FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavcodec/cook.c
Date: 2021-09-23 20:34:37
Exec Total Coverage
Lines: 441 538 82.0%
Branches: 196 273 71.8%

Line Branch Exec Source
1 /*
2 * COOK compatible decoder
3 * Copyright (c) 2003 Sascha Sommer
4 * Copyright (c) 2005 Benjamin Larsson
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * Cook compatible decoder. Bastardization of the G.722.1 standard.
26 * This decoder handles RealNetworks, RealAudio G2 data.
27 * Cook is identified by the codec name cook in RM files.
28 *
29 * To use this decoder, a calling application must supply the extradata
30 * bytes provided from the RM container; 8+ bytes for mono streams and
31 * 16+ for stereo streams (maybe more).
32 *
33 * Codec technicalities (all this assume a buffer length of 1024):
34 * Cook works with several different techniques to achieve its compression.
35 * In the timedomain the buffer is divided into 8 pieces and quantized. If
36 * two neighboring pieces have different quantization index a smooth
37 * quantization curve is used to get a smooth overlap between the different
38 * pieces.
39 * To get to the transformdomain Cook uses a modulated lapped transform.
40 * The transform domain has 50 subbands with 20 elements each. This
41 * means only a maximum of 50*20=1000 coefficients are used out of the 1024
42 * available.
43 */
44
45 #include "libavutil/channel_layout.h"
46 #include "libavutil/lfg.h"
47 #include "libavutil/mem_internal.h"
48 #include "libavutil/thread.h"
49
50 #include "audiodsp.h"
51 #include "avcodec.h"
52 #include "get_bits.h"
53 #include "bytestream.h"
54 #include "fft.h"
55 #include "internal.h"
56 #include "sinewin.h"
57 #include "unary.h"
58
59 #include "cookdata.h"
60
61 /* the different Cook versions */
62 #define MONO 0x1000001
63 #define STEREO 0x1000002
64 #define JOINT_STEREO 0x1000003
65 #define MC_COOK 0x2000000
66
67 #define SUBBAND_SIZE 20
68 #define MAX_SUBPACKETS 5
69
70 #define QUANT_VLC_BITS 9
71 #define COUPLING_VLC_BITS 6
72
73 typedef struct cook_gains {
74 int *now;
75 int *previous;
76 } cook_gains;
77
78 typedef struct COOKSubpacket {
79 int ch_idx;
80 int size;
81 int num_channels;
82 int cookversion;
83 int subbands;
84 int js_subband_start;
85 int js_vlc_bits;
86 int samples_per_channel;
87 int log2_numvector_size;
88 unsigned int channel_mask;
89 VLC channel_coupling;
90 int joint_stereo;
91 int bits_per_subpacket;
92 int bits_per_subpdiv;
93 int total_subbands;
94 int numvector_size; // 1 << log2_numvector_size;
95
96 float mono_previous_buffer1[1024];
97 float mono_previous_buffer2[1024];
98
99 cook_gains gains1;
100 cook_gains gains2;
101 int gain_1[9];
102 int gain_2[9];
103 int gain_3[9];
104 int gain_4[9];
105 } COOKSubpacket;
106
107 typedef struct cook {
108 /*
109 * The following 5 functions provide the lowlevel arithmetic on
110 * the internal audio buffers.
111 */
112 void (*scalar_dequant)(struct cook *q, int index, int quant_index,
113 int *subband_coef_index, int *subband_coef_sign,
114 float *mlt_p);
115
116 void (*decouple)(struct cook *q,
117 COOKSubpacket *p,
118 int subband,
119 float f1, float f2,
120 float *decode_buffer,
121 float *mlt_buffer1, float *mlt_buffer2);
122
123 void (*imlt_window)(struct cook *q, float *buffer1,
124 cook_gains *gains_ptr, float *previous_buffer);
125
126 void (*interpolate)(struct cook *q, float *buffer,
127 int gain_index, int gain_index_next);
128
129 void (*saturate_output)(struct cook *q, float *out);
130
131 AVCodecContext* avctx;
132 AudioDSPContext adsp;
133 GetBitContext gb;
134 /* stream data */
135 int num_vectors;
136 int samples_per_channel;
137 /* states */
138 AVLFG random_state;
139 int discarded_packets;
140
141 /* transform data */
142 FFTContext mdct_ctx;
143 float* mlt_window;
144
145 /* VLC data */
146 VLC envelope_quant_index[13];
147 VLC sqvh[7]; // scalar quantization
148
149 /* generate tables and related variables */
150 int gain_size_factor;
151 float gain_table[31];
152
153 /* data buffers */
154
155 uint8_t* decoded_bytes_buffer;
156 DECLARE_ALIGNED(32, float, mono_mdct_output)[2048];
157 float decode_buffer_1[1024];
158 float decode_buffer_2[1024];
159 float decode_buffer_0[1060]; /* static allocation for joint decode */
160
161 const float *cplscales[5];
162 int num_subpackets;
163 COOKSubpacket subpacket[MAX_SUBPACKETS];
164 } COOKContext;
165
166 static float pow2tab[127];
167 static float rootpow2tab[127];
168
169 /*************** init functions ***************/
170
171 /* table generator */
172 5 static av_cold void init_pow2table(void)
173 {
174 /* fast way of computing 2^i and 2^(0.5*i) for -63 <= i < 64 */
175 int i;
176 static const float exp2_tab[2] = {1, M_SQRT2};
177 5 float exp2_val = powf(2, -63);
178 5 float root_val = powf(2, -32);
179
2/2
✓ Branch 0 taken 635 times.
✓ Branch 1 taken 5 times.
640 for (i = -63; i < 64; i++) {
180
2/2
✓ Branch 0 taken 315 times.
✓ Branch 1 taken 320 times.
635 if (!(i & 1))
181 315 root_val *= 2;
182 635 pow2tab[63 + i] = exp2_val;
183 635 rootpow2tab[63 + i] = root_val * exp2_tab[i & 1];
184 635 exp2_val *= 2;
185 }
186 5 }
187
188 /* table generator */
189 6 static av_cold void init_gain_table(COOKContext *q)
190 {
191 int i;
192 6 q->gain_size_factor = q->samples_per_channel / 8;
193
2/2
✓ Branch 0 taken 186 times.
✓ Branch 1 taken 6 times.
192 for (i = 0; i < 31; i++)
194 186 q->gain_table[i] = pow(pow2tab[i + 48],
195 186 (1.0 / (double) q->gain_size_factor));
196 6 }
197
198 124 static av_cold int build_vlc(VLC *vlc, int nb_bits, const uint8_t counts[16],
199 const void *syms, int symbol_size, int offset,
200 void *logctx)
201 {
202 uint8_t lens[MAX_COOK_VLC_ENTRIES];
203 124 unsigned num = 0;
204
205
2/2
✓ Branch 0 taken 1984 times.
✓ Branch 1 taken 124 times.
2108 for (int i = 0; i < 16; i++)
206
2/2
✓ Branch 0 taken 9652 times.
✓ Branch 1 taken 1984 times.
11636 for (unsigned count = num + counts[i]; num < count; num++)
207 9652 lens[num] = i + 1;
208
209 124 return ff_init_vlc_from_lengths(vlc, nb_bits, num, lens, 1,
210 syms, symbol_size, symbol_size,
211 offset, 0, logctx);
212 }
213
214 6 static av_cold int init_cook_vlc_tables(COOKContext *q)
215 {
216 int i, result;
217
218 6 result = 0;
219
2/2
✓ Branch 0 taken 78 times.
✓ Branch 1 taken 6 times.
84 for (i = 0; i < 13; i++) {
220 78 result |= build_vlc(&q->envelope_quant_index[i], QUANT_VLC_BITS,
221 78 envelope_quant_index_huffcounts[i],
222 78 envelope_quant_index_huffsyms[i], 1, -12, q->avctx);
223 }
224 6 av_log(q->avctx, AV_LOG_DEBUG, "sqvh VLC init\n");
225
2/2
✓ Branch 0 taken 42 times.
