FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/h264dec.h
Date: 2024-09-13 17:16:59
Exec Total Coverage
Lines: 2 2 100.0%
Functions: 1 1 100.0%
Branches: 0 0 -%

Line Branch Exec Source
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * H.264 / AVC / MPEG-4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28 #ifndef AVCODEC_H264DEC_H
29 #define AVCODEC_H264DEC_H
30
31 #include "libavutil/buffer.h"
32 #include "libavutil/mem_internal.h"
33
34 #include "cabac.h"
35 #include "error_resilience.h"
36 #include "h264_parse.h"
37 #include "h264_ps.h"
38 #include "h264_sei.h"
39 #include "h2645_parse.h"
40 #include "h264chroma.h"
41 #include "h264dsp.h"
42 #include "h264pred.h"
43 #include "h264qpel.h"
44 #include "h274.h"
45 #include "mpegutils.h"
46 #include "threadframe.h"
47 #include "videodsp.h"
48
49 #define H264_MAX_PICTURE_COUNT 36
50
51 /* Compiling in interlaced support reduces the speed
52 * of progressive decoding by about 2%. */
53 #define ALLOW_INTERLACE
54
55 #define FMO 0
56
57 /**
58 * The maximum number of slices supported by the decoder.
59 * must be a power of 2
60 */
61 #define MAX_SLICES 32
62
63 #ifdef ALLOW_INTERLACE
64 #define MB_MBAFF(h) (h)->mb_mbaff
65 #define MB_FIELD(sl) (sl)->mb_field_decoding_flag
66 #define FRAME_MBAFF(h) (h)->mb_aff_frame
67 #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
68 #define LEFT_MBS 2
69 #define LTOP 0
70 #define LBOT 1
71 #define LEFT(i) (i)
72 #else
73 #define MB_MBAFF(h) 0
74 #define MB_FIELD(sl) 0
75 #define FRAME_MBAFF(h) 0
76 #define FIELD_PICTURE(h) 0
77 #undef IS_INTERLACED
78 #define IS_INTERLACED(mb_type) 0
79 #define LEFT_MBS 1
80 #define LTOP 0
81 #define LBOT 0
82 #define LEFT(i) 0
83 #endif
84 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
85
86 #ifndef CABAC
87 #define CABAC(h) (h)->ps.pps->cabac
88 #endif
89
90 #define CHROMA(h) ((h)->ps.sps->chroma_format_idc)
91 #define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
92 #define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
93
94 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
95 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
96 #define IS_SUB_8X8(a) ((a) & MB_TYPE_16x16) // note reused
97 #define IS_SUB_8X4(a) ((a) & MB_TYPE_16x8) // note reused
98 #define IS_SUB_4X8(a) ((a) & MB_TYPE_8x16) // note reused
99 #define IS_SUB_4X4(a) ((a) & MB_TYPE_8x8) // note reused
100 #define IS_DIR(a, part, list) ((a) & (MB_TYPE_P0L0 << ((part) + 2 * (list))))
101
102 // does this mb use listX, note does not work if subMBs
103 #define USES_LIST(a, list) ((a) & ((MB_TYPE_P0L0 | MB_TYPE_P1L0) << (2 * (list))))
104
105 /**
106 * Memory management control operation.
107 */
108 typedef struct MMCO {
109 MMCOOpcode opcode;
110 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
111 int long_arg; ///< index, pic_num, or num long refs depending on opcode
112 } MMCO;
113
114 typedef struct H264Picture {
115 AVFrame *f;
116 ThreadFrame tf;
117
118 AVFrame *f_grain;
119
120 int8_t *qscale_table_base; ///< RefStruct reference
121 int8_t *qscale_table;
122
123 int16_t (*motion_val_base[2])[2]; ///< RefStruct reference
124 int16_t (*motion_val[2])[2];
125
126 uint32_t *mb_type_base; ///< RefStruct reference
127 uint32_t *mb_type;
128
129 /// RefStruct reference for hardware accelerator private data
130 void *hwaccel_picture_private;
131
132 int8_t *ref_index[2]; ///< RefStruct reference
133
134 int field_poc[2]; ///< top/bottom POC
135 int poc; ///< frame POC
136 int frame_num; ///< frame_num (raw frame_num from slice header)
137 int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
138 not mix pictures before and after MMCO_RESET. */
139 int pic_id; /**< pic_num (short -> no wrap version of pic_num,
140 pic_num & max_pic_num; long -> long_pic_num) */
141 int long_ref; ///< 1->long term reference 0->short term reference
142 int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
143 int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
144 int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
145 int field_picture; ///< whether or not picture was encoded in separate fields
146
147 /**
148 * H264Picture.reference has this flag set,
149 * when the picture is held for delayed output.
