectors */ |
690 |
|
|
|
691 |
|
✗ |
if (index - base_size < lMem - cbveclen + 1) { |
692 |
|
|
|
693 |
|
|
/* Set up filter memory, stuff zeros outside memory buffer */ |
694 |
|
|
|
695 |
|
✗ |
memIndTest = lMem - (index - base_size + cbveclen); |
696 |
|
|
|
697 |
|
✗ |
memset(mem - CB_HALFFILTERLEN, 0, CB_HALFFILTERLEN * 2); |
698 |
|
✗ |
memset(mem + lMem, 0, CB_HALFFILTERLEN * 2); |
699 |
|
|
|
700 |
|
|
/* do filtering to get the codebook vector */ |
701 |
|
|
|
702 |
|
✗ |
filter_mafq12(&mem[memIndTest + 4], cbvec, kCbFiltersRev, CB_FILTERLEN, cbveclen); |
703 |
|
|
} else { |
704 |
|
|
/* interpolated vectors */ |
705 |
|
|
/* Stuff zeros outside memory buffer */ |
706 |
|
✗ |
memIndTest = lMem - cbveclen - CB_FILTERLEN; |
707 |
|
✗ |
memset(mem + lMem, 0, CB_HALFFILTERLEN * 2); |
708 |
|
|
|
709 |
|
|
/* do filtering */ |
710 |
|
✗ |
filter_mafq12(&mem[memIndTest + 7], tempbuff2, kCbFiltersRev, CB_FILTERLEN, (int16_t) (cbveclen + 5)); |
711 |
|
|
|
712 |
|
|
/* Calculate lag index */ |
713 |
|
✗ |
lag = (cbveclen << 1) - 20 + index - base_size - lMem - 1; |
714 |
|
|
|
715 |
|
✗ |
create_augmented_vector(lag, tempbuff2 + SUBL + 5, cbvec); |
716 |
|
|
} |
717 |
|
|
} |
718 |
|
✗ |
} |
719 |
|
|
|
720 |
|
✗ |
static void construct_vector ( |
721 |
|
|
int16_t *decvector, /* (o) Decoded vector */ |
722 |
|
|
const int16_t *index, /* (i) Codebook indices */ |
723 |
|
|
const int16_t *gain_index, /* (i) Gain quantization indices */ |
724 |
|
|
int16_t *mem, /* (i) Buffer for codevector construction */ |
725 |
|
|
int16_t lMem, /* (i) Length of buffer */ |
726 |
|
|
int16_t veclen) |
727 |
|
|
{ |
728 |
|
|
int16_t gain[CB_NSTAGES]; |
729 |
|
|
int16_t cbvec0[SUBL]; |
730 |
|
|
int16_t cbvec1[SUBL]; |
731 |
|
|
int16_t cbvec2[SUBL]; |
732 |
|
|
unsigned a32; |
733 |
|
|
int16_t *gainPtr; |
734 |
|
|
int j; |
735 |
|
|
|
736 |
|
|
/* gain de-quantization */ |
737 |
|
|
|
738 |
|
✗ |
gain[0] = gain_dequantization(gain_index[0], 16384, 0); |
739 |
|
✗ |
gain[1] = gain_dequantization(gain_index[1], gain[0], 1); |
740 |
|
✗ |
gain[2] = gain_dequantization(gain_index[2], gain[1], 2); |
741 |
|
|
|
742 |
|
|
/* codebook vector construction and construction of total vector */ |
743 |
|
|
|
744 |
|
|
/* Stack based */ |
745 |
|
✗ |
get_codebook(cbvec0, mem, index[0], lMem, veclen); |
746 |
|
✗ |
get_codebook(cbvec1, mem, index[1], lMem, veclen); |
747 |
|
✗ |
get_codebook(cbvec2, mem, index[2], lMem, veclen); |
748 |
|
|
|
749 |
|
✗ |
gainPtr = &gain[0]; |
750 |
|
✗ |
for (j = 0; j < veclen; j++) { |
751 |
|
✗ |
a32 = SPL_MUL_16_16(*gainPtr++, cbvec0[j]); |
752 |
|
✗ |
a32 += SPL_MUL_16_16(*gainPtr++, cbvec1[j]); |
753 |
|
✗ |
a32 += SPL_MUL_16_16(*gainPtr, cbvec2[j]); |
754 |
|
✗ |
gainPtr -= 2; |
755 |
|
✗ |
decvector[j] = (int)(a32 + 8192) >> 14; |
756 |
|
|
} |
757 |
|
✗ |
} |
758 |
|
|
|
759 |
|
✗ |
static void reverse_memcpy(int16_t *dest, const int16_t *source, int length) |
760 |
|
|
{ |
761 |
|
✗ |
int16_t* destPtr = dest; |
762 |
|
✗ |
const int16_t *sourcePtr = source; |
763 |
|
|
int j; |
764 |
|
|
|
765 |
|
✗ |
for (j = 0; j < length; j++) |
766 |
|
✗ |
*destPtr-- = *sourcePtr++; |
767 |
|
✗ |
} |
768 |
|
|
|
769 |
|
✗ |
static void decode_residual(ILBCContext *s, |
770 |
|
|
ILBCFrame *encbits, |
771 |
|
|
int16_t *decresidual, |
772 |
|
|
const int16_t *syntdenum) |
773 |
|
|
{ |
774 |
|
|
int16_t meml_gotten, Nfor, Nback, diff, start_pos; |
775 |
|
|
int16_t subcount, subframe; |
776 |
|
✗ |
int16_t *reverseDecresidual = s->enh_buf; /* Reversed decoded data, used for decoding backwards in time (reuse memory in state) */ |
777 |
|
✗ |
int16_t *memVec = s->prevResidual; |
778 |
|
✗ |
int16_t *mem = &memVec[CB_HALFFILTERLEN]; /* Memory for codebook */ |
779 |
|
|
|
780 |
|
✗ |
diff = STATE_LEN - s->state_short_len; |
781 |
|
|
|
782 |
|
✗ |
if (encbits->state_first == 1) { |
783 |
|
✗ |
start_pos = (encbits->start - 1) * SUBL; |
784 |
|
|
} else { |
785 |
|
✗ |
start_pos = (encbits->start - 1) * SUBL + diff; |
786 |
|
|
} |
787 |
|
|
|
788 |
|
|
/* decode scalar part of start state */ |
789 |
|
|
|
790 |
