FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/h264dec.h
Date: 2025-10-10 03:51:19
Exec Total Coverage
Lines: 2 2 100.0%
Functions: 1 1 100.0%
Branches: 0 0 -%

Line Branch Exec Source
1 /*
2 * H.26L/H.264/AVC/JVT/14496-10/... encoder/decoder
3 * Copyright (c) 2003 Michael Niedermayer <michaelni@gmx.at>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 /**
23 * @file
24 * H.264 / AVC / MPEG-4 part10 codec.
25 * @author Michael Niedermayer <michaelni@gmx.at>
26 */
27
28 #ifndef AVCODEC_H264DEC_H
29 #define AVCODEC_H264DEC_H
30
31 #include "libavutil/mem_internal.h"
32
33 #include "cabac.h"
34 #include "error_resilience.h"
35 #include "h264_parse.h"
36 #include "h264_ps.h"
37 #include "h264_sei.h"
38 #include "h2645_parse.h"
39 #include "h264chroma.h"
40 #include "h264dsp.h"
41 #include "h264pred.h"
42 #include "h264qpel.h"
43 #include "mpegutils.h"
44 #include "threadframe.h"
45 #include "videodsp.h"
46
47 #define H264_MAX_PICTURE_COUNT 36
48
49 /* Compiling in interlaced support reduces the speed
50 * of progressive decoding by about 2%. */
51 #define ALLOW_INTERLACE
52
53 #define FMO 0
54
55 /**
56 * The maximum number of slices supported by the decoder.
57 * must be a power of 2
58 */
59 #define MAX_SLICES 32
60
61 #ifdef ALLOW_INTERLACE
62 #define MB_MBAFF(h) (h)->mb_mbaff
63 #define MB_FIELD(sl) (sl)->mb_field_decoding_flag
64 #define FRAME_MBAFF(h) (h)->mb_aff_frame
65 #define FIELD_PICTURE(h) ((h)->picture_structure != PICT_FRAME)
66 #define LEFT_MBS 2
67 #define LTOP 0
68 #define LBOT 1
69 #define LEFT(i) (i)
70 #else
71 #define MB_MBAFF(h) 0
72 #define MB_FIELD(sl) 0
73 #define FRAME_MBAFF(h) 0
74 #define FIELD_PICTURE(h) 0
75 #undef IS_INTERLACED
76 #define IS_INTERLACED(mb_type) 0
77 #define LEFT_MBS 1
78 #define LTOP 0
79 #define LBOT 0
80 #define LEFT(i) 0
81 #endif
82 #define FIELD_OR_MBAFF_PICTURE(h) (FRAME_MBAFF(h) || FIELD_PICTURE(h))
83
84 #ifndef CABAC
85 #define CABAC(h) (h)->ps.pps->cabac
86 #endif
87
88 #define CHROMA(h) ((h)->ps.sps->chroma_format_idc)
89 #define CHROMA422(h) ((h)->ps.sps->chroma_format_idc == 2)
90 #define CHROMA444(h) ((h)->ps.sps->chroma_format_idc == 3)
91
92 #define IS_REF0(a) ((a) & MB_TYPE_REF0)
93 #define IS_8x8DCT(a) ((a) & MB_TYPE_8x8DCT)
94 #define IS_SUB_8X8(a) ((a) & MB_TYPE_16x16) // note reused
95 #define IS_SUB_8X4(a) ((a) & MB_TYPE_16x8) // note reused
96 #define IS_SUB_4X8(a) ((a) & MB_TYPE_8x16) // note reused
97 #define IS_SUB_4X4(a) ((a) & MB_TYPE_8x8) // note reused
98 #define IS_DIR(a, part, list) ((a) & (MB_TYPE_P0L0 << ((part) + 2 * (list))))
99
100 // does this mb use listX, note does not work if subMBs
101 #define USES_LIST(a, list) ((a) & ((MB_TYPE_P0L0 | MB_TYPE_P1L0) << (2 * (list))))
102
103 /**
104 * Memory management control operation.
