FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/opus/enc_psy.c
Date: 2024-11-20 23:03:26
Exec Total Coverage
Lines: 0 365 0.0%
Functions: 0 17 0.0%
Branches: 0 176 0.0%

Line Branch Exec Source
1 /*
2 * Opus encoder
3 * Copyright (c) 2017 Rostislav Pehlivanov <atomnuker@gmail.com>
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public
9 * License as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
15 * Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public
18 * License along with FFmpeg; if not, write to the Free Software
19 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include <float.h>
23
24 #include "libavutil/mem.h"
25 #include "enc_psy.h"
26 #include "celt.h"
27 #include "pvq.h"
28 #include "tab.h"
29 #include "libavfilter/window_func.h"
30
31 static float pvq_band_cost(CeltPVQ *pvq, CeltFrame *f, OpusRangeCoder *rc, int band,
32 float *bits, float lambda)
33 {
34 int i, b = 0;
35 uint32_t cm[2] = { (1 << f->blocks) - 1, (1 << f->blocks) - 1 };
36 const int band_size = ff_celt_freq_range[band] << f->size;
37 float buf[176 * 2], lowband_scratch[176], norm1[176], norm2[176];
38 float dist, cost, err_x = 0.0f, err_y = 0.0f;
39 float *X = buf;
40 float *X_orig = f->block[0].coeffs + (ff_celt_freq_bands[band] << f->size);
41 float *Y = (f->channels == 2) ? &buf[176] : NULL;
42 float *Y_orig = f->block[1].coeffs + (ff_celt_freq_bands[band] << f->size);
43 OPUS_RC_CHECKPOINT_SPAWN(rc);
44
45 memcpy(X, X_orig, band_size*sizeof(float));
46 if (Y)
47 memcpy(Y, Y_orig, band_size*sizeof(float));
48
49 f->remaining2 = ((f->framebits << 3) - f->anticollapse_needed) - opus_rc_tell_frac(rc) - 1;
50 if (band <= f->coded_bands - 1) {
51 int curr_balance = f->remaining / FFMIN(3, f->coded_bands - band);
52 b = av_clip_uintp2(FFMIN(f->remaining2 + 1, f->pulses[band] + curr_balance), 14);
53 }
54
55 if (f->dual_stereo) {
56 pvq->quant_band(pvq, f, rc, band, X, NULL, band_size, b / 2, f->blocks, NULL,
57 f->size, norm1, 0, 1.0f, lowband_scratch, cm[0]);
58
59 pvq->quant_band(pvq, f, rc, band, Y, NULL, band_size, b / 2, f->blocks, NULL,
60 f->size, norm2, 0, 1.0f, lowband_scratch, cm[1]);
61 } else {
62 pvq->quant_band(pvq, f, rc, band, X, Y, band_size, b, f->blocks, NULL, f->size,
63 norm1, 0, 1.0f, lowband_scratch, cm[0] | cm[1]);
64 }
65
66 for (i = 0; i < band_size; i++) {
67 err_x += (X[i] - X_orig[i])*(X[i] - X_orig[i]);
68 if (Y)
69 err_y += (Y[i] - Y_orig[i])*(Y[i] - Y_orig[i]);
70 }
71
72 dist = sqrtf(err_x) + sqrtf(err_y);
73 cost = OPUS_RC_CHECKPOINT_BITS(rc)/8.0f;
74 *bits += cost;
75
76 OPUS_RC_CHECKPOINT_ROLLBACK(rc);
77
78 return lambda*dist*cost;
79 }
80
81 /* Populate metrics without taking into consideration neighbouring steps */
82 static void step_collect_psy_metrics(OpusPsyContext *s, int index)
83 {
84 int silence = 0, ch, i, j;
85 OpusPsyStep *st = s->steps[index];
86
87 st->index = index;
88
89 for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) {
90 const int lap_size = (1 << s->bsize_analysis);
91 for (i = 1; i <= FFMIN(lap_size, index); i++) {
92 const int offset = i*120;
