Line | Branch | Exec | Source |
---|---|---|---|
1 | /* | ||
2 | * Copyright (C) 2016 foo86 | ||
3 | * | ||
4 | * This file is part of FFmpeg. | ||
5 | * | ||
6 | * FFmpeg is free software; you can redistribute it and/or | ||
7 | * modify it under the terms of the GNU Lesser General Public | ||
8 | * License as published by the Free Software Foundation; either | ||
9 | * version 2.1 of the License, or (at your option) any later version. | ||
10 | * | ||
11 | * FFmpeg is distributed in the hope that it will be useful, | ||
12 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
13 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
14 | * Lesser General Public License for more details. | ||
15 | * | ||
16 | * You should have received a copy of the GNU Lesser General Public | ||
17 | * License along with FFmpeg; if not, write to the Free Software | ||
18 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||
19 | */ | ||
20 | |||
21 | #define BITSTREAM_READER_LE | ||
22 | |||
23 | #include "libavutil/channel_layout.h" | ||
24 | #include "libavutil/mem.h" | ||
25 | #include "libavutil/mem_internal.h" | ||
26 | |||
27 | #include "dcadec.h" | ||
28 | #include "dcadata.h" | ||
29 | #include "dcahuff.h" | ||
30 | #include "dca_syncwords.h" | ||
31 | #include "bytestream.h" | ||
32 | #include "decode.h" | ||
33 | |||
34 | #define AMP_MAX 56 | ||
35 | |||
36 | enum LBRFlags { | ||
37 | LBR_FLAG_24_BIT = 0x01, | ||
38 | LBR_FLAG_LFE_PRESENT = 0x02, | ||
39 | LBR_FLAG_BAND_LIMIT_2_3 = 0x04, | ||
40 | LBR_FLAG_BAND_LIMIT_1_2 = 0x08, | ||
41 | LBR_FLAG_BAND_LIMIT_1_3 = 0x0c, | ||
42 | LBR_FLAG_BAND_LIMIT_1_4 = 0x10, | ||
43 | LBR_FLAG_BAND_LIMIT_1_8 = 0x18, | ||
44 | LBR_FLAG_BAND_LIMIT_NONE = 0x14, | ||
45 | LBR_FLAG_BAND_LIMIT_MASK = 0x1c, | ||
46 | LBR_FLAG_DMIX_STEREO = 0x20, | ||
47 | LBR_FLAG_DMIX_MULTI_CH = 0x40 | ||
48 | }; | ||
49 | |||
50 | enum LBRChunkTypes { | ||
51 | LBR_CHUNK_NULL = 0x00, | ||
52 | LBR_CHUNK_PAD = 0x01, | ||
53 | LBR_CHUNK_FRAME = 0x04, | ||
54 | LBR_CHUNK_FRAME_NO_CSUM = 0x06, | ||
55 | LBR_CHUNK_LFE = 0x0a, | ||
56 | LBR_CHUNK_ECS = 0x0b, | ||
57 | LBR_CHUNK_RESERVED_1 = 0x0c, | ||
58 | LBR_CHUNK_RESERVED_2 = 0x0d, | ||
59 | LBR_CHUNK_SCF = 0x0e, | ||
60 | LBR_CHUNK_TONAL = 0x10, | ||
61 | LBR_CHUNK_TONAL_GRP_1 = 0x11, | ||
62 | LBR_CHUNK_TONAL_GRP_2 = 0x12, | ||
63 | LBR_CHUNK_TONAL_GRP_3 = 0x13, | ||
64 | LBR_CHUNK_TONAL_GRP_4 = 0x14, | ||
65 | LBR_CHUNK_TONAL_GRP_5 = 0x15, | ||
66 | LBR_CHUNK_TONAL_SCF = 0x16, | ||
67 | LBR_CHUNK_TONAL_SCF_GRP_1 = 0x17, | ||
68 | LBR_CHUNK_TONAL_SCF_GRP_2 = 0x18, | ||
69 | LBR_CHUNK_TONAL_SCF_GRP_3 = 0x19, | ||
70 | LBR_CHUNK_TONAL_SCF_GRP_4 = 0x1a, | ||
71 | LBR_CHUNK_TONAL_SCF_GRP_5 = 0x1b, | ||
72 | LBR_CHUNK_RES_GRID_LR = 0x30, | ||
73 | LBR_CHUNK_RES_GRID_LR_LAST = 0x3f, | ||
74 | LBR_CHUNK_RES_GRID_HR = 0x40, | ||
75 | LBR_CHUNK_RES_GRID_HR_LAST = 0x4f, | ||
76 | LBR_CHUNK_RES_TS_1 = 0x50, | ||
77 | LBR_CHUNK_RES_TS_1_LAST = 0x5f, | ||
78 | LBR_CHUNK_RES_TS_2 = 0x60, | ||
79 | LBR_CHUNK_RES_TS_2_LAST = 0x6f, | ||
80 | LBR_CHUNK_EXTENSION = 0x7f | ||
81 | }; | ||
82 | |||
83 | typedef struct LBRChunk { | ||
84 | int id, len; | ||
85 | const uint8_t *data; | ||
86 | } LBRChunk; | ||
87 | |||
88 | static const int8_t channel_reorder_nolfe[7][5] = { | ||
89 | { 0, -1, -1, -1, -1 }, // C | ||
90 | { 0, 1, -1, -1, -1 }, // LR | ||
91 | { 0, 1, 2, -1, -1 }, // LR C | ||
92 | { 0, 1, -1, -1, -1 }, // LsRs | ||
93 | { 1, 2, 0, -1, -1 }, // LsRs C | ||
94 | { 0, 1, 2, 3, -1 }, // LR LsRs | ||
95 | { 0, 1, 3, 4, 2 }, // LR LsRs C | ||
96 | }; | ||
97 | |||
98 | static const int8_t channel_reorder_lfe[7][5] = { | ||
99 | { 0, -1, -1, -1, -1 }, // C | ||
100 | { 0, 1, -1, -1, -1 }, // LR | ||
101 | { 0, 1, 2, -1, -1 }, // LR C | ||
102 | { 1, 2, -1, -1, -1 }, // LsRs | ||
103 | { 2, 3, 0, -1, -1 }, // LsRs C | ||
104 | { 0, 1, 3, 4, -1 }, // LR LsRs | ||
105 | { 0, 1, 4, 5, 2 }, // LR LsRs C | ||
106 | }; | ||
107 | |||
108 | static const uint8_t lfe_index[7] = { | ||
109 | 1, 2, 3, 0, 1, 2, 3 | ||
110 | }; | ||
111 | |||
112 | static const uint16_t channel_layouts[7] = { | ||
113 | AV_CH_LAYOUT_MONO, | ||
114 | AV_CH_LAYOUT_STEREO, | ||
115 | AV_CH_LAYOUT_SURROUND, | ||
116 | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, | ||
117 | AV_CH_FRONT_CENTER | AV_CH_SIDE_LEFT | AV_CH_SIDE_RIGHT, | ||
118 | AV_CH_LAYOUT_2_2, | ||
119 | AV_CH_LAYOUT_5POINT0 | ||
120 | }; | ||
121 | |||
122 | static float cos_tab[256]; | ||
123 | static const float lpc_tab[16] = { | ||
124 | /* lpc_tab[i] = sin((i - 8) * (M_PI / ((i < 8) ? 17 : 15))) */ | ||
125 | -0.995734176295034521871191178905, -0.961825643172819070408796290732, | ||
126 | -0.895163291355062322067016499754, -0.798017227280239503332805112796, | ||
127 | -0.673695643646557211712691912426, -0.526432162877355800244607799141, | ||
128 | -0.361241666187152948744714596184, -0.183749517816570331574408839621, | ||
129 | 0.0, 0.207911690817759337101742284405, | ||
130 | 0.406736643075800207753985990341, 0.587785252292473129168705954639, | ||
131 | 0.743144825477394235014697048974, 0.866025403784438646763723170753, | ||
132 | 0.951056516295153572116439333379, 0.994521895368273336922691944981 | ||
133 | }; | ||
134 | |||
135 | 54 | av_cold void ff_dca_lbr_init_tables(void) | |
136 | { | ||
137 | int i; | ||
138 | |||
139 |
2/2✓ Branch 0 taken 13824 times.
✓ Branch 1 taken 54 times.
|
13878 | for (i = 0; i < 256; i++) |
140 | 13824 | cos_tab[i] = cos(M_PI * i / 128); | |
141 | 54 | } | |
142 | |||
143 | ✗ | static int parse_lfe_24(DCALbrDecoder *s) | |
144 | { | ||
145 | ✗ | int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_24) - 1; | |
146 | int i, ps, si, code, step_i; | ||
147 | float step, value, delta; | ||
148 | |||
149 | ✗ | ps = get_bits(&s->gb, 24); | |
150 | ✗ | si = ps >> 23; | |
151 | |||
152 | ✗ | value = (((ps & 0x7fffff) ^ -si) + si) * (1.0f / 0x7fffff); | |
153 | |||
154 | ✗ | step_i = get_bits(&s->gb, 8); | |
155 | ✗ | if (step_i > step_max) { | |
156 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n"); | |
157 | ✗ | return AVERROR_INVALIDDATA; | |
158 | } | ||
159 | |||
160 | ✗ | step = ff_dca_lfe_step_size_24[step_i]; | |
161 | |||
162 | ✗ | for (i = 0; i < 64; i++) { | |
163 | ✗ | code = get_bits(&s->gb, 6); | |
164 | |||
165 | ✗ | delta = step * 0.03125f; | |
166 | ✗ | if (code & 16) | |
167 | ✗ | delta += step; | |
168 | ✗ | if (code & 8) | |
169 | ✗ | delta += step * 0.5f; | |
170 | ✗ | if (code & 4) | |
171 | ✗ | delta += step * 0.25f; | |
172 | ✗ | if (code & 2) | |
173 | ✗ | delta += step * 0.125f; | |
174 | ✗ | if (code & 1) | |
175 | ✗ | delta += step * 0.0625f; | |
176 | |||
177 | ✗ | if (code & 32) { | |
178 | ✗ | value -= delta; | |
179 | ✗ | if (value < -3.0f) | |
180 | ✗ | value = -3.0f; | |
181 | } else { | ||
182 | ✗ | value += delta; | |
183 | ✗ | if (value > 3.0f) | |
184 | ✗ | value = 3.0f; | |
185 | } | ||
186 | |||
187 | ✗ | step_i += ff_dca_lfe_delta_index_24[code & 31]; | |
188 | ✗ | step_i = av_clip(step_i, 0, step_max); | |
189 | |||
190 | ✗ | step = ff_dca_lfe_step_size_24[step_i]; | |
191 | ✗ | s->lfe_data[i] = value * s->lfe_scale; | |
192 | } | ||
193 | |||
194 | ✗ | return 0; | |
195 | } | ||
196 | |||
197 | ✗ | static int parse_lfe_16(DCALbrDecoder *s) | |
198 | { | ||
199 | ✗ | int step_max = FF_ARRAY_ELEMS(ff_dca_lfe_step_size_16) - 1; | |
200 | int i, ps, si, code, step_i; | ||
201 | float step, value, delta; | ||
202 | |||
203 | ✗ | ps = get_bits(&s->gb, 16); | |
204 | ✗ | si = ps >> 15; | |
205 | |||
206 | ✗ | value = (((ps & 0x7fff) ^ -si) + si) * (1.0f / 0x7fff); | |
207 | |||
208 | ✗ | step_i = get_bits(&s->gb, 8); | |
209 | ✗ | if (step_i > step_max) { | |
210 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid LFE step size index\n"); | |
211 | ✗ | return AVERROR_INVALIDDATA; | |
212 | } | ||
213 | |||
214 | ✗ | step = ff_dca_lfe_step_size_16[step_i]; | |
215 | |||
216 | ✗ | for (i = 0; i < 64; i++) { | |
217 | ✗ | code = get_bits(&s->gb, 4); | |
218 | |||
219 | ✗ | delta = step * 0.125f; | |
220 | ✗ | if (code & 4) | |
221 | ✗ | delta += step; | |
222 | ✗ | if (code & 2) | |
223 | ✗ | delta += step * 0.5f; | |
224 | ✗ | if (code & 1) | |
225 | ✗ | delta += step * 0.25f; | |
226 | |||
227 | ✗ | if (code & 8) { | |
228 | ✗ | value -= delta; | |
229 | ✗ | if (value < -3.0f) | |
230 | ✗ | value = -3.0f; | |
231 | } else { | ||
232 | ✗ | value += delta; | |
233 | ✗ | if (value > 3.0f) | |
234 | ✗ | value = 3.0f; | |
235 | } | ||
236 | |||
237 | ✗ | step_i += ff_dca_lfe_delta_index_16[code & 7]; | |
238 | ✗ | step_i = av_clip(step_i, 0, step_max); | |
239 | |||
240 | ✗ | step = ff_dca_lfe_step_size_16[step_i]; | |
241 | ✗ | s->lfe_data[i] = value * s->lfe_scale; | |
