FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/f_ebur128.c
Date: 2024-11-20 23:03:26
Exec Total Coverage
Lines: 241 437 55.1%
Functions: 9 14 64.3%
Branches: 112 298 37.6%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2012 Clément Bœsch
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 /**
22 * @file
23 * EBU R.128 implementation
24 * @see http://tech.ebu.ch/loudness
25 * @see https://www.youtube.com/watch?v=iuEtQqC-Sqo "EBU R128 Introduction - Florian Camerer"
26 * @todo implement start/stop/reset through filter command injection
27 */
28
29 #include <float.h>
30 #include <math.h>
31
32 #include "libavutil/avassert.h"
33 #include "libavutil/channel_layout.h"
34 #include "libavutil/dict.h"
35 #include "libavutil/ffmath.h"
36 #include "libavutil/mem.h"
37 #include "libavutil/xga_font_data.h"
38 #include "libavutil/opt.h"
39 #include "libavutil/timestamp.h"
40 #include "libswresample/swresample.h"
41 #include "avfilter.h"
42 #include "filters.h"
43 #include "formats.h"
44 #include "video.h"
45
46 #define ABS_THRES -70 ///< silence gate: we discard anything below this absolute (LUFS) threshold
47 #define ABS_UP_THRES 10 ///< upper loud limit to consider (ABS_THRES being the minimum)
48 #define HIST_GRAIN 100 ///< defines histogram precision
49 #define HIST_SIZE ((ABS_UP_THRES - ABS_THRES) * HIST_GRAIN + 1)
50
51 /**
52 * A histogram is an array of HIST_SIZE hist_entry storing all the energies
53 * recorded (with an accuracy of 1/HIST_GRAIN) of the loudnesses from ABS_THRES
54 * (at 0) to ABS_UP_THRES (at HIST_SIZE-1).
55 * This fixed-size system avoids the need of a list of energies growing
56 * infinitely over the time and is thus more scalable.
57 */
58 struct hist_entry {
59 unsigned count; ///< how many times the corresponding value occurred
60 double energy; ///< E = 10^((L + 0.691) / 10)
61 double loudness; ///< L = -0.691 + 10 * log10(E)
62 };
63
64 struct integrator {
65 double **cache; ///< window of filtered samples (N ms)
66 int cache_pos; ///< focus on the last added bin in the cache array
67 int cache_size;
68 double *sum; ///< sum of the last N ms filtered samples (cache content)
69 int filled; ///< 1 if the cache is completely filled, 0 otherwise
70 double rel_threshold; ///< relative threshold
71 double sum_kept_powers; ///< sum of the powers (weighted sums) above absolute threshold
72 int nb_kept_powers; ///< number of sum above absolute threshold
73 struct hist_entry *histogram; ///< histogram of the powers, used to compute LRA and I
74 };
75
76 struct rect { int x, y, w, h; };
77
78 typedef struct EBUR128Context {
79 const AVClass *class; ///< AVClass context for log and options purpose
80
81 /* peak metering */
82 int peak_mode; ///< enabled peak modes
83 double true_peak; ///< global true peak
84 double *true_peaks; ///< true peaks per channel
85 double sample_peak; ///< global sample peak
86 double *sample_peaks; ///< sample peaks per channel
87 double *true_peaks_per_frame; ///< true peaks in a frame per channel
88 #if CONFIG_SWRESAMPLE
89 SwrContext *swr_ctx; ///< over-sampling context for true peak metering
90 double *swr_buf; ///< resampled audio data for true peak metering
91 int swr_linesize;
92 #endif
93
94 /* video */
95 int do_video; ///< 1 if video output enabled, 0 otherwise
96 int w, h; ///< size of the video output
97 struct rect text; ///< rectangle for the LU legend on the left
98 struct rect graph; ///< rectangle for the main graph in the center
99 struct rect gauge; ///< rectangle for the gauge on the right
100 AVFrame *outpicref; ///< output picture reference, updated regularly
101 int meter; ///< select a EBU mode between +9 and +18
102 int scale_range; ///< the range of LU values according to the meter
103 int y_zero_lu; ///< the y value (pixel position) for 0 LU
104 int y_opt_max; ///< the y value (pixel position) for 1 LU
105 int y_opt_min; ///< the y value (pixel position) for -1 LU
106 int *y_line_ref; ///< y reference values for drawing the LU lines in the graph and the gauge
107
108 /* audio */
109 int nb_channels; ///< number of channels in the input
110 double *ch_weighting; ///< channel weighting mapping
111 int sample_count; ///< sample count used for refresh frequency, reset at refresh
112 int nb_samples; ///< number of samples to consume per single input frame
113 int idx_insample; ///< current sample position of processed samples in single input frame
114 AVFrame *insamples; ///< input samples reference, updated regularly
115
116 /* Filter caches.
117 * The mult by 3 in the following is for X[i], X[i-1] and X[i-2] */
118 double *x; ///< 3 input samples cache for each channel
119 double *y; ///< 3 pre-filter samples cache for each channel
120 double *z; ///< 3 RLB-filter samples cache for each channel
121 double pre_b[3]; ///< pre-filter numerator coefficients
122 double pre_a[3]; ///< pre-filter denominator coefficients
123 double rlb_b[3]; ///< rlb-filter numerator coefficients
124 double rlb_a[3]; ///< rlb-filter denominator coefficients
125
126 struct integrator i400; ///< 400ms integrator, used for Momentary loudness (M), and Integrated loudness (I)
127 struct integrator i3000; ///< 3s integrator, used for Short term loudness (S), and Loudness Range (LRA)
128
129 /* I and LRA specific */
130 double integrated_loudness; ///< integrated loudness in LUFS (I)
131 double loudness_range; ///< loudness range in LU (LRA)
132 double lra_low, lra_high; ///< low and high LRA values
133
134 /* misc */
135 int loglevel; ///< log level for frame logging
136 int metadata; ///< whether or not to inject loudness results in frames
137 int dual_mono; ///< whether or not to treat single channel input files as dual-mono
138 double pan_law; ///< pan law value used to calculate dual-mono measurements
139 int target; ///< target level in LUFS used to set relative zero LU in visualization
140 int gauge_type; ///< whether gauge shows momentary or short
141 int scale; ///< display scale type of statistics
142 } EBUR128Context;
143
144 enum {
145 PEAK_MODE_NONE = 0,
146 PEAK_MODE_SAMPLES_PEAKS = 1<<1,
147 PEAK_MODE_TRUE_PEAKS = 1<<2,
148 };
149
150 enum {
151 GAUGE_TYPE_MOMENTARY = 0,
152 GAUGE_TYPE_SHORTTERM = 1,
153 };
154
155 enum {
156 SCALE_TYPE_ABSOLUTE = 0,
157 SCALE_TYPE_RELATIVE = 1,
158 };
159
160 #define OFFSET(x) offsetof(EBUR128Context, x)
161 #define A AV_OPT_FLAG_AUDIO_PARAM