✓ Branch 1 taken 6 times.
48 for (i = 0; i < 7; i++) {
226
2/2
✓ Branch 0 taken 6 times.
✓ Branch 1 taken 36 times.
42 int sym_size = 1 + (i == 3);
227 42 result |= build_vlc(&q->sqvh[i], vhvlcsize_tab[i],
228 42 cvh_huffcounts[i],
229 42 cvh_huffsyms[i], sym_size, 0, q->avctx);
230 }
231
232
2/2
✓ Branch 0 taken 6 times.
✓ Branch 1 taken 6 times.
12 for (i = 0; i < q->num_subpackets; i++) {
233
2/2
✓ Branch 0 taken 4 times.
✓ Branch 1 taken 2 times.
6 if (q->subpacket[i].joint_stereo == 1) {
234 8 result |= build_vlc(&q->subpacket[i].channel_coupling, COUPLING_VLC_BITS,
235 4 ccpl_huffcounts[q->subpacket[i].js_vlc_bits - 2],
236 4 ccpl_huffsyms[q->subpacket[i].js_vlc_bits - 2], 1,
237 4 0, q->avctx);
238 4 av_log(q->avctx, AV_LOG_DEBUG, "subpacket %i Joint-stereo VLC used.\n", i);
239 }
240 }
241
242 6 av_log(q->avctx, AV_LOG_DEBUG, "VLC tables initialized.\n");
243 6 return result;
244 }
245
246 6 static av_cold int init_cook_mlt(COOKContext *q)
247 {
248 int j, ret;
249 6 int mlt_size = q->samples_per_channel;
250
251
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 6 times.
6 if (!(q->mlt_window = av_malloc_array(mlt_size, sizeof(*q->mlt_window))))
252 return AVERROR(ENOMEM);
253
254 /* Initialize the MLT window: simple sine window. */
255 6 ff_sine_window_init(q->mlt_window, mlt_size);
256
2/2
✓ Branch 0 taken 6144 times.
✓ Branch 1 taken 6 times.
6150 for (j = 0; j < mlt_size; j++)
257 6144 q->mlt_window[j] *= sqrt(2.0 / q->samples_per_channel);
258
259 /* Initialize the MDCT. */
260 6 ret = ff_mdct_init(&q->mdct_ctx, av_log2(mlt_size) + 1, 1, 1.0 / 32768.0);
261
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (ret < 0)
262 return ret;
263 6 av_log(q->avctx, AV_LOG_DEBUG, "MDCT initialized, order = %d.\n",
264 6 av_log2(mlt_size) + 1);
265
266 6 return 0;
267 }
268
269 6 static av_cold void init_cplscales_table(COOKContext *q)
270 {
271 int i;
272
2/2
✓ Branch 0 taken 30 times.
✓ Branch 1 taken 6 times.
36 for (i = 0; i < 5; i++)
273 30 q->cplscales[i] = cplscales[i];
274 6 }
275
276 /*************** init functions end ***********/
277
278 #define DECODE_BYTES_PAD1(bytes) (3 - ((bytes) + 3) % 4)
279 #define DECODE_BYTES_PAD2(bytes) ((bytes) % 4 + DECODE_BYTES_PAD1(2 * (bytes)))
280
281 /**
282 * Cook indata decoding, every 32 bits are XORed with 0x37c511f2.
283 * Why? No idea, some checksum/error detection method maybe.
284 *
285 * Out buffer size: extra bytes are needed to cope with
286 * padding/misalignment.
287 * Subpackets passed to the decoder can contain two, consecutive
288 * half-subpackets, of identical but arbitrary size.
289 * 1234 1234 1234 1234 extraA extraB
290 * Case 1: AAAA BBBB 0 0
291 * Case 2: AAAA ABBB BB-- 3 3
292 * Case 3: AAAA AABB BBBB 2 2
293 * Case 4: AAAA AAAB BBBB BB-- 1 5
294 *
295 * Nice way to waste CPU cycles.
296 *
297 * @param inbuffer pointer to byte array of indata
298 * @param out pointer to byte array of outdata
299 * @param bytes number of bytes
300 */
301 240 static inline int decode_bytes(const uint8_t *inbuffer, uint8_t *out, int bytes)
302 {
303 static const uint32_t tab[4] = {
304 AV_BE2NE32C(0x37c511f2u), AV_BE2NE32C(0xf237c511u),
305 AV_BE2NE32C(0x11f237c5u), AV_BE2NE32C(0xc511f237u),
306 };
307 int i, off;
308 uint32_t c;
309 const uint32_t *buf;
310 240 uint32_t *obuf = (uint32_t *) out;
311 /* FIXME: 64 bit platforms would be able to do 64 bits at a time.
312 * I'm too lazy though, should be something like
313 * for (i = 0; i < bitamount / 64; i++)
314 * (int64_t) out[i] = 0x37c511f237c511f2 ^ av_be2ne64(int64_t) in[i]);
315 * Buffer alignment needs to be checked. */
316
317 240 off = (intptr_t) inbuffer & 3;
318 240 buf = (const uint32_t *) (inbuffer - off);
319 240 c = tab[off];
320 240 bytes += 3 + off;
321
2/2
✓ Branch 0 taken 11280 times.
✓ Branch 1 taken 240 times.
11520 for (i = 0; i < bytes / 4; i++)
322 11280 obuf[i] = c ^ buf[i];
323
324 240 return off;
325 }
326
327 6 static av_cold int cook_decode_close(AVCodecContext *avctx)
328 {
329 int i;
330 6 COOKContext *q = avctx->priv_data;
331 6 av_log(avctx, AV_LOG_DEBUG, "Deallocating memory.\n");
332
333 /* Free allocated memory buffers. */
334 6 av_freep(&q->mlt_window);
335 6 av_freep(&q->decoded_bytes_buffer);
336
337 /* Free the transform. */
338 6 ff_mdct_end(&q->mdct_ctx);
339
340 /* Free the VLC tables. */
341
2/2
✓ Branch 0 taken 78 times.
✓ Branch 1 taken 6 times.
84 for (i = 0; i < 13; i++)
342 78 ff_free_vlc(&q->envelope_quant_index[i]);
343
2/2
✓ Branch 0 taken 42 times.
✓ Branch 1 taken 6 times.
48 for (i = 0; i < 7; i++)
344 42 ff_free_vlc(&q->sqvh[i]);
345
2/2
✓ Branch 0 taken 6 times.
✓ Branch 1 taken 6 times.
12 for (i = 0; i < q->num_subpackets; i++)
346 6 ff_free_vlc(&q->subpacket[i].channel_coupling);
347
348 6 av_log(avctx, AV_LOG_DEBUG, "Memory deallocated.\n");
349
350 6 return 0;
351 }
352
353 /**
354 * Fill the gain array for the timedomain quantization.
355 *
356 * @param gb pointer to the GetBitContext
357 * @param gaininfo array[9] of gain indexes
358 */
359 240 static void decode_gain_info(GetBitContext *gb, int *gaininfo)
360 {
361 int i, n;
362
363 240 n = get_unary(gb, 0, get_bits_left(gb)); // amount of elements*2 to update
364
365 240 i = 0;
366
2/2
✓ Branch 0 taken 1 times.
✓ Branch 1 taken 240 times.
241 while (n--) {
367 1 int index = get_bits(gb, 3);
368
1/2
✓ Branch 1 taken 1 times.
✗ Branch 2 not taken.
1 int gain = get_bits1(gb) ? get_bits(gb, 4) - 7 : -1;
369
370
2/2
✓ Branch 0 taken 7 times.
✓ Branch 1 taken 1 times.
8 while (i <= index)
371 7 gaininfo[i++] = gain;
372 }
373
2/2
✓ Branch 0 taken 2153 times.
✓ Branch 1 taken 240 times.