242 | } | ||
243 | |||
244 | ✗ | return 0; | |
245 | } | ||
246 | |||
247 | ✗ | static int parse_lfe_chunk(DCALbrDecoder *s, LBRChunk *chunk) | |
248 | { | ||
249 | int ret; | ||
250 | |||
251 | ✗ | if (!(s->flags & LBR_FLAG_LFE_PRESENT)) | |
252 | ✗ | return 0; | |
253 | |||
254 | ✗ | if (!chunk->len) | |
255 | ✗ | return 0; | |
256 | |||
257 | ✗ | ret = init_get_bits8(&s->gb, chunk->data, chunk->len); | |
258 | ✗ | if (ret < 0) | |
259 | ✗ | return ret; | |
260 | |||
261 | // Determine bit depth from chunk size | ||
262 | ✗ | if (chunk->len >= 52) | |
263 | ✗ | return parse_lfe_24(s); | |
264 | ✗ | if (chunk->len >= 35) | |
265 | ✗ | return parse_lfe_16(s); | |
266 | |||
267 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "LFE chunk too short\n"); | |
268 | ✗ | return AVERROR_INVALIDDATA; | |
269 | } | ||
270 | |||
271 | ✗ | static inline int parse_vlc(GetBitContext *s, const VLC *vlc, | |
272 | int nb_bits, int max_depth) | ||
273 | { | ||
274 | ✗ | int v = get_vlc2(s, vlc->table, nb_bits, max_depth); | |
275 | ✗ | if (v >= 0) | |
276 | ✗ | return v; | |
277 | // Rare value | ||
278 | ✗ | return get_bits(s, get_bits(s, 3) + 1); | |
279 | } | ||
280 | |||
281 | ✗ | static int parse_tonal(DCALbrDecoder *s, int group) | |
282 | { | ||
283 | unsigned int amp[DCA_LBR_CHANNELS_TOTAL]; | ||
284 | unsigned int phs[DCA_LBR_CHANNELS_TOTAL]; | ||
285 | unsigned int diff, main_amp, shift; | ||
286 | int sf, sf_idx, ch, main_ch, freq; | ||
287 | ✗ | int ch_nbits = av_ceil_log2(s->nchannels_total); | |
288 | |||
289 | // Parse subframes for this group | ||
290 | ✗ | for (sf = 0; sf < 1 << group; sf += diff ? 8 : 1) { | |
291 | ✗ | sf_idx = ((s->framenum << group) + sf) & 31; | |
292 | ✗ | s->tonal_bounds[group][sf_idx][0] = s->ntones; | |
293 | |||
294 | // Parse tones for this subframe | ||
295 | ✗ | for (freq = 1;; freq++) { | |
296 | ✗ | if (get_bits_left(&s->gb) < 1) { | |
297 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Tonal group chunk too short\n"); | |
298 | ✗ | return AVERROR_INVALIDDATA; | |
299 | } | ||
300 | |||
301 | ✗ | diff = parse_vlc(&s->gb, &ff_dca_vlc_tnl_grp[group], DCA_TNL_GRP_VLC_BITS, 2); | |
302 | ✗ | if (diff >= FF_ARRAY_ELEMS(ff_dca_fst_amp)) { | |
303 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid tonal frequency diff\n"); | |
304 | ✗ | return AVERROR_INVALIDDATA; | |
305 | } | ||
306 | |||
307 | ✗ | diff = get_bitsz(&s->gb, diff >> 2) + ff_dca_fst_amp[diff]; | |
308 | ✗ | if (diff <= 1) | |
309 | ✗ | break; // End of subframe | |
310 | |||
311 | ✗ | freq += diff - 2; | |
312 | ✗ | if (freq >> (5 - group) > s->nsubbands * 4 - 6) { | |
313 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid spectral line offset\n"); | |
314 | ✗ | return AVERROR_INVALIDDATA; | |
315 | } | ||
316 | |||
317 | // Main channel | ||
318 | ✗ | main_ch = get_bitsz(&s->gb, ch_nbits); | |
319 | ✗ | main_amp = parse_vlc(&s->gb, &ff_dca_vlc_tnl_scf, DCA_TNL_SCF_VLC_BITS, 2) | |
320 | ✗ | + s->tonal_scf[ff_dca_freq_to_sb[freq >> (7 - group)]] | |
321 | ✗ | + s->limited_range - 2; | |
322 | ✗ | amp[main_ch] = main_amp < AMP_MAX ? main_amp : 0; | |
323 | ✗ | phs[main_ch] = get_bits(&s->gb, 3); | |
324 | |||
325 | // Secondary channels | ||
326 | ✗ | for (ch = 0; ch < s->nchannels_total; ch++) { | |
327 | ✗ | if (ch == main_ch) | |
328 | ✗ | continue; | |
329 | ✗ | if (get_bits1(&s->gb)) { | |
330 | ✗ | amp[ch] = amp[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_damp, DCA_DAMP_VLC_BITS, 1); | |
331 | ✗ | phs[ch] = phs[main_ch] - parse_vlc(&s->gb, &ff_dca_vlc_dph, DCA_DPH_VLC_BITS, 1); | |
332 | } else { | ||
333 | ✗ | amp[ch] = 0; | |
334 | ✗ | phs[ch] = 0; | |
335 | } | ||
336 | } | ||
337 | |||
338 | ✗ | if (amp[main_ch]) { | |
339 | // Allocate new tone | ||
340 | ✗ | DCALbrTone *t = &s->tones[s->ntones]; | |
341 | ✗ | s->ntones = (s->ntones + 1) & (DCA_LBR_TONES - 1); | |
342 | |||
343 | ✗ | t->x_freq = freq >> (5 - group); | |
344 | ✗ | t->f_delt = (freq & ((1 << (5 - group)) - 1)) << group; | |
345 | ✗ | t->ph_rot = 256 - (t->x_freq & 1) * 128 - t->f_delt * 4; | |
346 | |||
347 | ✗ | shift = ff_dca_ph0_shift[(t->x_freq & 3) * 2 + (freq & 1)] | |
348 | ✗ | - ((t->ph_rot << (5 - group)) - t->ph_rot); | |
349 | |||
350 | ✗ | for (ch = 0; ch < s->nchannels; ch++) { | |
351 | ✗ | t->amp[ch] = amp[ch] < AMP_MAX ? amp[ch] : 0; | |
352 | ✗ | t->phs[ch] = 128 - phs[ch] * 32 + shift; | |
353 | } | ||
354 | } | ||
355 | } | ||
356 | |||
357 | ✗ | s->tonal_bounds[group][sf_idx][1] = s->ntones; | |
358 | } | ||
359 | |||
360 | ✗ | return 0; | |
361 | } | ||
362 | |||
363 | ✗ | static int parse_tonal_chunk(DCALbrDecoder *s, LBRChunk *chunk) | |
364 | { | ||
365 | int sb, group, ret; | ||
366 | |||
367 | ✗ | if (!chunk->len) | |
368 | ✗ | return 0; | |
369 | |||
370 | ✗ | ret = init_get_bits8(&s->gb, chunk->data, chunk->len); | |
371 | |||
372 | ✗ | if (ret < 0) | |
373 | ✗ | return ret; | |
374 | |||
375 | // Scale factors | ||
376 | ✗ | if (chunk->id == LBR_CHUNK_SCF || chunk->id == LBR_CHUNK_TONAL_SCF) { | |
377 | ✗ | if (get_bits_left(&s->gb) < 36) { | |
378 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Tonal scale factor chunk too short\n"); | |
379 | ✗ | return AVERROR_INVALIDDATA; | |
380 | } | ||
381 | ✗ | for (sb = 0; sb < 6; sb++) | |
382 | ✗ | s->tonal_scf[sb] = get_bits(&s->gb, 6); | |
383 | } | ||
384 | |||
385 | // Tonal groups | ||
386 | ✗ | if (chunk->id == LBR_CHUNK_TONAL || chunk->id == LBR_CHUNK_TONAL_SCF) | |
387 | ✗ | for (group = 0; group < 5; group++) { | |
388 | ✗ | ret = parse_tonal(s, group); | |
389 | ✗ | if (ret < 0) | |
390 | ✗ | return ret; | |
391 | } | ||
392 | |||
393 | ✗ | return 0; | |
394 | } | ||
395 | |||
396 | ✗ | static int parse_tonal_group(DCALbrDecoder *s, LBRChunk *chunk) | |
397 | { | ||
398 | int ret; | ||
399 | |||
400 | ✗ | if (!chunk->len) | |
401 | ✗ | return 0; | |
402 | |||
403 | ✗ | ret = init_get_bits8(&s->gb, chunk->data, chunk->len); | |
404 | ✗ | if (ret < 0) | |
405 | ✗ | return ret; | |
406 | |||
407 | ✗ | return parse_tonal(s, chunk->id); | |
408 | } | ||
409 | |||
410 | /** | ||
411 | * Check point to ensure that enough bits are left. Aborts decoding | ||
412 | * by skipping to the end of chunk otherwise. | ||
413 | */ | ||
414 | ✗ | static int ensure_bits(GetBitContext *s, int n) | |
415 | { | ||
416 | ✗ | int left = get_bits_left(s); | |
417 | ✗ | if (left < 0) | |
418 | ✗ | return AVERROR_INVALIDDATA; | |
419 | ✗ | if (left < n) { | |
420 | ✗ | skip_bits_long(s, left); | |
421 | ✗ | return 1; | |
422 | } | ||
423 | ✗ | return 0; | |
424 | } | ||
425 | |||
426 | ✗ | static int parse_scale_factors(DCALbrDecoder *s, uint8_t *scf) | |
427 | { | ||
428 | int i, sf, prev, next, dist; | ||
429 | |||
430 | // Truncated scale factors remain zero | ||
431 | ✗ | if (ensure_bits(&s->gb, 20)) | |
432 | ✗ | return 0; | |
433 | |||
434 | // Initial scale factor | ||
435 | ✗ | prev = parse_vlc(&s->gb, &ff_dca_vlc_fst_rsd_amp, DCA_FST_RSD_VLC_BITS, 2); | |
436 | |||
437 | ✗ | for (sf = 0; sf < 7; sf += dist) { | |
438 | ✗ | scf[sf] = prev; // Store previous value | |
439 | |||
440 | ✗ | if (ensure_bits(&s->gb, 20)) | |
441 | ✗ | return 0; | |
442 | |||
443 | // Interpolation distance | ||
444 | ✗ | dist = parse_vlc(&s->gb, &ff_dca_vlc_rsd_apprx, DCA_RSD_APPRX_VLC_BITS, 1) + 1; | |
445 | ✗ | if (dist > 7 - sf) { | |
446 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid scale factor distance\n"); | |
447 | ✗ | return AVERROR_INVALIDDATA; | |
448 | } | ||
449 | |||
450 | ✗ | if (ensure_bits(&s->gb, 20)) | |
451 | ✗ | return 0; | |
452 | |||
453 | // Final interpolation point | ||
454 | ✗ | next = parse_vlc(&s->gb, &ff_dca_vlc_rsd_amp, DCA_RSD_AMP_VLC_BITS, 2); | |
455 | |||
456 | ✗ | if (next & 1) | |
457 | ✗ | next = prev + ((next + 1) >> 1); | |
458 | else | ||
459 | ✗ | next = prev - ( next >> 1); | |
460 | |||
461 | // Interpolate | ||
462 | ✗ | switch (dist) { | |
463 | ✗ | case 2: | |
464 | ✗ | if (next > prev) | |
465 | ✗ | scf[sf + 1] = prev + ((next - prev) >> 1); | |
466 | else | ||
467 | ✗ | scf[sf + 1] = prev - ((prev - next) >> 1); | |
468 | ✗ | break; | |
469 | |||
470 | ✗ | case 4: | |
471 | ✗ | if (next > prev) { | |
472 | ✗ | scf[sf + 1] = prev + ( (next - prev) >> 2); | |
473 | ✗ | scf[sf + 2] = prev + ( (next - prev) >> 1); | |
474 | ✗ | scf[sf + 3] = prev + (((next - prev) * 3) >> 2); | |
475 | } else { | ||
476 | ✗ | scf[sf + 1] = prev - ( (prev - next) >> 2); | |
477 | ✗ | scf[sf + 2] = prev - ( (prev - next) >> 1); | |
478 | ✗ | scf[sf + 3] = prev - (((prev - next) * 3) >> 2); | |
479 | } | ||
480 | ✗ | break; | |
481 | |||
482 | ✗ | default: | |
483 | ✗ | for (i = 1; i < dist; i++) | |