162 #define V AV_OPT_FLAG_VIDEO_PARAM
163 #define F AV_OPT_FLAG_FILTERING_PARAM
164 #define X AV_OPT_FLAG_EXPORT
165 #define R AV_OPT_FLAG_READONLY
166 static const AVOption ebur128_options[] = {
167 { "video", "set video output", OFFSET(do_video), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, V|F },
168 { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x480"}, 0, 0, V|F },
169 { "meter", "set scale meter (+9 to +18)", OFFSET(meter), AV_OPT_TYPE_INT, {.i64 = 9}, 9, 18, V|F },
170 { "framelog", "force frame logging level", OFFSET(loglevel), AV_OPT_TYPE_INT, {.i64 = -1}, INT_MIN, INT_MAX, A|V|F, .unit = "level" },
171 { "quiet", "logging disabled", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_QUIET}, INT_MIN, INT_MAX, A|V|F, .unit = "level" },
172 { "info", "information logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_INFO}, INT_MIN, INT_MAX, A|V|F, .unit = "level" },
173 { "verbose", "verbose logging level", 0, AV_OPT_TYPE_CONST, {.i64 = AV_LOG_VERBOSE}, INT_MIN, INT_MAX, A|V|F, .unit = "level" },
174 { "metadata", "inject metadata in the filtergraph", OFFSET(metadata), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|V|F },
175 { "peak", "set peak mode", OFFSET(peak_mode), AV_OPT_TYPE_FLAGS, {.i64 = PEAK_MODE_NONE}, 0, INT_MAX, A|F, .unit = "mode" },
176 { "none", "disable any peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_NONE}, INT_MIN, INT_MAX, A|F, .unit = "mode" },
177 { "sample", "enable peak-sample mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_SAMPLES_PEAKS}, INT_MIN, INT_MAX, A|F, .unit = "mode" },
178 { "true", "enable true-peak mode", 0, AV_OPT_TYPE_CONST, {.i64 = PEAK_MODE_TRUE_PEAKS}, INT_MIN, INT_MAX, A|F, .unit = "mode" },
179 { "dualmono", "treat mono input files as dual-mono", OFFSET(dual_mono), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, A|F },
180 { "panlaw", "set a specific pan law for dual-mono files", OFFSET(pan_law), AV_OPT_TYPE_DOUBLE, {.dbl = -3.01029995663978}, -10.0, 0.0, A|F },
181 { "target", "set a specific target level in LUFS (-23 to 0)", OFFSET(target), AV_OPT_TYPE_INT, {.i64 = -23}, -23, 0, V|F },
182 { "gauge", "set gauge display type", OFFSET(gauge_type), AV_OPT_TYPE_INT, {.i64 = 0 }, GAUGE_TYPE_MOMENTARY, GAUGE_TYPE_SHORTTERM, V|F, .unit = "gaugetype" },
183 { "momentary", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" },
184 { "m", "display momentary value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_MOMENTARY}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" },
185 { "shortterm", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" },
186 { "s", "display short-term value", 0, AV_OPT_TYPE_CONST, {.i64 = GAUGE_TYPE_SHORTTERM}, INT_MIN, INT_MAX, V|F, .unit = "gaugetype" },
187 { "scale", "sets display method for the stats", OFFSET(scale), AV_OPT_TYPE_INT, {.i64 = 0}, SCALE_TYPE_ABSOLUTE, SCALE_TYPE_RELATIVE, V|F, .unit = "scaletype" },
188 { "absolute", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" },
189 { "LUFS", "display absolute values (LUFS)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_ABSOLUTE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" },
190 { "relative", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" },
191 { "LU", "display values relative to target (LU)", 0, AV_OPT_TYPE_CONST, {.i64 = SCALE_TYPE_RELATIVE}, INT_MIN, INT_MAX, V|F, .unit = "scaletype" },
192 { "integrated", "integrated loudness (LUFS)", OFFSET(integrated_loudness), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
193 { "range", "loudness range (LU)", OFFSET(loudness_range), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
194 { "lra_low", "LRA low (LUFS)", OFFSET(lra_low), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
195 { "lra_high", "LRA high (LUFS)", OFFSET(lra_high), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
196 { "sample_peak", "sample peak (dBFS)", OFFSET(sample_peak), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
197 { "true_peak", "true peak (dBFS)", OFFSET(true_peak), AV_OPT_TYPE_DOUBLE, {.dbl = 0}, -DBL_MAX, DBL_MAX, A|F|X|R },
198 { NULL },
199 };
200
201 AVFILTER_DEFINE_CLASS(ebur128);
202
203 static const uint8_t graph_colors[] = {
204 0xdd, 0x66, 0x66, // value above 1LU non reached below -1LU (impossible)
205 0x66, 0x66, 0xdd, // value below 1LU non reached below -1LU
206 0x96, 0x33, 0x33, // value above 1LU reached below -1LU (impossible)
207 0x33, 0x33, 0x96, // value below 1LU reached below -1LU
208 0xdd, 0x96, 0x96, // value above 1LU line non reached below -1LU (impossible)
209 0x96, 0x96, 0xdd, // value below 1LU line non reached below -1LU
210 0xdd, 0x33, 0x33, // value above 1LU line reached below -1LU (impossible)
211 0x33, 0x33, 0xdd, // value below 1LU line reached below -1LU
212 0xdd, 0x66, 0x66, // value above 1LU non reached above -1LU
213 0x66, 0xdd, 0x66, // value below 1LU non reached above -1LU
214 0x96, 0x33, 0x33, // value above 1LU reached above -1LU
215 0x33, 0x96, 0x33, // value below 1LU reached above -1LU
216 0xdd, 0x96, 0x96, // value above 1LU line non reached above -1LU
217 0x96, 0xdd, 0x96, // value below 1LU line non reached above -1LU
218 0xdd, 0x33, 0x33, // value above 1LU line reached above -1LU
219 0x33, 0xdd, 0x33, // value below 1LU line reached above -1LU
220 };
221
222 static const uint8_t *get_graph_color(const EBUR128Context *ebur128, int v, int y)
223 {
224 const int above_opt_max = y > ebur128->y_opt_max;
225 const int below_opt_min = y < ebur128->y_opt_min;
226 const int reached = y >= v;
227 const int line = ebur128->y_line_ref[y] || y == ebur128->y_zero_lu;
228 const int colorid = 8*below_opt_min+ 4*line + 2*reached + above_opt_max;
229 return graph_colors + 3*colorid;
230 }
231
232 static inline int lu_to_y(const EBUR128Context *ebur128, double v)
233 {
234 v += 2 * ebur128->meter; // make it in range [0;...]
235 v = av_clipf(v, 0, ebur128->scale_range); // make sure it's in the graph scale
236 v = ebur128->scale_range - v; // invert value (y=0 is on top)
237 return v * ebur128->graph.h / ebur128->scale_range; // rescale from scale range to px height
238 }
239
240 #define FONT8 0
241 #define FONT16 1
242
243 static const uint8_t font_colors[] = {
244 0xdd, 0xdd, 0x00,
245 0x00, 0x96, 0x96,
246 };
247
248 static void drawtext(AVFrame *pic, int x, int y, int ftid, const uint8_t *color, const char *fmt, ...)
