FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/f_ebur128.c
Date: 2022-11-26 13:19:19
Exec Total Coverage
Lines: 245 436 56.2%
Branches: 112 296 37.8%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2012 Clément Bœsch
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file
23 * EBU R.128 implementation
24 * @see http://tech.ebu.ch/loudness
25 * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
26 * @todo implement start/stop/reset through filter command injection
27 */
28
29 #include <math.h>
30
31 #include "libavutil/avassert.h"
32 #include "libavutil/avstring.h"
33 #include "libavutil/channel_layout.h"
34 #include "libavutil/dict.h"
35 #include "libavutil/ffmath.h"
36 #include "libavutil/xga_font_data.h"
37 #include "libavutil/opt.h"
38 #include "libavutil/timestamp.h"
39 #include "libswresample/swresample.h"
40 #include "audio.h"
41 #include "avfilter.h"
42 #include "filters.h"
43 #include "formats.h"
44 #include "internal.h"
45
46 #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
47 #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
48 #define HIST_GRAIN 100 ///< defines histogram precision
49 #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
50
51 /**
52 * A histogram is an array of HIST_SIZE hist_entry storing all the energies
53 * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
54 * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
55 * This fixed-size system avoids the need of a list of energies growing
56 * infinitely over the time and is thus more scalable.
57 */
58 struct hist_entry {
59 unsigned count; ///< how many times the corresponding value occurred
60 double energy; ///< E = 10^((L + 0.691) / 10)
61 double loudness; ///< L = -0.691 + 10 * log10(E)
62 };
63
64 struct integrator {
65 double **cache; ///< window of filtered samples (N ms)
66 int cache_pos; ///< focus on the last added bin in the cache array
67 int cache_size;
68 double *sum; ///< sum of the last N ms filtered samples (cache content)
69 int filled; ///< 1 if the cache is completely filled, 0 otherwise
70 double rel_threshold; ///< relative threshold
71 double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
72 int nb_kept_powers; ///< number of sum above absolute threshold
73 struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
74 };
75
76 struct rect { int x, y, w, h; };
77
78 typedef struct EBUR128Context {
79 const AVClass *class; ///< AVClass context for log and options purpose
80
81 /* peak metering */
82 int peak_mode; ///< enabled peak modes
83 double *true_peaks; ///< true peaks per channel
84 double *sample_peaks; ///< sample peaks per channel
85 double *true_peaks_per_frame; ///< true peaks in a frame per channel
86 #if CONFIG_SWRESAMPLE
87 SwrContext *swr_ctx; ///< over-sampling context for true peak metering
88 double *swr_buf; ///< resampled audio data for true peak metering
89 int swr_linesize;
90 #endif
91
92 /* video */
93 int do_video; ///< 1 if video output enabled, 0 otherwise
94 int w, h; ///< size of the video output
95 struct rect text; ///< rectangle for the LU legend on the left
96 struct rect graph; ///< rectangle for the main graph in the center
97 struct rect gauge; ///< rectangle for the gauge on the right
98 AVFrame *outpicref; ///< output picture reference, updated regularly
99 int meter; ///< select a EBU mode between +9 and +18
100 int scale_range; ///< the range of LU values according to the meter
101 int y_zero_lu; ///< the y value (pixel position) for 0 LU
102 int y_opt_max; ///< the y value (pixel position) for 1 LU
103 int y_opt_min; ///< the y value (pixel position) for -1 LU
104 int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
105
106 /* audio */
107 int nb_channels; ///< number of channels in the input
108 double *ch_weighting; ///< channel weighting mapping
109 int sample_count; ///< sample count used for refresh frequency, reset at refresh
110 int nb_samples; ///< number of samples to consume per single input frame
111 int idx_insample; ///< current sample position of processed samples in single input frame
112 AVFrame *insamples; ///< input samples reference, updated regularly
113
114 /* Filter caches.
115 * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
116 double *x; ///< 3 input samples cache for each channel
117 double *y; ///< 3 pre-filter samples cache for each channel
118 double *z; ///< 3 RLB-filter samples cache for each channel
119 double pre_b[3]; ///< pre-filter numerator coefficients
120 double pre_a[3]; ///< pre-filter denominator coefficients
121 double rlb_b[3]; ///< rlb-filter numerator coefficients
122 double rlb_a[3]; ///< rlb-filter denominator coefficients
123
124 struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
125 struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
126
127 /* I and LRA specific */
128 double integrated_loudness; ///< integrated loudness in LUFS (I)
129 double loudness_range; ///< loudness range in LU (LRA)
130 double lra_low, lra_high; ///< low and high LRA values
131
132 /* misc */
133 int loglevel; ///< log level for frame logging
134 int metadata; ///< whether or not to inject loudness results in frames
135 int dual_mono; ///< whether or not to treat single channel input files as dual-mono
136 double pan_law; ///< pan law value used to calculate dual-mono measurements
137 int target; ///< target level in LUFS used to set relative zero LU in visualization
138 int gauge_type; ///< whether gauge shows momentary or short
139 int scale; ///< display scale type of statistics
140 } EBUR128Context;
141
142 enum {
143 PEAK_MODE_NONE = 0,
144 PEAK_MODE_SAMPLES_PEAKS = 1<<1,
145 PEAK_MODE_TRUE_PEAKS = 1<<2,
146 };
147
148 enum {
149 GAUGE_TYPE_MOMENTARY = 0,
150 GAUGE_TYPE_SHORTTERM = 1,
151 };
152
153 enum {
154 SCALE_TYPE_ABSOLUTE = 0,
155 SCALE_TYPE_RELATIVE = 1,