93 AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index - i);
94 memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float));
95 }
96 for (i = 0; i < lap_size; i++) {
97 const int offset = i*120 + lap_size;
98 AVFrame *cur = ff_bufqueue_peek(s->bufqueue, index + i);
99 memcpy(&s->scratch[offset], cur->extended_data[ch], cur->nb_samples*sizeof(float));
100 }
101
102 s->dsp->vector_fmul(s->scratch, s->scratch, s->window[s->bsize_analysis],
103 (OPUS_BLOCK_SIZE(s->bsize_analysis) << 1));
104
105 s->mdct_fn[s->bsize_analysis](s->mdct[s->bsize_analysis], st->coeffs[ch],
106 s->scratch, sizeof(float));
107
108 for (i = 0; i < CELT_MAX_BANDS; i++)
109 st->bands[ch][i] = &st->coeffs[ch][ff_celt_freq_bands[i] << s->bsize_analysis];
110 }
111
112 for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) {
113 for (i = 0; i < CELT_MAX_BANDS; i++) {
114 float avg_c_s, energy = 0.0f, dist_dev = 0.0f;
115 const int range = ff_celt_freq_range[i] << s->bsize_analysis;
116 const float *coeffs = st->bands[ch][i];
117 for (j = 0; j < range; j++)
118 energy += coeffs[j]*coeffs[j];
119
120 st->energy[ch][i] += sqrtf(energy);
121 silence |= !!st->energy[ch][i];
122 avg_c_s = energy / range;
123
124 for (j = 0; j < range; j++) {
125 const float c_s = coeffs[j]*coeffs[j];
126 dist_dev += (avg_c_s - c_s)*(avg_c_s - c_s);
127 }
128
129 st->tone[ch][i] += sqrtf(dist_dev);
130 }
131 }
132
133 st->silence = !silence;
134
135 if (s->avctx->ch_layout.nb_channels > 1) {
136 for (i = 0; i < CELT_MAX_BANDS; i++) {
137 float incompat = 0.0f;
138 const float *coeffs1 = st->bands[0][i];
139 const float *coeffs2 = st->bands[1][i];
140 const int range = ff_celt_freq_range[i] << s->bsize_analysis;
141 for (j = 0; j < range; j++)
142 incompat += (coeffs1[j] - coeffs2[j])*(coeffs1[j] - coeffs2[j]);
143 st->stereo[i] = sqrtf(incompat);
144 }
145 }
146
147 for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) {
148 for (i = 0; i < CELT_MAX_BANDS; i++) {
149 OpusBandExcitation *ex = &s->ex[ch][i];
150 float bp_e = bessel_filter(&s->bfilter_lo[ch][i], st->energy[ch][i]);
151 bp_e = bessel_filter(&s->bfilter_hi[ch][i], bp_e);
152 bp_e *= bp_e;
153 if (bp_e > ex->excitation) {
154 st->change_amp[ch][i] = bp_e - ex->excitation;
155 st->total_change += st->change_amp[ch][i];
156 ex->excitation = ex->excitation_init = bp_e;
157 ex->excitation_dist = 0.0f;
158 }
159 if (ex->excitation > 0.0f) {
160 ex->excitation -= av_clipf((1/expf(ex->excitation_dist)), ex->excitation_init/20, ex->excitation_init/1.09);
161 ex->excitation = FFMAX(ex->excitation, 0.0f);
162 ex->excitation_dist += 1.0f;
163 }
164 }
165 }
166 }
167
168 static void search_for_change_points(OpusPsyContext *s, float tgt_change,
169 int offset_s, int offset_e, int resolution,
170 int level)
171 {
172 int i;
173 float c_change = 0.0f;
174 if ((offset_e - offset_s) <= resolution)
175 return;
176 for (i = offset_s; i < offset_e; i++) {
177 c_change += s->steps[i]->total_change;
178 if (c_change > tgt_change)
179 break;
180 }
181 if (i == offset_e)
182 return;