249 {
250 int i;
251 char buf[128] = {0};
252 const uint8_t *font;
253 int font_height;
254 va_list vl;
255
256 if (ftid == FONT16) font = avpriv_vga16_font, font_height = 16;
257 else if (ftid == FONT8) font = avpriv_cga_font, font_height = 8;
258 else return;
259
260 va_start(vl, fmt);
261 vsnprintf(buf, sizeof(buf), fmt, vl);
262 va_end(vl);
263
264 for (i = 0; buf[i]; i++) {
265 int char_y, mask;
266 uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8)*3;
267
268 for (char_y = 0; char_y < font_height; char_y++) {
269 for (mask = 0x80; mask; mask >>= 1) {
270 if (font[buf[i] * font_height + char_y] & mask)
271 memcpy(p, color, 3);
272 else
273 memcpy(p, "\x00\x00\x00", 3);
274 p += 3;
275 }
276 p += pic->linesize[0] - 8*3;
277 }
278 }
279 }
280
281 static void drawline(AVFrame *pic, int x, int y, int len, int step)
282 {
283 int i;
284 uint8_t *p = pic->data[0] + y*pic->linesize[0] + x*3;
285
286 for (i = 0; i < len; i++) {
287 memcpy(p, "\x00\xff\x00", 3);
288 p += step;
289 }
290 }
291
292 static int config_video_output(AVFilterLink *outlink)
293 {
294 int i, x, y;
295 uint8_t *p;
296 FilterLink *l = ff_filter_link(outlink);
297 AVFilterContext *ctx = outlink->src;
298 EBUR128Context *ebur128 = ctx->priv;
299 AVFrame *outpicref;
300
301 /* check if there is enough space to represent everything decently */
302 if (ebur128->w < 640 || ebur128->h < 480) {
303 av_log(ctx, AV_LOG_ERROR, "Video size %dx%d is too small, "
304 "minimum size is 640x480\n", ebur128->w, ebur128->h);
305 return AVERROR(EINVAL);
306 }
307 outlink->w = ebur128->w;
308 outlink->h = ebur128->h;
309 outlink->sample_aspect_ratio = (AVRational){1,1};
310 l->frame_rate = av_make_q(10, 1);
311 outlink->time_base = av_inv_q(l->frame_rate);
312
313 #define PAD 8
314
315 /* configure text area position and size */
316 ebur128->text.x = PAD;
317 ebur128->text.y = 40;
318 ebur128->text.w = 3 * 8; // 3 characters
319 ebur128->text.h = ebur128->h - PAD - ebur128->text.y;
320
321 /* configure gauge position and size */
322 ebur128->gauge.w = 20;
323 ebur128->gauge.h = ebur128->text.h;
324 ebur128->gauge.x = ebur128->w - PAD - ebur128->gauge.w;
325 ebur128->gauge.y = ebur128->text.y;
326
327 /* configure graph position and size */
328 ebur128->graph.x = ebur128->text.x + ebur128->text.w + PAD;
329 ebur128->graph.y = ebur128->gauge.y;
330 ebur128->graph.w = ebur128->gauge.x - ebur128->graph.x - PAD;
331 ebur128->graph.h = ebur128->gauge.h;
332
333 /* graph and gauge share the LU-to-pixel code */
334 av_assert0(ebur128->graph.h == ebur128->gauge.h);
335
336 /* prepare the initial picref buffer */
337 av_frame_free(&ebur128->outpicref);
338 ebur128->outpicref = outpicref =
339 ff_get_video_buffer(outlink, outlink->w, outlink->h);
340 if (!outpicref)
341 return AVERROR(ENOMEM);
342 outpicref->sample_aspect_ratio = (AVRational){1,1};
343
344 /* init y references values (to draw LU lines) */
345 ebur128->y_line_ref = av_calloc(ebur128->graph.h + 1, sizeof(*ebur128->y_line_ref));
346 if (!ebur128->y_line_ref)
347 return AVERROR(ENOMEM);
348
349 /* black background */
350 for (int y = 0; y < ebur128->h; y++)
351 memset(outpicref->data[0] + y * outpicref->linesize[0], 0, ebur128->w * 3);
352
353 /* draw LU legends */
354 drawtext(outpicref, PAD, PAD+16, FONT8, font_colors+3, " LU");
355 for (i = ebur128->meter; i >= -ebur128->meter * 2; i--) {
356 y = lu_to_y(ebur128, i);
357 x = PAD + (i < 10 && i > -10) * 8;
358 ebur128->y_line_ref[y] = i;
359 y -= 4; // -4 to center vertically
360 drawtext(outpicref, x, y + ebur128->graph.y, FONT8, font_colors+3,
361 "%c%d", i < 0 ? '-' : i > 0 ? '+' : ' ', FFABS(i));
362 }
363
364 /* draw graph */
365 ebur128->y_zero_lu = lu_to_y(ebur128, 0);
366 ebur128->y_opt_max = lu_to_y(ebur128, 1);
367 ebur128->y_opt_min = lu_to_y(ebur128, -1);
368 p = outpicref->data[0] + ebur128->graph.y * outpicref->linesize[0]
369 + ebur128->graph.x * 3;
370 for (y = 0; y < ebur128->graph.h; y++) {
371 const uint8_t *c = get_graph_color(ebur128, INT_MAX, y);
372
373 for (x = 0; x < ebur128->graph.w; x++)
374 memcpy(p + x*3, c, 3);
375 p += outpicref->linesize[0];
376 }
377
378 /* draw fancy rectangles around the graph and the gauge */
379 #define DRAW_RECT(r) do { \
380 drawline(outpicref, r.x, r.y - 1, r.w, 3); \
381 drawline(outpicref, r.x, r.y + r.h, r.w, 3); \
382 drawline(outpicref, r.x - 1, r.y, r.h, outpicref->linesize[0]); \
383 drawline(outpicref, r.x + r.w, r.y, r.h, outpicref->linesize[0]); \
384 } while (0)
385 DRAW_RECT(ebur128->graph);
386 DRAW_RECT(ebur128->gauge);
387
388 return 0;
389 }
390
391 1 static int config_audio_input(AVFilterLink *inlink)
392 {
393 1 AVFilterContext *ctx = inlink->dst;
394 1 EBUR128Context *ebur128 = ctx->priv;
395
396 /* Unofficial reversed parametrization of PRE
397 * and RLB from 48kHz */
398
399 1 double f0 = 1681.974450955533;
400 1 double G = 3.999843853973347;
401 1 double Q = 0.7071752369554196;
402
403 1 double K = tan(M_PI * f0 / (double)inlink->sample_rate);
404 1 double Vh = pow(10.0, G / 20.0);
405 1 double Vb = pow(Vh, 0.4996667741545416);
406
407 1 double a0 = 1.0 + K / Q + K * K;
408
409 1 ebur128->pre_b[0] = (Vh + Vb * K / Q + K * K) / a0;
410 1 ebur128->pre_b[1] = 2.0 * (K * K - Vh) / a0;
411 1 ebur128->pre_b[2] = (Vh - Vb * K / Q + K * K) / a0;
412 1 ebur128->pre_a[1] = 2.0 * (K * K - 1.0) / a0;
413 1 ebur128->pre_a[2] = (1.0 - K / Q + K * K) / a0;
414
415 1 f0 = 38.13547087602444;
416 1 Q = 0.5003270373238773;
417 1 K = tan(M_PI * f0 / (double)inlink->sample_rate);
418
419 1 ebur128->rlb_b[0] = 1.0;
420 1 ebur128->rlb_b[1] = -2.0;
421 1 ebur128->rlb_b[2] = 1.0;
422 1 ebur128->rlb_a[1] = 2.0 * (K * K - 1.0) / (1.0 + K / Q + K * K);
423 1 ebur128->rlb_a[2] = (1.0 - K / Q + K * K) / (1.0 + K / Q + K * K);
424
425 /* Force 100ms framing in case of metadata injection: the frames must have
426 * a granularity of the window overlap to be accurately exploited.