484 | ✗ | scf[sf + i] = prev + (next - prev) * i / dist; | |
485 | ✗ | break; | |
486 | } | ||
487 | |||
488 | ✗ | prev = next; | |
489 | } | ||
490 | |||
491 | ✗ | scf[sf] = next; // Store final value | |
492 | |||
493 | ✗ | return 0; | |
494 | } | ||
495 | |||
496 | ✗ | static int parse_st_code(GetBitContext *s, int min_v) | |
497 | { | ||
498 | ✗ | unsigned int v = parse_vlc(s, &ff_dca_vlc_st_grid, DCA_ST_GRID_VLC_BITS, 2) + min_v; | |
499 | |||
500 | ✗ | if (v & 1) | |
501 | ✗ | v = 16 + (v >> 1); | |
502 | else | ||
503 | ✗ | v = 16 - (v >> 1); | |
504 | |||
505 | ✗ | if (v >= FF_ARRAY_ELEMS(ff_dca_st_coeff)) | |
506 | ✗ | v = 16; | |
507 | ✗ | return v; | |
508 | } | ||
509 | |||
510 | ✗ | static int parse_grid_1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2) | |
511 | { | ||
512 | int ch, sb, sf, nsubbands, ret; | ||
513 | |||
514 | ✗ | if (!chunk->len) | |
515 | ✗ | return 0; | |
516 | |||
517 | ✗ | ret = init_get_bits8(&s->gb, chunk->data, chunk->len); | |
518 | ✗ | if (ret < 0) | |
519 | ✗ | return ret; | |
520 | |||
521 | // Scale factors | ||
522 | ✗ | nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1; | |
523 | ✗ | for (sb = 2; sb < nsubbands; sb++) { | |
524 | ✗ | ret = parse_scale_factors(s, s->grid_1_scf[ch1][sb]); | |
525 | ✗ | if (ret < 0) | |
526 | ✗ | return ret; | |
527 | ✗ | if (ch1 != ch2 && ff_dca_grid_1_to_scf[sb] < s->min_mono_subband) { | |
528 | ✗ | ret = parse_scale_factors(s, s->grid_1_scf[ch2][sb]); | |
529 | ✗ | if (ret < 0) | |
530 | ✗ | return ret; | |
531 | } | ||
532 | } | ||
533 | |||
534 | ✗ | if (get_bits_left(&s->gb) < 1) | |
535 | ✗ | return 0; // Should not happen, but a sample exists that proves otherwise | |
536 | |||
537 | // Average values for third grid | ||
538 | ✗ | for (sb = 0; sb < s->nsubbands - 4; sb++) { | |
539 | ✗ | s->grid_3_avg[ch1][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, DCA_AVG_G3_VLC_BITS, 2) - 16; | |
540 | ✗ | if (ch1 != ch2) { | |
541 | ✗ | if (sb + 4 < s->min_mono_subband) | |
542 | ✗ | s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, DCA_AVG_G3_VLC_BITS, 2) - 16; | |
543 | else | ||
544 | ✗ | s->grid_3_avg[ch2][sb] = s->grid_3_avg[ch1][sb]; | |
545 | } | ||
546 | } | ||
547 | |||
548 | ✗ | if (get_bits_left(&s->gb) < 0) { | |
549 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "First grid chunk too short\n"); | |
550 | ✗ | return AVERROR_INVALIDDATA; | |
551 | } | ||
552 | |||
553 | // Stereo image for partial mono mode | ||
554 | ✗ | if (ch1 != ch2) { | |
555 | int min_v[2]; | ||
556 | |||
557 | ✗ | if (ensure_bits(&s->gb, 8)) | |
558 | ✗ | return 0; | |
559 | |||
560 | ✗ | min_v[0] = get_bits(&s->gb, 4); | |
561 | ✗ | min_v[1] = get_bits(&s->gb, 4); | |
562 | |||
563 | ✗ | nsubbands = (s->nsubbands - s->min_mono_subband + 3) / 4; | |
564 | ✗ | for (sb = 0; sb < nsubbands; sb++) | |
565 | ✗ | for (ch = ch1; ch <= ch2; ch++) | |
566 | ✗ | for (sf = 1; sf <= 4; sf++) | |
567 | ✗ | s->part_stereo[ch][sb][sf] = parse_st_code(&s->gb, min_v[ch - ch1]); | |
568 | |||
569 | ✗ | if (get_bits_left(&s->gb) >= 0) | |
570 | ✗ | s->part_stereo_pres |= 1 << ch1; | |
571 | } | ||
572 | |||
573 | // Low resolution spatial information is not decoded | ||
574 | |||
575 | ✗ | return 0; | |
576 | } | ||
577 | |||
578 | ✗ | static int parse_grid_1_sec_ch(DCALbrDecoder *s, int ch2) | |
579 | { | ||
580 | int sb, nsubbands, ret; | ||
581 | |||
582 | // Scale factors | ||
583 | ✗ | nsubbands = ff_dca_scf_to_grid_1[s->nsubbands - 1] + 1; | |
584 | ✗ | for (sb = 2; sb < nsubbands; sb++) { | |
585 | ✗ | if (ff_dca_grid_1_to_scf[sb] >= s->min_mono_subband) { | |
586 | ✗ | ret = parse_scale_factors(s, s->grid_1_scf[ch2][sb]); | |
587 | ✗ | if (ret < 0) | |
588 | ✗ | return ret; | |
589 | } | ||
590 | } | ||
591 | |||
592 | // Average values for third grid | ||
593 | ✗ | for (sb = 0; sb < s->nsubbands - 4; sb++) { | |
594 | ✗ | if (sb + 4 >= s->min_mono_subband) { | |
595 | ✗ | if (ensure_bits(&s->gb, 20)) | |
596 | ✗ | return 0; | |
597 | ✗ | s->grid_3_avg[ch2][sb] = parse_vlc(&s->gb, &ff_dca_vlc_avg_g3, DCA_AVG_G3_VLC_BITS, 2) - 16; | |
598 | } | ||
599 | } | ||
600 | |||
601 | ✗ | return 0; | |
602 | } | ||
603 | |||
604 | ✗ | static void parse_grid_3(DCALbrDecoder *s, int ch1, int ch2, int sb, int flag) | |
605 | { | ||
606 | int i, ch; | ||
607 | |||
608 | ✗ | for (ch = ch1; ch <= ch2; ch++) { | |
609 | ✗ | if ((ch != ch1 && sb + 4 >= s->min_mono_subband) != flag) | |
610 | ✗ | continue; | |
611 | |||
612 | ✗ | if (s->grid_3_pres[ch] & (1U << sb)) | |
613 | ✗ | continue; // Already parsed | |
614 | |||
615 | ✗ | for (i = 0; i < 8; i++) { | |
616 | ✗ | if (ensure_bits(&s->gb, 20)) | |
617 | ✗ | return; | |
618 | ✗ | s->grid_3_scf[ch][sb][i] = parse_vlc(&s->gb, &ff_dca_vlc_grid_3, DCA_GRID_VLC_BITS, 2) - 16; | |
619 | } | ||
620 | |||
621 | // Flag scale factors for this subband parsed | ||
622 | ✗ | s->grid_3_pres[ch] |= 1U << sb; | |
623 | } | ||
624 | } | ||
625 | |||
626 | ✗ | static float lbr_rand(DCALbrDecoder *s, int sb) | |
627 | { | ||
628 | ✗ | s->lbr_rand = 1103515245U * s->lbr_rand + 12345U; | |
629 | ✗ | return s->lbr_rand * s->sb_scf[sb]; | |
630 | } | ||
631 | |||
632 | /** | ||
633 | * Parse time samples for one subband, filling truncated samples with randomness | ||
634 | */ | ||
635 | ✗ | static void parse_ch(DCALbrDecoder *s, int ch, int sb, int quant_level, int flag) | |
636 | { | ||
637 | ✗ | float *samples = s->time_samples[ch][sb]; | |
638 | int i, j, code, nblocks, coding_method; | ||
639 | |||
640 | ✗ | if (ensure_bits(&s->gb, 20)) | |
641 | ✗ | return; // Too few bits left | |
642 | |||
643 | ✗ | coding_method = get_bits1(&s->gb); | |
644 | |||
645 | ✗ | switch (quant_level) { | |
646 | ✗ | case 1: | |
647 | ✗ | nblocks = FFMIN(get_bits_left(&s->gb) / 8, DCA_LBR_TIME_SAMPLES / 8); | |
648 | ✗ | for (i = 0; i < nblocks; i++, samples += 8) { | |
649 | ✗ | code = get_bits(&s->gb, 8); | |
650 | ✗ | for (j = 0; j < 8; j++) | |
651 | ✗ | samples[j] = ff_dca_rsd_level_2a[(code >> j) & 1]; | |
652 | } | ||
653 | ✗ | i = nblocks * 8; | |
654 | ✗ | break; | |
655 | |||
656 | ✗ | case 2: | |
657 | ✗ | if (coding_method) { | |
658 | ✗ | for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 2; i++) { | |
659 | ✗ | if (get_bits1(&s->gb)) | |
660 | ✗ | samples[i] = ff_dca_rsd_level_2b[get_bits1(&s->gb)]; | |
661 | else | ||
662 | ✗ | samples[i] = 0; | |
663 | } | ||
664 | } else { | ||
665 | ✗ | nblocks = FFMIN(get_bits_left(&s->gb) / 8, (DCA_LBR_TIME_SAMPLES + 4) / 5); | |
666 | ✗ | for (i = 0; i < nblocks; i++, samples += 5) { | |
667 | ✗ | code = ff_dca_rsd_pack_5_in_8[get_bits(&s->gb, 8)]; | |
668 | ✗ | for (j = 0; j < 5; j++) | |
669 | ✗ | samples[j] = ff_dca_rsd_level_3[(code >> j * 2) & 3]; | |
670 | } | ||
671 | ✗ | i = nblocks * 5; | |
672 | } | ||
673 | ✗ | break; | |
674 | |||
675 | ✗ | case 3: | |
676 | ✗ | nblocks = FFMIN(get_bits_left(&s->gb) / 7, (DCA_LBR_TIME_SAMPLES + 2) / 3); | |
677 | ✗ | for (i = 0; i < nblocks; i++, samples += 3) { | |
678 | ✗ | code = get_bits(&s->gb, 7); | |
679 | ✗ | for (j = 0; j < 3; j++) | |
680 | ✗ | samples[j] = ff_dca_rsd_level_5[ff_dca_rsd_pack_3_in_7[code][j]]; | |
681 | } | ||
682 | ✗ | i = nblocks * 3; | |
683 | ✗ | break; | |
684 | |||
685 | ✗ | case 4: | |
686 | ✗ | for (i = 0; i < DCA_LBR_TIME_SAMPLES && get_bits_left(&s->gb) >= 6; i++) | |
687 | ✗ | samples[i] = ff_dca_rsd_level_8[get_vlc2(&s->gb, ff_dca_vlc_rsd.table, 6, 1)]; | |
688 | ✗ | break; | |
689 | |||
690 | ✗ | case 5: | |
691 | ✗ | nblocks = FFMIN(get_bits_left(&s->gb) / 4, DCA_LBR_TIME_SAMPLES); | |
692 | ✗ | for (i = 0; i < nblocks; i++) | |
693 | ✗ | samples[i] = ff_dca_rsd_level_16[get_bits(&s->gb, 4)]; | |
694 | ✗ | break; | |
695 | |||
696 | ✗ | default: | |
697 | ✗ | av_assert0(0); | |
698 | } | ||
699 | |||
700 | ✗ | if (flag && get_bits_left(&s->gb) < 20) | |
701 | ✗ | return; // Skip incomplete mono subband | |
702 | |||
703 | ✗ | for (; i < DCA_LBR_TIME_SAMPLES; i++) | |
704 | ✗ | s->time_samples[ch][sb][i] = lbr_rand(s, sb); | |
705 | |||
706 | ✗ | s->ch_pres[ch] |= 1U << sb; | |
707 | } | ||
708 | |||
709 | ✗ | static int parse_ts(DCALbrDecoder *s, int ch1, int ch2, | |
710 | int start_sb, int end_sb, int flag) | ||
711 | { | ||
712 | int sb, sb_g3, sb_reorder, quant_level; | ||
713 | |||
714 | ✗ | for (sb = start_sb; sb < end_sb; sb++) { | |
715 | // Subband number before reordering | ||
716 | ✗ | if (sb < 6) { | |
717 | ✗ | sb_reorder = sb; | |
718 | ✗ | } else if (flag && sb < s->max_mono_subband) { | |
719 | ✗ | sb_reorder = s->sb_indices[sb]; | |
720 | } else { | ||
721 | ✗ | if (ensure_bits(&s->gb, 28)) | |
722 | ✗ | break; | |
723 | ✗ | sb_reorder = get_bits(&s->gb, s->limited_range + 3); | |
724 | ✗ | if (sb_reorder < 6) | |