156 };
157
158 #define OFFSET(x) offsetof(EBUR128Context, x)
159 #define A AV_OPT_FLAG_AUDIO_PARAM
160 #define V AV_OPT_FLAG_VIDEO_PARAM
161 #define F AV_OPT_FLAG_FILTERING_PARAM
162 static const AVOption ebur128_options[] = {
163 { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F },
164 { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
165 { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
166 { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, "level" },
167 { "quiet", "logging disabled", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_QUIET}, INT_MIN, INT_MAX, A|V|F, "level" },
168 { "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, "level" },
169 { "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, "level" },
170 { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F },
171 { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, "mode" },
172 { "none", "disable any peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE}, INT_MIN, INT_MAX, A|F, "mode" },
173 { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
174 { "true", "enable true-peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS}, INT_MIN, INT_MAX, A|F, "mode" },
175 { "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F },
176 { "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F },
177 { "target", "set a specific target level in LUFS (-23 to 0)", OFFSET(target), AV_OPT_TYPE_INT, {.i64 = -23}, -23, 0, V|F },
178 { "gauge", "set gauge display type", OFFSET(gauge_type), AV_OPT_TYPE_INT, {.i64 = 0 }, GAUGE_TYPE_MOMENTARY, GAUGE_TYPE_SHORTTERM, V|F, "gaugetype" },
179 { "momentary", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
180 { "m", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, "gaugetype" },
181 { "shortterm", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
182 { "s", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, "gaugetype" },
183 { "scale", "sets display method for the stats", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = 0}, SCALE_TYPE_ABSOLUTE, SCALE_TYPE_RELATIVE, V|F, "scaletype" },
184 { "absolute", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
185 { "LUFS", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, "scaletype" },
186 { "relative", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
187 { "LU", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, "scaletype" },
188 { NULL },
189 };
190
191 AVFILTER_DEFINE_CLASS(ebur128);
192
193 static const uint8_t graph_colors[] = {
194 0xdd, 0x66, 0x66, // value above 1LU non reached below -1LU (impossible)
195 0x66, 0x66, 0xdd, // value below 1LU non reached below -1LU
196 0x96, 0x33, 0x33, // value above 1LU reached below -1LU (impossible)
197 0x33, 0x33, 0x96, // value below 1LU reached below -1LU
198 0xdd, 0x96, 0x96, // value above 1LU line non reached below -1LU (impossible)
199 0x96, 0x96, 0xdd, // value below 1LU line non reached below -1LU
200 0xdd, 0x33, 0x33, // value above 1LU line reached below -1LU (impossible)
201 0x33, 0x33, 0xdd, // value below 1LU line reached below -1LU
202 0xdd, 0x66, 0x66, // value above 1LU non reached above -1LU
203 0x66, 0xdd, 0x66, // value below 1LU non reached above -1LU
204 0x96, 0x33, 0x33, // value above 1LU reached above -1LU
205 0x33, 0x96, 0x33, // value below 1LU reached above -1LU
206 0xdd, 0x96, 0x96, // value above 1LU line non reached above -1LU
207 0x96, 0xdd, 0x96, // value below 1LU line non reached above -1LU
208 0xdd, 0x33, 0x33, // value above 1LU line reached above -1LU
209 0x33, 0xdd, 0x33, // value below 1LU line reached above -1LU
210 };
211
212 static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
213 {
214 const int above_opt_max = y > ebur128->y_opt_max;
215 const int below_opt_min = y < ebur128->y_opt_min;
216 const int reached = y >= v;
217 const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
218 const int colorid = 8*below_opt_min+ 4*line + 2*reached + above_opt_max;
219 return graph_colors + 3*colorid;
220 }
221
222 static inline int lu_to_y(const EBUR128Context *ebur128, double v)
223 {
224 v += 2 * ebur128->meter; // make it in range [0;...]
225 v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
226 v = ebur128->scale_range - v; // invert value (y=0 is on top)
227 return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
228 }
229
230 #define FONT8 0
231 #define FONT16 1
232
233 static const uint8_t font_colors[] = {
234 0xdd, 0xdd, 0x00,
235 0x00, 0x96, 0x96,
236 };
237
238 static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
239 {
240 int i;
241 char buf[128] = {0};
242 const uint8_t *font;
243 int font_height;
244 va_list vl;
245
246 if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
247 else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
248 else return;
249
250 va_start(vl, fmt);
251 vsnprintf(buf, sizeof(buf), fmt, vl);
252 va_end(vl);
253
254 for (i = 0; buf[i]; i++) {
255 int char_y, mask;
256 uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
257
258 for (char_y = 0; char_y < font_height; char_y++) {
259 for (mask = 0x80; mask; mask >>= 1) {
260 if (font[buf[i] * font_height + char_y] & mask)
261 memcpy(p, color, 3);
262 else
263 memcpy(p, "\x00\x00\x00", 3);
264 p += 3;
265 }
266 p += pic->linesize[0] - 8*3;
267 }
268 }
269 }
270
271 static void drawline(AVFrame *pic, int x, int y, int len, int step)
272 {
273 int i;
274 uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
275
276 for (i = 0; i < len; i++) {
277 memcpy(p, "\x00\xff\x00", 3);
278 p += step;
279 }
280 }
281
282 static int config_video_output(AVFilterLink *outlink)
283 {
284 int i, x, y;
285 uint8_t *p;
286 AVFilterContext *ctx = outlink->src;
287 AVFilterLink *inlink = ctx->inputs[0];
288 EBUR128Context *ebur128 = ctx->priv;
289 AVFrame *outpicref;
290