427 * As for the true peaks mode, it just simplifies the resampling buffer
428 * allocation and the lookup in it (since sample buffers differ in size, it
429 * can be more complex to integrate in the one-sample loop of
430 * filter_frame()). */
431
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
1 if (ebur128->metadata || (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS))
432
1/2
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
1 ebur128->nb_samples = FFMAX(inlink->sample_rate / 10, 1);
433 1 return 0;
434 }
435
436 1 static int config_audio_output(AVFilterLink *outlink)
437 {
438 int i;
439 1 AVFilterContext *ctx = outlink->src;
440 1 EBUR128Context *ebur128 = ctx->priv;
441 1 const int nb_channels = outlink->ch_layout.nb_channels;
442
443 #define BACK_MASK (AV_CH_BACK_LEFT |AV_CH_BACK_CENTER |AV_CH_BACK_RIGHT| \
444 AV_CH_TOP_BACK_LEFT|AV_CH_TOP_BACK_CENTER|AV_CH_TOP_BACK_RIGHT| \
445 AV_CH_SIDE_LEFT |AV_CH_SIDE_RIGHT| \
446 AV_CH_SURROUND_DIRECT_LEFT |AV_CH_SURROUND_DIRECT_RIGHT)
447
448 1 ebur128->nb_channels = nb_channels;
449 1 ebur128->x = av_calloc(nb_channels, 3 * sizeof(*ebur128->x));
450 1 ebur128->y = av_calloc(nb_channels, 3 * sizeof(*ebur128->y));
451 1 ebur128->z = av_calloc(nb_channels, 3 * sizeof(*ebur128->z));
452 1 ebur128->ch_weighting = av_calloc(nb_channels, sizeof(*ebur128->ch_weighting));
453
4/8
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
✓ Branch 4 taken 1 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 1 times.
1 if (!ebur128->ch_weighting || !ebur128->x || !ebur128->y || !ebur128->z)
454 return AVERROR(ENOMEM);
455
456 #define I400_BINS(x) ((x) * 4 / 10)
457 #define I3000_BINS(x) ((x) * 3)
458
459 1 ebur128->i400.sum = av_calloc(nb_channels, sizeof(*ebur128->i400.sum));
460 1 ebur128->i3000.sum = av_calloc(nb_channels, sizeof(*ebur128->i3000.sum));
461 1 ebur128->i400.cache = av_calloc(nb_channels, sizeof(*ebur128->i400.cache));
462 1 ebur128->i3000.cache = av_calloc(nb_channels, sizeof(*ebur128->i3000.cache));
463
2/4
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
1 if (!ebur128->i400.sum || !ebur128->i3000.sum ||
464
2/4
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 1 times.
1 !ebur128->i400.cache || !ebur128->i3000.cache)
465 return AVERROR(ENOMEM);
466
467
2/2
✓ Branch 0 taken 2 times.
✓ Branch 1 taken 1 times.
3 for (i = 0; i < nb_channels; i++) {
468 /* channel weighting */
469 2 const enum AVChannel chl = av_channel_layout_channel_from_index(&outlink->ch_layout, i);
470
2/4
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 2 times.
2 if (chl == AV_CHAN_LOW_FREQUENCY || chl == AV_CHAN_LOW_FREQUENCY_2) {
471 ebur128->ch_weighting[i] = 0;
472
2/4
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 2 times.
2 } else if (chl < 64 && (1ULL << chl) & BACK_MASK) {
473 ebur128->ch_weighting[i] = 1.41;
474 } else {
475 2 ebur128->ch_weighting[i] = 1.0;
476 }
477
478
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
2 if (!ebur128->ch_weighting[i])
479 continue;
480
481 /* bins buffer for the two integration window (400ms and 3s) */
482 2 ebur128->i400.cache_size = I400_BINS(outlink->sample_rate);
483 2 ebur128->i3000.cache_size = I3000_BINS(outlink->sample_rate);
484 2 ebur128->i400.cache[i] = av_calloc(ebur128->i400.cache_size, sizeof(*ebur128->i400.cache[0]));
485 2 ebur128->i3000.cache[i] = av_calloc(ebur128->i3000.cache_size, sizeof(*ebur128->i3000.cache[0]));
486
2/4
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 2 times.
2 if (!ebur128->i400.cache[i] || !ebur128->i3000.cache[i])
487 return AVERROR(ENOMEM);
488 }
489
490 #if CONFIG_SWRESAMPLE
491
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS) {
492 int ret;
493
494 ebur128->swr_buf = av_malloc_array(nb_channels, 19200 * sizeof(double));
495 ebur128->true_peaks = av_calloc(nb_channels, sizeof(*ebur128->true_peaks));
496 ebur128->true_peaks_per_frame = av_calloc(nb_channels, sizeof(*ebur128->true_peaks_per_frame));
497 ebur128->swr_ctx = swr_alloc();
498 if (!ebur128->swr_buf || !ebur128->true_peaks ||
499 !ebur128->true_peaks_per_frame || !ebur128->swr_ctx)
500 return AVERROR(ENOMEM);
501
502 av_opt_set_chlayout(ebur128->swr_ctx, "in_chlayout", &outlink->ch_layout, 0);
503 av_opt_set_int(ebur128->swr_ctx, "in_sample_rate", outlink->sample_rate, 0);
504 av_opt_set_sample_fmt(ebur128->swr_ctx, "in_sample_fmt", outlink->format, 0);
505
506 av_opt_set_chlayout(ebur128->swr_ctx, "out_chlayout", &outlink->ch_layout, 0);
507 av_opt_set_int(ebur128->swr_ctx, "out_sample_rate", 192000, 0);
508 av_opt_set_sample_fmt(ebur128->swr_ctx, "out_sample_fmt", outlink->format, 0);
509
510 ret = swr_init(ebur128->swr_ctx);
511 if (ret < 0)
512 return ret;
513 }
514 #endif
515
516
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS) {
517 ebur128->sample_peaks = av_calloc(nb_channels, sizeof(*ebur128->sample_peaks));
518 if (!ebur128->sample_peaks)
519 return AVERROR(ENOMEM);
520 }
521
522 1 return 0;
523 }
524
525 #define ENERGY(loudness) (ff_exp10(((loudness) + 0.691) / 10.))
526 #define LOUDNESS(energy) (-0.691 + 10 * log10(energy))
527 #define DBFS(energy) (20 * log10(energy))
528
529 2 static struct hist_entry *get_histogram(void)
530 {
531 int i;
532 2 struct hist_entry *h = av_calloc(HIST_SIZE, sizeof(*h));
533
534
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
2 if (!h)
535 return NULL;
536
2/2
✓ Branch 0 taken 16002 times.
✓ Branch 1 taken 2 times.
16004 for (i = 0; i < HIST_SIZE; i++) {
537 16002 h[i].loudness = i / (double)HIST_GRAIN + ABS_THRES;
538 16002 h[i].energy = ENERGY(h[i].loudness);
539 }
540 2 return h;
541 }
542
543 1 static av_cold int init(AVFilterContext *ctx)
544 {
545 1 EBUR128Context *ebur128 = ctx->priv;
546 AVFilterPad pad;
547 int ret;
548
549
1/2
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
1 if (ebur128->loglevel != AV_LOG_INFO &&
550
1/2
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
1 ebur128->loglevel != AV_LOG_QUIET &&
551
1/2
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
1 ebur128->loglevel != AV_LOG_VERBOSE) {
552
2/4
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 1 times.
✗ Branch 3 not taken.