150 */
151 #define DELAYED_PIC_REF (1 << 2)
152 int reference;
153 int recovered; ///< picture at IDR or recovery point + recovery count
154 int invalid_gap;
155 int sei_recovery_frame_cnt;
156 int needs_fg; ///< whether picture needs film grain synthesis (see `f_grain`)
157
158 const PPS *pps;
159
160 int mb_width, mb_height;
161 int mb_stride;
162
163 /// RefStruct reference; its pointee is shared between decoding threads.
164 atomic_int *decode_error_flags;
165
166 int gray;
167 } H264Picture;
168
169 typedef struct H264Ref {
170 uint8_t *data[3];
171 int linesize[3];
172
173 int reference;
174 int poc;
175 int pic_id;
176
177 const H264Picture *parent;
178 } H264Ref;
179
180 typedef struct H264SliceContext {
181 const struct H264Context *h264;
182 GetBitContext gb;
183 ERContext *er;
184
185 int slice_num;
186 int slice_type;
187 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
188 int slice_type_fixed;
189
190 int qscale;
191 int chroma_qp[2]; // QPc
192 int qp_thresh; ///< QP threshold to skip loopfilter
193 int last_qscale_diff;
194
195 // deblock
196 int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
197 int slice_alpha_c0_offset;
198 int slice_beta_offset;
199
200 H264PredWeightTable pwt;
201
202 int prev_mb_skipped;
203 int next_mb_skipped;
204
205 int chroma_pred_mode;
206 int intra16x16_pred_mode;
207
208 int8_t intra4x4_pred_mode_cache[5 * 8];
209 int8_t(*intra4x4_pred_mode);
210
211 int topleft_mb_xy;
212 int top_mb_xy;
213 int topright_mb_xy;
214 int left_mb_xy[LEFT_MBS];
215
216 int topleft_type;
217 int top_type;
218 int topright_type;
219 int left_type[LEFT_MBS];
220
221 const uint8_t *left_block;
222 int topleft_partition;
223
224 unsigned int topleft_samples_available;
225 unsigned int top_samples_available;
226 unsigned int topright_samples_available;
227 unsigned int left_samples_available;
228
229 ptrdiff_t linesize, uvlinesize;
230 ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
231 ptrdiff_t mb_uvlinesize;
232
233 int mb_x, mb_y;
234 int mb_xy;
235 int resync_mb_x;
236 int resync_mb_y;
237 unsigned int first_mb_addr;
238 // index of the first MB of the next slice
239 int next_slice_idx;
240 int mb_skip_run;
241 int is_complex;
242
243 int picture_structure;
244 int mb_field_decoding_flag;
245 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
246
247 int redundant_pic_count;
248
249 /**
250 * number of neighbors (top and/or left) that used 8x8 dct
251 */
252 int neighbor_transform_size;
253
254 int direct_spatial_mv_pred;
255 int col_parity;
256 int col_fieldoff;
257
258 int cbp;
259 int top_cbp;
260 int left_cbp;
261
262 int dist_scale_factor[32];
263 int dist_scale_factor_field[2][32];
264 int map_col_to_list0[2][16 + 32];
265 int map_col_to_list0_field[2][2][16 + 32];
266
267 /**
268 * num_ref_idx_l0/1_active_minus1 + 1
269 */
270 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
271 unsigned int list_count;
272 H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
273 * Reordered version of default_ref_list
274 * according to picture reordering in slice header */
275 struct {
276 uint8_t op;
277 uint32_t val;
278 } ref_modifications[2][32];
279 int nb_ref_modifications[2];
280
281 unsigned int pps_id;
282
283 const uint8_t *intra_pcm_ptr;
284
285 uint8_t *bipred_scratchpad;
286 uint8_t *edge_emu_buffer;
287 uint8_t (*top_borders[2])[(16 * 3) * 2];
288 int bipred_scratchpad_allocated;
289 int edge_emu_buffer_allocated;
290 int top_borders_allocated[2];
291
292 /**
293 * non zero coeff count cache.