|
✗ |
state_construct(encbits->ifm, encbits->idx, &syntdenum[(encbits->start - 1) * (LPC_FILTERORDER + 1)], &decresidual[start_pos], s->state_short_len); |
791 |
|
|
|
792 |
|
✗ |
if (encbits->state_first) { /* put adaptive part in the end */ |
793 |
|
|
/* setup memory */ |
794 |
|
✗ |
memset(mem, 0, (int16_t) (CB_MEML - s->state_short_len) * 2); |
795 |
|
✗ |
memcpy(mem + CB_MEML - s->state_short_len, decresidual + start_pos, s->state_short_len * 2); |
796 |
|
|
|
797 |
|
|
/* construct decoded vector */ |
798 |
|
|
|
799 |
|
✗ |
construct_vector(&decresidual[start_pos + s->state_short_len], encbits->cb_index, encbits->gain_index, mem + CB_MEML - ST_MEM_L_TBL, ST_MEM_L_TBL, (int16_t) diff); |
800 |
|
|
|
801 |
|
|
} else { /* put adaptive part in the beginning */ |
802 |
|
|
/* setup memory */ |
803 |
|
✗ |
meml_gotten = s->state_short_len; |
804 |
|
✗ |
reverse_memcpy(mem + CB_MEML - 1, decresidual + start_pos, meml_gotten); |
805 |
|
✗ |
memset(mem, 0, (int16_t) (CB_MEML - meml_gotten) * 2); |
806 |
|
|
|
807 |
|
|
/* construct decoded vector */ |
808 |
|
✗ |
construct_vector(reverseDecresidual, encbits->cb_index, encbits->gain_index, mem + CB_MEML - ST_MEM_L_TBL, ST_MEM_L_TBL, diff); |
809 |
|
|
|
810 |
|
|
/* get decoded residual from reversed vector */ |
811 |
|
✗ |
reverse_memcpy(&decresidual[start_pos - 1], reverseDecresidual, diff); |
812 |
|
|
} |
813 |
|
|
|
814 |
|
|
/* counter for predicted subframes */ |
815 |
|
✗ |
subcount = 1; |
816 |
|
|
|
817 |
|
|
/* forward prediction of subframes */ |
818 |
|
✗ |
Nfor = s->nsub - encbits->start - 1; |
819 |
|
|
|
820 |
|
✗ |
if (Nfor > 0) { |
821 |
|
|
/* setup memory */ |
822 |
|
✗ |
memset(mem, 0, (CB_MEML - STATE_LEN) * 2); |
823 |
|
✗ |
memcpy(mem + CB_MEML - STATE_LEN, decresidual + (encbits->start - 1) * SUBL, STATE_LEN * 2); |
824 |
|
|
|
825 |
|
|
/* loop over subframes to encode */ |
826 |
|
✗ |
for (subframe = 0; subframe < Nfor; subframe++) { |
827 |
|
|
/* construct decoded vector */ |
828 |
|
✗ |
construct_vector(&decresidual[(encbits->start + 1 + subframe) * SUBL], encbits->cb_index + subcount * CB_NSTAGES, encbits->gain_index + subcount * CB_NSTAGES, mem, MEM_LF_TBL, SUBL); |
829 |
|
|
|
830 |
|
|
/* update memory */ |
831 |
|
✗ |
memmove(mem, mem + SUBL, (CB_MEML - SUBL) * sizeof(*mem)); |
832 |
|
✗ |
memcpy(mem + CB_MEML - SUBL, &decresidual[(encbits->start + 1 + subframe) * SUBL], SUBL * 2); |
833 |
|
|
|
834 |
|
✗ |
subcount++; |
835 |
|
|
} |
836 |
|
|
|
837 |
|
|
} |
838 |
|
|
|
839 |
|
|
/* backward prediction of subframes */ |
840 |
|
✗ |
Nback = encbits->start - 1; |
841 |
|
|
|
842 |
|
✗ |
if (Nback > 0) { |
843 |
|
|
/* setup memory */ |
844 |
|
✗ |
meml_gotten = SUBL * (s->nsub + 1 - encbits->start); |
845 |
|
✗ |
if (meml_gotten > CB_MEML) { |
846 |
|
✗ |
meml_gotten = CB_MEML; |
847 |
|
|
} |
848 |
|
|
|
849 |
|
✗ |
reverse_memcpy(mem + CB_MEML - 1, decresidual + (encbits->start - 1) * SUBL, meml_gotten); |
850 |
|
✗ |
memset(mem, 0, (int16_t) (CB_MEML - meml_gotten) * 2); |
851 |
|
|
|
852 |
|
|
/* loop over subframes to decode */ |
853 |
|
✗ |
for (subframe = 0; subframe < Nback; subframe++) { |
854 |
|
|
/* construct decoded vector */ |
855 |
|
✗ |
construct_vector(&reverseDecresidual[subframe * SUBL], encbits->cb_index + subcount * CB_NSTAGES, |
856 |
|
✗ |
encbits->gain_index + subcount * CB_NSTAGES, mem, MEM_LF_TBL, SUBL); |
857 |
|
|
|
858 |
|
|
/* update memory */ |
859 |
|
✗ |
memmove(mem, mem + SUBL, (CB_MEML - SUBL) * sizeof(*mem)); |
860 |
|
✗ |
memcpy(mem + CB_MEML - SUBL, &reverseDecresidual[subframe * SUBL], SUBL * 2); |
861 |
|
|
|
862 |
|
✗ |
subcount++; |
863 |
|
|
} |
864 |
|
|
|
865 |
|
|
/* get decoded residual from reversed vector */ |
866 |
|
✗ |
reverse_memcpy(decresidual + SUBL * Nback - 1, reverseDecresidual, SUBL * Nback); |
867 |
|
|
} |
868 |
|
✗ |
} |
869 |
|
|
|
870 |
|
✗ |
static int16_t max_abs_value_w16(const int16_t* vector, int length) |
871 |
|
|
{ |
872 |
|
✗ |
int i = 0, absolute = 0, maximum = 0; |
873 |
|
|
|
874 |
|
✗ |
if (vector == NULL || length <= 0) { |
875 |
|
✗ |
return -1; |