291 /* check if there is enough space to represent everything decently */
292 if (ebur128->w < 640 || ebur128->h < 480) {
293 av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
294 "minimum size is 640x480\n", ebur128->w, ebur128->h);
295 return AVERROR(EINVAL);
296 }
297 outlink->w = ebur128->w;
298 outlink->h = ebur128->h;
299 outlink->sample_aspect_ratio = (AVRational){1,1};
300 outlink->time_base = inlink->time_base;
301 outlink->frame_rate = av_make_q(10, 1);
302
303 #define PAD 8
304
305 /* configure text area position and size */
306 ebur128->text.x = PAD;
307 ebur128->text.y = 40;
308 ebur128->text.w = 3 * 8; // 3 characters
309 ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
310
311 /* configure gauge position and size */
312 ebur128->gauge.w = 20;
313 ebur128->gauge.h = ebur128->text.h;
314 ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
315 ebur128->gauge.y = ebur128->text.y;
316
317 /* configure graph position and size */
318 ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
319 ebur128->graph.y = ebur128->gauge.y;
320 ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
321 ebur128->graph.h = ebur128->gauge.h;
322
323 /* graph and gauge share the LU-to-pixel code */
324 av_assert0(ebur128->graph.h == ebur128->gauge.h);
325
326 /* prepare the initial picref buffer */
327 av_frame_free(&ebur128->outpicref);
328 ebur128->outpicref = outpicref =
329 ff_get_video_buffer(outlink, outlink->w, outlink->h);
330 if (!outpicref)
331 return AVERROR(ENOMEM);
332 outpicref->sample_aspect_ratio = (AVRational){1,1};
333
334 /* init y references values (to draw LU lines) */
335 ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
336 if (!ebur128->y_line_ref)
337 return AVERROR(ENOMEM);
338
339 /* black background */
340 for (int y = 0; y < ebur128->h; y++)
341 memset(outpicref->data[0] + y * outpicref->linesize[0], 0, ebur128->w * 3);
342
343 /* draw LU legends */
344 drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
345 for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
346 y = lu_to_y(ebur128, i);
347 x = PAD + (i < 10 && i > -10) * 8;
348 ebur128->y_line_ref[y] = i;
349 y -= 4; // -4 to center vertically
350 drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
351 "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
352 }
353
354 /* draw graph */
355 ebur128->y_zero_lu = lu_to_y(ebur128, 0);
356 ebur128->y_opt_max = lu_to_y(ebur128, 1);
357 ebur128->y_opt_min = lu_to_y(ebur128, -1);
358 p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
359 + ebur128->graph.x * 3;
360 for (y = 0; y < ebur128->graph.h; y++) {
361 const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
362
363 for (x = 0; x < ebur128->graph.w; x++)
364 memcpy(p + x*3, c, 3);
365 p += outpicref->linesize[0];
366 }
367
368 /* draw fancy rectangles around the graph and the gauge */
369 #define DRAW_RECT(r) do { \
370 drawline(outpicref, r.x, r.y - 1, r.w, 3); \
371 drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
372 drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
373 drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
374 } while (0)
375 DRAW_RECT(ebur128->graph);
376 DRAW_RECT(ebur128->gauge);
377
378 return 0;
379 }
380
381 1 static int config_audio_input(AVFilterLink *inlink)
382 {
383 1 AVFilterContext *ctx = inlink->dst;
384 1 EBUR128Context *ebur128 = ctx->priv;
385
386 /* Unofficial reversed parametrization of PRE
387 * and RLB from 48kHz */
388
389 1 double f0 = 1681.974450955533;
390 1 double G = 3.999843853973347;
391 1 double Q = 0.7071752369554196;
392
393 1 double K = tan(M_PI * f0 / (double)inlink->sample_rate);
394 1 double Vh = pow(10.0, G / 20.0);
395 1 double Vb = pow(Vh, 0.4996667741545416);
396
397 1 double a0 = 1.0 + K / Q + K * K;
398
399 1 ebur128->pre_b[0] = (Vh + Vb * K / Q + K * K) / a0;
400 1 ebur128->pre_b[1] = 2.0 * (K * K - Vh) / a0;
401 1 ebur128->pre_b[2] = (Vh - Vb * K / Q + K * K) / a0;
402 1 ebur128->pre_a[1] = 2.0 * (K * K - 1.0) / a0;
403 1 ebur128->pre_a[2] = (1.0 - K / Q + K * K) / a0;
404
405 1 f0 = 38.13547087602444;
406 1 Q = 0.5003270373238773;
407 1 K = tan(M_PI * f0 / (double)inlink->sample_rate);
408
409 1 ebur128->rlb_b[0] = 1.0;
410 1 ebur128->rlb_b[1] = -2.0;
411 1 ebur128->rlb_b[2] = 1.0;
412 1 ebur128->rlb_a[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
413 1 ebur128->rlb_a[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
414
415 /* Force 100ms framing in case of metadata injection: the frames must have
416 * a granularity of the window overlap to be accurately exploited.
417 * As for the true peaks mode, it just simplifies the resampling buffer
418 * allocation and the lookup in it (since sample buffers differ in size, it
419 * can be more complex to integrate in the one-sample loop of
420 * filter_frame()). */
421
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
1 if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
422 1 ebur128->nb_samples = inlink->sample_rate / 10;
423 1 return 0;
424 }
425
426 1 static int config_audio_output(AVFilterLink *outlink)
427 {
428 int i;
429 1 AVFilterContext *ctx = outlink->src;
430 1 EBUR128Context *ebur128 = ctx->priv;
431 1 const int nb_channels = outlink->ch_layout.nb_channels;
432
433 #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
434 AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
435 AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \
436 AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
437
438 1 ebur128->nb_channels = nb_channels;
439 1 ebur128->x = av_calloc(nb_channels, 3 * sizeof(*ebur128->x));
440 1 ebur128->y = av_calloc(nb_channels, 3 * sizeof(*ebur128->y));
441 1 ebur128->z = av_calloc(nb_channels, 3 * sizeof(*ebur128->z));
442 1 ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
443
4/8
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 1 times.