105 */
106 typedef struct MMCO {
107 MMCOOpcode opcode;
108 int short_pic_num; ///< pic_num without wrapping (pic_num & max_pic_num)
109 int long_arg; ///< index, pic_num, or num long refs depending on opcode
110 } MMCO;
111
112 typedef struct H264Picture {
113 AVFrame *f;
114 ThreadFrame tf;
115
116 AVFrame *f_grain;
117
118 int8_t *qscale_table_base; ///< RefStruct reference
119 int8_t *qscale_table;
120
121 int16_t (*motion_val_base[2])[2]; ///< RefStruct reference
122 int16_t (*motion_val[2])[2];
123
124 uint32_t *mb_type_base; ///< RefStruct reference
125 uint32_t *mb_type;
126
127 /// RefStruct reference for hardware accelerator private data
128 void *hwaccel_picture_private;
129
130 int8_t *ref_index[2]; ///< RefStruct reference
131
132 int field_poc[2]; ///< top/bottom POC
133 int poc; ///< frame POC
134 int frame_num; ///< frame_num (raw frame_num from slice header)
135 int mmco_reset; /**< MMCO_RESET set this 1. Reordering code must
136 not mix pictures before and after MMCO_RESET. */
137 int pic_id; /**< pic_num (short -> no wrap version of pic_num,
138 pic_num & max_pic_num; long -> long_pic_num) */
139 int long_ref; ///< 1->long term reference 0->short term reference
140 int ref_poc[2][2][32]; ///< POCs of the frames/fields used as reference (FIXME need per slice)
141 int ref_count[2][2]; ///< number of entries in ref_poc (FIXME need per slice)
142 int mbaff; ///< 1 -> MBAFF frame 0-> not MBAFF
143 int field_picture; ///< whether or not picture was encoded in separate fields
144
145 /**
146 * H264Picture.reference has this flag set,
147 * when the picture is held for delayed output.
148 */
149 #define DELAYED_PIC_REF (1 << 2)
150 int reference;
151 int recovered; ///< picture at IDR or recovery point + recovery count
152 int invalid_gap;
153 int sei_recovery_frame_cnt;
154 int needs_fg; ///< whether picture needs film grain synthesis (see `f_grain`)
155
156 const PPS *pps;
157
158 int mb_width, mb_height;
159 int mb_stride;
160
161 /// RefStruct reference; its pointee is shared between decoding threads.
162 atomic_int *decode_error_flags;
163
164 int gray;
165 } H264Picture;
166
167 typedef struct H264Ref {
168 uint8_t *data[3];
169 int linesize[3];
170
171 int reference;
172 int poc;
173 int pic_id;
174
175 const H264Picture *parent;
176 } H264Ref;
177
178 typedef struct H264SliceContext {
179 const struct H264Context *h264;
180 GetBitContext gb;
181 ERContext *er;
182
183 int slice_num;
184 int slice_type;
185 int slice_type_nos; ///< S free slice type (SI/SP are remapped to I/P)
186 int slice_type_fixed;
187
188 int qscale;
189 int chroma_qp[2]; // QPc
190 int qp_thresh; ///< QP threshold to skip loopfilter
191 int last_qscale_diff;
192
193 // deblock
194 int deblocking_filter; ///< disable_deblocking_filter_idc with 1 <-> 0
195 int slice_alpha_c0_offset;
196 int slice_beta_offset;
197
198 H264PredWeightTable pwt;
199
200 int prev_mb_skipped;
201 int next_mb_skipped;
202
203 int chroma_pred_mode;
204 int intra16x16_pred_mode;
205
206 int8_t intra4x4_pred_mode_cache[5 * 8];
207 int8_t(*intra4x4_pred_mode);
208
209 int topleft_mb_xy;
210 int top_mb_xy;
211 int topright_mb_xy;
212 int left_mb_xy[LEFT_MBS];
213
214 int topleft_type;
215 int top_type;
216 int topright_type;
217 int left_type[LEFT_MBS];
218
219 const uint8_t *left_block;
220 int topleft_partition;
221
222 unsigned int topleft_samples_available;
223 unsigned int top_samples_available;
224 unsigned int topright_samples_available;
225 unsigned int left_samples_available;
226
227 ptrdiff_t linesize, uvlinesize;
228 ptrdiff_t mb_linesize; ///< may be equal to s->linesize or s->linesize * 2, for mbaff
229 ptrdiff_t mb_uvlinesize;
230
231 int mb_x, mb_y;
232 int mb_xy;
233 int resync_mb_x;
234 int resync_mb_y;
235 unsigned int first_mb_addr;
236 // index of the first MB of the next slice
237 int next_slice_idx;
238 int mb_skip_run;
239 int is_complex;
240
241 int picture_structure;
242 int mb_field_decoding_flag;
243 int mb_mbaff; ///< mb_aff_frame && mb_field_decoding_flag
244
245 int redundant_pic_count;
246
247 /**
248 * number of neighbors (top and/or left) that used 8x8 dct
249 */
250 int neighbor_transform_size;
251
252 int direct_spatial_mv_pred;
253 int col_parity;
254 int col_fieldoff;
255
256 int cbp;
257 int top_cbp;
258 int left_cbp;
259
260 int dist_scale_factor[32];
261 int dist_scale_factor_field[2][32];
262 int map_col_to_list0[2][16 + 32];
263 int map_col_to_list0_field[2][2][16 + 32];
264
265 /**
266 * num_ref_idx_l0/1_active_minus1 + 1
267 */
268 unsigned int ref_count[2]; ///< counts frames or fields, depending on current mb mode
269 unsigned int list_count;