876 |
|
|
} |
877 |
|
|
|
878 |
|
✗ |
for (i = 0; i < length; i++) { |
879 |
|
✗ |
absolute = FFABS(vector[i]); |
880 |
|
✗ |
if (absolute > maximum) |
881 |
|
✗ |
maximum = absolute; |
882 |
|
|
} |
883 |
|
|
|
884 |
|
|
// Guard the case for abs(-32768). |
885 |
|
✗ |
return FFMIN(maximum, INT16_MAX); |
886 |
|
|
} |
887 |
|
|
|
888 |
|
✗ |
static int16_t get_size_in_bits(uint32_t n) |
889 |
|
|
{ |
890 |
|
|
int16_t bits; |
891 |
|
|
|
892 |
|
✗ |
if (0xFFFF0000 & n) { |
893 |
|
✗ |
bits = 16; |
894 |
|
|
} else { |
895 |
|
✗ |
bits = 0; |
896 |
|
|
} |
897 |
|
|
|
898 |
|
✗ |
if (0x0000FF00 & (n >> bits)) bits += 8; |
899 |
|
✗ |
if (0x000000F0 & (n >> bits)) bits += 4; |
900 |
|
✗ |
if (0x0000000C & (n >> bits)) bits += 2; |
901 |
|
✗ |
if (0x00000002 & (n >> bits)) bits += 1; |
902 |
|
✗ |
if (0x00000001 & (n >> bits)) bits += 1; |
903 |
|
|
|
904 |
|
✗ |
return bits; |
905 |
|
|
} |
906 |
|
|
|
907 |
|
✗ |
static int32_t scale_dot_product(const int16_t *v1, const int16_t *v2, int length, int scaling) |
908 |
|
|
{ |
909 |
|
✗ |
int64_t sum = 0; |
910 |
|
|
|
911 |
|
✗ |
for (int i = 0; i < length; i++) |
912 |
|
✗ |
sum += (v1[i] * v2[i]) >> scaling; |
913 |
|
|
|
914 |
|
✗ |
return av_clipl_int32(sum); |
915 |
|
|
} |
916 |
|
|
|
917 |
|
✗ |
static void correlation(int32_t *corr, int32_t *ener, const int16_t *buffer, |
918 |
|
|
int16_t lag, int16_t blen, int16_t srange, int16_t scale) |
919 |
|
|
{ |
920 |
|
✗ |
const int16_t *w16ptr = &buffer[blen - srange - lag]; |
921 |
|
|
|
922 |
|
✗ |
*corr = scale_dot_product(&buffer[blen - srange], w16ptr, srange, scale); |
923 |
|
✗ |
*ener = scale_dot_product(w16ptr, w16ptr, srange, scale); |
924 |
|
|
|
925 |
|
✗ |
if (*ener == 0) { |
926 |
|
✗ |
*corr = 0; |
927 |
|
✗ |
*ener = 1; |
928 |
|
|
} |
929 |
|
✗ |
} |
930 |
|
|
|
931 |
|
|
#define SPL_SHIFT_W32(x, c) (((c) >= 0) ? ((x) << (c)) : ((x) >> (-(c)))) |
932 |
|
|
|
933 |
|
✗ |
static int16_t norm_w32(int32_t a) |
934 |
|
|
{ |
935 |
|
✗ |
if (a == 0) { |
936 |
|
✗ |
return 0; |
937 |
|
✗ |
} else if (a < 0) { |
938 |
|
✗ |
a = ~a; |
939 |
|
|
} |
940 |
|
|
|
941 |
|
✗ |
return ff_clz(a); |
942 |
|
|
} |
943 |
|
|
|
944 |
|
✗ |
static int32_t div_w32_w16(int32_t num, int16_t den) |
945 |
|
|
{ |
946 |
|
✗ |
if (den != 0) |
947 |
|
✗ |
return num / den; |
948 |
|
|
else |
949 |
|
✗ |
return 0x7FFFFFFF; |
950 |
|
|
} |
951 |
|
|
|
952 |
|
✗ |
static void do_plc(int16_t *plc_residual, /* (o) concealed residual */ |
953 |
|
|
int16_t *plc_lpc, /* (o) concealed LP parameters */ |
954 |
|
|
int16_t PLI, /* (i) packet loss indicator |
955 |
|
|
0 - no PL, 1 = PL */ |
956 |
|
|
const int16_t *decresidual, /* (i) decoded residual */ |
957 |
|
|
const int16_t *lpc, /* (i) decoded LPC (only used for no PL) */ |
958 |
|
|
int16_t inlag, /* (i) pitch lag */ |
959 |
|
|
ILBCContext *s) /* (i/o) decoder instance */ |
960 |
|
|
{ |
961 |
|
|
int16_t i, pick; |
962 |
|
✗ |
int32_t cross, ener, cross_comp, ener_comp = 0; |
963 |
|
|
int32_t measure, max_measure, energy; |
964 |
|
|
int16_t max, cross_square_max, cross_square; |
965 |
|
|
int16_t j, lag, tmp1, tmp2, randlag; |
966 |
|
|
int16_t shift1, shift2, shift3, shift_max; |
967 |
|
|
int16_t scale3; |
968 |
|
|
int16_t corrLen; |
969 |
|
|
int32_t tmpW32, tmp2W32; |
970 |
|
|
int16_t use_gain; |
971 |
|
|
int16_t tot_gain; |
972 |
|
|
int16_t max_perSquare; |
973 |
|
|
int16_t scale1, scale2; |
974 |
|
|
int16_t totscale; |
975 |
|
|
int32_t nom; |
976 |
|
|
int16_t denom; |
977 |
|
|
int16_t pitchfact; |
978 |
|
|
int16_t use_lag; |
979 |
|
|
int ind; |
980 |
|
|
int16_t randvec[BLOCKL_MAX]; |
981 |
|
|
|
982 |
|
|
/* Packet Loss */ |
983 |
|
✗ |
if (PLI == 1) { |
984 |
|
|
|
985 |
|
✗ |
s->consPLICount += 1; |
986 |
|
|
|
987 |
|
|
/* if previous frame not lost, |
988 |
|
|
determine pitch pred. gain */ |
989 |
|
|
|
990 |
|
✗ |
if (s->prevPLI != 1) { |
991 |
|
|
|
992 |
|
|
/* Maximum 60 samples are correlated, preserve as high accuracy |
993 |
|
|
as possible without getting overflow */ |
994 |
|
✗ |
max = max_abs_value_w16(s->prevResidual, s->block_samples); |