1 if (!ebur128->ch_weighting || !ebur128->x || !ebur128->y || !ebur128->z)
444 return AVERROR(ENOMEM);
445
446 #define I400_BINS(x) ((x) * 4 / 10)
447 #define I3000_BINS(x) ((x) * 3)
448
449 1 ebur128->i400.sum = av_calloc(nb_channels, sizeof(*ebur128->i400.sum));
450 1 ebur128->i3000.sum = av_calloc(nb_channels, sizeof(*ebur128->i3000.sum));
451 1 ebur128->i400.cache = av_calloc(nb_channels, sizeof(*ebur128->i400.cache));
452 1 ebur128->i3000.cache = av_calloc(nb_channels, sizeof(*ebur128->i3000.cache));
453
2/4
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
1 if (!ebur128->i400.sum || !ebur128->i3000.sum ||
454
2/4
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 1 times.
1 !ebur128->i400.cache || !ebur128->i3000.cache)
455 return AVERROR(ENOMEM);
456
457
2/2
✓ Branch 0 taken 2 times.
✓ Branch 1 taken 1 times.
3 for (i = 0; i < nb_channels; i++) {
458 /* channel weighting */
459 2 const enum AVChannel chl = av_channel_layout_channel_from_index(&outlink->ch_layout, i);
460
2/4
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 2 times.
2 if (chl == AV_CHAN_LOW_FREQUENCY || chl == AV_CHAN_LOW_FREQUENCY_2) {
461 ebur128->ch_weighting[i] = 0;
462
2/4
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 2 times.
2 } else if (chl < 64 && (1ULL << chl) & BACK_MASK) {
463 ebur128->ch_weighting[i] = 1.41;
464 } else {
465 2 ebur128->ch_weighting[i] = 1.0;
466 }
467
468
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
2 if (!ebur128->ch_weighting[i])
469 continue;
470
471 /* bins buffer for the two integration window (400ms and 3s) */
472 2 ebur128->i400.cache_size = I400_BINS(outlink->sample_rate);
473 2 ebur128->i3000.cache_size = I3000_BINS(outlink->sample_rate);
474 2 ebur128->i400.cache[i] = av_calloc(ebur128->i400.cache_size, sizeof(*ebur128->i400.cache[0]));
475 2 ebur128->i3000.cache[i] = av_calloc(ebur128->i3000.cache_size, sizeof(*ebur128->i3000.cache[0]));
476
2/4
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 2 times.
2 if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
477 return AVERROR(ENOMEM);
478 }
479
480 #if CONFIG_SWRESAMPLE
481
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
482 int ret;
483
484 ebur128->swr_buf = av_malloc_array(nb_channels, 19200 * sizeof(double));
485 ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
486 ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
487 ebur128->swr_ctx = swr_alloc();
488 if (!ebur128->swr_buf || !ebur128->true_peaks ||
489 !ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
490 return AVERROR(ENOMEM);
491
492 av_opt_set_chlayout(ebur128->swr_ctx, "in_chlayout", &outlink->ch_layout, 0);
493 av_opt_set_int(ebur128->swr_ctx, "in_sample_rate", outlink->sample_rate, 0);
494 av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
495
496 av_opt_set_chlayout(ebur128->swr_ctx, "out_chlayout", &outlink->ch_layout, 0);
497 av_opt_set_int(ebur128->swr_ctx, "out_sample_rate", 192000, 0);
498 av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
499
500 ret = swr_init(ebur128->swr_ctx);
501 if (ret < 0)
502 return ret;
503 }
504 #endif
505
506
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
507 ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
508 if (!ebur128->sample_peaks)
509 return AVERROR(ENOMEM);
510 }
511
512 1 return 0;
513 }
514
515 #define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.))
516 #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
517 #define DBFS(energy) (20 * log10(energy))
518
519 2 static struct hist_entry *get_histogram(void)
520 {
521 int i;
522 2 struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
523
524
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
2 if (!h)
525 return NULL;
526
2/2
✓ Branch 0 taken 16002 times.
✓ Branch 1 taken 2 times.
16004 for (i = 0; i < HIST_SIZE; i++) {
527 16002 h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
528 16002 h[i].energy = ENERGY(h[i].loudness);
529 }
530 2 return h;
531 }
532
533 1 static av_cold int init(AVFilterContext *ctx)
534 {
535 1 EBUR128Context *ebur128 = ctx->priv;
536 AVFilterPad pad;
537 int ret;
538
539
1/2
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
1 if (ebur128->loglevel != AV_LOG_INFO &&
540
1/2
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
1 ebur128->loglevel != AV_LOG_QUIET &&
541
1/2
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
1 ebur128->loglevel != AV_LOG_VERBOSE) {
542
2/4
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
1 if (ebur128->do_video || ebur128->metadata)
543 1 ebur128->loglevel = AV_LOG_VERBOSE;
544 else
545 ebur128->loglevel = AV_LOG_INFO;
546 }
547
548 if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
549 av_log(ctx, AV_LOG_ERROR,
550 "True-peak mode requires libswresample to be performed\n");
551 return AVERROR(EINVAL);
552 }
553
554 // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
555 // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
556 1 ebur128->scale_range = 3 * ebur128->meter;
557
558 1 ebur128->i400.histogram = get_histogram();
559 1 ebur128->i3000.histogram = get_histogram();
560
2/4
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 1 times.