183 search_for_change_points(s, tgt_change / 2.0f, offset_s, i + 0, resolution, level + 1);
184 s->inflection_points[s->inflection_points_count++] = i;
185 search_for_change_points(s, tgt_change / 2.0f, i + 1, offset_e, resolution, level + 1);
186 }
187
188 static int flush_silent_frames(OpusPsyContext *s)
189 {
190 int fsize, silent_frames;
191
192 for (silent_frames = 0; silent_frames < s->buffered_steps; silent_frames++)
193 if (!s->steps[silent_frames]->silence)
194 break;
195 if (--silent_frames < 0)
196 return 0;
197
198 for (fsize = CELT_BLOCK_960; fsize > CELT_BLOCK_120; fsize--) {
199 if ((1 << fsize) > silent_frames)
200 continue;
201 s->p.frames = FFMIN(silent_frames / (1 << fsize), 48 >> fsize);
202 s->p.framesize = fsize;
203 return 1;
204 }
205
206 return 0;
207 }
208
209 /* Main function which decides frame size and frames per current packet */
210 static void psy_output_groups(OpusPsyContext *s)
211 {
212 int max_delay_samples = (s->options->max_delay_ms*s->avctx->sample_rate)/1000;
213 int max_bsize = FFMIN(OPUS_SAMPLES_TO_BLOCK_SIZE(max_delay_samples), CELT_BLOCK_960);
214
215 /* These don't change for now */
216 s->p.mode = OPUS_MODE_CELT;
217 s->p.bandwidth = OPUS_BANDWIDTH_FULLBAND;
218
219 /* Flush silent frames ASAP */
220 if (s->steps[0]->silence && flush_silent_frames(s))
221 return;
222
223 s->p.framesize = FFMIN(max_bsize, CELT_BLOCK_960);
224 s->p.frames = 1;
225 }
226
227 int ff_opus_psy_process(OpusPsyContext *s, OpusPacketInfo *p)
228 {
229 int i;
230 float total_energy_change = 0.0f;
231
232 if (s->buffered_steps < s->max_steps && !s->eof) {
233 const int awin = (1 << s->bsize_analysis);
234 if (++s->steps_to_process >= awin) {
235 step_collect_psy_metrics(s, s->buffered_steps - awin + 1);
236 s->steps_to_process = 0;
237 }
238 if ((++s->buffered_steps) < s->max_steps)
239 return 1;
240 }
241
242 for (i = 0; i < s->buffered_steps; i++)
243 total_energy_change += s->steps[i]->total_change;
244
245 search_for_change_points(s, total_energy_change / 2.0f, 0,
246 s->buffered_steps, 1, 0);
247
248 psy_output_groups(s);
249
250 p->frames = s->p.frames;
251 p->framesize = s->p.framesize;
252 p->mode = s->p.mode;
253 p->bandwidth = s->p.bandwidth;
254
255 return 0;
256 }
257
258 void ff_opus_psy_celt_frame_init(OpusPsyContext *s, CeltFrame *f, int index)
259 {
260 int i, neighbouring_points = 0, start_offset = 0;
261 int radius = (1 << s->p.framesize), step_offset = radius*index;
262 int silence = 1;
263
264 f->start_band = (s->p.mode == OPUS_MODE_HYBRID) ? 17 : 0;
265 f->end_band = ff_celt_band_end[s->p.bandwidth];
266 f->channels = s->avctx->ch_layout.nb_channels;
267 f->size = s->p.framesize;
268
269 for (i = 0; i < (1 << f->size); i++)
270 silence &= s->steps[index*(1 << f->size) + i]->silence;
271
272 f->silence = silence;
273 if (f->silence) {
274 f->framebits = 0; /* Otherwise the silence flag eats up 16(!) bits */
275 return;
276 }
277
278 for (i = 0; i < s->inflection_points_count; i++) {
279 if (s->inflection_points[i] >= step_offset) {
280 start_offset = i;
281 break;
282 }
283 }
284