1 if (ebur128->do_video || ebur128->metadata)
553 1 ebur128->loglevel = AV_LOG_VERBOSE;
554 else
555 ebur128->loglevel = AV_LOG_INFO;
556 }
557
558 if (!CONFIG_SWRESAMPLE && (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS)) {
559 av_log(ctx, AV_LOG_ERROR,
560 "True-peak mode requires libswresample to be performed\n");
561 return AVERROR(EINVAL);
562 }
563
564 // if meter is +9 scale, scale range is from -18 LU to +9 LU (or 3*9)
565 // if meter is +18 scale, scale range is from -36 LU to +18 LU (or 3*18)
566 1 ebur128->scale_range = 3 * ebur128->meter;
567
568 1 ebur128->i400.histogram = get_histogram();
569 1 ebur128->i3000.histogram = get_histogram();
570
2/4
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 1 times.
1 if (!ebur128->i400.histogram || !ebur128->i3000.histogram)
571 return AVERROR(ENOMEM);
572
573 1 ebur128->integrated_loudness = ABS_THRES;
574 1 ebur128->loudness_range = 0;
575
576 /* insert output pads */
577
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ebur128->do_video) {
578 pad = (AVFilterPad){
579 .name = "out0",
580 .type = AVMEDIA_TYPE_VIDEO,
581 .config_props = config_video_output,
582 };
583 ret = ff_append_outpad(ctx, &pad);
584 if (ret < 0)
585 return ret;
586 }
587 1 pad = (AVFilterPad){
588
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 .name = ebur128->do_video ? "out1" : "out0",
589 .type = AVMEDIA_TYPE_AUDIO,
590 .config_props = config_audio_output,
591 };
592 1 ret = ff_append_outpad(ctx, &pad);
593
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ret < 0)
594 return ret;
595
596 /* summary */
597 1 av_log(ctx, AV_LOG_VERBOSE, "EBU +%d scale\n", ebur128->meter);
598
599 1 return 0;
600 }
601
602 #define HIST_POS(power) (int)(((power) - ABS_THRES) * HIST_GRAIN)
603
604 /* loudness and power should be set such as loudness = -0.691 +
605 * 10*log10(power), we just avoid doing that calculus two times */
606 526 static int gate_update(struct integrator *integ, double power,
607 double loudness, int gate_thres)
608 {
609 int ipower;
610 double relative_threshold;
611 int gate_hist_pos;
612
613 /* update powers histograms by incrementing current power count */
614 526 ipower = av_clip(HIST_POS(loudness), 0, HIST_SIZE - 1);
615 526 integ->histogram[ipower].count++;
616
617 /* compute relative threshold and get its position in the histogram */
618 526 integ->sum_kept_powers += power;
619 526 integ->nb_kept_powers++;
620 526 relative_threshold = integ->sum_kept_powers / integ->nb_kept_powers;
621
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 526 times.
526 if (!relative_threshold)
622 relative_threshold = 1e-12;
623 526 integ->rel_threshold = LOUDNESS(relative_threshold) + gate_thres;
624 526 gate_hist_pos = av_clip(HIST_POS(integ->rel_threshold), 0, HIST_SIZE - 1);
625
626 526 return gate_hist_pos;
627 }
628
629 280 static int filter_frame(AVFilterLink *inlink, AVFrame *insamples)
630 {
631 int i, ch, idx_insample, ret;
632 280 AVFilterContext *ctx = inlink->dst;
633 280 EBUR128Context *ebur128 = ctx->priv;
634 280 const int nb_channels = ebur128->nb_channels;
635 280 const int nb_samples = insamples->nb_samples;
636 280 const double *samples = (double *)insamples->data[0];
637 AVFrame *pic;
638
639 #if CONFIG_SWRESAMPLE
640
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 280 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
280 if (ebur128->peak_mode & PEAK_MODE_TRUE_PEAKS && ebur128->idx_insample == 0) {
641 const double *swr_samples = ebur128->swr_buf;
642 int ret = swr_convert(ebur128->swr_ctx, (uint8_t**)&ebur128->swr_buf, 19200,
643 (const uint8_t **)insamples->data, nb_samples);
644 if (ret < 0)
645 return ret;
646 for (ch = 0; ch < nb_channels; ch++)
647 ebur128->true_peaks_per_frame[ch] = 0.0;
648 for (idx_insample = 0; idx_insample < ret; idx_insample++) {
649 for (ch = 0; ch < nb_channels; ch++) {
650 ebur128->true_peaks[ch] = FFMAX(ebur128->true_peaks[ch], fabs(*swr_samples));
651 ebur128->true_peaks_per_frame[ch] = FFMAX(ebur128->true_peaks_per_frame[ch],
652 fabs(*swr_samples));
653 swr_samples++;
654 }
655 }
656 }
657 #endif
658
659
2/2
✓ Branch 0 taken 1343998 times.
✓ Branch 1 taken 280 times.
1344278 for (idx_insample = ebur128->idx_insample; idx_insample < nb_samples; idx_insample++) {
660 1343998 const int bin_id_400 = ebur128->i400.cache_pos;
661 1343998 const int bin_id_3000 = ebur128->i3000.cache_pos;
662
663 #define MOVE_TO_NEXT_CACHED_ENTRY(time) do { \
664 ebur128->i##time.cache_pos++; \
665 if (ebur128->i##time.cache_pos == \
666 ebur128->i##time.cache_size) { \
667 ebur128->i##time.filled = 1; \
668 ebur128->i##time.cache_pos = 0; \
669 } \
670 } while (0)
671
672
2/2
✓ Branch 0 taken 69 times.
✓ Branch 1 taken 1343929 times.
1343998 MOVE_TO_NEXT_CACHED_ENTRY(400);
673
2/2
✓ Branch 0 taken 9 times.
✓ Branch 1 taken 1343989 times.
1343998 MOVE_TO_NEXT_CACHED_ENTRY(3000);
674
675
2/2
✓ Branch 0 taken 2687996 times.
✓ Branch 1 taken 1343998 times.
4031994 for (ch = 0; ch < nb_channels; ch++) {
676 double bin;
677
678
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2687996 times.
2687996 if (ebur128->peak_mode & PEAK_MODE_SAMPLES_PEAKS)
679 ebur128->sample_peaks[ch] = FFMAX(ebur128->sample_peaks[ch], fabs(samples[idx_insample * nb_channels + ch]));
680
681 2687996 ebur128->x[ch * 3] = samples[idx_insample * nb_channels + ch]; // set X[i]
682
683
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2687996 times.
2687996 if (!ebur128->ch_weighting[ch])
684 continue;
685
686 /* Y[i] = X[i]*b0 + X[i-1]*b1 + X[i-2]*b2 - Y[i-1]*a1 - Y[i-2]*a2 */
687 #define FILTER(Y, X, NUM, DEN) do { \
688 double *dst = ebur128->Y + ch*3; \
689 double *src = ebur128->X + ch*3; \
690 dst[2] = dst[1]; \
691 dst[1] = dst[0]; \
692 dst[0] = src[0]*NUM[0] + src[1]*NUM[1] + src[2]*NUM[2] \
693 - dst[1]*DEN[1] - dst[2]*DEN[2]; \
694 } while (0)
695
696 // TODO: merge both filters in one?