1 if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
561 return AVERROR(ENOMEM);
562
563 1 ebur128->integrated_loudness = ABS_THRES;
564 1 ebur128->loudness_range = 0;
565
566 /* insert output pads */
567
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ebur128->do_video) {
568 pad = (AVFilterPad){
569 .name = "out0",
570 .type = AVMEDIA_TYPE_VIDEO,
571 .config_props = config_video_output,
572 };
573 ret = ff_append_outpad(ctx, &pad);
574 if (ret < 0)
575 return ret;
576 }
577 1 pad = (AVFilterPad){
578
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 .name = ebur128->do_video ? "out1" : "out0",
579 .type = AVMEDIA_TYPE_AUDIO,
580 .config_props = config_audio_output,
581 };
582 1 ret = ff_append_outpad(ctx, &pad);
583
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ret < 0)
584 return ret;
585
586 /* summary */
587 1 av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
588
589 1 return 0;
590 }
591
592 #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
593
594 /* loudness and power should be set such as loudness = -0.691 +
595 * 10*log10(power), we just avoid doing that calculus two times */
596 526 static int gate_update(struct integrator *integ, double power,
597 double loudness, int gate_thres)
598 {
599 int ipower;
600 double relative_threshold;
601 int gate_hist_pos;
602
603 /* update powers histograms by incrementing current power count */
604 526 ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
605 526 integ->histogram[ipower].count++;
606
607 /* compute relative threshold and get its position in the histogram */
608 526 integ->sum_kept_powers += power;
609 526 integ->nb_kept_powers++;
610 526 relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
611
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 526 times.
526 if (!relative_threshold)
612 relative_threshold = 1e-12;
613 526 integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
614 526 gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
615
616 526 return gate_hist_pos;
617 }
618
619 280 static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
620 {
621 int i, ch, idx_insample;
622 280 AVFilterContext *ctx = inlink->dst;
623 280 EBUR128Context *ebur128 = ctx->priv;
624 280 const int nb_channels = ebur128->nb_channels;
625 280 const int nb_samples = insamples->nb_samples;
626 280 const double *samples = (double *)insamples->data[0];
627 280 AVFrame *pic = ebur128->outpicref;
628
629 #if CONFIG_SWRESAMPLE
630
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 280 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
280 if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS && ebur128->idx_insample == 0) {
631 const double *swr_samples = ebur128->swr_buf;
632 int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
633 (const uint8_t **)insamples->data, nb_samples);
634 if (ret < 0)
635 return ret;
636 for (ch = 0; ch < nb_channels; ch++)
637 ebur128->true_peaks_per_frame[ch] = 0.0;
638 for (idx_insample = 0; idx_insample < ret; idx_insample++) {
639 for (ch = 0; ch < nb_channels; ch++) {
640 ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples));
641 ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
642 fabs(*swr_samples));
643 swr_samples++;
644 }
645 }
646 }
647 #endif
648
649
2/2
✓ Branch 0 taken 1343998 times.
✓ Branch 1 taken 280 times.
1344278 for (idx_insample = ebur128->idx_insample; idx_insample < nb_samples; idx_insample++) {
650 1343998 const int bin_id_400 = ebur128->i400.cache_pos;
651 1343998 const int bin_id_3000 = ebur128->i3000.cache_pos;
652
653 #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
654 ebur128->i##time.cache_pos++; \
655 if (ebur128->i##time.cache_pos == \
656 ebur128->i##time.cache_size) { \
657 ebur128->i##time.filled = 1; \
658 ebur128->i##time.cache_pos = 0; \
659 } \
660 } while (0)
661
662
2/2
✓ Branch 0 taken 69 times.
✓ Branch 1 taken 1343929 times.
1343998 MOVE_TO_NEXT_CACHED_ENTRY(400);
663
2/2
✓ Branch 0 taken 9 times.
✓ Branch 1 taken 1343989 times.
1343998 MOVE_TO_NEXT_CACHED_ENTRY(3000);
664
665
2/2
✓ Branch 0 taken 2687996 times.
✓ Branch 1 taken 1343998 times.
4031994 for (ch = 0; ch < nb_channels; ch++) {
666 double bin;
667
668
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2687996 times.
2687996 if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
669 ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(samples[idx_insample * nb_channels + ch]));
670
671 2687996 ebur128->x[ch * 3] = samples[idx_insample * nb_channels + ch]; // set X[i]
672
673
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2687996 times.
2687996 if (!ebur128->ch_weighting[ch])
674 continue;
675
676 /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
677 #define FILTER(Y, X, NUM, DEN) do { \
678 double *dst = ebur128->Y + ch*3; \
679 double *src = ebur128->X + ch*3; \
680 dst[2] = dst[1]; \
681 dst[1] = dst[0]; \
682 dst[0] = src[0]*NUM[0] + src[1]*NUM[1] + src[2]*NUM[2] \
683 - dst[1]*DEN[1] - dst[2]*DEN[2]; \
684 } while (0)
685
686 // TODO: merge both filters in one?
687 2687996 FILTER(y, x, ebur128->pre_b, ebur128->pre_a); // apply pre-filter
688 2687996 ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
689 2687996 ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
690 2687996 FILTER(z, y, ebur128->rlb_b, ebur128->rlb_a); // apply RLB-filter
691
692 2687996 bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
693
694 /* add the new value, and limit the sum to the cache size (400ms or 3s)
695 * by removing the oldest one */
696 2687996 ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
697 2687996 ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
698
699 /* override old cache entry with the new value */
700 2687996 ebur128->i400.cache [ch][bin_id_400 ] = bin;
701 2687996 ebur128->i3000.cache[ch][bin_id_3000] = bin;
702 }
703
704 /* For integrated loudness, gating blocks are 400ms long with 75%
705 * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
706 * (4800 samples at 48kHz). */
707
2/2
✓ Branch 0 taken 279 times.
✓ Branch 1 taken 1343719 times.