2393 while (i <= 8)
374 2153 gaininfo[i++] = 0;
375 240 }
376
377 /**
378 * Create the quant index table needed for the envelope.
379 *
380 * @param q pointer to the COOKContext
381 * @param quant_index_table pointer to the array
382 */
383 240 static int decode_envelope(COOKContext *q, COOKSubpacket *p,
384 int *quant_index_table)
385 {
386 int i, j, vlc_index;
387
388 240 quant_index_table[0] = get_bits(&q->gb, 6) - 6; // This is used later in categorize
389
390
2/2
✓ Branch 0 taken 10080 times.
✓ Branch 1 taken 240 times.
10320 for (i = 1; i < p->total_subbands; i++) {
391 10080 vlc_index = i;
392
2/2
✓ Branch 0 taken 7440 times.
✓ Branch 1 taken 2640 times.
10080 if (i >= p->js_subband_start * 2) {
393 7440 vlc_index -= p->js_subband_start;
394 } else {
395 2640 vlc_index /= 2;
396
2/2
✓ Branch 0 taken 240 times.
✓ Branch 1 taken 2400 times.
2640 if (vlc_index < 1)
397 240 vlc_index = 1;
398 }
399
2/2
✓ Branch 0 taken 5520 times.
✓ Branch 1 taken 4560 times.
10080 if (vlc_index > 13)
400 5520 vlc_index = 13; // the VLC tables >13 are identical to No. 13
401
402 10080 j = get_vlc2(&q->gb, q->envelope_quant_index[vlc_index - 1].table,
403 QUANT_VLC_BITS, 2);
404 10080 quant_index_table[i] = quant_index_table[i - 1] + j; // differential encoding
405
2/4
✓ Branch 0 taken 10080 times.
✗ Branch 1 not taken.
✗ Branch 2 not taken.
✓ Branch 3 taken 10080 times.
10080 if (quant_index_table[i] > 63 || quant_index_table[i] < -63) {
406 av_log(q->avctx, AV_LOG_ERROR,
407 "Invalid quantizer %d at position %d, outside [-63, 63] range\n",
408 quant_index_table[i], i);
409 return AVERROR_INVALIDDATA;
410 }
411 }
412
413 240 return 0;
414 }
415
416 /**
417 * Calculate the category and category_index vector.
418 *
419 * @param q pointer to the COOKContext
420 * @param quant_index_table pointer to the array
421 * @param category pointer to the category array
422 * @param category_index pointer to the category_index array
423 */
424 240 static void categorize(COOKContext *q, COOKSubpacket *p, const int *quant_index_table,
425 int *category, int *category_index)
426 {
427 int exp_idx, bias, tmpbias1, tmpbias2, bits_left, num_bits, index, v, i, j;
428 240 int exp_index2[102] = { 0 };
429 240 int exp_index1[102] = { 0 };
430
431 240 int tmp_categorize_array[128 * 2] = { 0 };
432 240 int tmp_categorize_array1_idx = p->numvector_size;
433 240 int tmp_categorize_array2_idx = p->numvector_size;
434
435 240 bits_left = p->bits_per_subpacket - get_bits_count(&q->gb);
436
437
1/2
✓ Branch 0 taken 240 times.
✗ Branch 1 not taken.
240 if (bits_left > q->samples_per_channel)
438 240 bits_left = q->samples_per_channel +
439 240 ((bits_left - q->samples_per_channel) * 5) / 8;
440
441 240 bias = -32;
442
443 /* Estimate bias. */
444
2/2
✓ Branch 0 taken 1440 times.
✓ Branch 1 taken 240 times.
1680 for (i = 32; i > 0; i = i / 2) {
445 1440 num_bits = 0;
446 1440 index = 0;
447
2/2
✓ Branch 0 taken 61920 times.
✓ Branch 1 taken 1440 times.
63360 for (j = p->total_subbands; j > 0; j--) {
448 61920 exp_idx = av_clip_uintp2((i - quant_index_table[index] + bias) / 2, 3);
449 61920 index++;
450 61920 num_bits += expbits_tab[exp_idx];
451 }
452
2/2
✓ Branch 0 taken 1333 times.
✓ Branch 1 taken 107 times.
1440 if (num_bits >= bits_left - 32)
453 1333 bias += i;
454 }
455
456 /* Calculate total number of bits. */
457 240 num_bits = 0;
458
2/2
✓ Branch 0 taken 10320 times.
✓ Branch 1 taken 240 times.
10560 for (i = 0; i < p->total_subbands; i++) {
459 10320 exp_idx = av_clip_uintp2((bias - quant_index_table[i]) / 2, 3);
460 10320 num_bits += expbits_tab[exp_idx];
461 10320 exp_index1[i] = exp_idx;
462 10320 exp_index2[i] = exp_idx;
463 }
464 240 tmpbias1 = tmpbias2 = num_bits;
465
466
2/2
✓ Branch 0 taken 30480 times.
✓ Branch 1 taken 240 times.
30720 for (j = 1; j < p->numvector_size; j++) {
467
2/2
✓ Branch 0 taken 16408 times.
✓ Branch 1 taken 14072 times.
30480 if (tmpbias1 + tmpbias2 > 2 * bits_left) { /* ---> */
468 16408 int max = -999999;
469 16408 index = -1;
470
2/2
✓ Branch 0 taken 705544 times.
✓ Branch 1 taken 16408 times.
721952 for (i = 0; i < p->total_subbands; i++) {
471
2/2
✓ Branch 0 taken 543313 times.
✓ Branch 1 taken 162231 times.
705544 if (exp_index1[i] < 7) {
472 543313 v = (-2 * exp_index1[i]) - quant_index_table[i] + bias;
473
2/2
✓ Branch 0 taken 186262 times.
✓ Branch 1 taken 357051 times.
543313 if (v >= max) {
474 186262 max = v;
475 186262 index = i;
476 }
477 }
478 }
479
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 16408 times.
16408 if (index == -1)
480 break;
481 16408 tmp_categorize_array[tmp_categorize_array1_idx++] = index;
482 16408 tmpbias1 -= expbits_tab[exp_index1[index]] -
483 16408 expbits_tab[exp_index1[index] + 1];
484 16408 ++exp_index1[index];
485 } else { /* <--- */
486 14072 int min = 999999;
487 14072 index = -1;
488
2/2
✓ Branch 0 taken 605096 times.
✓ Branch 1 taken 14072 times.
619168 for (i = 0; i < p->total_subbands; i++) {
489
2/2
✓ Branch 0 taken 527917 times.
✓ Branch 1 taken 77179 times.
605096 if (exp_index2[i] > 0) {
490 527917 v = (-2 * exp_index2[i]) - quant_index_table[i] + bias;
491
2/2
✓ Branch 0 taken 31097 times.
✓ Branch 1 taken 496820 times.
527917 if (v < min) {
492 31097 min = v;
493 31097 index = i;
494 }
495 }
496 }
497
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 14072 times.
14072 if (index == -1)
498 break;
499 14072 tmp_categorize_array[--tmp_categorize_array2_idx] = index;
500 14072 tmpbias2 -= expbits_tab[exp_index2[index]] -
501 14072 expbits_tab[exp_index2[index] - 1];
502 14072 --exp_index2[index];
503 }
504 }
505
506
2/2
✓ Branch 0 taken 10320 times.
✓ Branch 1 taken 240 times.
10560 for (i = 0; i < p->total_subbands; i++)
507 10320 category[i] = exp_index2[i];
508
509
2/2
✓ Branch 0 taken 30480 times.
✓ Branch 1 taken 240 times.
30720 for (i = 0; i < p->numvector_size - 1; i++)
510 30480 category_index[i] = tmp_categorize_array[tmp_categorize_array2_idx++];
511 240 }
512
513
514 /**
515 * Expand the category vector.
516 *
517 * @param q pointer to the COOKContext
518 * @param category pointer to the category array
519 * @param category_index pointer to the category_index array
520 */
521 240 static inline void expand_category(COOKContext *q, int *category,
522 int *category_index)
523 {
524 int i;
525
2/2
✓ Branch 0 taken 14901 times.