995 |
|
✗ |
scale3 = (get_size_in_bits(max) << 1) - 25; |
996 |
|
✗ |
if (scale3 < 0) { |
997 |
|
✗ |
scale3 = 0; |
998 |
|
|
} |
999 |
|
|
|
1000 |
|
|
/* Store scale for use when interpolating between the |
1001 |
|
|
* concealment and the received packet */ |
1002 |
|
✗ |
s->prevScale = scale3; |
1003 |
|
|
|
1004 |
|
|
/* Search around the previous lag +/-3 to find the |
1005 |
|
|
best pitch period */ |
1006 |
|
✗ |
lag = inlag - 3; |
1007 |
|
|
|
1008 |
|
|
/* Guard against getting outside the frame */ |
1009 |
|
✗ |
corrLen = FFMIN(60, s->block_samples - (inlag + 3)); |
1010 |
|
|
|
1011 |
|
✗ |
correlation(&cross, &ener, s->prevResidual, lag, s->block_samples, corrLen, scale3); |
1012 |
|
|
|
1013 |
|
|
/* Normalize and store cross^2 and the number of shifts */ |
1014 |
|
✗ |
shift_max = get_size_in_bits(FFABS(cross)) - 15; |
1015 |
|
✗ |
cross_square_max = (int16_t) SPL_MUL_16_16_RSFT(SPL_SHIFT_W32(cross, -shift_max), SPL_SHIFT_W32(cross, -shift_max), 15); |
1016 |
|
|
|
1017 |
|
✗ |
for (j = inlag - 2; j <= inlag + 3; j++) { |
1018 |
|
✗ |
correlation(&cross_comp, &ener_comp, s->prevResidual, j, s->block_samples, corrLen, scale3); |
1019 |
|
|
|
1020 |
|
|
/* Use the criteria (corr*corr)/energy to compare if |
1021 |
|
|
this lag is better or not. To avoid the division, |
1022 |
|
|
do a cross multiplication */ |
1023 |
|
✗ |
shift1 = get_size_in_bits(FFABS(cross_comp)) - 15; |
1024 |
|
✗ |
cross_square = (int16_t) SPL_MUL_16_16_RSFT(SPL_SHIFT_W32(cross_comp, -shift1), SPL_SHIFT_W32(cross_comp, -shift1), 15); |
1025 |
|
|
|
1026 |
|
✗ |
shift2 = get_size_in_bits(ener) - 15; |
1027 |
|
✗ |
measure = SPL_MUL_16_16(SPL_SHIFT_W32(ener, -shift2), cross_square); |
1028 |
|
|
|
1029 |
|
✗ |
shift3 = get_size_in_bits(ener_comp) - 15; |
1030 |
|
✗ |
max_measure = SPL_MUL_16_16(SPL_SHIFT_W32(ener_comp, -shift3), cross_square_max); |
1031 |
|
|
|
1032 |
|
|
/* Calculate shift value, so that the two measures can |
1033 |
|
|
be put in the same Q domain */ |
1034 |
|
✗ |
if (((shift_max << 1) + shift3) > ((shift1 << 1) + shift2)) { |
1035 |
|
✗ |
tmp1 = FFMIN(31, (shift_max << 1) + shift3 - (shift1 << 1) - shift2); |
1036 |
|
✗ |
tmp2 = 0; |
1037 |
|
|
} else { |
1038 |
|
✗ |
tmp1 = 0; |
1039 |
|
✗ |
tmp2 = FFMIN(31, (shift1 << 1) + shift2 - (shift_max << 1) - shift3); |
1040 |
|
|
} |
1041 |
|
|
|
1042 |
|
✗ |
if ((measure >> tmp1) > (max_measure >> tmp2)) { |
1043 |
|
|
/* New lag is better => record lag, measure and domain */ |
1044 |
|
✗ |
lag = j; |
1045 |
|
✗ |
cross_square_max = cross_square; |
1046 |
|
✗ |
cross = cross_comp; |
1047 |
|
✗ |
shift_max = shift1; |
1048 |
|
✗ |
ener = ener_comp; |
1049 |
|
|
} |
1050 |
|
|
} |
1051 |
|
|
|
1052 |
|
|
/* Calculate the periodicity for the lag with the maximum correlation. |
1053 |
|
|
|
1054 |
|
|
Definition of the periodicity: |
1055 |
|
|
abs(corr(vec1, vec2))/(sqrt(energy(vec1))*sqrt(energy(vec2))) |
1056 |
|
|
|
1057 |
|
|
Work in the Square domain to simplify the calculations |
1058 |
|
|
max_perSquare is less than 1 (in Q15) |
1059 |
|
|
*/ |
1060 |
|
✗ |
tmp2W32 = scale_dot_product(&s->prevResidual[s->block_samples - corrLen], &s->prevResidual[s->block_samples - corrLen], corrLen, scale3); |
1061 |
|
|
|
1062 |
|
✗ |
if ((tmp2W32 > 0) && (ener_comp > 0)) { |
1063 |
|
|
/* norm energies to int16_t, compute the product of the energies and |
1064 |
|
|
use the upper int16_t as the denominator */ |
1065 |
|
|
|
1066 |
|
✗ |
scale1 = norm_w32(tmp2W32) - 16; |
1067 |
|
✗ |
tmp1 = SPL_SHIFT_W32(tmp2W32, scale1); |
1068 |
|
|
|
1069 |
|
✗ |
scale2 = norm_w32(ener) - 16; |
1070 |
|
✗ |
tmp2 = SPL_SHIFT_W32(ener, scale2); |
1071 |
|
✗ |
denom = SPL_MUL_16_16_RSFT(tmp1, tmp2, 16); /* denom in Q(scale1+scale2-16) */ |
1072 |
|
|
|
1073 |
|
|
/* Square the cross correlation and norm it such that max_perSquare |
1074 |
|
|
will be in Q15 after the division */ |
1075 |
|
|
|
1076 |
|
✗ |
totscale = scale1 + scale2 - 1; |
1077 |
|
✗ |
tmp1 = SPL_SHIFT_W32(cross, (totscale >> 1)); |
1078 |
|
✗ |
tmp2 = SPL_SHIFT_W32(cross, totscale - (totscale >> 1)); |
1079 |
|
|
|
1080 |