1343998 if (++ebur128->sample_count == inlink->sample_rate / 10) {
708 double loudness_400, loudness_3000;
709 279 double power_400 = 1e-12, power_3000 = 1e-12;
710 279 AVFilterLink *outlink = ctx->outputs[0];
711 279 const int64_t pts = insamples->pts +
712 279 av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
713 outlink->time_base);
714
715 279 ebur128->sample_count = 0;
716
717 #define COMPUTE_LOUDNESS(m, time) do { \
718 if (ebur128->i##time.filled) { \
719 /* weighting sum of the last <time> ms */ \
720 for (ch = 0; ch < nb_channels; ch++) \
721 power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
722 power_##time /= I##time##_BINS(inlink->sample_rate); \
723 } \
724 loudness_##time = LOUDNESS(power_##time); \
725 } while (0)
726
727
4/4
✓ Branch 0 taken 276 times.
✓ Branch 1 taken 3 times.
✓ Branch 2 taken 552 times.
✓ Branch 3 taken 276 times.
831 COMPUTE_LOUDNESS(M, 400);
728
4/4
✓ Branch 0 taken 250 times.
✓ Branch 1 taken 29 times.
✓ Branch 2 taken 500 times.
✓ Branch 3 taken 250 times.
779 COMPUTE_LOUDNESS(S, 3000);
729
730 /* Integrated loudness */
731 #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
732
733
2/2
✓ Branch 0 taken 276 times.
✓ Branch 1 taken 3 times.
279 if (loudness_400 >= ABS_THRES) {
734 276 double integrated_sum = 0.0;
735 276 uint64_t nb_integrated = 0;
736 276 int gate_hist_pos = gate_update(&ebur128->i400, power_400,
737 loudness_400, I_GATE_THRES);
738
739 /* compute integrated loudness by summing the histogram values
740 * above the relative threshold */
741
2/2
✓ Branch 0 taken 1216748 times.
✓ Branch 1 taken 276 times.
1217024 for (i = gate_hist_pos; i < HIST_SIZE; i++) {
742 1216748 const unsigned nb_v = ebur128->i400.histogram[i].count;
743 1216748 nb_integrated += nb_v;
744 1216748 integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
745 }
746
1/2
✓ Branch 0 taken 276 times.
✗ Branch 1 not taken.
276 if (nb_integrated) {
747 276 ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
748 /* dual-mono correction */
749
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 276 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
276 if (nb_channels == 1 && ebur128->dual_mono) {
750 ebur128->integrated_loudness -= ebur128->pan_law;
751 }
752 }
753 }
754
755 /* LRA */
756 #define LRA_GATE_THRES -20
757 #define LRA_LOWER_PRC 10
758 #define LRA_HIGHER_PRC 95
759
760 /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
761 * specs is ">" */
762
2/2
✓ Branch 0 taken 250 times.
✓ Branch 1 taken 29 times.
279 if (loudness_3000 >= ABS_THRES) {
763 250 uint64_t nb_powers = 0;
764 250 int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
765 loudness_3000, LRA_GATE_THRES);
766
767
2/2
✓ Branch 0 taken 1363799 times.
✓ Branch 1 taken 250 times.
1364049 for (i = gate_hist_pos; i < HIST_SIZE; i++)
768 1363799 nb_powers += ebur128->i3000.histogram[i].count;
769
1/2
✓ Branch 0 taken 250 times.
✗ Branch 1 not taken.
250 if (nb_powers) {
770 uint64_t n, nb_pow;
771
772 /* get lower loudness to consider */
773 250 n = 0;
774 250 nb_pow = LRA_LOWER_PRC * nb_powers * 0.01 + 0.5;
775
1/2
✓ Branch 0 taken 447747 times.
✗ Branch 1 not taken.
447747 for (i = gate_hist_pos; i < HIST_SIZE; i++) {
776 447747 n += ebur128->i3000.histogram[i].count;
777
2/2
✓ Branch 0 taken 250 times.
✓ Branch 1 taken 447497 times.
447747 if (n >= nb_pow) {
778 250 ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
779 250 break;
780 }
781 }
782
783 /* get higher loudness to consider */
784 250 n = nb_powers;
785 250 nb_pow = LRA_HIGHER_PRC * nb_powers * 0.01 + 0.5;
786
1/2
✓ Branch 0 taken 824419 times.
✗ Branch 1 not taken.
824419 for (i = HIST_SIZE - 1; i >= 0; i--) {
787 824419 n -= FFMIN(n, ebur128->i3000.histogram[i].count);
788
2/2
✓ Branch 0 taken 250 times.
✓ Branch 1 taken 824169 times.
824419 if (n < nb_pow) {
789 250 ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
790 250 break;
791 }
792 }
793
794 // XXX: show low & high on the graph?
795 250 ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
796 }
797 }
798
799 /* dual-mono correction */
800
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
279 if (nb_channels == 1 && ebur128->dual_mono) {
801 loudness_400 -= ebur128->pan_law;
802 loudness_3000 -= ebur128->pan_law;
803 }
804
805 #define LOG_FMT "TARGET:%d LUFS M:%6.1f S:%6.1f I:%6.1f %s LRA:%6.1f LU"
806
807 /* push one video frame */
808
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
279 if (ebur128->do_video) {
809 AVFrame *clone;
810 int x, y;
811 uint8_t *p;
812 double gauge_value;
813 int y_loudness_lu_graph, y_loudness_lu_gauge;
814
815 if (ebur128->gauge_type == GAUGE_TYPE_MOMENTARY) {
816 gauge_value = loudness_400 - ebur128->target;
817 } else {
818 gauge_value = loudness_3000 - ebur128->target;
819 }
820
821 y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 - ebur128->target);
822 y_loudness_lu_gauge = lu_to_y(ebur128, gauge_value);
823
824 av_frame_make_writable(pic);
825 /* draw the graph using the short-term loudness */
826 p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
827 for (y = 0; y < ebur128->graph.h; y++) {
828 const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
829
830 memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
831 memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
832 p += pic->linesize[0];
833 }
834
835 /* draw the gauge using either momentary or short-term loudness */
836 p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
837 for (y = 0; y < ebur128->gauge.h; y++) {
838 const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
839
840 for (x = 0; x < ebur128->gauge.w; x++)
841 memcpy(p + x*3, c, 3);
842 p += pic->linesize[0];
843 }
844
845 /* draw textual info */
846 if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
847 drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
848 LOG_FMT " ", // padding to erase trailing characters
849 ebur128->target, loudness_400, loudness_3000,
850 ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
851 } else {
852 drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
853 LOG_FMT " ", // padding to erase trailing characters
854 ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
855 ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
856 }
857
858 /* set pts and push frame */
859 pic->pts = pts;
860 clone = av_frame_clone(pic);
861 if (!clone)
862 return AVERROR(ENOMEM);
863 ebur128->idx_insample = idx_insample + 1;
864 ff_filter_set_ready(ctx, 100);
865 return ff_filter_frame(outlink, clone);
866 }
867
868
1/2
✓ Branch 0 taken 279 times.