725 | ✗ | sb_reorder = 6; | |
726 | ✗ | s->sb_indices[sb] = sb_reorder; | |
727 | } | ||
728 | ✗ | if (sb_reorder >= s->nsubbands) | |
729 | ✗ | return AVERROR_INVALIDDATA; | |
730 | |||
731 | // Third grid scale factors | ||
732 | ✗ | if (sb == 12) { | |
733 | ✗ | for (sb_g3 = 0; sb_g3 < s->g3_avg_only_start_sb - 4; sb_g3++) | |
734 | ✗ | parse_grid_3(s, ch1, ch2, sb_g3, flag); | |
735 | ✗ | } else if (sb < 12 && sb_reorder >= 4) { | |
736 | ✗ | parse_grid_3(s, ch1, ch2, sb_reorder - 4, flag); | |
737 | } | ||
738 | |||
739 | // Secondary channel flags | ||
740 | ✗ | if (ch1 != ch2) { | |
741 | ✗ | if (ensure_bits(&s->gb, 20)) | |
742 | ✗ | break; | |
743 | ✗ | if (!flag || sb_reorder >= s->max_mono_subband) | |
744 | ✗ | s->sec_ch_sbms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8); | |
745 | ✗ | if (flag && sb_reorder >= s->min_mono_subband) | |
746 | ✗ | s->sec_ch_lrms[ch1 / 2][sb_reorder] = get_bits(&s->gb, 8); | |
747 | } | ||
748 | |||
749 | ✗ | quant_level = s->quant_levels[ch1 / 2][sb]; | |
750 | ✗ | if (!quant_level) | |
751 | ✗ | return AVERROR_INVALIDDATA; | |
752 | |||
753 | // Time samples for one or both channels | ||
754 | ✗ | if (sb < s->max_mono_subband && sb_reorder >= s->min_mono_subband) { | |
755 | ✗ | if (!flag) | |
756 | ✗ | parse_ch(s, ch1, sb_reorder, quant_level, 0); | |
757 | ✗ | else if (ch1 != ch2) | |
758 | ✗ | parse_ch(s, ch2, sb_reorder, quant_level, 1); | |
759 | } else { | ||
760 | ✗ | parse_ch(s, ch1, sb_reorder, quant_level, 0); | |
761 | ✗ | if (ch1 != ch2) | |
762 | ✗ | parse_ch(s, ch2, sb_reorder, quant_level, 0); | |
763 | } | ||
764 | } | ||
765 | |||
766 | ✗ | return 0; | |
767 | } | ||
768 | |||
769 | /** | ||
770 | * Convert from reflection coefficients to direct form coefficients | ||
771 | */ | ||
772 | ✗ | static void convert_lpc(float *coeff, const int *codes) | |
773 | { | ||
774 | int i, j; | ||
775 | |||
776 | ✗ | for (i = 0; i < 8; i++) { | |
777 | ✗ | float rc = lpc_tab[codes[i]]; | |
778 | ✗ | for (j = 0; j < (i + 1) / 2; j++) { | |
779 | ✗ | float tmp1 = coeff[ j ]; | |
780 | ✗ | float tmp2 = coeff[i - j - 1]; | |
781 | ✗ | coeff[ j ] = tmp1 + rc * tmp2; | |
782 | ✗ | coeff[i - j - 1] = tmp2 + rc * tmp1; | |
783 | } | ||
784 | ✗ | coeff[i] = rc; | |
785 | } | ||
786 | ✗ | } | |
787 | |||
788 | ✗ | static int parse_lpc(DCALbrDecoder *s, int ch1, int ch2, int start_sb, int end_sb) | |
789 | { | ||
790 | ✗ | int f = s->framenum & 1; | |
791 | int i, sb, ch, codes[16]; | ||
792 | |||
793 | // First two subbands have two sets of coefficients, third subband has one | ||
794 | ✗ | for (sb = start_sb; sb < end_sb; sb++) { | |
795 | ✗ | int ncodes = 8 * (1 + (sb < 2)); | |
796 | ✗ | for (ch = ch1; ch <= ch2; ch++) { | |
797 | ✗ | if (ensure_bits(&s->gb, 4 * ncodes)) | |
798 | ✗ | return 0; | |
799 | ✗ | for (i = 0; i < ncodes; i++) | |
800 | ✗ | codes[i] = get_bits(&s->gb, 4); | |
801 | ✗ | for (i = 0; i < ncodes / 8; i++) | |
802 | ✗ | convert_lpc(s->lpc_coeff[f][ch][sb][i], &codes[i * 8]); | |
803 | } | ||
804 | } | ||
805 | |||
806 | ✗ | return 0; | |
807 | } | ||
808 | |||
809 | ✗ | static int parse_high_res_grid(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2) | |
810 | { | ||
811 | int quant_levels[DCA_LBR_SUBBANDS]; | ||
812 | int sb, ch, ol, st, max_sb, profile, ret; | ||
813 | |||
814 | ✗ | if (!chunk->len) | |
815 | ✗ | return 0; | |
816 | |||
817 | ✗ | ret = init_get_bits8(&s->gb, chunk->data, chunk->len); | |
818 | ✗ | if (ret < 0) | |
819 | ✗ | return ret; | |
820 | |||
821 | // Quantizer profile | ||
822 | ✗ | profile = get_bits(&s->gb, 8); | |
823 | // Overall level | ||
824 | ✗ | ol = (profile >> 3) & 7; | |
825 | // Steepness | ||
826 | ✗ | st = profile >> 6; | |
827 | // Max energy subband | ||
828 | ✗ | max_sb = profile & 7; | |
829 | |||
830 | // Calculate quantization levels | ||
831 | ✗ | for (sb = 0; sb < s->nsubbands; sb++) { | |
832 | ✗ | int f = sb * s->limited_rate / s->nsubbands; | |
833 | ✗ | int a = 18000 / (12 * f / 1000 + 100 + 40 * st) + 20 * ol; | |
834 | ✗ | if (a <= 95) | |
835 | ✗ | quant_levels[sb] = 1; | |
836 | ✗ | else if (a <= 140) | |
837 | ✗ | quant_levels[sb] = 2; | |
838 | ✗ | else if (a <= 180) | |
839 | ✗ | quant_levels[sb] = 3; | |
840 | ✗ | else if (a <= 230) | |
841 | ✗ | quant_levels[sb] = 4; | |
842 | else | ||
843 | ✗ | quant_levels[sb] = 5; | |
844 | } | ||
845 | |||
846 | // Reorder quantization levels for lower subbands | ||
847 | ✗ | for (sb = 0; sb < 8; sb++) | |
848 | ✗ | s->quant_levels[ch1 / 2][sb] = quant_levels[ff_dca_sb_reorder[max_sb][sb]]; | |
849 | ✗ | for (; sb < s->nsubbands; sb++) | |
850 | ✗ | s->quant_levels[ch1 / 2][sb] = quant_levels[sb]; | |
851 | |||
852 | // LPC for the first two subbands | ||
853 | ✗ | ret = parse_lpc(s, ch1, ch2, 0, 2); | |
854 | ✗ | if (ret < 0) | |
855 | ✗ | return ret; | |
856 | |||
857 | // Time-samples for the first two subbands of main channel | ||
858 | ✗ | ret = parse_ts(s, ch1, ch2, 0, 2, 0); | |
859 | ✗ | if (ret < 0) | |
860 | ✗ | return ret; | |
861 | |||
862 | // First two bands of the first grid | ||
863 | ✗ | for (sb = 0; sb < 2; sb++) | |
864 | ✗ | for (ch = ch1; ch <= ch2; ch++) | |
865 | ✗ | if ((ret = parse_scale_factors(s, s->grid_1_scf[ch][sb])) < 0) | |
866 | ✗ | return ret; | |
867 | |||
868 | ✗ | return 0; | |
869 | } | ||
870 | |||
871 | ✗ | static int parse_grid_2(DCALbrDecoder *s, int ch1, int ch2, | |
872 | int start_sb, int end_sb, int flag) | ||
873 | { | ||
874 | int i, j, sb, ch, nsubbands; | ||
875 | |||
876 | ✗ | nsubbands = ff_dca_scf_to_grid_2[s->nsubbands - 1] + 1; | |
877 | ✗ | if (end_sb > nsubbands) | |
878 | ✗ | end_sb = nsubbands; | |
879 | |||
880 | ✗ | for (sb = start_sb; sb < end_sb; sb++) { | |
881 | ✗ | for (ch = ch1; ch <= ch2; ch++) { | |
882 | ✗ | uint8_t *g2_scf = s->grid_2_scf[ch][sb]; | |
883 | |||
884 | ✗ | if ((ch != ch1 && ff_dca_grid_2_to_scf[sb] >= s->min_mono_subband) != flag) { | |
885 | ✗ | if (!flag) | |
886 | ✗ | memcpy(g2_scf, s->grid_2_scf[ch1][sb], 64); | |
887 | ✗ | continue; | |
888 | } | ||
889 | |||
890 | // Scale factors in groups of 8 | ||
891 | ✗ | for (i = 0; i < 8; i++, g2_scf += 8) { | |
892 | ✗ | if (get_bits_left(&s->gb) < 1) { | |
893 | ✗ | memset(g2_scf, 0, 64 - i * 8); | |
894 | ✗ | break; | |
895 | } | ||
896 | // Bit indicating if whole group has zero values | ||
897 | ✗ | if (get_bits1(&s->gb)) { | |
898 | ✗ | for (j = 0; j < 8; j++) { | |
899 | ✗ | if (ensure_bits(&s->gb, 20)) | |
900 | ✗ | break; | |
901 | ✗ | g2_scf[j] = parse_vlc(&s->gb, &ff_dca_vlc_grid_2, DCA_GRID_VLC_BITS, 2); | |
902 | } | ||
903 | } else { | ||
904 | ✗ | memset(g2_scf, 0, 8); | |
905 | } | ||
906 | } | ||
907 | } | ||
908 | } | ||
909 | |||
910 | ✗ | return 0; | |
911 | } | ||
912 | |||
913 | ✗ | static int parse_ts1_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2) | |
914 | { | ||
915 | int ret; | ||
916 | ✗ | if (!chunk->len) | |
917 | ✗ | return 0; | |
918 | ✗ | if ((ret = init_get_bits8(&s->gb, chunk->data, chunk->len)) < 0) | |
919 | ✗ | return ret; | |
920 | ✗ | if ((ret = parse_lpc(s, ch1, ch2, 2, 3)) < 0) | |
921 | ✗ | return ret; | |
922 | ✗ | if ((ret = parse_ts(s, ch1, ch2, 2, 4, 0)) < 0) | |
923 | ✗ | return ret; | |
924 | ✗ | if ((ret = parse_grid_2(s, ch1, ch2, 0, 1, 0)) < 0) | |
925 | ✗ | return ret; | |
926 | ✗ | if ((ret = parse_ts(s, ch1, ch2, 4, 6, 0)) < 0) | |
927 | ✗ | return ret; | |
928 | ✗ | return 0; | |
929 | } | ||
930 | |||
931 | ✗ | static int parse_ts2_chunk(DCALbrDecoder *s, LBRChunk *chunk, int ch1, int ch2) | |
932 | { | ||
933 | int ret; | ||
934 | |||
935 | ✗ | if (!chunk->len) | |
936 | ✗ | return 0; | |
937 | ✗ | if ((ret = init_get_bits8(&s->gb, chunk->data, chunk->len)) < 0) | |
938 | ✗ | return ret; | |
939 | ✗ | if ((ret = parse_grid_2(s, ch1, ch2, 1, 3, 0)) < 0) | |
940 | ✗ | return ret; | |
941 | ✗ | if ((ret = parse_ts(s, ch1, ch2, 6, s->max_mono_subband, 0)) < 0) | |
942 | ✗ | return ret; | |
943 | ✗ | if (ch1 != ch2) { | |
944 | ✗ | if ((ret = parse_grid_1_sec_ch(s, ch2)) < 0) | |
945 | ✗ | return ret; | |
946 | ✗ | if ((ret = parse_grid_2(s, ch1, ch2, 0, 3, 1)) < 0) | |
947 | ✗ | return ret; | |
948 | } | ||
949 | ✗ | if ((ret = parse_ts(s, ch1, ch2, s->min_mono_subband, s->nsubbands, 1)) < 0) | |
950 | ✗ | return ret; | |
951 | ✗ | return 0; | |
952 | } | ||
953 | |||
954 | ✗ | static int init_sample_rate(DCALbrDecoder *s) | |
955 | { | ||
956 | ✗ | double scale = (-1.0 / (1 << 17)) * sqrt(1 << (2 - s->limited_range)); | |
957 | ✗ | float scale_t = scale; | |
958 | ✗ | int i, br_per_ch = s->bit_rate_scaled / s->nchannels_total; | |
959 | int ret; | ||
960 | |||
961 | ✗ | av_tx_uninit(&s->imdct); | |
962 | |||