✓ Branch 1 taken 240 times.
15141 for (i = 0; i < q->num_vectors; i++)
526 {
527 14901 int idx = category_index[i];
528
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 14901 times.
14901 if (++category[idx] >= FF_ARRAY_ELEMS(dither_tab))
529 --category[idx];
530 }
531 240 }
532
533 /**
534 * The real requantization of the mltcoefs
535 *
536 * @param q pointer to the COOKContext
537 * @param index index
538 * @param quant_index quantisation index
539 * @param subband_coef_index array of indexes to quant_centroid_tab
540 * @param subband_coef_sign signs of coefficients
541 * @param mlt_p pointer into the mlt buffer
542 */
543 10320 static void scalar_dequant_float(COOKContext *q, int index, int quant_index,
544 int *subband_coef_index, int *subband_coef_sign,
545 float *mlt_p)
546 {
547 int i;
548 float f1;
549
550
2/2
✓ Branch 0 taken 206400 times.
✓ Branch 1 taken 10320 times.
216720 for (i = 0; i < SUBBAND_SIZE; i++) {
551
2/2
✓ Branch 0 taken 67248 times.
✓ Branch 1 taken 139152 times.
206400 if (subband_coef_index[i]) {
552 67248 f1 = quant_centroid_tab[index][subband_coef_index[i]];
553
2/2
✓ Branch 0 taken 33713 times.
✓ Branch 1 taken 33535 times.
67248 if (subband_coef_sign[i])
554 33713 f1 = -f1;
555 } else {
556 /* noise coding if subband_coef_index[i] == 0 */
557 139152 f1 = dither_tab[index];
558
2/2
✓ Branch 1 taken 69511 times.
✓ Branch 2 taken 69641 times.
139152 if (av_lfg_get(&q->random_state) < 0x80000000)
559 69511 f1 = -f1;
560 }
561 206400 mlt_p[i] = f1 * rootpow2tab[quant_index + 63];
562 }
563 10320 }
564 /**
565 * Unpack the subband_coef_index and subband_coef_sign vectors.
566 *
567 * @param q pointer to the COOKContext
568 * @param category pointer to the category array
569 * @param subband_coef_index array of indexes to quant_centroid_tab
570 * @param subband_coef_sign signs of coefficients
571 */
572 8969 static int unpack_SQVH(COOKContext *q, COOKSubpacket *p, int category,
573 int *subband_coef_index, int *subband_coef_sign)
574 {
575 int i, j;
576 int vlc, vd, tmp, result;
577
578 8969 vd = vd_tab[category];
579 8969 result = 0;
580
2/2
✓ Branch 0 taken 56475 times.
✓ Branch 1 taken 8969 times.
65444 for (i = 0; i < vpr_tab[category]; i++) {
581 56475 vlc = get_vlc2(&q->gb, q->sqvh[category].table, q->sqvh[category].bits, 3);
582
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 56475 times.
56475 if (p->bits_per_subpacket < get_bits_count(&q->gb)) {
583 vlc = 0;
584 result = 1;
585 }
586
2/2
✓ Branch 0 taken 179380 times.
✓ Branch 1 taken 56475 times.
235855 for (j = vd - 1; j >= 0; j--) {
587 179380 tmp = (vlc * invradix_tab[category]) / 0x100000;
588 179380 subband_coef_index[vd * i + j] = vlc - tmp * (kmax_tab[category] + 1);
589 179380 vlc = tmp;
590 }
591
2/2
✓ Branch 0 taken 179380 times.
✓ Branch 1 taken 56475 times.
235855 for (j = 0; j < vd; j++) {
592
2/2
✓ Branch 0 taken 67248 times.
✓ Branch 1 taken 112132 times.
179380 if (subband_coef_index[i * vd + j]) {
593
1/2
✓ Branch 1 taken 67248 times.
✗ Branch 2 not taken.
67248 if (get_bits_count(&q->gb) < p->bits_per_subpacket) {
594 67248 subband_coef_sign[i * vd + j] = get_bits1(&q->gb);
595 } else {
596 result = 1;
597 subband_coef_sign[i * vd + j] = 0;
598 }
599 } else {
600 112132 subband_coef_sign[i * vd + j] = 0;
601 }
602 }
603 }
604 8969 return result;
605 }
606
607
608 /**
609 * Fill the mlt_buffer with mlt coefficients.
610 *
611 * @param q pointer to the COOKContext
612 * @param category pointer to the category array
613 * @param quant_index_table pointer to the array
614 * @param mlt_buffer pointer to mlt coefficients
615 */
616 240 static void decode_vectors(COOKContext *q, COOKSubpacket *p, int *category,
617 int *quant_index_table, float *mlt_buffer)
618 {
619 /* A zero in this table means that the subband coefficient is
620 random noise coded. */
621 int subband_coef_index[SUBBAND_SIZE];
622 /* A zero in this table means that the subband coefficient is a
623 positive multiplicator. */
624 int subband_coef_sign[SUBBAND_SIZE];
625 int band, j;
626 240 int index = 0;
627
628
2/2
✓ Branch 0 taken 10320 times.
✓ Branch 1 taken 240 times.
10560 for (band = 0; band < p->total_subbands; band++) {
629 10320 index = category[band];
630
2/2
✓ Branch 0 taken 8969 times.
✓ Branch 1 taken 1351 times.
10320 if (category[band] < 7) {
631
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 8969 times.
8969 if (unpack_SQVH(q, p, category[band], subband_coef_index, subband_coef_sign)) {
632 index = 7;
633 for (j = 0; j < p->total_subbands; j++)
634 category[band + j] = 7;
635 }
636 }
637
2/2
✓ Branch 0 taken 1351 times.
✓ Branch 1 taken 8969 times.
10320 if (index >= 7) {
638 1351 memset(subband_coef_index, 0, sizeof(subband_coef_index));
639 1351 memset(subband_coef_sign, 0, sizeof(subband_coef_sign));
640 }
641 10320 q->scalar_dequant(q, index, quant_index_table[band],
642 subband_coef_index, subband_coef_sign,
643 10320 &mlt_buffer[band * SUBBAND_SIZE]);
644 }
645
646 /* FIXME: should this be removed, or moved into loop above? */
647
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 240 times.
240 if (p->total_subbands * SUBBAND_SIZE >= q->samples_per_channel)
648 return;
649 }
650
651
652 240 static int mono_decode(COOKContext *q, COOKSubpacket *p, float *mlt_buffer)
653 {
654 240 int category_index[128] = { 0 };
655 240 int category[128] = { 0 };
656 int quant_index_table[102];
657 int res, i;
658
659
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 240 times.
240 if ((res = decode_envelope(q, p, quant_index_table)) < 0)
660 return res;
661 240 q->num_vectors = get_bits(&q->gb, p->log2_numvector_size);
662 240 categorize(q, p, quant_index_table, category, category_index);
663 240 expand_category(q, category, category_index);
664
2/2
✓ Branch 0 taken 10320 times.
✓ Branch 1 taken 240 times.
10560 for (i=0; i<p->total_subbands; i++) {
665
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 10320 times.
10320 if (category[i] > 7)
666 return AVERROR_INVALIDDATA;
667 }
668 240 decode_vectors(q, p, category, quant_index_table, mlt_buffer);
669
670 240 return 0;
671 }
672
673
674 /**
675 * the actual requantization of the timedomain samples
676 *
677 * @param q pointer to the COOKContext
678 * @param buffer pointer to the timedomain buffer
679 * @param gain_index index for the block multiplier
680 * @param gain_index_next index for the next block multiplier
681 */
682 14 static void interpolate_float(COOKContext *q, float *buffer,
683 int gain_index, int gain_index_next)
684 {
685 int i;
686 float fc1, fc2;
687 14 fc1 = pow2tab[gain_index + 63];
688
689
2/2
✓ Branch 0 taken 12 times.