294 * is 64 if not available.
295 */
296 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
297
298 /**
299 * Motion vector cache.
300 */
301 DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
302 DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
303 DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
304 uint8_t direct_cache[5 * 8];
305
306 DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
307
308 ///< as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
309 DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
310 DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
311 ///< as mb is addressed by scantable[i] and scantable is uint8_t we can either
312 ///< check that i is not too large or ensure that there is some unused stuff after mb
313 int16_t mb_padding[256 * 2];
314
315 uint8_t (*mvd_table[2])[2];
316
317 /**
318 * Cabac
319 */
320 CABACContext cabac;
321 uint8_t cabac_state[1024];
322 int cabac_init_idc;
323
324 MMCO mmco[H264_MAX_MMCO_COUNT];
325 int nb_mmco;
326 int explicit_ref_marking;
327
328 int frame_num;
329 int idr_pic_id;
330 int poc_lsb;
331 int delta_poc_bottom;
332 int delta_poc[2];
333 int curr_pic_num;
334 int max_pic_num;
335 } H264SliceContext;
336
337 /**
338 * H264Context
339 */
340 typedef struct H264Context {
341 const AVClass *class;
342 AVCodecContext *avctx;
343 VideoDSPContext vdsp;
344 H264DSPContext h264dsp;
345 H264ChromaContext h264chroma;
346 H264QpelContext h264qpel;
347 H274FilmGrainDatabase h274db;
348
349 H264Picture DPB[H264_MAX_PICTURE_COUNT];
350 H264Picture *cur_pic_ptr;
351 H264Picture cur_pic;
352 H264Picture last_pic_for_ec;
353
354 H264SliceContext *slice_ctx;
355 int nb_slice_ctx;
356 int nb_slice_ctx_queued;
357
358 H2645Packet pkt;
359
360 int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
361
362 /* coded dimensions -- 16 * mb w/h */
363 int width, height;
364 int chroma_x_shift, chroma_y_shift;
365
366 int droppable;
367
368 int context_initialized;
369 int flags;
370 int workaround_bugs;
371 int x264_build;
372 /* Set when slice threading is used and at least one slice uses deblocking
373 * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
374 * during normal MB decoding and execute it serially at the end.
375 */
376 int postpone_filter;
377
378 /*
379 * Set to 1 when the current picture is IDR, 0 otherwise.
380 */
381 int picture_idr;
382
383 /*
384 * Set to 1 when the current picture contains only I slices, 0 otherwise.
385 */
386 int picture_intra_only;
387
388 int crop_left;
389 int crop_right;
390 int crop_top;
391 int crop_bottom;
392
393 int8_t(*intra4x4_pred_mode);
394 H264PredContext hpc;
395
396 uint8_t (*non_zero_count)[48];
397
398 #define LIST_NOT_USED -1 // FIXME rename?