285 for (i = start_offset; i < FFMIN(radius, s->inflection_points_count - start_offset); i++) {
286 if (s->inflection_points[i] < (step_offset + radius)) {
287 neighbouring_points++;
288 }
289 }
290
291 /* Transient flagging */
292 f->transient = neighbouring_points > 0;
293 f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1;
294
295 /* Some sane defaults */
296 f->pfilter = 0;
297 f->pf_gain = 0.5f;
298 f->pf_octave = 2;
299 f->pf_period = 1;
300 f->pf_tapset = 2;
301
302 /* More sane defaults */
303 f->tf_select = 0;
304 f->anticollapse = 1;
305 f->alloc_trim = 5;
306 f->skip_band_floor = f->end_band;
307 f->intensity_stereo = f->end_band;
308 f->dual_stereo = 0;
309 f->spread = CELT_SPREAD_NORMAL;
310 memset(f->tf_change, 0, sizeof(int)*CELT_MAX_BANDS);
311 memset(f->alloc_boost, 0, sizeof(int)*CELT_MAX_BANDS);
312 }
313
314 static void celt_gauge_psy_weight(OpusPsyContext *s, OpusPsyStep **start,
315 CeltFrame *f_out)
316 {
317 int i, f, ch;
318 int frame_size = OPUS_BLOCK_SIZE(s->p.framesize);
319 float rate, frame_bits = 0;
320
321 /* Used for the global ROTATE flag */
322 float tonal = 0.0f;
323
324 /* Pseudo-weights */
325 float band_score[CELT_MAX_BANDS] = { 0 };
326 float max_score = 1.0f;
327
328 /* Pass one - one loop around each band, computing unquant stuff */
329 for (i = 0; i < CELT_MAX_BANDS; i++) {
330 float weight = 0.0f;
331 float tonal_contrib = 0.0f;
332 for (f = 0; f < (1 << s->p.framesize); f++) {
333 weight = start[f]->stereo[i];
334 for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) {
335 weight += start[f]->change_amp[ch][i] + start[f]->tone[ch][i] + start[f]->energy[ch][i];
336 tonal_contrib += start[f]->tone[ch][i];
337 }
338 }
339 tonal += tonal_contrib;
340 band_score[i] = weight;
341 }
342
343 tonal /= (float)CELT_MAX_BANDS;
344
345 for (i = 0; i < CELT_MAX_BANDS; i++) {
346 if (band_score[i] > max_score)
347 max_score = band_score[i];
348 }
349
350 for (i = 0; i < CELT_MAX_BANDS; i++) {
351 f_out->alloc_boost[i] = (int)((band_score[i]/max_score)*3.0f);
352 frame_bits += band_score[i]*8.0f;
353 }
354
355 tonal /= 1333136.0f;
356 f_out->spread = av_clip_uintp2(lrintf(tonal), 2);
357
358 rate = ((float)s->avctx->bit_rate) + frame_bits*frame_size*16;
359 rate *= s->lambda;
360 rate /= s->avctx->sample_rate/frame_size;
361
362 f_out->framebits = lrintf(rate);
363 f_out->framebits = FFMIN(f_out->framebits, OPUS_MAX_FRAME_SIZE * 8);
364 f_out->framebits = FFALIGN(f_out->framebits, 8);
365 }
366
367 static int bands_dist(OpusPsyContext *s, CeltFrame *f, float *total_dist)
368 {
369 int i, tdist = 0.0f;
370 OpusRangeCoder dump;
371
372 ff_opus_rc_enc_init(&dump);
373 ff_celt_bitalloc(f, &dump, 1);
374
375 for (i = 0; i < CELT_MAX_BANDS; i++) {
376 float bits = 0.0f;
377 float dist = pvq_band_cost(f->pvq, f, &dump, i, &bits, s->lambda);
378 tdist += dist;
379 }
380
381 *total_dist = tdist;
382
383 return 0;
384 }
385
386 static void celt_search_for_dual_stereo(OpusPsyContext *s, CeltFrame *f)
387 {
388 float td1, td2;
389 f->dual_stereo = 0;
390
391 if (s->avctx->ch_layout.nb_channels < 2)
392 return;