✓ Branch 1 taken 2 times.
14 if (gain_index == gain_index_next) { // static gain
690
2/2
✓ Branch 0 taken 1536 times.
✓ Branch 1 taken 12 times.
1548 for (i = 0; i < q->gain_size_factor; i++)
691 1536 buffer[i] *= fc1;
692 } else { // smooth gain
693 2 fc2 = q->gain_table[15 + (gain_index_next - gain_index)];
694
2/2
✓ Branch 0 taken 256 times.
✓ Branch 1 taken 2 times.
258 for (i = 0; i < q->gain_size_factor; i++) {
695 256 buffer[i] *= fc1;
696 256 fc1 *= fc2;
697 }
698 }
699 14 }
700
701 /**
702 * Apply transform window, overlap buffers.
703 *
704 * @param q pointer to the COOKContext
705 * @param inbuffer pointer to the mltcoefficients
706 * @param gains_ptr current and previous gains
707 * @param previous_buffer pointer to the previous buffer to be used for overlapping
708 */
709 480 static void imlt_window_float(COOKContext *q, float *inbuffer,
710 cook_gains *gains_ptr, float *previous_buffer)
711 {
712 480 const float fc = pow2tab[gains_ptr->previous[0] + 63];
713 int i;
714 /* The weird thing here, is that the two halves of the time domain
715 * buffer are swapped. Also, the newest data, that we save away for
716 * next frame, has the wrong sign. Hence the subtraction below.
717 * Almost sounds like a complex conjugate/reverse data/FFT effect.
718 */
719
720 /* Apply window and overlap */
721
2/2
✓ Branch 0 taken 491520 times.
✓ Branch 1 taken 480 times.
492000 for (i = 0; i < q->samples_per_channel; i++)
722 491520 inbuffer[i] = inbuffer[i] * fc * q->mlt_window[i] -
723 491520 previous_buffer[i] * q->mlt_window[q->samples_per_channel - 1 - i];
724 480 }
725
726 /**
727 * The modulated lapped transform, this takes transform coefficients
728 * and transforms them into timedomain samples.
729 * Apply transform window, overlap buffers, apply gain profile
730 * and buffer management.
731 *
732 * @param q pointer to the COOKContext
733 * @param inbuffer pointer to the mltcoefficients
734 * @param gains_ptr current and previous gains
735 * @param previous_buffer pointer to the previous buffer to be used for overlapping
736 */
737 480 static void imlt_gain(COOKContext *q, float *inbuffer,
738 cook_gains *gains_ptr, float *previous_buffer)
739 {
740 480 float *buffer0 = q->mono_mdct_output;
741 480 float *buffer1 = q->mono_mdct_output + q->samples_per_channel;
742 int i;
743
744 /* Inverse modified discrete cosine transform */
745 480 q->mdct_ctx.imdct_calc(&q->mdct_ctx, q->mono_mdct_output, inbuffer);
746
747 480 q->imlt_window(q, buffer1, gains_ptr, previous_buffer);
748
749 /* Apply gain profile */
750
2/2
✓ Branch 0 taken 3840 times.
✓ Branch 1 taken 480 times.
4320 for (i = 0; i < 8; i++)
751
3/4
✓ Branch 0 taken 3826 times.
✓ Branch 1 taken 14 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 3826 times.
3840 if (gains_ptr->now[i] || gains_ptr->now[i + 1])
752 14 q->interpolate(q, &buffer1[q->gain_size_factor * i],
753 14 gains_ptr->now[i], gains_ptr->now[i + 1]);
754
755 /* Save away the current to be previous block. */
756 480 memcpy(previous_buffer, buffer0,
757 480 q->samples_per_channel * sizeof(*previous_buffer));
758 480 }
759
760
761 /**
762 * function for getting the jointstereo coupling information
763 *
764 * @param q pointer to the COOKContext
765 * @param decouple_tab decoupling array
766 */
767 240 static int decouple_info(COOKContext *q, COOKSubpacket *p, int *decouple_tab)
768 {
769 int i;
770 240 int vlc = get_bits1(&q->gb);
771 240 int start = cplband[p->js_subband_start];
772 240 int end = cplband[p->subbands - 1];
773 240 int length = end - start + 1;
774
775
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 240 times.
240 if (start > end)
776 return 0;
777
778
2/2
✓ Branch 0 taken 129 times.
✓ Branch 1 taken 111 times.
240 if (vlc)
779
2/2
✓ Branch 0 taken 1677 times.
✓ Branch 1 taken 129 times.
1806 for (i = 0; i < length; i++)
780 1677 decouple_tab[start + i] = get_vlc2(&q->gb,
781 p->channel_coupling.table,
782 COUPLING_VLC_BITS, 3);
783 else
784
2/2
✓ Branch 0 taken 1443 times.
✓ Branch 1 taken 111 times.
1554 for (i = 0; i < length; i++) {
785 1443 int v = get_bits(&q->gb, p->js_vlc_bits);
786
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 1443 times.
1443 if (v == (1<<p->js_vlc_bits)-1) {
787 av_log(q->avctx, AV_LOG_ERROR, "decouple value too large\n");
788 return AVERROR_INVALIDDATA;
789 }
790 1443 decouple_tab[start + i] = v;
791 }
792 240 return 0;
793 }
794
795 /**
796 * function decouples a pair of signals from a single signal via multiplication.
797 *
798 * @param q pointer to the COOKContext
799 * @param subband index of the current subband
800 * @param f1 multiplier for channel 1 extraction
801 * @param f2 multiplier for channel 2 extraction
802 * @param decode_buffer input buffer
803 * @param mlt_buffer1 pointer to left channel mlt coefficients
804 * @param mlt_buffer2 pointer to right channel mlt coefficients
805 */
806 7440 static void decouple_float(COOKContext *q,
807 COOKSubpacket *p,
808 int subband,
809 float f1, float f2,
810 float *decode_buffer,
811 float *mlt_buffer1, float *mlt_buffer2)
812 {
813 int j, tmp_idx;
814
2/2
✓ Branch 0 taken 148800 times.
✓ Branch 1 taken 7440 times.
156240 for (j = 0; j < SUBBAND_SIZE; j++) {
815 148800 tmp_idx = ((p->js_subband_start + subband) * SUBBAND_SIZE) + j;
816 148800 mlt_buffer1[SUBBAND_SIZE * subband + j] = f1 * decode_buffer[tmp_idx];
817 148800 mlt_buffer2[SUBBAND_SIZE * subband + j] = f2 * decode_buffer[tmp_idx];
818 }
819 7440 }
820
821 /**
822 * function for decoding joint stereo data
823 *
824 * @param q pointer to the COOKContext
825 * @param mlt_buffer1 pointer to left channel mlt coefficients
826 * @param mlt_buffer2 pointer to right channel mlt coefficients
827 */
828 240 static int joint_decode(COOKContext *q, COOKSubpacket *p,
829 float *mlt_buffer_left, float *mlt_buffer_right)
830 {
831 int i, j, res;
832 240 int decouple_tab[SUBBAND_SIZE] = { 0 };
833 240 float *decode_buffer = q->decode_buffer_0;
834 int idx, cpl_tmp;
835 float f1, f2;
836 const float *cplscale;
837
838 240 memset(decode_buffer, 0, sizeof(q->decode_buffer_0));
839
840 /* Make sure the buffers are zeroed out. */
841 240 memset(mlt_buffer_left, 0, 1024 * sizeof(*mlt_buffer_left));
842 240 memset(mlt_buffer_right, 0, 1024 * sizeof(*mlt_buffer_right));
843
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 240 times.
240 if ((res = decouple_info(q, p, decouple_tab)) < 0)
844 return res;
845
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 240 times.
240 if ((res = mono_decode(q, p, decode_buffer)) < 0)
846 return res;
847 /* The two channels are stored interleaved in decode_buffer. */
848
2/2
✓ Branch 0 taken 1440 times.