270 H264Ref ref_list[2][48]; /**< 0..15: frame refs, 16..47: mbaff field refs.
271 * Reordered version of default_ref_list
272 * according to picture reordering in slice header */
273 struct {
274 uint8_t op;
275 uint32_t val;
276 } ref_modifications[2][32];
277 int nb_ref_modifications[2];
278
279 unsigned int pps_id;
280
281 const uint8_t *intra_pcm_ptr;
282
283 uint8_t *bipred_scratchpad;
284 uint8_t *edge_emu_buffer;
285 uint8_t (*top_borders[2])[(16 * 3) * 2];
286 int bipred_scratchpad_allocated;
287 int edge_emu_buffer_allocated;
288 int top_borders_allocated[2];
289
290 /**
291 * non zero coeff count cache.
292 * is 64 if not available.
293 */
294 DECLARE_ALIGNED(8, uint8_t, non_zero_count_cache)[15 * 8];
295
296 /**
297 * Motion vector cache.
298 */
299 DECLARE_ALIGNED(16, int16_t, mv_cache)[2][5 * 8][2];
300 DECLARE_ALIGNED(8, int8_t, ref_cache)[2][5 * 8];
301 DECLARE_ALIGNED(16, uint8_t, mvd_cache)[2][5 * 8][2];
302 uint8_t direct_cache[5 * 8];
303
304 DECLARE_ALIGNED(8, uint16_t, sub_mb_type)[4];
305
306 /// as a DCT coefficient is int32_t in high depth, we need to reserve twice the space.
307 DECLARE_ALIGNED(16, int16_t, mb)[16 * 48 * 2];
308 DECLARE_ALIGNED(16, int16_t, mb_luma_dc)[3][16 * 2];
309 /// as mb is addressed by scantable[i] and scantable is uint8_t we can either
310 /// check that i is not too large or ensure that there is some unused stuff after mb
311 int16_t mb_padding[256 * 2];
312
313 uint8_t (*mvd_table[2])[2];
314
315 /**
316 * Cabac
317 */
318 CABACContext cabac;
319 uint8_t cabac_state[1024];
320 int cabac_init_idc;
321
322 MMCO mmco[H264_MAX_MMCO_COUNT];
323 int nb_mmco;
324 int explicit_ref_marking;
325
326 int frame_num;
327 int idr_pic_id;
328 int poc_lsb;
329 int delta_poc_bottom;
330 int delta_poc[2];
331 int curr_pic_num;
332 int max_pic_num;
333 } H264SliceContext;
334
335 /**
336 * H264Context
337 */
338 typedef struct H264Context {
339 const AVClass *class;
340 AVCodecContext *avctx;
341 VideoDSPContext vdsp;
342 H264DSPContext h264dsp;
343 H264ChromaContext h264chroma;
344 H264QpelContext h264qpel;
345
346 H264Picture DPB[H264_MAX_PICTURE_COUNT];
347 H264Picture *cur_pic_ptr;
348 H264Picture cur_pic;
349 H264Picture last_pic_for_ec;
350
351 H264SliceContext *slice_ctx;
352 int nb_slice_ctx;
353 int nb_slice_ctx_queued;
354
355 H2645Packet pkt;
356
357 int pixel_shift; ///< 0 for 8-bit H.264, 1 for high-bit-depth H.264
358
359 /* coded dimensions -- 16 * mb w/h */
360 int width, height;
361 int chroma_x_shift, chroma_y_shift;
362
363 int droppable;
364
365 int context_initialized;
366 int flags;
367 int workaround_bugs;
368 int x264_build;
369 /* Set when slice threading is used and at least one slice uses deblocking
370 * mode 1 (i.e. across slice boundaries). Then we disable the loop filter
371 * during normal MB decoding and execute it serially at the end.