|
✗ |
nom = SPL_MUL_16_16(tmp1, tmp2); |
1081 |
|
✗ |
max_perSquare = div_w32_w16(nom, denom); |
1082 |
|
|
} else { |
1083 |
|
✗ |
max_perSquare = 0; |
1084 |
|
|
} |
1085 |
|
|
} else { |
1086 |
|
|
/* previous frame lost, use recorded lag and gain */ |
1087 |
|
✗ |
lag = s->prevLag; |
1088 |
|
✗ |
max_perSquare = s->per_square; |
1089 |
|
|
} |
1090 |
|
|
|
1091 |
|
|
/* Attenuate signal and scale down pitch pred gain if |
1092 |
|
|
several frames lost consecutively */ |
1093 |
|
|
|
1094 |
|
✗ |
use_gain = 32767; /* 1.0 in Q15 */ |
1095 |
|
|
|
1096 |
|
✗ |
if (s->consPLICount * s->block_samples > 320) { |
1097 |
|
✗ |
use_gain = 29491; /* 0.9 in Q15 */ |
1098 |
|
|
} |
1099 |
|
|
|
1100 |
|
|
/* Compute mixing factor of picth repeatition and noise: |
1101 |
|
|
for max_per>0.7 set periodicity to 1.0 |
1102 |
|
|
0.4<max_per<0.7 set periodicity to (maxper-0.4)/0.7-0.4) |
1103 |
|
|
max_per<0.4 set periodicity to 0.0 |
1104 |
|
|
*/ |
1105 |
|
|
|
1106 |
|
✗ |
if (max_perSquare > 7868) { /* periodicity > 0.7 (0.7^4=0.2401 in Q15) */ |
1107 |
|
✗ |
pitchfact = 32767; |
1108 |
|
✗ |
} else if (max_perSquare > 839) { /* 0.4 < periodicity < 0.7 (0.4^4=0.0256 in Q15) */ |
1109 |
|
|
/* find best index and interpolate from that */ |
1110 |
|
✗ |
ind = 5; |
1111 |
|
✗ |
while ((max_perSquare < kPlcPerSqr[ind]) && (ind > 0)) { |
1112 |
|
✗ |
ind--; |
1113 |
|
|
} |
1114 |
|
|
/* pitch fact is approximated by first order */ |
1115 |
|
✗ |
tmpW32 = kPlcPitchFact[ind] + SPL_MUL_16_16_RSFT(kPlcPfSlope[ind], (max_perSquare - kPlcPerSqr[ind]), 11); |
1116 |
|
|
|
1117 |
|
✗ |
pitchfact = FFMIN(tmpW32, 32767); /* guard against overflow */ |
1118 |
|
|
|
1119 |
|
|
} else { /* periodicity < 0.4 */ |
1120 |
|
✗ |
pitchfact = 0; |
1121 |
|
|
} |
1122 |
|
|
|
1123 |
|
|
/* avoid repetition of same pitch cycle (buzzyness) */ |
1124 |
|
✗ |
use_lag = lag; |
1125 |
|
✗ |
if (lag < 80) { |
1126 |
|
✗ |
use_lag = 2 * lag; |
1127 |
|
|
} |
1128 |
|
|
|
1129 |
|
|
/* compute concealed residual */ |
1130 |
|
✗ |
energy = 0; |
1131 |
|
|
|
1132 |
|
✗ |
for (i = 0; i < s->block_samples; i++) { |
1133 |
|
|
/* noise component - 52 < randlagFIX < 117 */ |
1134 |
|
✗ |
s->seed = SPL_MUL_16_16(s->seed, 31821) + 13849; |
1135 |
|
✗ |
randlag = 53 + (s->seed & 63); |
1136 |
|
|
|
1137 |
|
✗ |
pick = i - randlag; |
1138 |
|
|
|
1139 |
|
✗ |
if (pick < 0) { |
1140 |
|
✗ |
randvec[i] = s->prevResidual[s->block_samples + pick]; |
1141 |
|
|
} else { |
1142 |
|
✗ |
randvec[i] = s->prevResidual[pick]; |
1143 |
|
|
} |
1144 |
|
|
|
1145 |
|
|
/* pitch repeatition component */ |
1146 |
|
✗ |
pick = i - use_lag; |
1147 |
|
|
|
1148 |
|
✗ |
if (pick < 0) { |
1149 |
|
✗ |
plc_residual[i] = s->prevResidual[s->block_samples + pick]; |
1150 |
|
|
} else { |
1151 |
|
✗ |
plc_residual[i] = plc_residual[pick]; |
1152 |
|
|
} |
1153 |
|
|
|
1154 |
|
|
/* Attinuate total gain for each 10 ms */ |
1155 |
|
✗ |
if (i < 80) { |
1156 |
|
✗ |
tot_gain = use_gain; |
1157 |
|
✗ |
} else if (i < 160) { |
1158 |
|
✗ |
tot_gain = SPL_MUL_16_16_RSFT(31130, use_gain, 15); /* 0.95*use_gain */ |
1159 |
|
|
} else { |
1160 |
|
✗ |
tot_gain = SPL_MUL_16_16_RSFT(29491, use_gain, 15); /* 0.9*use_gain */ |
1161 |
|
|
} |
1162 |
|
|
|
1163 |
|
|
/* mix noise and pitch repeatition */ |
1164 |
|
✗ |
plc_residual[i] = SPL_MUL_16_16_RSFT(tot_gain, (pitchfact * plc_residual[i] + (32767 - pitchfact) * randvec[i] + 16384) >> 15, 15); |
1165 |
|
|
|
1166 |
|
|
/* Shifting down the result one step extra to ensure that no overflow |
1167 |
|
|
will occur */ |
1168 |
|
✗ |
energy += SPL_MUL_16_16_RSFT(plc_residual[i], plc_residual[i], (s->prevScale + 1)); |
1169 |
|
|
|
1170 |
|
|
} |
1171 |
|
|
|
1172 |
|
|
/* less than 30 dB, use only noise */ |
1173 |
|
✗ |
if (energy < SPL_SHIFT_W32(s->block_samples * 900, -s->prevScale - 1)) { |
1174 |
|
✗ |
energy = 0; |
1175 |
|
✗ |
for (i = 0; i < s->block_samples; i++) { |
1176 |
|
✗ |
plc_residual[i] = randvec[i]; |
1177 |
|
|
} |
1178 |
|
|
} |
1179 |
|
|
|
1180 |
|
|
/* use the old LPC */ |
1181 |
|
✗ |
memcpy(plc_lpc, (*s).prev_lpc, (LPC_FILTERORDER + 1) * 2); |