393
394 bands_dist(s, f, &td1);
395 f->dual_stereo = 1;
396 bands_dist(s, f, &td2);
397
398 f->dual_stereo = td2 < td1;
399 s->dual_stereo_used += td2 < td1;
400 }
401
402 static void celt_search_for_intensity(OpusPsyContext *s, CeltFrame *f)
403 {
404 int i, best_band = CELT_MAX_BANDS - 1;
405 float dist, best_dist = FLT_MAX;
406 /* TODO: fix, make some heuristic up here using the lambda value */
407 float end_band = 0;
408
409 if (s->avctx->ch_layout.nb_channels < 2)
410 return;
411
412 for (i = f->end_band; i >= end_band; i--) {
413 f->intensity_stereo = i;
414 bands_dist(s, f, &dist);
415 if (best_dist > dist) {
416 best_dist = dist;
417 best_band = i;
418 }
419 }
420
421 f->intensity_stereo = best_band;
422 s->avg_is_band = (s->avg_is_band + f->intensity_stereo)/2.0f;
423 }
424
425 static int celt_search_for_tf(OpusPsyContext *s, OpusPsyStep **start, CeltFrame *f)
426 {
427 int i, j, k, cway, config[2][CELT_MAX_BANDS] = { { 0 } };
428 float score[2] = { 0 };
429
430 for (cway = 0; cway < 2; cway++) {
431 int mag[2];
432 int base = f->transient ? 120 : 960;
433
434 for (i = 0; i < 2; i++) {
435 int c = ff_celt_tf_select[f->size][f->transient][cway][i];
436 mag[i] = c < 0 ? base >> FFABS(c) : base << FFABS(c);
437 }
438
439 for (i = 0; i < CELT_MAX_BANDS; i++) {
440 float iscore0 = 0.0f;
441 float iscore1 = 0.0f;
442 for (j = 0; j < (1 << f->size); j++) {
443 for (k = 0; k < s->avctx->ch_layout.nb_channels; k++) {
444 iscore0 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[0];
445 iscore1 += start[j]->tone[k][i]*start[j]->change_amp[k][i]/mag[1];
446 }
447 }
448 config[cway][i] = FFABS(iscore0 - 1.0f) < FFABS(iscore1 - 1.0f);
449 score[cway] += config[cway][i] ? iscore1 : iscore0;
450 }
451 }
452
453 f->tf_select = score[0] < score[1];
454 memcpy(f->tf_change, config[f->tf_select], sizeof(int)*CELT_MAX_BANDS);
455
456 return 0;
457 }
458
459 int ff_opus_psy_celt_frame_process(OpusPsyContext *s, CeltFrame *f, int index)
460 {
461 int start_transient_flag = f->transient;
462 OpusPsyStep **start = &s->steps[index * (1 << s->p.framesize)];
463
464 if (f->silence)
465 return 0;
466
467 celt_gauge_psy_weight(s, start, f);
468 celt_search_for_intensity(s, f);
469 celt_search_for_dual_stereo(s, f);
470 celt_search_for_tf(s, start, f);
471
472 if (f->transient != start_transient_flag) {
473 f->blocks = f->transient ? OPUS_BLOCK_SIZE(s->p.framesize)/CELT_OVERLAP : 1;
474 return 1;
475 }
476
477 return 0;
478 }
479
480 void ff_opus_psy_postencode_update(OpusPsyContext *s, CeltFrame *f)
481 {
482 int i, frame_size = OPUS_BLOCK_SIZE(s->p.framesize);
483 int steps_out = s->p.frames*(frame_size/120);
484 void *tmp[FF_BUFQUEUE_SIZE];
485 float ideal_fbits;
486
487 for (i = 0; i < steps_out; i++)
488 memset(s->steps[i], 0, sizeof(OpusPsyStep));
489
490 for (i = 0; i < s->max_steps; i++)
491 tmp[i] = s->steps[i];
492
493 for (i = 0; i < s->max_steps; i++) {
494 const int i_new = i - steps_out;
495 s->steps[i_new < 0 ? s->max_steps + i_new : i_new] = tmp[i];
496 }
497
498 for (i = steps_out; i < s->buffered_steps; i++)