399
400 /**
401 * block_offset[ 0..23] for frame macroblocks
402 * block_offset[24..47] for field macroblocks
403 */
404 int block_offset[2 * (16 * 3)];
405
406 uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
407 uint32_t *mb2br_xy;
408 int b_stride; // FIXME use s->b4_stride
409
410 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
411
412 // interlacing specific flags
413 int mb_aff_frame;
414 int picture_structure;
415 int first_field;
416
417 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
418
419 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
420 uint16_t *cbp_table;
421
422 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
423 uint8_t *chroma_pred_mode_table;
424 uint8_t (*mvd_table[2])[2];
425 uint8_t *direct_table;
426
427 uint8_t scan_padding[16];
428 uint8_t zigzag_scan[16];
429 uint8_t zigzag_scan8x8[64];
430 uint8_t zigzag_scan8x8_cavlc[64];
431 uint8_t field_scan[16];
432 uint8_t field_scan8x8[64];
433 uint8_t field_scan8x8_cavlc[64];
434 uint8_t zigzag_scan_q0[16];
435 uint8_t zigzag_scan8x8_q0[64];
436 uint8_t zigzag_scan8x8_cavlc_q0[64];
437 uint8_t field_scan_q0[16];
438 uint8_t field_scan8x8_q0[64];
439 uint8_t field_scan8x8_cavlc_q0[64];
440
441 int mb_y;
442 int mb_height, mb_width;
443 int mb_stride;
444 int mb_num;
445
446 // =============================================================
447 // Things below are not used in the MB or more inner code
448
449 int nal_ref_idc;
450 int nal_unit_type;
451
452 int has_slice; ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
453
454 /**
455 * Used to parse AVC variant of H.264
456 */
457 int is_avc; ///< this flag is != 0 if codec is avc1
458 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
459
460 int bit_depth_luma; ///< luma bit depth from sps to detect changes
461 int chroma_format_idc; ///< chroma format from sps to detect changes
462
463 H264ParamSets ps;
464
465 uint16_t *slice_table_base;
466
467 H264POCContext poc;
468
469 H264Ref default_ref[2];
470 H264Picture *short_ref[32];
471 H264Picture *long_ref[32];
472 H264Picture *delayed_pic[H264_MAX_DPB_FRAMES + 2]; // FIXME size?
473 int last_pocs[H264_MAX_DPB_FRAMES];
474 H264Picture *next_output_pic;
475 int next_outputed_poc;
476 int poc_offset; ///< PicOrderCnt_offset from SMPTE RDD-2006
477
478 /**
479 * memory management control operations buffer.
480 */
481 MMCO mmco[H264_MAX_MMCO_COUNT];
482 int nb_mmco;
483 int mmco_reset;
484 int explicit_ref_marking;
485
486 int long_ref_count; ///< number of actual long term references
487 int short_ref_count; ///< number of actual short term references
488
489 /**
490 * @name Members for slice based multithreading
491 * @{
492 */
493 /**
494 * current slice number, used to initialize slice_num of each thread/context
495 */
496 int current_slice;
497
498 /** @} */
499
500 /**
501 * Complement sei_pic_struct
502 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
503 * However, soft telecined frames may have these values.
504 * This is used in an attempt to flag soft telecine progressive.
505 */
506 int prev_interlaced_frame;
507
508 /**
509 * Are the SEI recovery points looking valid.
510 */
511 int valid_recovery_point;
512
513 /**
514 * recovery_frame is the frame_num at which the next frame should
515 * be fully constructed.
516 *
517 * Set to -1 when not expecting a recovery point.
518 */
519 int recovery_frame;
520
521 /**
522 * We have seen an IDR, so all the following frames in coded order are correctly
523 * decodable.
524 */
525 #define FRAME_RECOVERED_IDR (1 << 0)
526 /**
527 * Sufficient number of frames have been decoded since a SEI recovery point,
528 * so all the following frames in presentation order are correct.
529 */
530 #define FRAME_RECOVERED_SEI (1 << 1)
531 /**
532 * Recovery point detected by heuristic
533 */
534 #define FRAME_RECOVERED_HEURISTIC (1 << 2)
535
536 /**
537 * Initial frame has been completely recovered.