963 | ✗ | ret = av_tx_init(&s->imdct, &s->imdct_fn, AV_TX_FLOAT_MDCT, 1, | |
964 | ✗ | 1 << (s->freq_range + 5), &scale_t, AV_TX_FULL_IMDCT); | |
965 | ✗ | if (ret < 0) | |
966 | ✗ | return ret; | |
967 | |||
968 | ✗ | for (i = 0; i < 32 << s->freq_range; i++) | |
969 | ✗ | s->window[i] = ff_dca_long_window[i << (2 - s->freq_range)]; | |
970 | |||
971 | ✗ | if (br_per_ch < 14000) | |
972 | ✗ | scale = 0.85; | |
973 | ✗ | else if (br_per_ch < 32000) | |
974 | ✗ | scale = (br_per_ch - 14000) * (1.0 / 120000) + 0.85; | |
975 | else | ||
976 | ✗ | scale = 1.0; | |
977 | |||
978 | ✗ | scale *= 1.0 / INT_MAX; | |
979 | |||
980 | ✗ | for (i = 0; i < s->nsubbands; i++) { | |
981 | ✗ | if (i < 2) | |
982 | ✗ | s->sb_scf[i] = 0; // The first two subbands are always zero | |
983 | ✗ | else if (i < 5) | |
984 | ✗ | s->sb_scf[i] = (i - 1) * 0.25 * 0.785 * scale; | |
985 | else | ||
986 | ✗ | s->sb_scf[i] = 0.785 * scale; | |
987 | } | ||
988 | |||
989 | ✗ | s->lfe_scale = (16 << s->freq_range) * 0.0000078265894; | |
990 | |||
991 | ✗ | return 0; | |
992 | } | ||
993 | |||
994 | ✗ | static int alloc_sample_buffer(DCALbrDecoder *s) | |
995 | { | ||
996 | // Reserve space for history and padding | ||
997 | ✗ | int nchsamples = DCA_LBR_TIME_SAMPLES + DCA_LBR_TIME_HISTORY * 2; | |
998 | ✗ | int nsamples = nchsamples * s->nchannels * s->nsubbands; | |
999 | int ch, sb; | ||
1000 | float *ptr; | ||
1001 | |||
1002 | // Reallocate time sample buffer | ||
1003 | ✗ | av_fast_mallocz(&s->ts_buffer, &s->ts_size, nsamples * sizeof(float)); | |
1004 | ✗ | if (!s->ts_buffer) | |
1005 | ✗ | return AVERROR(ENOMEM); | |
1006 | |||
1007 | ✗ | ptr = s->ts_buffer + DCA_LBR_TIME_HISTORY; | |
1008 | ✗ | for (ch = 0; ch < s->nchannels; ch++) { | |
1009 | ✗ | for (sb = 0; sb < s->nsubbands; sb++) { | |
1010 | ✗ | s->time_samples[ch][sb] = ptr; | |
1011 | ✗ | ptr += nchsamples; | |
1012 | } | ||
1013 | } | ||
1014 | |||
1015 | ✗ | return 0; | |
1016 | } | ||
1017 | |||
1018 | ✗ | static int parse_decoder_init(DCALbrDecoder *s, GetByteContext *gb) | |
1019 | { | ||
1020 | ✗ | int old_rate = s->sample_rate; | |
1021 | ✗ | int old_band_limit = s->band_limit; | |
1022 | ✗ | int old_nchannels = s->nchannels; | |
1023 | int version, bit_rate_hi; | ||
1024 | unsigned int sr_code; | ||
1025 | |||
1026 | // Sample rate of LBR audio | ||
1027 | ✗ | sr_code = bytestream2_get_byte(gb); | |
1028 | ✗ | if (sr_code >= FF_ARRAY_ELEMS(ff_dca_sampling_freqs)) { | |
1029 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sample rate\n"); | |
1030 | ✗ | return AVERROR_INVALIDDATA; | |
1031 | } | ||
1032 | ✗ | s->sample_rate = ff_dca_sampling_freqs[sr_code]; | |
1033 | ✗ | if (s->sample_rate > 48000) { | |
1034 | ✗ | avpriv_report_missing_feature(s->avctx, "%d Hz LBR sample rate", s->sample_rate); | |
1035 | ✗ | return AVERROR_PATCHWELCOME; | |
1036 | } | ||
1037 | |||
1038 | // LBR speaker mask | ||
1039 | ✗ | s->ch_mask = bytestream2_get_le16(gb); | |
1040 | ✗ | if (!(s->ch_mask & 0x7)) { | |
1041 | ✗ | avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask); | |
1042 | ✗ | return AVERROR_PATCHWELCOME; | |
1043 | } | ||
1044 | ✗ | if ((s->ch_mask & 0xfff0) && !(s->warned & 1)) { | |
1045 | ✗ | avpriv_report_missing_feature(s->avctx, "LBR channel mask %#x", s->ch_mask); | |
1046 | ✗ | s->warned |= 1; | |
1047 | } | ||
1048 | |||
1049 | // LBR bitstream version | ||
1050 | ✗ | version = bytestream2_get_le16(gb); | |
1051 | ✗ | if ((version & 0xff00) != 0x0800) { | |
1052 | ✗ | avpriv_report_missing_feature(s->avctx, "LBR stream version %#x", version); | |
1053 | ✗ | return AVERROR_PATCHWELCOME; | |
1054 | } | ||
1055 | |||
1056 | // Flags for LBR decoder initialization | ||
1057 | ✗ | s->flags = bytestream2_get_byte(gb); | |
1058 | ✗ | if (s->flags & LBR_FLAG_DMIX_MULTI_CH) { | |
1059 | ✗ | avpriv_report_missing_feature(s->avctx, "LBR multi-channel downmix"); | |
1060 | ✗ | return AVERROR_PATCHWELCOME; | |
1061 | } | ||
1062 | ✗ | if ((s->flags & LBR_FLAG_LFE_PRESENT) && s->sample_rate != 48000) { | |
1063 | ✗ | if (!(s->warned & 2)) { | |
1064 | ✗ | avpriv_report_missing_feature(s->avctx, "%d Hz LFE interpolation", s->sample_rate); | |
1065 | ✗ | s->warned |= 2; | |
1066 | } | ||
1067 | ✗ | s->flags &= ~LBR_FLAG_LFE_PRESENT; | |
1068 | } | ||
1069 | |||
1070 | // Most significant bit rate nibbles | ||
1071 | ✗ | bit_rate_hi = bytestream2_get_byte(gb); | |
1072 | |||
1073 | // Least significant original bit rate word | ||
1074 | ✗ | s->bit_rate_orig = bytestream2_get_le16(gb) | ((bit_rate_hi & 0x0F) << 16); | |
1075 | |||
1076 | // Least significant scaled bit rate word | ||
1077 | ✗ | s->bit_rate_scaled = bytestream2_get_le16(gb) | ((bit_rate_hi & 0xF0) << 12); | |
1078 | |||
1079 | // Setup number of fullband channels | ||
1080 | ✗ | s->nchannels_total = ff_dca_count_chs_for_mask(s->ch_mask & ~DCA_SPEAKER_PAIR_LFE1); | |
1081 | ✗ | s->nchannels = FFMIN(s->nchannels_total, DCA_LBR_CHANNELS); | |
1082 | |||
1083 | // Setup band limit | ||
1084 | ✗ | switch (s->flags & LBR_FLAG_BAND_LIMIT_MASK) { | |
1085 | ✗ | case LBR_FLAG_BAND_LIMIT_NONE: | |
1086 | ✗ | s->band_limit = 0; | |
1087 | ✗ | break; | |
1088 | ✗ | case LBR_FLAG_BAND_LIMIT_1_2: | |
1089 | ✗ | s->band_limit = 1; | |
1090 | ✗ | break; | |
1091 | ✗ | case LBR_FLAG_BAND_LIMIT_1_4: | |
1092 | ✗ | s->band_limit = 2; | |
1093 | ✗ | break; | |
1094 | ✗ | default: | |
1095 | ✗ | avpriv_report_missing_feature(s->avctx, "LBR band limit %#x", s->flags & LBR_FLAG_BAND_LIMIT_MASK); | |
1096 | ✗ | return AVERROR_PATCHWELCOME; | |
1097 | } | ||
1098 | |||
1099 | // Setup frequency range | ||
1100 | ✗ | s->freq_range = ff_dca_freq_ranges[sr_code]; | |
1101 | |||
1102 | // Setup resolution profile | ||
1103 | ✗ | if (s->bit_rate_orig >= 44000 * (s->nchannels_total + 2)) | |
1104 | ✗ | s->res_profile = 2; | |
1105 | ✗ | else if (s->bit_rate_orig >= 25000 * (s->nchannels_total + 2)) | |
1106 | ✗ | s->res_profile = 1; | |
1107 | else | ||
1108 | ✗ | s->res_profile = 0; | |
1109 | |||
1110 | // Setup limited sample rate, number of subbands, etc | ||
1111 | ✗ | s->limited_rate = s->sample_rate >> s->band_limit; | |
1112 | ✗ | s->limited_range = s->freq_range - s->band_limit; | |
1113 | ✗ | if (s->limited_range < 0) { | |
1114 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR band limit for frequency range\n"); | |
1115 | ✗ | return AVERROR_INVALIDDATA; | |
1116 | } | ||
1117 | |||
1118 | ✗ | s->nsubbands = 8 << s->limited_range; | |
1119 | |||
1120 | ✗ | s->g3_avg_only_start_sb = s->nsubbands * ff_dca_avg_g3_freqs[s->res_profile] / (s->limited_rate / 2); | |
1121 | ✗ | if (s->g3_avg_only_start_sb > s->nsubbands) | |
1122 | ✗ | s->g3_avg_only_start_sb = s->nsubbands; | |
1123 | |||
1124 | ✗ | s->min_mono_subband = s->nsubbands * 2000 / (s->limited_rate / 2); | |
1125 | ✗ | if (s->min_mono_subband > s->nsubbands) | |
1126 | ✗ | s->min_mono_subband = s->nsubbands; | |
1127 | |||
1128 | ✗ | s->max_mono_subband = s->nsubbands * 14000 / (s->limited_rate / 2); | |
1129 | ✗ | if (s->max_mono_subband > s->nsubbands) | |
1130 | ✗ | s->max_mono_subband = s->nsubbands; | |
1131 | |||
1132 | // Handle change of sample rate | ||
1133 | ✗ | if ((old_rate != s->sample_rate || old_band_limit != s->band_limit) && init_sample_rate(s) < 0) | |
1134 | ✗ | return AVERROR(ENOMEM); | |
1135 | |||
1136 | // Setup stereo downmix | ||
1137 | ✗ | if (s->flags & LBR_FLAG_DMIX_STEREO) { | |
1138 | ✗ | DCAContext *dca = s->avctx->priv_data; | |
1139 | |||
1140 | ✗ | if (s->nchannels_total < 3 || s->nchannels_total > DCA_LBR_CHANNELS_TOTAL - 2) { | |
1141 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid number of channels for LBR stereo downmix\n"); | |
1142 | ✗ | return AVERROR_INVALIDDATA; | |
1143 | } | ||
1144 | |||
1145 | // This decoder doesn't support ECS chunk | ||
1146 | ✗ | if (dca->request_channel_layout != DCA_SPEAKER_LAYOUT_STEREO && !(s->warned & 4)) { | |
1147 | ✗ | avpriv_report_missing_feature(s->avctx, "Embedded LBR stereo downmix"); | |
1148 | ✗ | s->warned |= 4; | |
1149 | } | ||
1150 | |||
1151 | // Account for extra downmixed channel pair | ||
1152 | ✗ | s->nchannels_total += 2; | |
1153 | ✗ | s->nchannels = 2; | |
1154 | ✗ | s->ch_mask = DCA_SPEAKER_PAIR_LR; | |
1155 | ✗ | s->flags &= ~LBR_FLAG_LFE_PRESENT; | |
1156 | } | ||
1157 | |||
1158 | // Handle change of sample rate or number of channels | ||
1159 | ✗ | if (old_rate != s->sample_rate | |
1160 | ✗ | || old_band_limit != s->band_limit | |
1161 | ✗ | || old_nchannels != s->nchannels) { | |
1162 | ✗ | if (alloc_sample_buffer(s) < 0) | |
1163 | ✗ | return AVERROR(ENOMEM); | |
1164 | ✗ | ff_dca_lbr_flush(s); | |
1165 | } | ||
1166 | |||
1167 | ✗ | return 0; | |
1168 | } | ||
1169 | |||