✗ Branch 1 not taken.
279 if (ebur128->metadata) { /* happens only once per filter_frame call */
869 char metabuf[128];
870 #define META_PREFIX "lavfi.r128."
871
872 #define SET_META(name, var) do { \
873 snprintf(metabuf, sizeof(metabuf), "%.3f", var); \
874 av_dict_set(&insamples->metadata, name, metabuf, 0); \
875 } while (0)
876
877 #define SET_META_PEAK(name, ptype) do { \
878 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
879 double max_peak = 0.0; \
880 char key[64]; \
881 for (ch = 0; ch < nb_channels; ch++) { \
882 snprintf(key, sizeof(key), \
883 META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch); \
884 max_peak = fmax(max_peak, ebur128->name##_peaks[ch]); \
885 SET_META(key, ebur128->name##_peaks[ch]); \
886 } \
887 snprintf(key, sizeof(key), \
888 META_PREFIX AV_STRINGIFY(name) "_peak"); \
889 SET_META(key, max_peak); \
890 } \
891 } while (0)
892
893 279 SET_META(META_PREFIX "M", loudness_400);
894 279 SET_META(META_PREFIX "S", loudness_3000);
895 279 SET_META(META_PREFIX "I", ebur128->integrated_loudness);
896 279 SET_META(META_PREFIX "LRA", ebur128->loudness_range);
897 279 SET_META(META_PREFIX "LRA.low", ebur128->lra_low);
898 279 SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
899
900
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
279 SET_META_PEAK(sample, SAMPLES);
901
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
279 SET_META_PEAK(true, TRUE);
902 }
903
904
1/2
✓ Branch 0 taken 279 times.
✗ Branch 1 not taken.
279 if (ebur128->loglevel != AV_LOG_QUIET) {
905
1/2
✓ Branch 0 taken 279 times.
✗ Branch 1 not taken.
279 if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
906 279 av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
907 279 av_ts2timestr(pts, &outlink->time_base),
908 ebur128->target, loudness_400, loudness_3000,
909 ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
910 } else {
911 av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
912 av_ts2timestr(pts, &outlink->time_base),
913 ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
914 ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
915 }
916
917 #define PRINT_PEAKS(str, sp, ptype) do { \
918 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
919 av_log(ctx, ebur128->loglevel, " " str ":"); \
920 for (ch = 0; ch < nb_channels; ch++) \
921 av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
922 av_log(ctx, ebur128->loglevel, " dBFS"); \
923 } \
924 } while (0)
925
926
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
279 PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
927
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
279 PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
928
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
279 PRINT_PEAKS("TPK", ebur128->true_peaks, TRUE);
929 279 av_log(ctx, ebur128->loglevel, "\n");
930 }
931 }
932 }
933
934 280 ebur128->idx_insample = 0;
935 280 ebur128->insamples = NULL;
936
937 280 return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
938 }
939
940 573 static int activate(AVFilterContext *ctx)
941 {
942 573 AVFilterLink *inlink = ctx->inputs[0];
943 573 EBUR128Context *ebur128 = ctx->priv;
944 573 AVFilterLink *voutlink = ctx->outputs[0];
945 573 AVFilterLink *outlink = ctx->outputs[ebur128->do_video];
946 int ret;
947
948
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 573 times.
573 FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
949
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 573 times.
573 if (ebur128->do_video)
950 FF_FILTER_FORWARD_STATUS_BACK(voutlink, inlink);
951
952
1/2
✓ Branch 0 taken 573 times.
✗ Branch 1 not taken.
573 if (!ebur128->insamples) {
953 AVFrame *in;
954
955
1/2
✓ Branch 0 taken 573 times.
✗ Branch 1 not taken.
573 if (ebur128->nb_samples > 0) {
956 573 ret = ff_inlink_consume_samples(inlink, ebur128->nb_samples, ebur128->nb_samples, &in);
957 } else {
958 ret = ff_inlink_consume_frame(inlink, &in);
959 }
960
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 573 times.
573 if (ret < 0)
961 return ret;
962
2/2
✓ Branch 0 taken 280 times.
✓ Branch 1 taken 293 times.
573 if (ret > 0)
963 280 ebur128->insamples = in;
964 }
965
966
2/2
✓ Branch 0 taken 280 times.
✓ Branch 1 taken 293 times.
573 if (ebur128->insamples)
967 280 ret = filter_frame(inlink, ebur128->insamples);
968
969
4/4
✓ Branch 1 taken 1 times.
✓ Branch 2 taken 572 times.
✓ Branch 4 taken 1 times.
✓ Branch 5 taken 1 times.
574 FF_FILTER_FORWARD_STATUS_ALL(inlink, ctx);
970
2/2
✓ Branch 1 taken 293 times.
✓ Branch 2 taken 279 times.