✓ Branch 1 taken 240 times.
1680 for (i = 0; i < p->js_subband_start; i++) {
849
2/2
✓ Branch 0 taken 28800 times.
✓ Branch 1 taken 1440 times.
30240 for (j = 0; j < SUBBAND_SIZE; j++) {
850 28800 mlt_buffer_left[i * 20 + j] = decode_buffer[i * 40 + j];
851 28800 mlt_buffer_right[i * 20 + j] = decode_buffer[i * 40 + 20 + j];
852 }
853 }
854
855 /* When we reach js_subband_start (the higher frequencies)
856 the coefficients are stored in a coupling scheme. */
857 240 idx = (1 << p->js_vlc_bits) - 1;
858
2/2
✓ Branch 0 taken 7440 times.
✓ Branch 1 taken 240 times.
7680 for (i = p->js_subband_start; i < p->subbands; i++) {
859 7440 cpl_tmp = cplband[i];
860 7440 idx -= decouple_tab[cpl_tmp];
861 7440 cplscale = q->cplscales[p->js_vlc_bits - 2]; // choose decoupler table
862 7440 f1 = cplscale[decouple_tab[cpl_tmp] + 1];
863 7440 f2 = cplscale[idx];
864 7440 q->decouple(q, p, i, f1, f2, decode_buffer,
865 mlt_buffer_left, mlt_buffer_right);
866 7440 idx = (1 << p->js_vlc_bits) - 1;
867 }
868
869 240 return 0;
870 }
871
872 /**
873 * First part of subpacket decoding:
874 * decode raw stream bytes and read gain info.
875 *
876 * @param q pointer to the COOKContext
877 * @param inbuffer pointer to raw stream data
878 * @param gains_ptr array of current/prev gain pointers
879 */
880 240 static inline void decode_bytes_and_gain(COOKContext *q, COOKSubpacket *p,
881 const uint8_t *inbuffer,
882 cook_gains *gains_ptr)
883 {
884 int offset;
885
886 240 offset = decode_bytes(inbuffer, q->decoded_bytes_buffer,
887 240 p->bits_per_subpacket / 8);
888 240 init_get_bits(&q->gb, q->decoded_bytes_buffer + offset,
889 p->bits_per_subpacket);
890 240 decode_gain_info(&q->gb, gains_ptr->now);
891
892 /* Swap current and previous gains */
893 240 FFSWAP(int *, gains_ptr->now, gains_ptr->previous);
894 240 }
895
896 /**
897 * Saturate the output signal and interleave.
898 *
899 * @param q pointer to the COOKContext
900 * @param out pointer to the output vector
901 */
902 476 static void saturate_output_float(COOKContext *q, float *out)
903 {
904 476 q->adsp.vector_clipf(out, q->mono_mdct_output + q->samples_per_channel,
905 476 FFALIGN(q->samples_per_channel, 8), -1.0f, 1.0f);
906 476 }
907
908
909 /**
910 * Final part of subpacket decoding:
911 * Apply modulated lapped transform, gain compensation,
912 * clip and convert to integer.
913 *
914 * @param q pointer to the COOKContext
915 * @param decode_buffer pointer to the mlt coefficients
916 * @param gains_ptr array of current/prev gain pointers
917 * @param previous_buffer pointer to the previous buffer to be used for overlapping
918 * @param out pointer to the output buffer
919 */
920 480 static inline void mlt_compensate_output(COOKContext *q, float *decode_buffer,
921 cook_gains *gains_ptr, float *previous_buffer,
922 float *out)
923 {
924 480 imlt_gain(q, decode_buffer, gains_ptr, previous_buffer);
925
2/2
✓ Branch 0 taken 476 times.
✓ Branch 1 taken 4 times.
480 if (out)
926 476 q->saturate_output(q, out);
927 480 }
928
929
930 /**
931 * Cook subpacket decoding. This function returns one decoded subpacket,
932 * usually 1024 samples per channel.
933 *
934 * @param q pointer to the COOKContext
935 * @param inbuffer pointer to the inbuffer
936 * @param outbuffer pointer to the outbuffer
937 */
938 240 static int decode_subpacket(COOKContext *q, COOKSubpacket *p,
939 const uint8_t *inbuffer, float **outbuffer)
940 {
941 240 int sub_packet_size = p->size;
942 int res;
943
944 240 memset(q->decode_buffer_1, 0, sizeof(q->decode_buffer_1));
945 240 decode_bytes_and_gain(q, p, inbuffer, &p->gains1);
946
947
1/2
✓ Branch 0 taken 240 times.
✗ Branch 1 not taken.
240 if (p->joint_stereo) {
948
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 240 times.
240 if ((res = joint_decode(q, p, q->decode_buffer_1, q->decode_buffer_2)) < 0)
949 return res;
950 } else {
951 if ((res = mono_decode(q, p, q->decode_buffer_1)) < 0)
952 return res;
953
954 if (p->num_channels == 2) {
955 decode_bytes_and_gain(q, p, inbuffer + sub_packet_size / 2, &p->gains2);
956 if ((res = mono_decode(q, p, q->decode_buffer_2)) < 0)
957 return res;
958 }
959 }
960
961
2/2
✓ Branch 0 taken 238 times.
✓ Branch 1 taken 2 times.
240 mlt_compensate_output(q, q->decode_buffer_1, &p->gains1,
962 240 p->mono_previous_buffer1,
963 238 outbuffer ? outbuffer[p->ch_idx] : NULL);
964
965
1/2
✓ Branch 0 taken 240 times.
✗ Branch 1 not taken.
240 if (p->num_channels == 2) {
966
1/2
✓ Branch 0 taken 240 times.
✗ Branch 1 not taken.
240 if (p->joint_stereo)
967
2/2
✓ Branch 0 taken 238 times.
✓ Branch 1 taken 2 times.
240 mlt_compensate_output(q, q->decode_buffer_2, &p->gains1,
968 240 p->mono_previous_buffer2,
969 238 outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
970 else
971 mlt_compensate_output(q, q->decode_buffer_2, &p->gains2,
972 p->mono_previous_buffer2,
973 outbuffer ? outbuffer[p->ch_idx + 1] : NULL);
974 }
975
976 240 return 0;
977 }
978
979
980 240 static int cook_decode_frame(AVCodecContext *avctx, void *data,
981 int *got_frame_ptr, AVPacket *avpkt)
982 {
983 240 AVFrame *frame = data;
984 240 const uint8_t *buf = avpkt->data;
985 240 int buf_size = avpkt->size;
986 240 COOKContext *q = avctx->priv_data;
987 240 float **samples = NULL;
988 int i, ret;
989 240 int offset = 0;
990 240 int chidx = 0;
991
992
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 240 times.
240 if (buf_size < avctx->block_align)
993 return buf_size;
994
995 /* get output buffer */
996
2/2
✓ Branch 0 taken 238 times.
✓ Branch 1 taken 2 times.
240 if (q->discarded_packets >= 2) {
997 238 frame->nb_samples = q->samples_per_channel;
998
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 238 times.
238 if ((ret = ff_get_buffer(avctx, frame, 0)) < 0)
999 return ret;
1000 238 samples = (float **)frame->extended_data;
1001 }
1002
1003 /* estimate subpacket sizes */
1004 240 q->subpacket[0].size = avctx->block_align;
1005
1006
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 240 times.
240 for (i = 1; i < q->num_subpackets; i++) {
1007 q->subpacket[i].size = 2 * buf[avctx->block_align - q->num_subpackets + i];
1008 q->subpacket[0].size -= q->subpacket[i].size + 1;
1009 if (q->subpacket[0].size < 0) {
1010 av_log(avctx, AV_LOG_DEBUG,
1011 "frame subpacket size total > avctx->block_align!\n");
1012 return AVERROR_INVALIDDATA;
1013 }
1014 }
1015
1016 /* decode supbackets */
1017
2/2
✓ Branch 0 taken 240 times.