372 */
373 int postpone_filter;
374
375 /*
376 * Set to 1 when the current picture is IDR, 0 otherwise.
377 */
378 int picture_idr;
379
380 /*
381 * Set to 1 when the current picture contains only I slices, 0 otherwise.
382 */
383 int picture_intra_only;
384
385 int crop_left;
386 int crop_right;
387 int crop_top;
388 int crop_bottom;
389
390 int8_t(*intra4x4_pred_mode);
391 H264PredContext hpc;
392
393 uint8_t (*non_zero_count)[48];
394
395 #define LIST_NOT_USED -1 // FIXME rename?
396
397 /**
398 * block_offset[ 0..23] for frame macroblocks
399 * block_offset[24..47] for field macroblocks
400 */
401 int block_offset[2 * (16 * 3)];
402
403 uint32_t *mb2b_xy; // FIXME are these 4 a good idea?
404 uint32_t *mb2br_xy;
405 int b_stride; // FIXME use s->b4_stride
406
407 uint16_t *slice_table; ///< slice_table_base + 2*mb_stride + 1
408
409 // interlacing specific flags
410 int mb_aff_frame;
411 int picture_structure;
412 int first_field;
413
414 uint8_t *list_counts; ///< Array of list_count per MB specifying the slice type
415
416 /* 0x100 -> non null luma_dc, 0x80/0x40 -> non null chroma_dc (cb/cr), 0x?0 -> chroma_cbp(0, 1, 2), 0x0? luma_cbp */
417 uint16_t *cbp_table;
418
419 /* chroma_pred_mode for i4x4 or i16x16, else 0 */
420 uint8_t *chroma_pred_mode_table;
421 uint8_t (*mvd_table[2])[2];
422 uint8_t *direct_table;
423
424 uint8_t scan_padding[16];
425 uint8_t zigzag_scan[16];
426 uint8_t zigzag_scan8x8[64];
427 uint8_t zigzag_scan8x8_cavlc[64];
428 uint8_t field_scan[16];
429 uint8_t field_scan8x8[64];
430 uint8_t field_scan8x8_cavlc[64];
431 uint8_t zigzag_scan_q0[16];
432 uint8_t zigzag_scan8x8_q0[64];
433 uint8_t zigzag_scan8x8_cavlc_q0[64];
434 uint8_t field_scan_q0[16];
435 uint8_t field_scan8x8_q0[64];
436 uint8_t field_scan8x8_cavlc_q0[64];
437
438 int mb_y;
439 int mb_height, mb_width;
440 int mb_stride;
441 int mb_num;
442
443 // =============================================================
444 // Things below are not used in the MB or more inner code
445
446 int nal_ref_idc;
447 int nal_unit_type;
448
449 int has_slice; ///< slice NAL is found in the packet, set by decode_nal_units, its state does not need to be preserved outside h264_decode_frame()
450
451 /**
452 * Used to parse AVC variant of H.264
453 */
454 int is_avc; ///< this flag is != 0 if codec is avc1
455 int nal_length_size; ///< Number of bytes used for nal length (1, 2 or 4)
456
457 int bit_depth_luma; ///< luma bit depth from sps to detect changes
458 int chroma_format_idc; ///< chroma format from sps to detect changes
459
460 H264ParamSets ps;
461
462 uint16_t *slice_table_base;
463
464 H264POCContext poc;
465
466 H264Ref default_ref[2];
467 H264Picture *short_ref[32];
468 H264Picture *long_ref[32];
469 H264Picture *delayed_pic[H264_MAX_DPB_FRAMES + 2]; // FIXME size?
470 int last_pocs[H264_MAX_DPB_FRAMES];
471 H264Picture *next_output_pic;
472 int next_outputed_poc;
473 int poc_offset; ///< PicOrderCnt_offset from SMPTE RDD-2006
474
475 /**
476 * memory management control operations buffer.