1182 |
|
|
|
1183 |
|
|
/* Update state in case there are multiple frame losses */ |
1184 |
|
✗ |
s->prevLag = lag; |
1185 |
|
✗ |
s->per_square = max_perSquare; |
1186 |
|
|
} else { /* no packet loss, copy input */ |
1187 |
|
✗ |
memcpy(plc_residual, decresidual, s->block_samples * 2); |
1188 |
|
✗ |
memcpy(plc_lpc, lpc, (LPC_FILTERORDER + 1) * 2); |
1189 |
|
✗ |
s->consPLICount = 0; |
1190 |
|
|
} |
1191 |
|
|
|
1192 |
|
|
/* update state */ |
1193 |
|
✗ |
s->prevPLI = PLI; |
1194 |
|
✗ |
memcpy(s->prev_lpc, plc_lpc, (LPC_FILTERORDER + 1) * 2); |
1195 |
|
✗ |
memcpy(s->prevResidual, plc_residual, s->block_samples * 2); |
1196 |
|
|
|
1197 |
|
✗ |
return; |
1198 |
|
|
} |
1199 |
|
|
|
1200 |
|
✗ |
static int xcorr_coeff(const int16_t *target, const int16_t *regressor, |
1201 |
|
|
int16_t subl, int16_t searchLen, |
1202 |
|
|
int16_t offset, int16_t step) |
1203 |
|
|
{ |
1204 |
|
|
int16_t maxlag; |
1205 |
|
|
int16_t pos; |
1206 |
|
|
int16_t max; |
1207 |
|
|
int16_t cross_corr_scale, energy_scale; |
1208 |
|
|
int16_t cross_corr_sg_mod, cross_corr_sg_mod_max; |
1209 |
|
|
int32_t cross_corr, energy; |
1210 |
|
|
int16_t cross_corr_mod, energy_mod, enery_mod_max; |
1211 |
|
|
const int16_t *rp; |
1212 |
|
|
const int16_t *rp_beg, *rp_end; |
1213 |
|
|
int16_t totscale, totscale_max; |
1214 |
|
|
int16_t scalediff; |
1215 |
|
|
int32_t new_crit, max_crit; |
1216 |
|
|
int shifts; |
1217 |
|
|
int k; |
1218 |
|
|
|
1219 |
|
|
/* Initializations, to make sure that the first one is selected */ |
1220 |
|
✗ |
cross_corr_sg_mod_max = 0; |
1221 |
|
✗ |
enery_mod_max = INT16_MAX; |
1222 |
|
✗ |
totscale_max = -500; |
1223 |
|
✗ |
maxlag = 0; |
1224 |
|
✗ |
pos = 0; |
1225 |
|
|
|
1226 |
|
|
/* Find scale value and start position */ |
1227 |
|
✗ |
if (step == 1) { |
1228 |
|
✗ |
max = max_abs_value_w16(regressor, (int16_t) (subl + searchLen - 1)); |
1229 |
|
✗ |
rp_beg = regressor; |
1230 |
|
✗ |
rp_end = ®ressor[subl]; |
1231 |
|
|
} else { /* step== -1 */ |
1232 |
|
✗ |
max = max_abs_value_w16(®ressor[-searchLen], (int16_t) (subl + searchLen - 1)); |
1233 |
|
✗ |
rp_beg = ®ressor[-1]; |
1234 |
|
✗ |
rp_end = ®ressor[subl - 1]; |
1235 |
|
|
} |
1236 |
|
|
|
1237 |
|
|
/* Introduce a scale factor on the energy in int32_t in |
1238 |
|
|
order to make sure that the calculation does not |
1239 |
|
|
overflow */ |
1240 |
|
|
|
1241 |
|
✗ |
if (max > 5000) { |
1242 |
|
✗ |
shifts = 2; |
1243 |
|
|
} else { |
1244 |
|
✗ |
shifts = 0; |
1245 |
|
|
} |
1246 |
|
|
|
1247 |
|
|
/* Calculate the first energy, then do a +/- to get the other energies */ |
1248 |
|
✗ |
energy = scale_dot_product(regressor, regressor, subl, shifts); |
1249 |
|
|
|
1250 |
|
✗ |
for (k = 0; k < searchLen; k++) { |
1251 |
|
✗ |
rp = ®ressor[pos]; |
1252 |
|
|
|
1253 |
|
✗ |
cross_corr = scale_dot_product(target, rp, subl, shifts); |
1254 |
|
|
|
1255 |
|
✗ |
if ((energy > 0) && (cross_corr > 0)) { |
1256 |
|
|
/* Put cross correlation and energy on 16 bit word */ |
1257 |
|
✗ |
cross_corr_scale = norm_w32(cross_corr) - 16; |
1258 |
|
✗ |
cross_corr_mod = (int16_t) SPL_SHIFT_W32(cross_corr, cross_corr_scale); |
1259 |
|
✗ |
energy_scale = norm_w32(energy) - 16; |
1260 |
|
✗ |
energy_mod = (int16_t) SPL_SHIFT_W32(energy, energy_scale); |
1261 |
|
|
|
1262 |
|
|
/* Square cross correlation and store upper int16_t */ |
1263 |
|
✗ |
cross_corr_sg_mod = (int16_t) SPL_MUL_16_16_RSFT(cross_corr_mod, cross_corr_mod, 16); |
1264 |
|
|
|
1265 |
|
|
/* Calculate the total number of (dynamic) right shifts that have |
1266 |
|
|
been performed on (cross_corr*cross_corr)/energy |
1267 |
|
|
*/ |
1268 |
|
✗ |
totscale = energy_scale - (cross_corr_scale * 2); |
1269 |
|
|
|
1270 |
|
|
/* Calculate the shift difference in order to be able to compare the two |
1271 |
|
|
(cross_corr*cross_corr)/energy in the same domain |
1272 |
|
|
*/ |
1273 |
|
✗ |
scalediff = totscale - totscale_max; |
1274 |
|
✗ |
scalediff = FFMIN(scalediff, 31); |
1275 |
|
✗ |
scalediff = FFMAX(scalediff, -31); |
1276 |
|
|
|
1277 |
|
|
/* Compute the cross multiplication between the old best criteria |