✓ Branch 1 taken 240 times.
480 for (i = 0; i < q->num_subpackets; i++) {
1018 240 q->subpacket[i].bits_per_subpacket = (q->subpacket[i].size * 8) >>
1019 240 q->subpacket[i].bits_per_subpdiv;
1020 240 q->subpacket[i].ch_idx = chidx;
1021 240 av_log(avctx, AV_LOG_DEBUG,
1022 "subpacket[%i] size %i js %i %i block_align %i\n",
1023 i, q->subpacket[i].size, q->subpacket[i].joint_stereo, offset,
1024 avctx->block_align);
1025
1026
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 240 times.
240 if ((ret = decode_subpacket(q, &q->subpacket[i], buf + offset, samples)) < 0)
1027 return ret;
1028 240 offset += q->subpacket[i].size;
1029 240 chidx += q->subpacket[i].num_channels;
1030 480 av_log(avctx, AV_LOG_DEBUG, "subpacket[%i] %i %i\n",
1031 240 i, q->subpacket[i].size * 8, get_bits_count(&q->gb));
1032 }
1033
1034 /* Discard the first two frames: no valid audio. */
1035
2/2
✓ Branch 0 taken 2 times.
✓ Branch 1 taken 238 times.
240 if (q->discarded_packets < 2) {
1036 2 q->discarded_packets++;
1037 2 *got_frame_ptr = 0;
1038 2 return avctx->block_align;
1039 }
1040
1041 238 *got_frame_ptr = 1;
1042
1043 238 return avctx->block_align;
1044 }
1045
1046 6 static void dump_cook_context(COOKContext *q)
1047 {
1048 //int i=0;
1049 #define PRINT(a, b) ff_dlog(q->avctx, " %s = %d\n", a, b);
1050 ff_dlog(q->avctx, "COOKextradata\n");
1051 ff_dlog(q->avctx, "cookversion=%x\n", q->subpacket[0].cookversion);
1052 6 if (q->subpacket[0].cookversion > STEREO) {
1053 PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1054 PRINT("js_vlc_bits", q->subpacket[0].js_vlc_bits);
1055 }
1056 ff_dlog(q->avctx, "COOKContext\n");
1057 PRINT("nb_channels", q->avctx->channels);
1058 PRINT("bit_rate", (int)q->avctx->bit_rate);
1059 PRINT("sample_rate", q->avctx->sample_rate);
1060 PRINT("samples_per_channel", q->subpacket[0].samples_per_channel);
1061 PRINT("subbands", q->subpacket[0].subbands);
1062 PRINT("js_subband_start", q->subpacket[0].js_subband_start);
1063 PRINT("log2_numvector_size", q->subpacket[0].log2_numvector_size);
1064 PRINT("numvector_size", q->subpacket[0].numvector_size);
1065 PRINT("total_subbands", q->subpacket[0].total_subbands);
1066 6 }
1067
1068 /**
1069 * Cook initialization
1070 *
1071 * @param avctx pointer to the AVCodecContext
1072 */
1073 6 static av_cold int cook_decode_init(AVCodecContext *avctx)
1074 {
1075 static AVOnce init_static_once = AV_ONCE_INIT;
1076 6 COOKContext *q = avctx->priv_data;
1077 GetByteContext gb;
1078 6 int s = 0;
1079 6 unsigned int channel_mask = 0;
1080 6 int samples_per_frame = 0;
1081 int ret;
1082 6 q->avctx = avctx;
1083
1084 /* Take care of the codec specific extradata. */
1085
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (avctx->extradata_size < 8) {
1086 av_log(avctx, AV_LOG_ERROR, "Necessary extradata missing!\n");
1087 return AVERROR_INVALIDDATA;
1088 }
1089 6 av_log(avctx, AV_LOG_DEBUG, "codecdata_length=%d\n", avctx->extradata_size);
1090
1091 6 bytestream2_init(&gb, avctx->extradata, avctx->extradata_size);
1092
1093 /* Take data from the AVCodecContext (RM container). */
1094
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (!avctx->channels) {
1095 av_log(avctx, AV_LOG_ERROR, "Invalid number of channels\n");
1096 return AVERROR_INVALIDDATA;
1097 }
1098
1099
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (avctx->block_align >= INT_MAX / 8)
1100 return AVERROR(EINVAL);
1101
1102 /* Initialize RNG. */
1103 6 av_lfg_init(&q->random_state, 0);
1104
1105 6 ff_audiodsp_init(&q->adsp);
1106
1107
2/2
✓ Branch 1 taken 6 times.
✓ Branch 2 taken 6 times.
12 while (bytestream2_get_bytes_left(&gb)) {
1108
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (s >= FFMIN(MAX_SUBPACKETS, avctx->block_align)) {
1109 avpriv_request_sample(avctx, "subpackets > %d", FFMIN(MAX_SUBPACKETS, avctx->block_align));
1110 return AVERROR_PATCHWELCOME;
1111 }
1112 /* 8 for mono, 16 for stereo, ? for multichannel
1113 Swap to right endianness so we don't need to care later on. */
1114 6 q->subpacket[s].cookversion = bytestream2_get_be32(&gb);
1115 6 samples_per_frame = bytestream2_get_be16(&gb);
1116 6 q->subpacket[s].subbands = bytestream2_get_be16(&gb);
1117 6 bytestream2_get_be32(&gb); // Unknown unused
1118 6 q->subpacket[s].js_subband_start = bytestream2_get_be16(&gb);
1119
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (q->subpacket[s].js_subband_start >= 51) {
1120 av_log(avctx, AV_LOG_ERROR, "js_subband_start %d is too large\n", q->subpacket[s].js_subband_start);
1121 return AVERROR_INVALIDDATA;
1122 }
1123 6 q->subpacket[s].js_vlc_bits = bytestream2_get_be16(&gb);
1124
1125 /* Initialize extradata related variables. */
1126 6 q->subpacket[s].samples_per_channel = samples_per_frame / avctx->channels;
1127 6 q->subpacket[s].bits_per_subpacket = avctx->block_align * 8;
1128
1129 /* Initialize default data states. */
1130 6 q->subpacket[s].log2_numvector_size = 5;
1131 6 q->subpacket[s].total_subbands = q->subpacket[s].subbands;
1132 6 q->subpacket[s].num_channels = 1;
1133
1134 /* Initialize version-dependent variables */
1135
1136 6 av_log(avctx, AV_LOG_DEBUG, "subpacket[%i].cookversion=%x\n", s,
1137 q->subpacket[s].cookversion);
1138 6 q->subpacket[s].joint_stereo = 0;
1139
2/5
✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
✓ Branch 2 taken 4 times.
✗ Branch 3 not taken.
✗ Branch 4 not taken.
6 switch (q->subpacket[s].cookversion) {
1140 case MONO:
1141 if (avctx->channels != 1) {
1142 avpriv_request_sample(avctx, "Container channels != 1");
1143 return AVERROR_PATCHWELCOME;
1144 }
1145 av_log(avctx, AV_LOG_DEBUG, "MONO\n");
1146 break;
1147 2 case STEREO:
1148
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 2 times.
2 if (avctx->channels != 1) {
1149 q->subpacket[s].bits_per_subpdiv = 1;
1150 q->subpacket[s].num_channels = 2;
1151 }
1152 2 av_log(avctx, AV_LOG_DEBUG, "STEREO\n");
1153 2 break;
1154 4 case JOINT_STEREO:
1155
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 4 times.
4 if (avctx->channels != 2) {
1156 avpriv_request_sample(avctx, "Container channels != 2");
1157 return AVERROR_PATCHWELCOME;
1158 }
1159 4 av_log(avctx, AV_LOG_DEBUG, "JOINT_STEREO\n");
1160
1/2
✓ Branch 0 taken 4 times.
✗ Branch 1 not taken.