477 */
478 MMCO mmco[H264_MAX_MMCO_COUNT];
479 int nb_mmco;
480 int mmco_reset;
481 int explicit_ref_marking;
482
483 int long_ref_count; ///< number of actual long term references
484 int short_ref_count; ///< number of actual short term references
485
486 /**
487 * @name Members for slice based multithreading
488 * @{
489 */
490 /**
491 * current slice number, used to initialize slice_num of each thread/context
492 */
493 int current_slice;
494
495 /** @} */
496
497 /**
498 * Complement sei_pic_struct
499 * SEI_PIC_STRUCT_TOP_BOTTOM and SEI_PIC_STRUCT_BOTTOM_TOP indicate interlaced frames.
500 * However, soft telecined frames may have these values.
501 * This is used in an attempt to flag soft telecine progressive.
502 */
503 int prev_interlaced_frame;
504
505 /**
506 * Are the SEI recovery points looking valid.
507 */
508 int valid_recovery_point;
509
510 /**
511 * recovery_frame is the frame_num at which the next frame should
512 * be fully constructed.
513 *
514 * Set to -1 when not expecting a recovery point.
515 */
516 int recovery_frame;
517
518 /**
519 * We have seen an IDR, so all the following frames in coded order are correctly
520 * decodable.
521 */
522 #define FRAME_RECOVERED_IDR (1 << 0)
523 /**
524 * Sufficient number of frames have been decoded since a SEI recovery point,
525 * so all the following frames in presentation order are correct.
526 */
527 #define FRAME_RECOVERED_SEI (1 << 1)
528 /**
529 * Recovery point detected by heuristic
530 */
531 #define FRAME_RECOVERED_HEURISTIC (1 << 2)
532
533 /**
534 * Initial frame has been completely recovered.
535 *
536 * Once this is set, all following decoded as well as displayed frames will be marked as recovered
537 * If a frame is marked as recovered frame_recovered will be set once this frame is output and thus
538 * all subsequently output fraames are also marked as recovered
539 *
540 * In effect, if you want all subsequent DECODED frames marked as recovered, set frame_recovered
541 * If you want all subsequent DISPLAYED frames marked as recovered, set the frame->recovered
542 */
543 int frame_recovered;
544
545 int has_recovery_point;
546
547 int missing_fields;
548
549 /* for frame threading, this is set to 1
550 * after finish_setup() has been called, so we cannot modify
551 * some context properties (which are supposed to stay constant between
552 * slices) anymore */
553 int setup_finished;
554
555 int cur_chroma_format_idc;
556 int cur_bit_depth_luma;
557 int16_t slice_row[MAX_SLICES]; ///< to detect when MAX_SLICES is too low
558
559 /* original AVCodecContext dimensions, used to handle container
560 * cropping */
561 int width_from_caller;
562 int height_from_caller;
563
564 int enable_er;
565 ERContext er;
566 int16_t *dc_val_base;
567
568 H264SEIContext sei;
569
570 struct AVRefStructPool *qscale_table_pool;
571 struct AVRefStructPool *mb_type_pool;
572 struct AVRefStructPool *motion_val_pool;
573 struct AVRefStructPool *ref_index_pool;
574 struct AVRefStructPool *decode_error_flags_pool;
575 int ref2frm[MAX_SLICES][2][64]; ///< reference to frame number lists, used in the loop filter, the first 2 are for -2,-1
576
577 int non_gray; ///< Did we encounter a intra frame after a gray gap frame
578 int noref_gray;
579 int skip_gray;
580 } H264Context;
581
582 extern const uint16_t ff_h264_mb_sizes[4];
583
584 /**
585 * Reconstruct bitstream slice_type.
586 */
587 int ff_h264_get_slice_type(const H264SliceContext *sl);
588
589 /**
590 * Allocate tables.
591 * needs width/height
592 */
593 int ff_h264_alloc_tables(H264Context *h);
594
595 int ff_h264_decode_ref_pic_list_reordering(H264SliceContext *sl, void *logctx);
596 int ff_h264_build_ref_list(H264Context *h, H264SliceContext *sl);
597 void ff_h264_remove_all_refs(H264Context *h);
598
599 /**
600 * Execute the reference picture marking (memory management control operations).