697 2687996 FILTER(y, x, ebur128->pre_b, ebur128->pre_a); // apply pre-filter
698 2687996 ebur128->x[ch * 3 + 2] = ebur128->x[ch * 3 + 1];
699 2687996 ebur128->x[ch * 3 + 1] = ebur128->x[ch * 3 ];
700 2687996 FILTER(z, y, ebur128->rlb_b, ebur128->rlb_a); // apply RLB-filter
701
702 2687996 bin = ebur128->z[ch * 3] * ebur128->z[ch * 3];
703
704 /* add the new value, and limit the sum to the cache size (400ms or 3s)
705 * by removing the oldest one */
706 2687996 ebur128->i400.sum [ch] = ebur128->i400.sum [ch] + bin - ebur128->i400.cache [ch][bin_id_400];
707 2687996 ebur128->i3000.sum[ch] = ebur128->i3000.sum[ch] + bin - ebur128->i3000.cache[ch][bin_id_3000];
708
709 /* override old cache entry with the new value */
710 2687996 ebur128->i400.cache [ch][bin_id_400 ] = bin;
711 2687996 ebur128->i3000.cache[ch][bin_id_3000] = bin;
712 }
713
714 #define FIND_PEAK(global, sp, ptype) do { \
715 int ch; \
716 double maxpeak; \
717 maxpeak = 0.0; \
718 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
719 for (ch = 0; ch < ebur128->nb_channels; ch++) \
720 maxpeak = FFMAX(maxpeak, sp[ch]); \
721 global = DBFS(maxpeak); \
722 } \
723 } while (0)
724
725
1/6
✗ Branch 0 not taken.
✓ Branch 1 taken 1343998 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
1343998 FIND_PEAK(ebur128->sample_peak, ebur128->sample_peaks, SAMPLES);
726
1/6
✗ Branch 0 not taken.
✓ Branch 1 taken 1343998 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
1343998 FIND_PEAK(ebur128->true_peak, ebur128->true_peaks, TRUE);
727
728 /* For integrated loudness, gating blocks are 400ms long with 75%
729 * overlap (see BS.1770-2 p5), so a re-computation is needed each 100ms
730 * (4800 samples at 48kHz). */
731
2/2
✓ Branch 0 taken 279 times.
✓ Branch 1 taken 1343719 times.
1343998 if (++ebur128->sample_count == inlink->sample_rate / 10) {
732 double loudness_400, loudness_3000;
733 279 double power_400 = 1e-12, power_3000 = 1e-12;
734 279 AVFilterLink *outlink = ctx->outputs[0];
735 279 const int64_t pts = insamples->pts +
736 279 av_rescale_q(idx_insample, (AVRational){ 1, inlink->sample_rate },
737 279 ctx->outputs[ebur128->do_video]->time_base);
738
739 279 ebur128->sample_count = 0;
740
741 #define COMPUTE_LOUDNESS(m, time) do { \
742 if (ebur128->i##time.filled) { \
743 /* weighting sum of the last <time> ms */ \
744 for (ch = 0; ch < nb_channels; ch++) \
745 power_##time += ebur128->ch_weighting[ch] * ebur128->i##time.sum[ch]; \
746 power_##time /= I##time##_BINS(inlink->sample_rate); \
747 } \
748 loudness_##time = LOUDNESS(power_##time); \
749 } while (0)
750
751
4/4
✓ Branch 0 taken 276 times.
✓ Branch 1 taken 3 times.
✓ Branch 2 taken 552 times.
✓ Branch 3 taken 276 times.
831 COMPUTE_LOUDNESS(M, 400);
752
4/4
✓ Branch 0 taken 250 times.
✓ Branch 1 taken 29 times.
✓ Branch 2 taken 500 times.
✓ Branch 3 taken 250 times.
779 COMPUTE_LOUDNESS(S, 3000);
753
754 /* Integrated loudness */
755 #define I_GATE_THRES -10 // initially defined to -8 LU in the first EBU standard
756
757
2/2
✓ Branch 0 taken 276 times.
✓ Branch 1 taken 3 times.
279 if (loudness_400 >= ABS_THRES) {
758 276 double integrated_sum = 0.0;
759 276 uint64_t nb_integrated = 0;
760 276 int gate_hist_pos = gate_update(&ebur128->i400, power_400,
761 loudness_400, I_GATE_THRES);
762
763 /* compute integrated loudness by summing the histogram values
764 * above the relative threshold */
765
2/2
✓ Branch 0 taken 1216748 times.
✓ Branch 1 taken 276 times.
1217024 for (i = gate_hist_pos; i < HIST_SIZE; i++) {
766 1216748 const unsigned nb_v = ebur128->i400.histogram[i].count;
767 1216748 nb_integrated += nb_v;
768 1216748 integrated_sum += nb_v * ebur128->i400.histogram[i].energy;
769 }
770
1/2
✓ Branch 0 taken 276 times.
✗ Branch 1 not taken.
276 if (nb_integrated) {
771 276 ebur128->integrated_loudness = LOUDNESS(integrated_sum / nb_integrated);
772 /* dual-mono correction */
773
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 276 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
276 if (nb_channels == 1 && ebur128->dual_mono) {
774 ebur128->integrated_loudness -= ebur128->pan_law;
775 }
776 }
777 }
778
779 /* LRA */
780 #define LRA_GATE_THRES -20
781 #define LRA_LOWER_PRC 10
782 #define LRA_HIGHER_PRC 95
783
784 /* XXX: example code in EBU 3342 is ">=" but formula in BS.1770
785 * specs is ">" */
786
2/2
✓ Branch 0 taken 250 times.
✓ Branch 1 taken 29 times.
279 if (loudness_3000 >= ABS_THRES) {
787 250 uint64_t nb_powers = 0;
788 250 int gate_hist_pos = gate_update(&ebur128->i3000, power_3000,
789 loudness_3000, LRA_GATE_THRES);
790
791
2/2
✓ Branch 0 taken 1363799 times.
✓ Branch 1 taken 250 times.
1364049 for (i = gate_hist_pos; i < HIST_SIZE; i++)
792 1363799 nb_powers += ebur128->i3000.histogram[i].count;
793
1/2
✓ Branch 0 taken 250 times.
✗ Branch 1 not taken.
250 if (nb_powers) {
794 uint64_t n, nb_pow;
795
796 /* get lower loudness to consider */
797 250 n = 0;
798 250 nb_pow = LRA_LOWER_PRC * nb_powers * 0.01 + 0.5;
799
1/2
✓ Branch 0 taken 447747 times.
✗ Branch 1 not taken.
447747 for (i = gate_hist_pos; i < HIST_SIZE; i++) {
800 447747 n += ebur128->i3000.histogram[i].count;
801
2/2
✓ Branch 0 taken 250 times.
✓ Branch 1 taken 447497 times.
447747 if (n >= nb_pow) {
802 250 ebur128->lra_low = ebur128->i3000.histogram[i].loudness;
803 250 break;
804 }
805 }
806
807 /* get higher loudness to consider */
808 250 n = nb_powers;
809 250 nb_pow = LRA_HIGHER_PRC * nb_powers * 0.01 + 0.5;
810
1/2
✓ Branch 0 taken 824419 times.
✗ Branch 1 not taken.
824419 for (i = HIST_SIZE - 1; i >= 0; i--) {
811 824419 n -= FFMIN(n, ebur128->i3000.histogram[i].count);
812
2/2
✓ Branch 0 taken 250 times.
✓ Branch 1 taken 824169 times.
824419 if (n < nb_pow) {
813 250 ebur128->lra_high = ebur128->i3000.histogram[i].loudness;
814 250 break;
815 }
816 }
817
818 // XXX: show low & high on the graph?