1170 | ✗ | int ff_dca_lbr_parse(DCALbrDecoder *s, const uint8_t *data, DCAExssAsset *asset) | |
1171 | { | ||
1172 | struct { | ||
1173 | LBRChunk lfe; | ||
1174 | LBRChunk tonal; | ||
1175 | LBRChunk tonal_grp[5]; | ||
1176 | LBRChunk grid1[DCA_LBR_CHANNELS / 2]; | ||
1177 | LBRChunk hr_grid[DCA_LBR_CHANNELS / 2]; | ||
1178 | LBRChunk ts1[DCA_LBR_CHANNELS / 2]; | ||
1179 | LBRChunk ts2[DCA_LBR_CHANNELS / 2]; | ||
1180 | ✗ | } chunk = { {0} }; | |
1181 | |||
1182 | GetByteContext gb; | ||
1183 | |||
1184 | int i, ch, sb, sf, ret, group, chunk_id, chunk_len; | ||
1185 | |||
1186 | ✗ | bytestream2_init(&gb, data + asset->lbr_offset, asset->lbr_size); | |
1187 | |||
1188 | // LBR sync word | ||
1189 | ✗ | if (bytestream2_get_be32(&gb) != DCA_SYNCWORD_LBR) { | |
1190 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR sync word\n"); | |
1191 | ✗ | return AVERROR_INVALIDDATA; | |
1192 | } | ||
1193 | |||
1194 | // LBR header type | ||
1195 | ✗ | switch (bytestream2_get_byte(&gb)) { | |
1196 | ✗ | case DCA_LBR_HEADER_SYNC_ONLY: | |
1197 | ✗ | if (!s->sample_rate) { | |
1198 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "LBR decoder not initialized\n"); | |
1199 | ✗ | return AVERROR_INVALIDDATA; | |
1200 | } | ||
1201 | ✗ | break; | |
1202 | ✗ | case DCA_LBR_HEADER_DECODER_INIT: | |
1203 | ✗ | if ((ret = parse_decoder_init(s, &gb)) < 0) { | |
1204 | ✗ | s->sample_rate = 0; | |
1205 | ✗ | return ret; | |
1206 | } | ||
1207 | ✗ | break; | |
1208 | ✗ | default: | |
1209 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR header type\n"); | |
1210 | ✗ | return AVERROR_INVALIDDATA; | |
1211 | } | ||
1212 | |||
1213 | // LBR frame chunk header | ||
1214 | ✗ | chunk_id = bytestream2_get_byte(&gb); | |
1215 | ✗ | chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb); | |
1216 | |||
1217 | ✗ | if (chunk_len > bytestream2_get_bytes_left(&gb)) { | |
1218 | ✗ | chunk_len = bytestream2_get_bytes_left(&gb); | |
1219 | ✗ | av_log(s->avctx, AV_LOG_WARNING, "LBR frame chunk was truncated\n"); | |
1220 | ✗ | if (s->avctx->err_recognition & AV_EF_EXPLODE) | |
1221 | ✗ | return AVERROR_INVALIDDATA; | |
1222 | } | ||
1223 | |||
1224 | ✗ | bytestream2_init(&gb, gb.buffer, chunk_len); | |
1225 | |||
1226 | ✗ | switch (chunk_id & 0x7f) { | |
1227 | ✗ | case LBR_CHUNK_FRAME: | |
1228 | ✗ | if (s->avctx->err_recognition & (AV_EF_CRCCHECK | AV_EF_CAREFUL)) { | |
1229 | ✗ | int checksum = bytestream2_get_be16(&gb); | |
1230 | ✗ | uint16_t res = chunk_id; | |
1231 | ✗ | res += (chunk_len >> 8) & 0xff; | |
1232 | ✗ | res += chunk_len & 0xff; | |
1233 | ✗ | for (i = 0; i < chunk_len - 2; i++) | |
1234 | ✗ | res += gb.buffer[i]; | |
1235 | ✗ | if (checksum != res) { | |
1236 | ✗ | av_log(s->avctx, AV_LOG_WARNING, "Invalid LBR checksum\n"); | |
1237 | ✗ | if (s->avctx->err_recognition & AV_EF_EXPLODE) | |
1238 | ✗ | return AVERROR_INVALIDDATA; | |
1239 | } | ||
1240 | } else { | ||
1241 | ✗ | bytestream2_skip(&gb, 2); | |
1242 | } | ||
1243 | ✗ | break; | |
1244 | ✗ | case LBR_CHUNK_FRAME_NO_CSUM: | |
1245 | ✗ | break; | |
1246 | ✗ | default: | |
1247 | ✗ | av_log(s->avctx, AV_LOG_ERROR, "Invalid LBR frame chunk ID\n"); | |
1248 | ✗ | return AVERROR_INVALIDDATA; | |
1249 | } | ||
1250 | |||
1251 | // Clear current frame | ||
1252 | ✗ | memset(s->quant_levels, 0, sizeof(s->quant_levels)); | |
1253 | ✗ | memset(s->sb_indices, 0xff, sizeof(s->sb_indices)); | |
1254 | ✗ | memset(s->sec_ch_sbms, 0, sizeof(s->sec_ch_sbms)); | |
1255 | ✗ | memset(s->sec_ch_lrms, 0, sizeof(s->sec_ch_lrms)); | |
1256 | ✗ | memset(s->ch_pres, 0, sizeof(s->ch_pres)); | |
1257 | ✗ | memset(s->grid_1_scf, 0, sizeof(s->grid_1_scf)); | |
1258 | ✗ | memset(s->grid_2_scf, 0, sizeof(s->grid_2_scf)); | |
1259 | ✗ | memset(s->grid_3_avg, 0, sizeof(s->grid_3_avg)); | |
1260 | ✗ | memset(s->grid_3_scf, 0, sizeof(s->grid_3_scf)); | |
1261 | ✗ | memset(s->grid_3_pres, 0, sizeof(s->grid_3_pres)); | |
1262 | ✗ | memset(s->tonal_scf, 0, sizeof(s->tonal_scf)); | |
1263 | ✗ | memset(s->lfe_data, 0, sizeof(s->lfe_data)); | |
1264 | ✗ | s->part_stereo_pres = 0; | |
1265 | ✗ | s->framenum = (s->framenum + 1) & 31; | |
1266 | |||
1267 | ✗ | for (ch = 0; ch < s->nchannels; ch++) { | |
1268 | ✗ | for (sb = 0; sb < s->nsubbands / 4; sb++) { | |
1269 | ✗ | s->part_stereo[ch][sb][0] = s->part_stereo[ch][sb][4]; | |
1270 | ✗ | s->part_stereo[ch][sb][4] = 16; | |
1271 | } | ||
1272 | } | ||
1273 | |||
1274 | ✗ | memset(s->lpc_coeff[s->framenum & 1], 0, sizeof(s->lpc_coeff[0])); | |
1275 | |||
1276 | ✗ | for (group = 0; group < 5; group++) { | |
1277 | ✗ | for (sf = 0; sf < 1 << group; sf++) { | |
1278 | ✗ | int sf_idx = ((s->framenum << group) + sf) & 31; | |
1279 | ✗ | s->tonal_bounds[group][sf_idx][0] = | |
1280 | ✗ | s->tonal_bounds[group][sf_idx][1] = s->ntones; | |
1281 | } | ||
1282 | } | ||
1283 | |||
1284 | // Parse chunk headers | ||
1285 | ✗ | while (bytestream2_get_bytes_left(&gb) > 0) { | |
1286 | ✗ | chunk_id = bytestream2_get_byte(&gb); | |
1287 | ✗ | chunk_len = (chunk_id & 0x80) ? bytestream2_get_be16(&gb) : bytestream2_get_byte(&gb); | |
1288 | ✗ | chunk_id &= 0x7f; | |
1289 | |||
1290 | ✗ | if (chunk_len > bytestream2_get_bytes_left(&gb)) { | |
1291 | ✗ | chunk_len = bytestream2_get_bytes_left(&gb); | |
1292 | ✗ | av_log(s->avctx, AV_LOG_WARNING, "LBR chunk %#x was truncated\n", chunk_id); | |
1293 | ✗ | if (s->avctx->err_recognition & AV_EF_EXPLODE) | |
1294 | ✗ | return AVERROR_INVALIDDATA; | |
1295 | } | ||
1296 | |||
1297 | ✗ | switch (chunk_id) { | |
1298 | ✗ | case LBR_CHUNK_LFE: | |
1299 | ✗ | chunk.lfe.len = chunk_len; | |
1300 | ✗ | chunk.lfe.data = gb.buffer; | |
1301 | ✗ | break; | |
1302 | |||
1303 | ✗ | case LBR_CHUNK_SCF: | |
1304 | case LBR_CHUNK_TONAL: | ||
1305 | case LBR_CHUNK_TONAL_SCF: | ||
1306 | ✗ | chunk.tonal.id = chunk_id; | |
1307 | ✗ | chunk.tonal.len = chunk_len; | |
1308 | ✗ | chunk.tonal.data = gb.buffer; | |
1309 | ✗ | break; | |
1310 | |||
1311 | ✗ | case LBR_CHUNK_TONAL_GRP_1: | |
1312 | case LBR_CHUNK_TONAL_GRP_2: | ||
1313 | case LBR_CHUNK_TONAL_GRP_3: | ||
1314 | case LBR_CHUNK_TONAL_GRP_4: | ||
1315 | case LBR_CHUNK_TONAL_GRP_5: | ||
1316 | ✗ | i = LBR_CHUNK_TONAL_GRP_5 - chunk_id; | |
1317 | ✗ | chunk.tonal_grp[i].id = i; | |
1318 | ✗ | chunk.tonal_grp[i].len = chunk_len; | |
1319 | ✗ | chunk.tonal_grp[i].data = gb.buffer; | |
1320 | ✗ | break; | |
1321 | |||
1322 | ✗ | case LBR_CHUNK_TONAL_SCF_GRP_1: | |
1323 | case LBR_CHUNK_TONAL_SCF_GRP_2: | ||
1324 | case LBR_CHUNK_TONAL_SCF_GRP_3: | ||
1325 | case LBR_CHUNK_TONAL_SCF_GRP_4: | ||
1326 | case LBR_CHUNK_TONAL_SCF_GRP_5: | ||
1327 | ✗ | i = LBR_CHUNK_TONAL_SCF_GRP_5 - chunk_id; | |
1328 | ✗ | chunk.tonal_grp[i].id = i; | |
1329 | ✗ | chunk.tonal_grp[i].len = chunk_len; | |
1330 | ✗ | chunk.tonal_grp[i].data = gb.buffer; | |
1331 | ✗ | break; | |
1332 | |||
1333 | ✗ | case LBR_CHUNK_RES_GRID_LR: | |
1334 | case LBR_CHUNK_RES_GRID_LR + 1: | ||
1335 | case LBR_CHUNK_RES_GRID_LR + 2: | ||
1336 | ✗ | i = chunk_id - LBR_CHUNK_RES_GRID_LR; | |
1337 | ✗ | chunk.grid1[i].len = chunk_len; | |
1338 | ✗ | chunk.grid1[i].data = gb.buffer; | |
1339 | ✗ | break; | |
1340 | |||
1341 | ✗ | case LBR_CHUNK_RES_GRID_HR: | |
1342 | case LBR_CHUNK_RES_GRID_HR + 1: | ||
1343 | case LBR_CHUNK_RES_GRID_HR + 2: | ||
1344 | ✗ | i = chunk_id - LBR_CHUNK_RES_GRID_HR; | |
1345 | ✗ | chunk.hr_grid[i].len = chunk_len; | |
1346 | ✗ | chunk.hr_grid[i].data = gb.buffer; | |
1347 | ✗ | break; | |
1348 | |||
1349 | ✗ | case LBR_CHUNK_RES_TS_1: | |
1350 | case LBR_CHUNK_RES_TS_1 + 1: | ||
1351 | case LBR_CHUNK_RES_TS_1 + 2: | ||
1352 | ✗ | i = chunk_id - LBR_CHUNK_RES_TS_1; | |
1353 | ✗ | chunk.ts1[i].len = chunk_len; | |
1354 | ✗ | chunk.ts1[i].data = gb.buffer; | |
1355 | ✗ | break; | |
1356 | |||
1357 | ✗ | case LBR_CHUNK_RES_TS_2: | |
1358 | case LBR_CHUNK_RES_TS_2 + 1: | ||
1359 | case LBR_CHUNK_RES_TS_2 + 2: | ||
1360 | ✗ | i = chunk_id - LBR_CHUNK_RES_TS_2; | |
1361 | ✗ | chunk.ts2[i].len = chunk_len; | |
1362 | ✗ | chunk.ts2[i].data = gb.buffer; | |
1363 | ✗ | break; | |
1364 | } | ||
1365 | |||
1366 | ✗ | bytestream2_skip(&gb, chunk_len); | |
1367 | } | ||
1368 | |||
1369 | // Parse the chunks | ||
1370 | ✗ | ret = parse_lfe_chunk(s, &chunk.lfe); | |
1371 | |||
1372 | ✗ | ret |= parse_tonal_chunk(s, &chunk.tonal); | |
1373 | |||
1374 | ✗ | for (i = 0; i < 5; i++) | |
1375 | ✗ | ret |= parse_tonal_group(s, &chunk.tonal_grp[i]); | |
1376 | |||
1377 | ✗ | for (i = 0; i < (s->nchannels + 1) / 2; i++) { | |
1378 | ✗ | int ch1 = i * 2; | |
1379 | ✗ | int ch2 = FFMIN(ch1 + 1, s->nchannels - 1); | |
1380 | |||
1381 | ✗ | if (parse_grid_1_chunk (s, &chunk.grid1 [i], ch1, ch2) < 0 || | |
1382 | ✗ | parse_high_res_grid(s, &chunk.hr_grid[i], ch1, ch2) < 0) { | |