1278 |
|
|
and the new one to be able to compare them without using a |
1279 |
|
|
division */ |
1280 |
|
|
|
1281 |
|
✗ |
if (scalediff < 0) { |
1282 |
|
✗ |
new_crit = ((int32_t) cross_corr_sg_mod * enery_mod_max) >> (-scalediff); |
1283 |
|
✗ |
max_crit = ((int32_t) cross_corr_sg_mod_max * energy_mod); |
1284 |
|
|
} else { |
1285 |
|
✗ |
new_crit = ((int32_t) cross_corr_sg_mod * enery_mod_max); |
1286 |
|
✗ |
max_crit = ((int32_t) cross_corr_sg_mod_max * energy_mod) >> scalediff; |
1287 |
|
|
} |
1288 |
|
|
|
1289 |
|
|
/* Store the new lag value if the new criteria is larger |
1290 |
|
|
than previous largest criteria */ |
1291 |
|
|
|
1292 |
|
✗ |
if (new_crit > max_crit) { |
1293 |
|
✗ |
cross_corr_sg_mod_max = cross_corr_sg_mod; |
1294 |
|
✗ |
enery_mod_max = energy_mod; |
1295 |
|
✗ |
totscale_max = totscale; |
1296 |
|
✗ |
maxlag = k; |
1297 |
|
|
} |
1298 |
|
|
} |
1299 |
|
✗ |
pos += step; |
1300 |
|
|
|
1301 |
|
|
/* Do a +/- to get the next energy */ |
1302 |
|
✗ |
energy += (unsigned)step * ((*rp_end * *rp_end - *rp_beg * *rp_beg) >> shifts); |
1303 |
|
|
|
1304 |
|
✗ |
rp_beg += step; |
1305 |
|
✗ |
rp_end += step; |
1306 |
|
|
} |
1307 |
|
|
|
1308 |
|
✗ |
return maxlag + offset; |
1309 |
|
|
} |
1310 |
|
|
|
1311 |
|
✗ |
static void hp_output(int16_t *signal, const int16_t *ba, int16_t *y, |
1312 |
|
|
int16_t *x, int16_t len) |
1313 |
|
|
{ |
1314 |
|
|
int32_t tmp; |
1315 |
|
|
|
1316 |
|
✗ |
for (int i = 0; i < len; i++) { |
1317 |
|
✗ |
tmp = SPL_MUL_16_16(y[1], ba[3]); /* (-a[1])*y[i-1] (low part) */ |
1318 |
|
✗ |
tmp += SPL_MUL_16_16(y[3], ba[4]); /* (-a[2])*y[i-2] (low part) */ |
1319 |
|
✗ |
tmp = (tmp >> 15); |
1320 |
|
✗ |
tmp += SPL_MUL_16_16(y[0], ba[3]); /* (-a[1])*y[i-1] (high part) */ |
1321 |
|
✗ |
tmp += SPL_MUL_16_16(y[2], ba[4]); /* (-a[2])*y[i-2] (high part) */ |
1322 |
|
✗ |
tmp = (tmp * 2); |
1323 |
|
|
|
1324 |
|
✗ |
tmp += SPL_MUL_16_16(signal[i], ba[0]); /* b[0]*x[0] */ |
1325 |
|
✗ |
tmp += SPL_MUL_16_16(x[0], ba[1]); /* b[1]*x[i-1] */ |
1326 |
|
✗ |
tmp += SPL_MUL_16_16(x[1], ba[2]); /* b[2]*x[i-2] */ |
1327 |
|
|
|
1328 |
|
|
/* Update state (input part) */ |
1329 |
|
✗ |
x[1] = x[0]; |
1330 |
|
✗ |
x[0] = signal[i]; |
1331 |
|
|
|
1332 |
|
|
/* Convert back to Q0 and multiply with 2 */ |
1333 |
|
✗ |
signal[i] = av_clip_intp2(tmp + 1024, 26) >> 11; |
1334 |
|
|
|
1335 |
|
|
/* Update state (filtered part) */ |
1336 |
|
✗ |
y[2] = y[0]; |
1337 |
|
✗ |
y[3] = y[1]; |
1338 |
|
|
|
1339 |
|
|
/* upshift tmp by 3 with saturation */ |
1340 |
|
✗ |
if (tmp > 268435455) { |
1341 |
|
✗ |
tmp = INT32_MAX; |
1342 |
|
✗ |
} else if (tmp < -268435456) { |
1343 |
|
✗ |
tmp = INT32_MIN; |
1344 |
|
|
} else { |
1345 |
|
✗ |
tmp = tmp * 8; |
1346 |
|
|
} |
1347 |
|
|
|
1348 |
|
✗ |
y[0] = tmp >> 16; |
1349 |
|
✗ |
y[1] = (tmp - (y[0] * (1 << 16))) >> 1; |
1350 |
|
|
} |
1351 |
|
✗ |
} |
1352 |
|
|
|
1353 |
|
✗ |
static int ilbc_decode_frame(AVCodecContext *avctx, AVFrame *frame, |
1354 |
|
|
int *got_frame_ptr, AVPacket *avpkt) |
1355 |
|
|
{ |
1356 |
|
✗ |
ILBCContext *s = avctx->priv_data; |
1357 |
|
✗ |
int mode = s->mode, ret; |
1358 |
|
✗ |
int16_t *plc_data = &s->plc_residual[LPC_FILTERORDER]; |
1359 |
|
|
|
1360 |
|
✗ |
memset(&s->frame, 0, sizeof(ILBCFrame)); |
1361 |
|
✗ |
ret = unpack_frame(s, avpkt->data, avpkt->size); |
1362 |
|
✗ |
if (ret < 0) |
1363 |
|
✗ |
return ret; |
1364 |
|
✗ |
if (ret) |
1365 |
|
✗ |
mode = 0; |
1366 |
|
|
|
1367 |
|
✗ |
frame->nb_samples = s->block_samples; |
1368 |
|
✗ |
if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) |
1369 |
|
✗ |
return ret; |
1370 |
|
|
|
1371 |
|
✗ |
if (s->frame.start < 1 || s->frame.start > 5) |
1372 |
|
✗ |
mode = 0; |
1373 |
|
|
|
1374 |
|
✗ |
if (mode) { |
1375 |
|
✗ |
index_conv(s->frame.cb_index); |
1376 |
|
|
|
1377 |
|
✗ |
lsf_dequantization(s->lsfdeq, s->frame.lsf, s->lpc_n); |
1378 |
|
✗ |
lsf_check_stability(s->lsfdeq, LPC_FILTERORDER, s->lpc_n); |
1379 |
|
✗ |
lsp_interpolate(s->syntdenum, s->weightdenum, |
1380 |
|
✗ |
s->lsfdeq, LPC_FILTERORDER, s); |
1381 |
|
✗ |