572 FF_FILTER_FORWARD_WANTED(outlink, inlink);
971
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
279 if (ebur128->do_video)
972 FF_FILTER_FORWARD_WANTED(voutlink, inlink);
973
974 279 return ret;
975 }
976
977 1 static int query_formats(AVFilterContext *ctx)
978 {
979 1 EBUR128Context *ebur128 = ctx->priv;
980 AVFilterFormats *formats;
981 AVFilterChannelLayouts *layouts;
982 1 AVFilterLink *inlink = ctx->inputs[0];
983 1 AVFilterLink *outlink = ctx->outputs[0];
984 int ret;
985
986 static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
987 static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
988
989 /* set optional output video format */
990
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ebur128->do_video) {
991 formats = ff_make_format_list(pix_fmts);
992 if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
993 return ret;
994 outlink = ctx->outputs[1];
995 }
996
997 /* set input and output audio formats
998 * Note: ff_set_common_* functions are not used because they affect all the
999 * links, and thus break the video format negotiation */
1000 1 formats = ff_make_format_list(sample_fmts);
1001
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 1 times.
2 if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0 ||
1002 1 (ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
1003 return ret;
1004
1005 1 layouts = ff_all_channel_layouts();
1006
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 1 times.
2 if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0 ||
1007 1 (ret = ff_channel_layouts_ref(layouts, &outlink->incfg.channel_layouts)) < 0)
1008 return ret;
1009
1010 1 formats = ff_all_samplerates();
1011
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 1 times.
2 if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0 ||
1012 1 (ret = ff_formats_ref(formats, &outlink->incfg.samplerates)) < 0)
1013 return ret;
1014
1015 1 return 0;
1016 }
1017
1018 1 static av_cold void uninit(AVFilterContext *ctx)
1019 {
1020 int i;
1021 1 EBUR128Context *ebur128 = ctx->priv;
1022
1023 /* dual-mono correction */
1024
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
1 if (ebur128->nb_channels == 1 && ebur128->dual_mono) {
1025 ebur128->i400.rel_threshold -= ebur128->pan_law;
1026 ebur128->i3000.rel_threshold -= ebur128->pan_law;
1027 ebur128->lra_low -= ebur128->pan_law;
1028 ebur128->lra_high -= ebur128->pan_law;
1029 }
1030
1031 1 av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
1032 " Integrated loudness:\n"
1033 " I: %5.1f LUFS\n"
1034 " Threshold: %5.1f LUFS\n\n"
1035 " Loudness range:\n"
1036 " LRA: %5.1f LU\n"
1037 " Threshold: %5.1f LUFS\n"
1038 " LRA low: %5.1f LUFS\n"
1039 " LRA high: %5.1f LUFS",
1040 ebur128->integrated_loudness, ebur128->i400.rel_threshold,
1041 ebur128->loudness_range, ebur128->i3000.rel_threshold,
1042 ebur128->lra_low, ebur128->lra_high);
1043
1044 #define PRINT_PEAK_SUMMARY(str, sp, ptype) do { \
1045 int ch; \
1046 double maxpeak; \
1047 maxpeak = 0.0; \
1048 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
1049 for (ch = 0; ch < ebur128->nb_channels; ch++) \
1050 maxpeak = FFMAX(maxpeak, sp[ch]); \
1051 av_log(ctx, AV_LOG_INFO, "\n\n " str " peak:\n" \
1052 " Peak: %5.1f dBFS", \
1053 DBFS(maxpeak)); \
1054 } \
1055 } while (0)
1056
1057
1/6
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
1 PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peaks, SAMPLES);
1058
1/6
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
1 PRINT_PEAK_SUMMARY("True", ebur128->true_peaks, TRUE);
1059 1 av_log(ctx, AV_LOG_INFO, "\n");
1060
1061 1 av_freep(&ebur128->y_line_ref);
1062 1 av_freep(&ebur128->x);
1063 1 av_freep(&ebur128->y);
1064 1 av_freep(&ebur128->z);
1065 1 av_freep(&ebur128->ch_weighting);
1066 1 av_freep(&ebur128->true_peaks);
1067 1 av_freep(&ebur128->sample_peaks);
1068 1 av_freep(&ebur128->true_peaks_per_frame);
1069 1 av_freep(&ebur128->i400.sum);
1070 1 av_freep(&ebur128->i3000.sum);
1071 1 av_freep(&ebur128->i400.histogram);
1072 1 av_freep(&ebur128->i3000.histogram);
1073
2/2
✓ Branch 0 taken 2 times.
✓ Branch 1 taken 1 times.
3 for (i = 0; i < ebur128->nb_channels; i++) {
1074
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (ebur128->i400.cache)
1075 2 av_freep(&ebur128->i400.cache[i]);
1076
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (ebur128->i3000.cache)
1077 2 av_freep(&ebur128->i3000.cache[i]);
1078 }
1079 1 av_freep(&ebur128->i400.cache);
1080 1 av_freep(&ebur128->i3000.cache);
1081 1 av_frame_free(&ebur128->outpicref);
1082 #if CONFIG_SWRESAMPLE
1083 1 av_freep(&ebur128->swr_buf);
1084 1 swr_free(&ebur128->swr_ctx);
1085 #endif
1086 1 }
1087
1088 static const AVFilterPad ebur128_inputs[] = {
1089 {
1090 .name = "default",
1091 .type = AVMEDIA_TYPE_AUDIO,
1092 .config_props = config_audio_input,
1093 },
1094 };
1095
1096 const AVFilter ff_af_ebur128 = {
1097 .name = "ebur128",
1098 .description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
1099 .priv_size = sizeof(EBUR128Context),
1100 .init = init,
1101 .uninit = uninit,
1102 .activate = activate,
1103 FILTER_INPUTS(ebur128_inputs),
1104 .outputs = NULL,
1105 FILTER_QUERY_FUNC(query_formats),
1106 .priv_class = &ebur128_class,
1107 .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
1108 };
1109