1383 | ✗ | ret = -1; | |
1384 | ✗ | continue; | |
1385 | } | ||
1386 | |||
1387 | // TS chunks depend on both grids. TS_2 depends on TS_1. | ||
1388 | ✗ | if (!chunk.grid1[i].len || !chunk.hr_grid[i].len || !chunk.ts1[i].len) | |
1389 | ✗ | continue; | |
1390 | |||
1391 | ✗ | if (parse_ts1_chunk(s, &chunk.ts1[i], ch1, ch2) < 0 || | |
1392 | ✗ | parse_ts2_chunk(s, &chunk.ts2[i], ch1, ch2) < 0) { | |
1393 | ✗ | ret = -1; | |
1394 | ✗ | continue; | |
1395 | } | ||
1396 | } | ||
1397 | |||
1398 | ✗ | if (ret < 0 && (s->avctx->err_recognition & AV_EF_EXPLODE)) | |
1399 | ✗ | return AVERROR_INVALIDDATA; | |
1400 | |||
1401 | ✗ | return 0; | |
1402 | } | ||
1403 | |||
1404 | /** | ||
1405 | * Reconstruct high-frequency resolution grid from first and third grids | ||
1406 | */ | ||
1407 | ✗ | static void decode_grid(DCALbrDecoder *s, int ch1, int ch2) | |
1408 | { | ||
1409 | int i, ch, sb; | ||
1410 | |||
1411 | ✗ | for (ch = ch1; ch <= ch2; ch++) { | |
1412 | ✗ | for (sb = 0; sb < s->nsubbands; sb++) { | |
1413 | ✗ | int g1_sb = ff_dca_scf_to_grid_1[sb]; | |
1414 | |||
1415 | ✗ | uint8_t *g1_scf_a = s->grid_1_scf[ch][g1_sb ]; | |
1416 | ✗ | uint8_t *g1_scf_b = s->grid_1_scf[ch][g1_sb + 1]; | |
1417 | |||
1418 | ✗ | int w1 = ff_dca_grid_1_weights[g1_sb ][sb]; | |
1419 | ✗ | int w2 = ff_dca_grid_1_weights[g1_sb + 1][sb]; | |
1420 | |||
1421 | ✗ | uint8_t *hr_scf = s->high_res_scf[ch][sb]; | |
1422 | |||
1423 | ✗ | if (sb < 4) { | |
1424 | ✗ | for (i = 0; i < 8; i++) { | |
1425 | ✗ | int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i]; | |
1426 | ✗ | hr_scf[i] = scf >> 7; | |
1427 | } | ||
1428 | } else { | ||
1429 | ✗ | int8_t *g3_scf = s->grid_3_scf[ch][sb - 4]; | |
1430 | ✗ | int g3_avg = s->grid_3_avg[ch][sb - 4]; | |
1431 | |||
1432 | ✗ | for (i = 0; i < 8; i++) { | |
1433 | ✗ | int scf = w1 * g1_scf_a[i] + w2 * g1_scf_b[i]; | |
1434 | ✗ | hr_scf[i] = (scf >> 7) - g3_avg - g3_scf[i]; | |
1435 | } | ||
1436 | } | ||
1437 | } | ||
1438 | } | ||
1439 | ✗ | } | |
1440 | |||
1441 | /** | ||
1442 | * Fill unallocated subbands with randomness | ||
1443 | */ | ||
1444 | ✗ | static void random_ts(DCALbrDecoder *s, int ch1, int ch2) | |
1445 | { | ||
1446 | int i, j, k, ch, sb; | ||
1447 | |||
1448 | ✗ | for (ch = ch1; ch <= ch2; ch++) { | |
1449 | ✗ | for (sb = 0; sb < s->nsubbands; sb++) { | |
1450 | ✗ | float *samples = s->time_samples[ch][sb]; | |
1451 | |||
1452 | ✗ | if (s->ch_pres[ch] & (1U << sb)) | |
1453 | ✗ | continue; // Skip allocated subband | |
1454 | |||
1455 | ✗ | if (sb < 2) { | |
1456 | // The first two subbands are always zero | ||
1457 | ✗ | memset(samples, 0, DCA_LBR_TIME_SAMPLES * sizeof(float)); | |
1458 | ✗ | } else if (sb < 10) { | |
1459 | ✗ | for (i = 0; i < DCA_LBR_TIME_SAMPLES; i++) | |
1460 | ✗ | samples[i] = lbr_rand(s, sb); | |
1461 | } else { | ||
1462 | ✗ | for (i = 0; i < DCA_LBR_TIME_SAMPLES / 8; i++, samples += 8) { | |
1463 | ✗ | float accum[8] = { 0 }; | |
1464 | |||
1465 | // Modulate by subbands 2-5 in blocks of 8 | ||
1466 | ✗ | for (k = 2; k < 6; k++) { | |
1467 | ✗ | float *other = &s->time_samples[ch][k][i * 8]; | |
1468 | ✗ | for (j = 0; j < 8; j++) | |
1469 | ✗ | accum[j] += fabs(other[j]); | |
1470 | } | ||
1471 | |||
1472 | ✗ | for (j = 0; j < 8; j++) | |
1473 | ✗ | samples[j] = (accum[j] * 0.25f + 0.5f) * lbr_rand(s, sb); | |
1474 | } | ||
1475 | } | ||
1476 | } | ||
1477 | } | ||
1478 | ✗ | } | |
1479 | |||
1480 | ✗ | static void predict(float *samples, const float *coeff, int nsamples) | |
1481 | { | ||
1482 | int i, j; | ||
1483 | |||
1484 | ✗ | for (i = 0; i < nsamples; i++) { | |
1485 | ✗ | float res = 0; | |
1486 | ✗ | for (j = 0; j < 8; j++) | |
1487 | ✗ | res += coeff[j] * samples[i - j - 1]; | |
1488 | ✗ | samples[i] -= res; | |
1489 | } | ||
1490 | ✗ | } | |
1491 | |||
1492 | ✗ | static void synth_lpc(DCALbrDecoder *s, int ch1, int ch2, int sb) | |
1493 | { | ||
1494 | ✗ | int f = s->framenum & 1; | |
1495 | int ch; | ||
1496 | |||
1497 | ✗ | for (ch = ch1; ch <= ch2; ch++) { | |
1498 | ✗ | float *samples = s->time_samples[ch][sb]; | |
1499 | |||
1500 | ✗ | if (!(s->ch_pres[ch] & (1U << sb))) | |
1501 | ✗ | continue; | |
1502 | |||
1503 | ✗ | if (sb < 2) { | |
1504 | ✗ | predict(samples, s->lpc_coeff[f^1][ch][sb][1], 16); | |
1505 | ✗ | predict(samples + 16, s->lpc_coeff[f ][ch][sb][0], 64); | |
1506 | ✗ | predict(samples + 80, s->lpc_coeff[f ][ch][sb][1], 48); | |
1507 | } else { | ||
1508 | ✗ | predict(samples, s->lpc_coeff[f^1][ch][sb][0], 16); | |
1509 | ✗ | predict(samples + 16, s->lpc_coeff[f ][ch][sb][0], 112); | |
1510 | } | ||
1511 | } | ||
1512 | ✗ | } | |
1513 | |||
1514 | ✗ | static void filter_ts(DCALbrDecoder *s, int ch1, int ch2) | |
1515 | { | ||
1516 | int i, j, sb, ch; | ||
1517 | |||
1518 | ✗ | for (sb = 0; sb < s->nsubbands; sb++) { | |
1519 | // Scale factors | ||
1520 | ✗ | for (ch = ch1; ch <= ch2; ch++) { | |
1521 | ✗ | float *samples = s->time_samples[ch][sb]; | |
1522 | ✗ | uint8_t *hr_scf = s->high_res_scf[ch][sb]; | |
1523 | ✗ | if (sb < 4) { | |
1524 | ✗ | for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++, samples += 16) { | |
1525 | ✗ | unsigned int scf = hr_scf[i]; | |
1526 | ✗ | if (scf > AMP_MAX) | |
1527 | ✗ | scf = AMP_MAX; | |
1528 | ✗ | for (j = 0; j < 16; j++) | |
1529 | ✗ | samples[j] *= ff_dca_quant_amp[scf]; | |
1530 | } | ||
1531 | } else { | ||
1532 | ✗ | uint8_t *g2_scf = s->grid_2_scf[ch][ff_dca_scf_to_grid_2[sb]]; | |
1533 | ✗ | for (i = 0; i < DCA_LBR_TIME_SAMPLES / 2; i++, samples += 2) { | |
1534 | ✗ | unsigned int scf = hr_scf[i / 8] - g2_scf[i]; | |
1535 | ✗ | if (scf > AMP_MAX) | |
1536 | ✗ | scf = AMP_MAX; | |
1537 | ✗ | samples[0] *= ff_dca_quant_amp[scf]; | |
1538 | ✗ | samples[1] *= ff_dca_quant_amp[scf]; | |
1539 | } | ||
1540 | } | ||
1541 | } | ||
1542 | |||
1543 | // Mid-side stereo | ||
1544 | ✗ | if (ch1 != ch2) { | |
1545 | ✗ | float *samples_l = s->time_samples[ch1][sb]; | |
1546 | ✗ | float *samples_r = s->time_samples[ch2][sb]; | |
1547 | ✗ | int ch2_pres = s->ch_pres[ch2] & (1U << sb); | |
1548 | |||
1549 | ✗ | for (i = 0; i < DCA_LBR_TIME_SAMPLES / 16; i++) { | |
1550 | ✗ | int sbms = (s->sec_ch_sbms[ch1 / 2][sb] >> i) & 1; | |
1551 | ✗ | int lrms = (s->sec_ch_lrms[ch1 / 2][sb] >> i) & 1; | |
1552 | |||
1553 | ✗ | if (sb >= s->min_mono_subband) { | |
1554 | ✗ | if (lrms && ch2_pres) { | |
1555 | ✗ | if (sbms) { | |
1556 | ✗ | for (j = 0; j < 16; j++) { | |
1557 | ✗ | float tmp = samples_l[j]; | |
1558 | ✗ | samples_l[j] = samples_r[j]; | |
1559 | ✗ | samples_r[j] = -tmp; | |
1560 | } | ||
1561 | } else { | ||
1562 | ✗ | for (j = 0; j < 16; j++) { | |
1563 | ✗ | float tmp = samples_l[j]; | |
1564 | ✗ | samples_l[j] = samples_r[j]; | |
1565 | ✗ | samples_r[j] = tmp; | |
1566 | } | ||
1567 | } | ||
1568 | ✗ | } else if (!ch2_pres) { | |
1569 | ✗ | if (sbms && (s->part_stereo_pres & (1 << ch1))) { | |
1570 | ✗ | for (j = 0; j < 16; j++) | |
1571 | ✗ | samples_r[j] = -samples_l[j]; | |
1572 | } else { | ||
1573 | ✗ | for (j = 0; j < 16; j++) | |
1574 | ✗ | samples_r[j] = samples_l[j]; | |
1575 | } | ||
1576 | } | ||
1577 | ✗ | } else if (sbms && ch2_pres) { | |
1578 | ✗ | for (j = 0; j < 16; j++) { | |
1579 | ✗ | float tmp = samples_l[j]; | |
1580 | ✗ | samples_l[j] = (tmp + samples_r[j]) * 0.5f; | |
1581 | ✗ | samples_r[j] = (tmp - samples_r[j]) * 0.5f; | |
1582 | } | ||
1583 | } | ||
1584 | |||
1585 | ✗ | samples_l += 16; | |
1586 | ✗ | samples_r += 16; | |
1587 | } | ||
1588 | } | ||
1589 | |||
1590 | // Inverse prediction | ||
1591 | ✗ | if (sb < 3) | |
1592 | ✗ | synth_lpc(s, ch1, ch2, sb); | |
1593 | } | ||
1594 | ✗ | } | |
1595 | |||
1596 | /** | ||
1597 | * Modulate by interpolated partial stereo coefficients | ||
1598 | */ | ||
1599 | ✗ | static void decode_part_stereo(DCALbrDecoder *s, int ch1, int ch2) | |
1600 | { | ||
1601 | int i, ch, sb, sf; | ||
1602 | |||
1603 | ✗ | for (ch = ch1; ch <= ch2; ch++) { | |
1604 | ✗ | for (sb = s->min_mono_subband; sb < s->nsubbands; sb++) { | |
1605 | ✗ | uint8_t *pt_st = s->part_stereo[ch][(sb - s->min_mono_subband) / 4]; | |
1606 | ✗ | float *samples = s->time_samples[ch][sb]; | |
1607 | |||
1608 | ✗ | if (s->ch_pres[ch2] & (1U << sb)) | |
1609 | ✗ | continue; | |
1610 | |||
1611 | ✗ | for (sf = 1; sf <= 4; sf++, samples += 32) { | |
1612 | ✗ | float prev = ff_dca_st_coeff[pt_st[sf - 1]]; | |
1613 | ✗ | float next = ff_dca_st_coeff[pt_st[sf ]]; | |
1614 | |||
1615 | ✗ | for (i = 0; i < 32; i++) | |
1616 | ✗ | samples[i] *= (32 - i) * prev + i * next; | |
1617 | } | ||
1618 | } | ||
1619 | } | ||
1620 | ✗ | } | |
1621 | |||
1622 | /** | ||
1623 | * Synthesise tones in the given group for the given tonal subframe | ||