4 if (avctx->extradata_size >= 16) {
1161 4 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1162 4 q->subpacket[s].js_subband_start;
1163 4 q->subpacket[s].joint_stereo = 1;
1164 4 q->subpacket[s].num_channels = 2;
1165 }
1166
1/2
✓ Branch 0 taken 4 times.
✗ Branch 1 not taken.
4 if (q->subpacket[s].samples_per_channel > 256) {
1167 4 q->subpacket[s].log2_numvector_size = 6;
1168 }
1169
1/2
✓ Branch 0 taken 4 times.
✗ Branch 1 not taken.
4 if (q->subpacket[s].samples_per_channel > 512) {
1170 4 q->subpacket[s].log2_numvector_size = 7;
1171 }
1172 4 break;
1173 case MC_COOK:
1174 av_log(avctx, AV_LOG_DEBUG, "MULTI_CHANNEL\n");
1175 channel_mask |= q->subpacket[s].channel_mask = bytestream2_get_be32(&gb);
1176
1177 if (av_get_channel_layout_nb_channels(q->subpacket[s].channel_mask) > 1) {
1178 q->subpacket[s].total_subbands = q->subpacket[s].subbands +
1179 q->subpacket[s].js_subband_start;
1180 q->subpacket[s].joint_stereo = 1;
1181 q->subpacket[s].num_channels = 2;
1182 q->subpacket[s].samples_per_channel = samples_per_frame >> 1;
1183
1184 if (q->subpacket[s].samples_per_channel > 256) {
1185 q->subpacket[s].log2_numvector_size = 6;
1186 }
1187 if (q->subpacket[s].samples_per_channel > 512) {
1188 q->subpacket[s].log2_numvector_size = 7;
1189 }
1190 } else
1191 q->subpacket[s].samples_per_channel = samples_per_frame;
1192
1193 break;
1194 default:
1195 avpriv_request_sample(avctx, "Cook version %d",
1196 q->subpacket[s].cookversion);
1197 return AVERROR_PATCHWELCOME;
1198 }
1199
1200
1/4
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
6 if (s > 1 && q->subpacket[s].samples_per_channel != q->samples_per_channel) {
1201 av_log(avctx, AV_LOG_ERROR, "different number of samples per channel!\n");
1202 return AVERROR_INVALIDDATA;
1203 } else
1204 6 q->samples_per_channel = q->subpacket[0].samples_per_channel;
1205
1206
1207 /* Initialize variable relations */
1208 6 q->subpacket[s].numvector_size = (1 << q->subpacket[s].log2_numvector_size);
1209
1210 /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
1211
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (q->subpacket[s].total_subbands > 53) {
1212 avpriv_request_sample(avctx, "total_subbands > 53");
1213 return AVERROR_PATCHWELCOME;
1214 }
1215
1216
1/2
✓ Branch 0 taken 6 times.
✗ Branch 1 not taken.
6 if ((q->subpacket[s].js_vlc_bits > 6) ||
1217
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 (q->subpacket[s].js_vlc_bits < 2 * q->subpacket[s].joint_stereo)) {
1218 av_log(avctx, AV_LOG_ERROR, "js_vlc_bits = %d, only >= %d and <= 6 allowed!\n",
1219 q->subpacket[s].js_vlc_bits, 2 * q->subpacket[s].joint_stereo);
1220 return AVERROR_INVALIDDATA;
1221 }
1222
1223
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (q->subpacket[s].subbands > 50) {
1224 avpriv_request_sample(avctx, "subbands > 50");
1225 return AVERROR_PATCHWELCOME;
1226 }
1227
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (q->subpacket[s].subbands == 0) {
1228 avpriv_request_sample(avctx, "subbands = 0");
1229 return AVERROR_PATCHWELCOME;
1230 }
1231 6 q->subpacket[s].gains1.now = q->subpacket[s].gain_1;
1232 6 q->subpacket[s].gains1.previous = q->subpacket[s].gain_2;
1233 6 q->subpacket[s].gains2.now = q->subpacket[s].gain_3;
1234 6 q->subpacket[s].gains2.previous = q->subpacket[s].gain_4;
1235
1236
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (q->num_subpackets + q->subpacket[s].num_channels > q->avctx->channels) {
1237 av_log(avctx, AV_LOG_ERROR, "Too many subpackets %d for channels %d\n", q->num_subpackets, q->avctx->channels);
1238 return AVERROR_INVALIDDATA;
1239 }
1240
1241 6 q->num_subpackets++;
1242 6 s++;
1243 }
1244
1245 /* Try to catch some obviously faulty streams, otherwise it might be exploitable */
1246
2/4
✓ Branch 0 taken 6 times.
✗ Branch 1 not taken.
✓ Branch 2 taken 6 times.
✗ Branch 3 not taken.
6 if (q->samples_per_channel != 256 && q->samples_per_channel != 512 &&
1247
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 q->samples_per_channel != 1024) {
1248 avpriv_request_sample(avctx, "samples_per_channel = %d",
1249 q->samples_per_channel);
1250 return AVERROR_PATCHWELCOME;
1251 }
1252
1253 /* Generate tables */
1254 6 ff_thread_once(&init_static_once, init_pow2table);
1255 6 init_gain_table(q);
1256 6 init_cplscales_table(q);
1257
1258
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 6 times.
6 if ((ret = init_cook_vlc_tables(q)))
1259 return ret;
1260
1261 /* Pad the databuffer with:
1262 DECODE_BYTES_PAD1 or DECODE_BYTES_PAD2 for decode_bytes(),
1263 AV_INPUT_BUFFER_PADDING_SIZE, for the bitstreamreader. */
1264 6 q->decoded_bytes_buffer =
1265 6 av_mallocz(avctx->block_align
1266 6 + DECODE_BYTES_PAD1(avctx->block_align)
1267 6 + AV_INPUT_BUFFER_PADDING_SIZE);
1268
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (!q->decoded_bytes_buffer)
1269 return AVERROR(ENOMEM);
1270
1271 /* Initialize transform. */
1272
1/2
✗ Branch 1 not taken.
✓ Branch 2 taken 6 times.
6 if ((ret = init_cook_mlt(q)))
1273 return ret;
1274
1275 /* Initialize COOK signal arithmetic handling */
1276 if (1) {
1277 6 q->scalar_dequant = scalar_dequant_float;
1278 6 q->decouple = decouple_float;
1279 6 q->imlt_window = imlt_window_float;
1280 6 q->interpolate = interpolate_float;
1281 6 q->saturate_output = saturate_output_float;
1282 }
1283
1284 6 avctx->sample_fmt = AV_SAMPLE_FMT_FLTP;
1285
1/2
✗ Branch 0 not taken.
✓ Branch 1 taken 6 times.
6 if (channel_mask)
1286 avctx->channel_layout = channel_mask;
1287 else
1288
2/2
✓ Branch 0 taken 4 times.
✓ Branch 1 taken 2 times.
6 avctx->channel_layout = (avctx->channels == 2) ? AV_CH_LAYOUT_STEREO : AV_CH_LAYOUT_MONO;
1289
1290
1291 6 dump_cook_context(q);
1292
1293 6 return 0;
1294 }
1295
1296 const AVCodec ff_cook_decoder = {
1297 .name = "cook",
1298 .long_name = NULL_IF_CONFIG_SMALL("Cook / Cooker / Gecko (RealAudio G2)"),
1299 .type = AVMEDIA_TYPE_AUDIO,
1300 .id = AV_CODEC_ID_COOK,
1301 .priv_data_size = sizeof(COOKContext),
1302 .init = cook_decode_init,
1303 .close = cook_decode_close,
1304 .decode = cook_decode_frame,
1305 .capabilities = AV_CODEC_CAP_DR1,
1306 .sample_fmts = (const enum AVSampleFormat[]) { AV_SAMPLE_FMT_FLTP,
1307 AV_SAMPLE_FMT_NONE },
1308 .caps_internal = FF_CODEC_CAP_INIT_THREADSAFE | FF_CODEC_CAP_INIT_CLEANUP,
1309 };
1310