decode_residual(s, &s->frame, s->decresidual, s->syntdenum); |
1382 |
|
|
|
1383 |
|
✗ |
do_plc(s->plc_residual, s->plc_lpc, 0, |
1384 |
|
✗ |
s->decresidual, s->syntdenum + (LPC_FILTERORDER + 1) * (s->nsub - 1), |
1385 |
|
✗ |
s->last_lag, s); |
1386 |
|
|
|
1387 |
|
✗ |
memcpy(s->decresidual, s->plc_residual, s->block_samples * 2); |
1388 |
|
|
} |
1389 |
|
|
|
1390 |
|
✗ |
if (s->enhancer) { |
1391 |
|
|
/* TODO */ |
1392 |
|
|
} else { |
1393 |
|
|
int16_t lag, i; |
1394 |
|
|
|
1395 |
|
|
/* Find last lag (since the enhancer is not called to give this info) */ |
1396 |
|
✗ |
if (s->mode == 20) { |
1397 |
|
✗ |
lag = xcorr_coeff(&s->decresidual[s->block_samples-60], &s->decresidual[s->block_samples-80], |
1398 |
|
|
60, 80, 20, -1); |
1399 |
|
|
} else { |
1400 |
|
✗ |
lag = xcorr_coeff(&s->decresidual[s->block_samples-ENH_BLOCKL], |
1401 |
|
✗ |
&s->decresidual[s->block_samples-ENH_BLOCKL-20], |
1402 |
|
|
ENH_BLOCKL, 100, 20, -1); |
1403 |
|
|
} |
1404 |
|
|
|
1405 |
|
|
/* Store lag (it is needed if next packet is lost) */ |
1406 |
|
✗ |
s->last_lag = lag; |
1407 |
|
|
|
1408 |
|
|
/* copy data and run synthesis filter */ |
1409 |
|
✗ |
memcpy(plc_data, s->decresidual, s->block_samples * 2); |
1410 |
|
|
|
1411 |
|
|
/* Set up the filter state */ |
1412 |
|
✗ |
memcpy(&plc_data[-LPC_FILTERORDER], s->syntMem, LPC_FILTERORDER * 2); |
1413 |
|
|
|
1414 |
|
✗ |
for (i = 0; i < s->nsub; i++) { |
1415 |
|
✗ |
filter_arfq12(plc_data+i*SUBL, plc_data+i*SUBL, |
1416 |
|
✗ |
s->syntdenum + i*(LPC_FILTERORDER + 1), |
1417 |
|
|
LPC_FILTERORDER + 1, SUBL); |
1418 |
|
|
} |
1419 |
|
|
|
1420 |
|
|
/* Save the filter state */ |
1421 |
|
✗ |
memcpy(s->syntMem, &plc_data[s->block_samples-LPC_FILTERORDER], LPC_FILTERORDER * 2); |
1422 |
|
|
} |
1423 |
|
|
|
1424 |
|
✗ |
memcpy(frame->data[0], plc_data, s->block_samples * 2); |
1425 |
|
|
|
1426 |
|
✗ |
hp_output((int16_t *)frame->data[0], hp_out_coeffs, |
1427 |
|
✗ |
s->hpimemy, s->hpimemx, s->block_samples); |
1428 |
|
|
|
1429 |
|
✗ |
memcpy(s->old_syntdenum, s->syntdenum, s->nsub*(LPC_FILTERORDER + 1) * 2); |
1430 |
|
|
|
1431 |
|
✗ |
s->prev_enh_pl = 0; |
1432 |
|
✗ |
if (mode == 0) |
1433 |
|
✗ |
s->prev_enh_pl = 1; |
1434 |
|
|
|
1435 |
|
✗ |
*got_frame_ptr = 1; |
1436 |
|
|
|
1437 |
|
✗ |
return avpkt->size; |
1438 |
|
|
} |
1439 |
|
|
|
1440 |
|
✗ |
static av_cold int ilbc_decode_init(AVCodecContext *avctx) |
1441 |
|
|
{ |
1442 |
|
✗ |
ILBCContext *s = avctx->priv_data; |
1443 |
|
|
|
1444 |
|
✗ |
if (avctx->block_align == 38) |
1445 |
|
✗ |
s->mode = 20; |
1446 |
|
✗ |
else if (avctx->block_align == 50) |
1447 |
|
✗ |
s->mode = 30; |
1448 |
|
✗ |
else if (avctx->bit_rate > 0) |
1449 |
|
✗ |
s->mode = avctx->bit_rate <= 14000 ? 30 : 20; |
1450 |
|
|
else |
1451 |
|
✗ |
return AVERROR_INVALIDDATA; |
1452 |
|
|
|
1453 |
|
✗ |
av_channel_layout_uninit(&avctx->ch_layout); |
1454 |
|
✗ |
avctx->ch_layout = (AVChannelLayout)AV_CHANNEL_LAYOUT_MONO; |
1455 |
|
✗ |
avctx->sample_rate = 8000; |
1456 |
|
✗ |
avctx->sample_fmt = AV_SAMPLE_FMT_S16; |
1457 |
|
|
|
1458 |
|
✗ |
if (s->mode == 30) { |
1459 |
|
✗ |
s->block_samples = 240; |
1460 |
|
✗ |
s->nsub = NSUB_30MS; |
1461 |
|
✗ |
s->nasub = NASUB_30MS; |
1462 |
|
✗ |
s->lpc_n = LPC_N_30MS; |
1463 |
|
✗ |
s->state_short_len = STATE_SHORT_LEN_30MS; |
1464 |
|
|
} else { |
1465 |
|
✗ |
s->block_samples = 160; |
1466 |
|
✗ |
s->nsub = NSUB_20MS; |
1467 |
|
✗ |
s->nasub = NASUB_20MS; |
1468 |
|
✗ |
s->lpc_n = LPC_N_20MS; |
1469 |
|
✗ |
s->state_short_len = STATE_SHORT_LEN_20MS; |
1470 |
|
|
} |
1471 |
|
|
|
1472 |
|
✗ |
return 0; |
1473 |
|
|
} |
1474 |
|
|
|
1475 |
|
|
const FFCodec ff_ilbc_decoder = { |
1476 |
|
|
.p.name = "ilbc", |
1477 |
|
|
CODEC_LONG_NAME("iLBC (Internet Low Bitrate Codec)"), |
1478 |
|
|
.p.type = AVMEDIA_TYPE_AUDIO, |
1479 |
|
|
.p.id = AV_CODEC_ID_ILBC, |
1480 |
|
|
.init = ilbc_decode_init, |
1481 |
|
|
FF_CODEC_DECODE_CB(ilbc_decode_frame), |
1482 |
|
|
.p.capabilities = AV_CODEC_CAP_DR1 | AV_CODEC_CAP_CHANNEL_CONF, |
1483 |
|
|
.priv_data_size = sizeof(ILBCContext), |
1484 |
|
|
}; |
1485 |
|
|
|