1624 | */ | ||
1625 | ✗ | static void synth_tones(DCALbrDecoder *s, int ch, float *values, | |
1626 | int group, int group_sf, int synth_idx) | ||
1627 | { | ||
1628 | int i, start, count; | ||
1629 | |||
1630 | ✗ | if (synth_idx < 0) | |
1631 | ✗ | return; | |
1632 | |||
1633 | ✗ | start = s->tonal_bounds[group][group_sf][0]; | |
1634 | ✗ | count = (s->tonal_bounds[group][group_sf][1] - start) & (DCA_LBR_TONES - 1); | |
1635 | |||
1636 | ✗ | for (i = 0; i < count; i++) { | |
1637 | ✗ | DCALbrTone *t = &s->tones[(start + i) & (DCA_LBR_TONES - 1)]; | |
1638 | |||
1639 | ✗ | if (t->amp[ch]) { | |
1640 | ✗ | float amp = ff_dca_synth_env[synth_idx] * ff_dca_quant_amp[t->amp[ch]]; | |
1641 | ✗ | float c = amp * cos_tab[(t->phs[ch] ) & 255]; | |
1642 | ✗ | float s = amp * cos_tab[(t->phs[ch] + 64) & 255]; | |
1643 | ✗ | const float *cf = ff_dca_corr_cf[t->f_delt]; | |
1644 | ✗ | int x_freq = t->x_freq; | |
1645 | |||
1646 | ✗ | switch (x_freq) { | |
1647 | ✗ | case 0: | |
1648 | ✗ | goto p0; | |
1649 | ✗ | case 1: | |
1650 | ✗ | values[3] += cf[0] * -s; | |
1651 | ✗ | values[2] += cf[1] * c; | |
1652 | ✗ | values[1] += cf[2] * s; | |
1653 | ✗ | values[0] += cf[3] * -c; | |
1654 | ✗ | goto p1; | |
1655 | ✗ | case 2: | |
1656 | ✗ | values[2] += cf[0] * -s; | |
1657 | ✗ | values[1] += cf[1] * c; | |
1658 | ✗ | values[0] += cf[2] * s; | |
1659 | ✗ | goto p2; | |
1660 | ✗ | case 3: | |
1661 | ✗ | values[1] += cf[0] * -s; | |
1662 | ✗ | values[0] += cf[1] * c; | |
1663 | ✗ | goto p3; | |
1664 | ✗ | case 4: | |
1665 | ✗ | values[0] += cf[0] * -s; | |
1666 | ✗ | goto p4; | |
1667 | } | ||
1668 | |||
1669 | ✗ | values[x_freq - 5] += cf[ 0] * -s; | |
1670 | ✗ | p4: values[x_freq - 4] += cf[ 1] * c; | |
1671 | ✗ | p3: values[x_freq - 3] += cf[ 2] * s; | |
1672 | ✗ | p2: values[x_freq - 2] += cf[ 3] * -c; | |
1673 | ✗ | p1: values[x_freq - 1] += cf[ 4] * -s; | |
1674 | ✗ | p0: values[x_freq ] += cf[ 5] * c; | |
1675 | ✗ | values[x_freq + 1] += cf[ 6] * s; | |
1676 | ✗ | values[x_freq + 2] += cf[ 7] * -c; | |
1677 | ✗ | values[x_freq + 3] += cf[ 8] * -s; | |
1678 | ✗ | values[x_freq + 4] += cf[ 9] * c; | |
1679 | ✗ | values[x_freq + 5] += cf[10] * s; | |
1680 | } | ||
1681 | |||
1682 | ✗ | t->phs[ch] += t->ph_rot; | |
1683 | } | ||
1684 | } | ||
1685 | |||
1686 | /** | ||
1687 | * Synthesise all tones in all groups for the given residual subframe | ||
1688 | */ | ||
1689 | ✗ | static void base_func_synth(DCALbrDecoder *s, int ch, float *values, int sf) | |
1690 | { | ||
1691 | int group; | ||
1692 | |||
1693 | // Tonal vs residual shift is 22 subframes | ||
1694 | ✗ | for (group = 0; group < 5; group++) { | |
1695 | ✗ | int group_sf = (s->framenum << group) + ((sf - 22) >> (5 - group)); | |
1696 | ✗ | int synth_idx = ((((sf - 22) & 31) << group) & 31) + (1 << group) - 1; | |
1697 | |||
1698 | ✗ | synth_tones(s, ch, values, group, (group_sf - 1) & 31, 30 - synth_idx); | |
1699 | ✗ | synth_tones(s, ch, values, group, (group_sf ) & 31, synth_idx); | |
1700 | } | ||
1701 | ✗ | } | |
1702 | |||
1703 | ✗ | static void transform_channel(DCALbrDecoder *s, int ch, float *output) | |
1704 | { | ||
1705 | ✗ | LOCAL_ALIGNED_32(float, values, [DCA_LBR_SUBBANDS ], [4]); | |
1706 | ✗ | LOCAL_ALIGNED_32(float, result, [DCA_LBR_SUBBANDS * 2], [4]); | |
1707 | ✗ | int sf, sb, nsubbands = s->nsubbands, noutsubbands = 8 << s->freq_range; | |
1708 | |||
1709 | // Clear inactive subbands | ||
1710 | ✗ | if (nsubbands < noutsubbands) | |
1711 | ✗ | memset(values[nsubbands], 0, (noutsubbands - nsubbands) * sizeof(values[0])); | |
1712 | |||
1713 | ✗ | for (sf = 0; sf < DCA_LBR_TIME_SAMPLES / 4; sf++) { | |
1714 | // Hybrid filterbank | ||
1715 | ✗ | s->dcadsp->lbr_bank(values, s->time_samples[ch], | |
1716 | ✗ | ff_dca_bank_coeff, sf * 4, nsubbands); | |
1717 | |||
1718 | ✗ | base_func_synth(s, ch, values[0], sf); | |
1719 | |||
1720 | ✗ | s->imdct_fn(s->imdct, result[0], values[0], sizeof(float)); | |
1721 | |||
1722 | // Long window and overlap-add | ||
1723 | ✗ | s->fdsp->vector_fmul_add(output, result[0], s->window, | |
1724 | ✗ | s->history[ch], noutsubbands * 4); | |
1725 | ✗ | s->fdsp->vector_fmul_reverse(s->history[ch], result[noutsubbands], | |
1726 | ✗ | s->window, noutsubbands * 4); | |
1727 | ✗ | output += noutsubbands * 4; | |
1728 | } | ||
1729 | |||
1730 | // Update history for LPC and forward MDCT | ||
1731 | ✗ | for (sb = 0; sb < nsubbands; sb++) { | |
1732 | ✗ | float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY; | |
1733 | ✗ | memcpy(samples, samples + DCA_LBR_TIME_SAMPLES, DCA_LBR_TIME_HISTORY * sizeof(float)); | |
1734 | } | ||
1735 | ✗ | } | |
1736 | |||
1737 | ✗ | int ff_dca_lbr_filter_frame(DCALbrDecoder *s, AVFrame *frame) | |
1738 | { | ||
1739 | ✗ | AVCodecContext *avctx = s->avctx; | |
1740 | ✗ | int i, ret, nchannels, ch_conf = (s->ch_mask & 0x7) - 1; | |
1741 | const int8_t *reorder; | ||
1742 | ✗ | uint64_t channel_mask = channel_layouts[ch_conf]; | |
1743 | |||
1744 | ✗ | nchannels = av_popcount64(channel_mask); | |
1745 | ✗ | avctx->sample_rate = s->sample_rate; | |
1746 | ✗ | avctx->sample_fmt = AV_SAMPLE_FMT_FLTP; | |
1747 | ✗ | avctx->bits_per_raw_sample = 0; | |
1748 | ✗ | avctx->profile = AV_PROFILE_DTS_EXPRESS; | |
1749 | ✗ | avctx->bit_rate = s->bit_rate_scaled; | |
1750 | |||
1751 | ✗ | if (s->flags & LBR_FLAG_LFE_PRESENT) { | |
1752 | ✗ | channel_mask |= AV_CH_LOW_FREQUENCY; | |
1753 | ✗ | reorder = channel_reorder_lfe[ch_conf]; | |
1754 | } else { | ||
1755 | ✗ | reorder = channel_reorder_nolfe[ch_conf]; | |
1756 | } | ||
1757 | |||
1758 | ✗ | av_channel_layout_uninit(&avctx->ch_layout); | |
1759 | ✗ | av_channel_layout_from_mask(&avctx->ch_layout, channel_mask); | |
1760 | |||
1761 | ✗ | frame->nb_samples = 1024 << s->freq_range; | |
1762 | ✗ | if ((ret = ff_get_buffer(avctx, frame, 0)) < 0) | |
1763 | ✗ | return ret; | |
1764 | |||
1765 | // Filter fullband channels | ||
1766 | ✗ | for (i = 0; i < (s->nchannels + 1) / 2; i++) { | |
1767 | ✗ | int ch1 = i * 2; | |
1768 | ✗ | int ch2 = FFMIN(ch1 + 1, s->nchannels - 1); | |
1769 | |||
1770 | ✗ | decode_grid(s, ch1, ch2); | |
1771 | |||
1772 | ✗ | random_ts(s, ch1, ch2); | |
1773 | |||
1774 | ✗ | filter_ts(s, ch1, ch2); | |
1775 | |||
1776 | ✗ | if (ch1 != ch2 && (s->part_stereo_pres & (1 << ch1))) | |
1777 | ✗ | decode_part_stereo(s, ch1, ch2); | |
1778 | |||
1779 | ✗ | if (ch1 < nchannels) | |
1780 | ✗ | transform_channel(s, ch1, (float *)frame->extended_data[reorder[ch1]]); | |
1781 | |||
1782 | ✗ | if (ch1 != ch2 && ch2 < nchannels) | |
1783 | ✗ | transform_channel(s, ch2, (float *)frame->extended_data[reorder[ch2]]); | |
1784 | } | ||
1785 | |||
1786 | // Interpolate LFE channel | ||
1787 | ✗ | if (s->flags & LBR_FLAG_LFE_PRESENT) { | |
1788 | ✗ | s->dcadsp->lfe_iir((float *)frame->extended_data[lfe_index[ch_conf]], | |
1789 | ✗ | s->lfe_data, ff_dca_lfe_iir, | |
1790 | ✗ | s->lfe_history, 16 << s->freq_range); | |
1791 | } | ||
1792 | |||
1793 | ✗ | if ((ret = ff_side_data_update_matrix_encoding(frame, AV_MATRIX_ENCODING_NONE)) < 0) | |
1794 | ✗ | return ret; | |
1795 | |||
1796 | ✗ | return 0; | |
1797 | } | ||
1798 | |||
1799 | ✗ | av_cold void ff_dca_lbr_flush(DCALbrDecoder *s) | |
1800 | { | ||
1801 | int ch, sb; | ||
1802 | |||
1803 | ✗ | if (!s->sample_rate) | |
1804 | ✗ | return; | |
1805 | |||
1806 | // Clear history | ||
1807 | ✗ | memset(s->part_stereo, 16, sizeof(s->part_stereo)); | |
1808 | ✗ | memset(s->lpc_coeff, 0, sizeof(s->lpc_coeff)); | |
1809 | ✗ | memset(s->history, 0, sizeof(s->history)); | |
1810 | ✗ | memset(s->tonal_bounds, 0, sizeof(s->tonal_bounds)); | |
1811 | ✗ | memset(s->lfe_history, 0, sizeof(s->lfe_history)); | |
1812 | ✗ | s->framenum = 0; | |
1813 | ✗ | s->ntones = 0; | |
1814 | |||
1815 | ✗ | for (ch = 0; ch < s->nchannels; ch++) { | |
1816 | ✗ | for (sb = 0; sb < s->nsubbands; sb++) { | |
1817 | ✗ | float *samples = s->time_samples[ch][sb] - DCA_LBR_TIME_HISTORY; | |
1818 | ✗ | memset(samples, 0, DCA_LBR_TIME_HISTORY * sizeof(float)); | |
1819 | } | ||
1820 | } | ||
1821 | } | ||
1822 | |||
1823 | 99 | av_cold int ff_dca_lbr_init(DCALbrDecoder *s) | |
1824 | { | ||
1825 |
1/2✗ Branch 1 not taken.
✓ Branch 2 taken 99 times.
|
99 | if (!(s->fdsp = avpriv_float_dsp_alloc(0))) |
1826 | ✗ | return AVERROR(ENOMEM); | |
1827 | |||
1828 | 99 | s->lbr_rand = 1; | |
1829 | 99 | return 0; | |
1830 | } | ||
1831 | |||
1832 | 99 | av_cold void ff_dca_lbr_close(DCALbrDecoder *s) | |
1833 | { | ||
1834 | 99 | s->sample_rate = 0; | |
1835 | |||
1836 | 99 | av_freep(&s->ts_buffer); | |
1837 | 99 | s->ts_size = 0; | |
1838 | |||
1839 | 99 | av_freep(&s->fdsp); | |
1840 | 99 | av_tx_uninit(&s->imdct); | |
1841 | 99 | } | |
1842 |