601 */
602 int ff_h264_execute_ref_pic_marking(H264Context *h);
603
604 int ff_h264_decode_ref_pic_marking(H264SliceContext *sl, GetBitContext *gb,
605 const H2645NAL *nal, void *logctx);
606
607 void ff_h264_hl_decode_mb(const H264Context *h, H264SliceContext *sl);
608 void ff_h264_decode_init_vlc(void);
609
610 /**
611 * Decode a macroblock
612 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
613 */
614 int ff_h264_decode_mb_cavlc(const H264Context *h, H264SliceContext *sl);
615
616 /**
617 * Decode a CABAC coded macroblock
618 * @return 0 if OK, ER_AC_ERROR / ER_DC_ERROR / ER_MV_ERROR on error
619 */
620 int ff_h264_decode_mb_cabac(const H264Context *h, H264SliceContext *sl);
621
622 void ff_h264_init_cabac_states(const H264Context *h, H264SliceContext *sl);
623
624 void ff_h264_direct_dist_scale_factor(const H264Context *const h, H264SliceContext *sl);
625 void ff_h264_direct_ref_list_init(const H264Context *const h, H264SliceContext *sl);
626 void ff_h264_pred_direct_motion(const H264Context *const h, H264SliceContext *sl,
627 int *mb_type);
628
629 void ff_h264_filter_mb_fast(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
630 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
631 unsigned int linesize, unsigned int uvlinesize);
632 void ff_h264_filter_mb(const H264Context *h, H264SliceContext *sl, int mb_x, int mb_y,
633 uint8_t *img_y, uint8_t *img_cb, uint8_t *img_cr,
634 unsigned int linesize, unsigned int uvlinesize);
635
636 /*
637 * o-o o-o
638 * / / /
639 * o-o o-o
640 * ,---'
641 * o-o o-o
642 * / / /
643 * o-o o-o
644 */
645
646 /* Scan8 organization:
647 * 0 1 2 3 4 5 6 7
648 * 0 DY y y y y y
649 * 1 y Y Y Y Y
650 * 2 y Y Y Y Y
651 * 3 y Y Y Y Y
652 * 4 y Y Y Y Y
653 * 5 DU u u u u u
654 * 6 u U U U U
655 * 7 u U U U U
656 * 8 u U U U U
657 * 9 u U U U U
658 * 10 DV v v v v v
659 * 11 v V V V V
660 * 12 v V V V V
661 * 13 v V V V V
662 * 14 v V V V V
663 * DY/DU/DV are for luma/chroma DC.
664 */
665
666 #define LUMA_DC_BLOCK_INDEX 48
667 #define CHROMA_DC_BLOCK_INDEX 49
668
669 /**
670 * Get the chroma qp.
671 */
672 64124062 static av_always_inline int get_chroma_qp(const PPS *pps, int t, int qscale)
673 {
674 64124062 return pps->chroma_qp_table[t][qscale];
675 }
676
677 int ff_h264_field_end(H264Context *h, H264SliceContext *sl, int in_setup);
678
679 int ff_h264_ref_picture(H264Picture *dst, const H264Picture *src);
680 int ff_h264_replace_picture(H264Picture *dst, const H264Picture *src);
681 void ff_h264_unref_picture(H264Picture *pic);
682
683 void ff_h264_slice_context_init(H264Context *h, H264SliceContext *sl);
684
685 void ff_h264_draw_horiz_band(const H264Context *h, H264SliceContext *sl, int y, int height);
686
687 /**
688 * Submit a slice for decoding.
689 *
690 * Parse the slice header, starting a new field/frame if necessary. If any
691 * slices are queued for the previous field, they are decoded.
692 */
693 int ff_h264_queue_decode_slice(H264Context *h, const H2645NAL *nal);
694 int ff_h264_execute_decode_slices(H264Context *h);
695 int ff_h264_update_thread_context(AVCodecContext *dst,
696 const AVCodecContext *src);
697 int ff_h264_update_thread_context_for_user(AVCodecContext *dst,
698 const AVCodecContext *src);
699
700 void ff_h264_flush_change(H264Context *h);
701
702 void ff_h264_free_tables(H264Context *h);
703
704 void ff_h264_set_erpic(ERPicture *dst, const H264Picture *src);
705
706 #endif /* AVCODEC_H264DEC_H */
707