538 *
539 * Once this is set, all following decoded as well as displayed frames will be marked as recovered
540 * If a frame is marked as recovered frame_recovered will be set once this frame is output and thus
541 * all subsequently output fraames are also marked as recovered
542 *
543 * In effect, if you want all subsequent DECODED frames marked as recovered, set frame_recovered
544 * If you want all subsequent DISPAYED frames marked as recovered, set the frame->recovered
545 */
546 int frame_recovered;
547
548 int has_recovery_point;
549
550 int missing_fields;
551
552 /* for frame threading, this is set to 1
553 * after finish_setup() has been called, so we cannot modify
554 * some context properties (which are supposed to stay constant between
555 * slices) anymore */
556 int setup_finished;
557
558 int cur_chroma_format_idc;
559 int cur_bit_depth_luma;
560 int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
561
562 /* original AVCodecContext dimensions, used to handle container
563 * cropping */
564 int width_from_caller;
565 int height_from_caller;
566
567 int enable_er;
568 ERContext er;
569 int16_t *dc_val_base;
570
571 H264SEIContext sei;
572
573 struct FFRefStructPool *qscale_table_pool;
574 struct FFRefStructPool *mb_type_pool;
575 struct FFRefStructPool *motion_val_pool;
576 struct FFRefStructPool *ref_index_pool;
577 struct FFRefStructPool *decode_error_flags_pool;
578 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
579
580 int non_gray; ///< Did we encounter a intra frame after a gray gap frame
581 int noref_gray;
582 int skip_gray;
583 } H264Context;
584
585 extern const uint16_t ff_h264_mb_sizes[4];
586
587 /**
588 * Reconstruct bitstream slice_type.
589 */
590 int ff_h264_get_slice_type(const H264SliceContext *sl);
591
592 /**
593 * Allocate tables.
594 * needs width/height
595 */
596 int ff_h264_alloc_tables(H264Context *h);
597
598 int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
599 int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
600 void ff_h264_remove_all_refs(H264Context *h);
601
602 /**
603 * Execute the reference picture marking (memory management control operations).
604 */
605 int ff_h264_execute_ref_pic_marking(H264Context *h);
606
607 int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
608 const H2645NAL *nal, void *logctx);
609
610 void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
611 void ff_h264_decode_init_vlc(void);
612
613 /**
614 * Decode a macroblock
615 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
616 */
617 int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
618
619 /**
620 * Decode a CABAC coded macroblock
621 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
622 */
623 int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
624
625 void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
626
627 void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
628 void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
629 void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
630 int *mb_type);
631
632 void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
633 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
634 unsigned int linesize, unsigned int uvlinesize);
635 void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
636 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
637 unsigned int linesize, unsigned int uvlinesize);
638
639 /*
640 * o-o o-o
641 * / / /
642 * o-o o-o
643 * ,---'
644 * o-o o-o
645 * / / /
646 * o-o o-o
647 */
648
649 /* Scan8 organization:
650 * 0 1 2 3 4 5 6 7
651 * 0 DY y y y y y
652 * 1 y Y Y Y Y
653 * 2 y Y Y Y Y
654 * 3 y Y Y Y Y
655 * 4 y Y Y Y Y
656 * 5 DU u u u u u
657 * 6 u U U U U
658 * 7 u U U U U
659 * 8 u U U U U
660 * 9 u U U U U
661 * 10 DV v v v v v
662 * 11 v V V V V
663 * 12 v V V V V
664 * 13 v V V V V
665 * 14 v V V V V
666 * DY/DU/DV are for luma/chroma DC.
667 */
668
669 #define LUMA_DC_BLOCK_INDEX 48
670 #define CHROMA_DC_BLOCK_INDEX 49
671
672 /**
673 * Get the chroma qp.
674 */
675 63937286 static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
676 {
677 63937286 return pps->chroma_qp_table[t][qscale];
678 }
679
680 int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
681
682 int ff_h264_ref_picture(H264Picture *dst, const H264Picture *src);
683 int ff_h264_replace_picture(H264Picture *dst, const H264Picture *src);
684 void ff_h264_unref_picture(H264Picture *pic);
685
686 void ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
687
688 void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
689
690 /**
691 * Submit a slice for decoding.
692 *
693 * Parse the slice header, starting a new field/frame if necessary. If any
694 * slices are queued for the previous field, they are decoded.
695 */
696 int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
697 int ff_h264_execute_decode_slices(H264Context *h);
698 int ff_h264_update_thread_context(AVCodecContext *dst,
699 const AVCodecContext *src);
700 int ff_h264_update_thread_context_for_user(AVCodecContext *dst,
701 const AVCodecContext *src);
702
703 void ff_h264_flush_change(H264Context *h);
704
705 void ff_h264_free_tables(H264Context *h);
706
707 void ff_h264_set_erpic(ERPicture *dst, const H264Picture *src);
708
709 #endif /* AVCODEC_H264DEC_H */
710