819 250 ebur128->loudness_range = ebur128->lra_high - ebur128->lra_low;
820 }
821 }
822
823 /* dual-mono correction */
824
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
279 if (nb_channels == 1 && ebur128->dual_mono) {
825 loudness_400 -= ebur128->pan_law;
826 loudness_3000 -= ebur128->pan_law;
827 }
828
829 #define LOG_FMT "TARGET:%d LUFS M:%6.1f S:%6.1f I:%6.1f %s LRA:%6.1f LU"
830
831 /* push one video frame */
832
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
279 if (ebur128->do_video) {
833 AVFrame *clone;
834 int x, y;
835 uint8_t *p;
836 double gauge_value;
837 int y_loudness_lu_graph, y_loudness_lu_gauge;
838
839 if (ebur128->gauge_type == GAUGE_TYPE_MOMENTARY) {
840 gauge_value = loudness_400 - ebur128->target;
841 } else {
842 gauge_value = loudness_3000 - ebur128->target;
843 }
844
845 y_loudness_lu_graph = lu_to_y(ebur128, loudness_3000 - ebur128->target);
846 y_loudness_lu_gauge = lu_to_y(ebur128, gauge_value);
847
848 ret = ff_inlink_make_frame_writable(outlink, &ebur128->outpicref);
849 if (ret < 0) {
850 av_frame_free(&insamples);
851 ebur128->insamples = NULL;
852 return ret;
853 }
854 pic = ebur128->outpicref;
855 /* draw the graph using the short-term loudness */
856 p = pic->data[0] + ebur128->graph.y*pic->linesize[0] + ebur128->graph.x*3;
857 for (y = 0; y < ebur128->graph.h; y++) {
858 const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_graph, y);
859
860 memmove(p, p + 3, (ebur128->graph.w - 1) * 3);
861 memcpy(p + (ebur128->graph.w - 1) * 3, c, 3);
862 p += pic->linesize[0];
863 }
864
865 /* draw the gauge using either momentary or short-term loudness */
866 p = pic->data[0] + ebur128->gauge.y*pic->linesize[0] + ebur128->gauge.x*3;
867 for (y = 0; y < ebur128->gauge.h; y++) {
868 const uint8_t *c = get_graph_color(ebur128, y_loudness_lu_gauge, y);
869
870 for (x = 0; x < ebur128->gauge.w; x++)
871 memcpy(p + x*3, c, 3);
872 p += pic->linesize[0];
873 }
874
875 /* draw textual info */
876 if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
877 drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
878 LOG_FMT " ", // padding to erase trailing characters
879 ebur128->target, loudness_400, loudness_3000,
880 ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
881 } else {
882 drawtext(pic, PAD, PAD - PAD/2, FONT16, font_colors,
883 LOG_FMT " ", // padding to erase trailing characters
884 ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
885 ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
886 }
887
888 /* set pts and push frame */
889 pic->pts = av_rescale_q(pts, inlink->time_base, outlink->time_base);
890 pic->duration = 1;
891 clone = av_frame_clone(pic);
892 if (!clone)
893 return AVERROR(ENOMEM);
894 ebur128->idx_insample = idx_insample + 1;
895 ff_filter_set_ready(ctx, 100);
896 return ff_filter_frame(outlink, clone);
897 }
898
899
1/2
✓ Branch 0 taken 279 times.
✗ Branch 1 not taken.
279 if (ebur128->metadata) { /* happens only once per filter_frame call */
900 char metabuf[128];
901 #define META_PREFIX "lavfi.r128."
902
903 #define SET_META(name, var) do { \
904 snprintf(metabuf, sizeof(metabuf), "%.3f", var); \
905 av_dict_set(&insamples->metadata, name, metabuf, 0); \
906 } while (0)
907
908 #define SET_META_PEAK(name, ptype) do { \
909 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
910 double max_peak = 0.0; \
911 char key[64]; \
912 for (ch = 0; ch < nb_channels; ch++) { \
913 snprintf(key, sizeof(key), \
914 META_PREFIX AV_STRINGIFY(name) "_peaks_ch%d", ch); \
915 max_peak = fmax(max_peak, ebur128->name##_peaks[ch]); \
916 SET_META(key, ebur128->name##_peaks[ch]); \
917 } \
918 snprintf(key, sizeof(key), \
919 META_PREFIX AV_STRINGIFY(name) "_peak"); \
920 SET_META(key, max_peak); \
921 } \
922 } while (0)
923
924 279 SET_META(META_PREFIX "M", loudness_400);
925 279 SET_META(META_PREFIX "S", loudness_3000);
926 279 SET_META(META_PREFIX "I", ebur128->integrated_loudness);
927 279 SET_META(META_PREFIX "LRA", ebur128->loudness_range);
928 279 SET_META(META_PREFIX "LRA.low", ebur128->lra_low);
929 279 SET_META(META_PREFIX "LRA.high", ebur128->lra_high);
930
931
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
279 SET_META_PEAK(sample, SAMPLES);
932
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
279 SET_META_PEAK(true, TRUE);
933 }
934
935
1/2
✓ Branch 0 taken 279 times.
✗ Branch 1 not taken.
279 if (ebur128->loglevel != AV_LOG_QUIET) {
936
1/2
✓ Branch 0 taken 279 times.
✗ Branch 1 not taken.
279 if (ebur128->scale == SCALE_TYPE_ABSOLUTE) {
937 279 av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
938 279 av_ts2timestr(pts, &outlink->time_base),
939 ebur128->target, loudness_400, loudness_3000,
940 ebur128->integrated_loudness, "LUFS", ebur128->loudness_range);
941 } else {
942 av_log(ctx, ebur128->loglevel, "t: %-10s " LOG_FMT,
943 av_ts2timestr(pts, &outlink->time_base),
944 ebur128->target, loudness_400-ebur128->target, loudness_3000-ebur128->target,
945 ebur128->integrated_loudness-ebur128->target, "LU", ebur128->loudness_range);
946 }
947
948 #define PRINT_PEAKS(str, sp, ptype) do { \
949 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
950 av_log(ctx, ebur128->loglevel, " " str ":"); \
951 for (ch = 0; ch < nb_channels; ch++) \
952 av_log(ctx, ebur128->loglevel, " %5.1f", DBFS(sp[ch])); \
953 av_log(ctx, ebur128->loglevel, " dBFS"); \
954 } \
955 } while (0)
956
957
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
279 PRINT_PEAKS("SPK", ebur128->sample_peaks, SAMPLES);
958
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
279 PRINT_PEAKS("FTPK", ebur128->true_peaks_per_frame, TRUE);
959
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
✗ Branch 4 not taken.
✗ Branch 5 not taken.
279 PRINT_PEAKS("TPK", ebur128->true_peaks, TRUE);
960 279 av_log(ctx, ebur128->loglevel, "\n");
961 }
962 }
963 }
964
965 280 ebur128->idx_insample = 0;
966 280 ebur128->insamples = NULL;
967
968 280 return ff_filter_frame(ctx->outputs[ebur128->do_video], insamples);
969 }
970
971 573 static int activate(AVFilterContext *ctx)
972 {
973 573 AVFilterLink *inlink = ctx->inputs[0];
974 573 EBUR128Context *ebur128 = ctx->priv;
975 573 AVFilterLink *voutlink = ctx->outputs[0];
976 573 AVFilterLink *outlink = ctx->outputs[ebur128->do_video];
977 int ret;
978
979
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 573 times.
573 FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
980
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 573 times.
573 if (ebur128->do_video)
981 FF_FILTER_FORWARD_STATUS_BACK(voutlink, inlink);
982
983
1/2
✓ Branch 0 taken 573 times.