499 s->steps[i]->index -= steps_out;
500
501 ideal_fbits = s->avctx->bit_rate/(s->avctx->sample_rate/frame_size);
502
503 for (i = 0; i < s->p.frames; i++) {
504 s->avg_is_band += f[i].intensity_stereo;
505 s->lambda *= ideal_fbits / f[i].framebits;
506 }
507
508 s->avg_is_band /= (s->p.frames + 1);
509
510 s->steps_to_process = 0;
511 s->buffered_steps -= steps_out;
512 s->total_packets_out += s->p.frames;
513 s->inflection_points_count = 0;
514 }
515
516 av_cold int ff_opus_psy_init(OpusPsyContext *s, AVCodecContext *avctx,
517 struct FFBufQueue *bufqueue, OpusEncOptions *options)
518 {
519 int i, ch, ret;
520
521 s->lambda = 1.0f;
522 s->options = options;
523 s->avctx = avctx;
524 s->bufqueue = bufqueue;
525 s->max_steps = ceilf(s->options->max_delay_ms/2.5f);
526 s->bsize_analysis = CELT_BLOCK_960;
527 s->avg_is_band = CELT_MAX_BANDS - 1;
528 s->inflection_points_count = 0;
529
530 s->inflection_points = av_mallocz(sizeof(*s->inflection_points)*s->max_steps);
531 if (!s->inflection_points) {
532 ret = AVERROR(ENOMEM);
533 goto fail;
534 }
535
536 s->dsp = avpriv_float_dsp_alloc(avctx->flags & AV_CODEC_FLAG_BITEXACT);
537 if (!s->dsp) {
538 ret = AVERROR(ENOMEM);
539 goto fail;
540 }
541
542 for (ch = 0; ch < s->avctx->ch_layout.nb_channels; ch++) {
543 for (i = 0; i < CELT_MAX_BANDS; i++) {
544 bessel_init(&s->bfilter_hi[ch][i], 1.0f, 19.0f, 100.0f, 1);
545 bessel_init(&s->bfilter_lo[ch][i], 1.0f, 20.0f, 100.0f, 0);
546 }
547 }
548
549 for (i = 0; i < s->max_steps; i++) {
550 s->steps[i] = av_mallocz(sizeof(OpusPsyStep));
551 if (!s->steps[i]) {
552 ret = AVERROR(ENOMEM);
553 goto fail;
554 }
555 }
556
557 for (i = 0; i < CELT_BLOCK_NB; i++) {
558 float tmp;
559 const int len = OPUS_BLOCK_SIZE(i);
560 const float scale = 68 << (CELT_BLOCK_NB - 1 - i);
561 s->window[i] = av_malloc(2*len*sizeof(float));
562 if (!s->window[i]) {
563 ret = AVERROR(ENOMEM);
564 goto fail;
565 }
566 generate_window_func(s->window[i], 2*len, WFUNC_SINE, &tmp);
567 ret = av_tx_init(&s->mdct[i], &s->mdct_fn[i], AV_TX_FLOAT_MDCT,
568 0, 15 << (i + 3), &scale, 0);
569 if (ret < 0)
570 goto fail;
571 }
572
573 return 0;
574
575 fail:
576 av_freep(&s->inflection_points);
577 av_freep(&s->dsp);
578
579 for (i = 0; i < CELT_BLOCK_NB; i++) {
580 av_tx_uninit(&s->mdct[i]);
581 av_freep(&s->window[i]);
582 }
583
584 for (i = 0; i < s->max_steps; i++)
585 av_freep(&s->steps[i]);
586
587 return ret;
588 }
589
590 void ff_opus_psy_signal_eof(OpusPsyContext *s)
591 {
592 s->eof = 1;
593 }
594
595 av_cold int ff_opus_psy_end(OpusPsyContext *s)
596 {
597 int i;
598
599 av_freep(&s->inflection_points);
600 av_freep(&s->dsp);
601
602 for (i = 0; i < CELT_BLOCK_NB; i++) {
603 av_tx_uninit(&s->mdct[i]);
604 av_freep(&s->window[i]);
605 }
606
607 for (i = 0; i < s->max_steps; i++)
608 av_freep(&s->steps[i]);
609
610 av_log(s->avctx, AV_LOG_INFO, "Average Intensity Stereo band: %0.1f\n", s->avg_is_band);
611 av_log(s->avctx, AV_LOG_INFO, "Dual Stereo used: %0.2f%%\n", ((float)s->dual_stereo_used/s->total_packets_out)*100.0f);
612
613 return 0;
614 }
615