✗ Branch 1 not taken.
573 if (!ebur128->insamples) {
984 AVFrame *in;
985
986
1/2
✓ Branch 0 taken 573 times.
✗ Branch 1 not taken.
573 if (ebur128->nb_samples > 0) {
987 573 ret = ff_inlink_consume_samples(inlink, ebur128->nb_samples, ebur128->nb_samples, &in);
988 } else {
989 ret = ff_inlink_consume_frame(inlink, &in);
990 }
991
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 573 times.
573 if (ret < 0)
992 return ret;
993
2/2
✓ Branch 0 taken 280 times.
✓ Branch 1 taken 293 times.
573 if (ret > 0)
994 280 ebur128->insamples = in;
995 }
996
997
2/2
✓ Branch 0 taken 280 times.
✓ Branch 1 taken 293 times.
573 if (ebur128->insamples)
998 280 ret = filter_frame(inlink, ebur128->insamples);
999
1000
4/4
✓ Branch 1 taken 1 times.
✓ Branch 2 taken 572 times.
✓ Branch 4 taken 1 times.
✓ Branch 5 taken 1 times.
574 FF_FILTER_FORWARD_STATUS_ALL(inlink, ctx);
1001
2/2
✓ Branch 1 taken 293 times.
✓ Branch 2 taken 279 times.
572 FF_FILTER_FORWARD_WANTED(outlink, inlink);
1002
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 279 times.
279 if (ebur128->do_video)
1003 FF_FILTER_FORWARD_WANTED(voutlink, inlink);
1004
1005 279 return ret;
1006 }
1007
1008 1 static int query_formats(const AVFilterContext *ctx,
1009 AVFilterFormatsConfig **cfg_in,
1010 AVFilterFormatsConfig **cfg_out)
1011 {
1012 1 const EBUR128Context *ebur128 = ctx->priv;
1013 AVFilterFormats *formats;
1014 1 int out_idx = 0;
1015 int ret;
1016
1017 static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_DBL, AV_SAMPLE_FMT_NONE };
1018 static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_RGB24, AV_PIX_FMT_NONE };
1019
1020 /* set optional output video format */
1021
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 if (ebur128->do_video) {
1022 formats = ff_make_format_list(pix_fmts);
1023 if ((ret = ff_formats_ref(formats, &cfg_out[0]->formats)) < 0)
1024 return ret;
1025 out_idx = 1;
1026 }
1027
1028 /* set input and output audio formats
1029 * Note: ff_set_common_* functions are not used because they affect all the
1030 * links, and thus break the video format negotiation */
1031 1 formats = ff_make_format_list(sample_fmts);
1032
2/4
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
✓ Branch 4 taken 1 times.
2 if ((ret = ff_formats_ref(formats, &cfg_in[0]->formats)) < 0 ||
1033 1 (ret = ff_formats_ref(formats, &cfg_out[out_idx]->formats)) < 0)
1034 return ret;
1035
1036 1 return 0;
1037 }
1038
1039 1 static av_cold void uninit(AVFilterContext *ctx)
1040 {
1041 1 EBUR128Context *ebur128 = ctx->priv;
1042
1043 /* dual-mono correction */
1044
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
1 if (ebur128->nb_channels == 1 && ebur128->dual_mono) {
1045 ebur128->i400.rel_threshold -= ebur128->pan_law;
1046 ebur128->i3000.rel_threshold -= ebur128->pan_law;
1047 ebur128->lra_low -= ebur128->pan_law;
1048 ebur128->lra_high -= ebur128->pan_law;
1049 }
1050
1051
1/2
✓ Branch 0 taken 1 times.
✗ Branch 1 not taken.
1 if (ebur128->nb_channels > 0) {
1052 1 av_log(ctx, AV_LOG_INFO, "Summary:\n\n"
1053 " Integrated loudness:\n"
1054 " I: %5.1f LUFS\n"
1055 " Threshold: %5.1f LUFS\n\n"
1056 " Loudness range:\n"
1057 " LRA: %5.1f LU\n"
1058 " Threshold: %5.1f LUFS\n"
1059 " LRA low: %5.1f LUFS\n"
1060 " LRA high: %5.1f LUFS",
1061 ebur128->integrated_loudness, ebur128->i400.rel_threshold,
1062 ebur128->loudness_range, ebur128->i3000.rel_threshold,
1063 ebur128->lra_low, ebur128->lra_high);
1064
1065 #define PRINT_PEAK_SUMMARY(str, value, ptype) do { \
1066 if (ebur128->peak_mode & PEAK_MODE_ ## ptype ## _PEAKS) { \
1067 av_log(ctx, AV_LOG_INFO, "\n\n " str " peak:\n" \
1068 " Peak: %5.1f dBFS", value); \
1069 } \
1070 } while (0)
1071
1072
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 PRINT_PEAK_SUMMARY("Sample", ebur128->sample_peak, SAMPLES);
1073
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1 times.
1 PRINT_PEAK_SUMMARY("True", ebur128->true_peak, TRUE);
1074 1 av_log(ctx, AV_LOG_INFO, "\n");
1075 }
1076
1077 1 av_freep(&ebur128->y_line_ref);
1078 1 av_freep(&ebur128->x);
1079 1 av_freep(&ebur128->y);
1080 1 av_freep(&ebur128->z);
1081 1 av_freep(&ebur128->ch_weighting);
1082 1 av_freep(&ebur128->true_peaks);
1083 1 av_freep(&ebur128->sample_peaks);
1084 1 av_freep(&ebur128->true_peaks_per_frame);
1085 1 av_freep(&ebur128->i400.sum);
1086 1 av_freep(&ebur128->i3000.sum);
1087 1 av_freep(&ebur128->i400.histogram);
1088 1 av_freep(&ebur128->i3000.histogram);
1089
2/2
✓ Branch 0 taken 2 times.
✓ Branch 1 taken 1 times.
3 for (int i = 0; i < ebur128->nb_channels; i++) {
1090
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (ebur128->i400.cache)
1091 2 av_freep(&ebur128->i400.cache[i]);
1092
1/2
✓ Branch 0 taken 2 times.
✗ Branch 1 not taken.
2 if (ebur128->i3000.cache)
1093 2 av_freep(&ebur128->i3000.cache[i]);
1094 }
1095 1 av_freep(&ebur128->i400.cache);
1096 1 av_freep(&ebur128->i3000.cache);
1097 1 av_frame_free(&ebur128->outpicref);
1098 #if CONFIG_SWRESAMPLE
1099 1 av_freep(&ebur128->swr_buf);
1100 1 swr_free(&ebur128->swr_ctx);
1101 #endif
1102 1 }
1103
1104 static const AVFilterPad ebur128_inputs[] = {
1105 {
1106 .name = "default",
1107 .type = AVMEDIA_TYPE_AUDIO,
1108 .config_props = config_audio_input,
1109 },
1110 };
1111
1112 const AVFilter ff_af_ebur128 = {
1113 .name = "ebur128",
1114 .description = NULL_IF_CONFIG_SMALL("EBU R128 scanner."),
1115 .priv_size = sizeof(EBUR128Context),
1116 .init = init,
1117 .uninit = uninit,
1118 .activate = activate,
1119 FILTER_INPUTS(ebur128_inputs),
1120 .outputs = NULL,
1121 FILTER_QUERY_FUNC2(query_formats),
1122 .priv_class = &ebur128_class,
1123 .flags = AVFILTER_FLAG_DYNAMIC_OUTPUTS,
1124 };
1125