FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/avf_showspectrum.c
Date: 2024-02-16 17:37:06
Exec Total Coverage
Lines: 0 971 0.0%
Functions: 0 29 0.0%
Branches: 0 633 0.0%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2012-2013 Clément Bœsch
3 * Copyright (c) 2013 Rudolf Polzer <divverent@xonotic.org>
4 * Copyright (c) 2015 Paul B Mahol
5 *
6 * This file is part of FFmpeg.
7 *
8 * FFmpeg is free software; you can redistribute it and/or
9 * modify it under the terms of the GNU Lesser General Public
10 * License as published by the Free Software Foundation; either
11 * version 2.1 of the License, or (at your option) any later version.
12 *
13 * FFmpeg is distributed in the hope that it will be useful,
14 * but WITHOUT ANY WARRANTY; without even the implied warranty of
15 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
16 * Lesser General Public License for more details.
17 *
18 * You should have received a copy of the GNU Lesser General Public
19 * License along with FFmpeg; if not, write to the Free Software
20 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
21 */
22
23 /**
24 * @file
25 * audio to spectrum (video) transmedia filter, based on ffplay rdft showmode
26 * (by Michael Niedermayer) and lavfi/avf_showwaves (by Stefano Sabatini).
27 */
28
29 #include "config_components.h"
30
31 #include <float.h>
32 #include <math.h>
33
34 #include "libavutil/tx.h"
35 #include "libavutil/avassert.h"
36 #include "libavutil/avstring.h"
37 #include "libavutil/channel_layout.h"
38 #include "libavutil/cpu.h"
39 #include "libavutil/opt.h"
40 #include "libavutil/parseutils.h"
41 #include "libavutil/xga_font_data.h"
42 #include "audio.h"
43 #include "formats.h"
44 #include "video.h"
45 #include "avfilter.h"
46 #include "filters.h"
47 #include "internal.h"
48 #include "window_func.h"
49
50 enum DisplayMode { COMBINED, SEPARATE, NB_MODES };
51 enum DataMode { D_MAGNITUDE, D_PHASE, D_UPHASE, NB_DMODES };
52 enum FrequencyScale { F_LINEAR, F_LOG, NB_FSCALES };
53 enum DisplayScale { LINEAR, SQRT, CBRT, LOG, FOURTHRT, FIFTHRT, NB_SCALES };
54 enum ColorMode { CHANNEL, INTENSITY, RAINBOW, MORELAND, NEBULAE, FIRE, FIERY, FRUIT, COOL, MAGMA, GREEN, VIRIDIS, PLASMA, CIVIDIS, TERRAIN, NB_CLMODES };
55 enum SlideMode { REPLACE, SCROLL, FULLFRAME, RSCROLL, LREPLACE, NB_SLIDES };
56 enum Orientation { VERTICAL, HORIZONTAL, NB_ORIENTATIONS };
57
58 #define DEFAULT_LENGTH 300
59
60 typedef struct ShowSpectrumContext {
61 const AVClass *class;
62 int w, h;
63 char *rate_str;
64 AVRational auto_frame_rate;
65 AVRational frame_rate;
66 AVFrame *outpicref;
67 AVFrame *in_frame;
68 int nb_display_channels;
69 int orientation;
70 int channel_width;
71 int channel_height;
72 int sliding; ///< 1 if sliding mode, 0 otherwise
73 int mode; ///< channel display mode
74 int color_mode; ///< display color scheme
75 int scale;
76 int fscale;
77 float saturation; ///< color saturation multiplier
78 float rotation; ///< color rotation
79 int start, stop; ///< zoom mode
80 int data;
81 int xpos; ///< x position (current column)
82 AVTXContext **fft; ///< Fast Fourier Transform context
83 AVTXContext **ifft; ///< Inverse Fast Fourier Transform context
84 av_tx_fn tx_fn;
85 av_tx_fn itx_fn;
86 int fft_size; ///< number of coeffs (FFT window size)
87 AVComplexFloat **fft_in; ///< input FFT coeffs
88 AVComplexFloat **fft_data; ///< bins holder for each (displayed) channels
89 AVComplexFloat **fft_scratch;///< scratch buffers
90 float *window_func_lut; ///< Window function LUT
91 float **magnitudes;
92 float **phases;
93 int win_func;
94 int win_size;
95 int buf_size;
96 double win_scale;
97 float overlap;
98 float gain;
99 int hop_size;
100 float *combine_buffer; ///< color combining buffer (4 * h items)
101 float **color_buffer; ///< color buffer (4 * h * ch items)
102 int64_t pts;
103 int64_t old_pts;
104 int64_t in_pts;
105 int old_len;
106 int single_pic;
107 int legend;
108 int start_x, start_y;
109 float drange, limit;
110 float dmin, dmax;
111 uint64_t samples;
112 int (*plot_channel)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs);
113 int eof;
114
115 float opacity_factor;
116
117 AVFrame **frames;
118 unsigned int nb_frames;
119 unsigned int frames_size;
120 } ShowSpectrumContext;
121
122 #define OFFSET(x) offsetof(ShowSpectrumContext, x)
123 #define FLAGS AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_VIDEO_PARAM
124
125 static const AVOption showspectrum_options[] = {
126 { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
127 { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "640x512"}, 0, 0, FLAGS },
128 { "slide", "set sliding mode", OFFSET(sliding), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_SLIDES-1, FLAGS, .unit = "slide" },
129 { "replace", "replace old columns with new", 0, AV_OPT_TYPE_CONST, {.i64=REPLACE}, 0, 0, FLAGS, .unit = "slide" },
130 { "scroll", "scroll from right to left", 0, AV_OPT_TYPE_CONST, {.i64=SCROLL}, 0, 0, FLAGS, .unit = "slide" },
131 { "fullframe", "return full frames", 0, AV_OPT_TYPE_CONST, {.i64=FULLFRAME}, 0, 0, FLAGS, .unit = "slide" },
132 { "rscroll", "scroll from left to right", 0, AV_OPT_TYPE_CONST, {.i64=RSCROLL}, 0, 0, FLAGS, .unit = "slide" },
133 { "lreplace", "replace from right to left", 0, AV_OPT_TYPE_CONST, {.i64=LREPLACE}, 0, 0, FLAGS, .unit = "slide" },
134 { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, COMBINED, NB_MODES-1, FLAGS, .unit = "mode" },
135 { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, .unit = "mode" },
136 { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, .unit = "mode" },
137 { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=CHANNEL}, CHANNEL, NB_CLMODES-1, FLAGS, .unit = "color" },
138 { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, .unit = "color" },
139 { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, .unit = "color" },
140 { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, .unit = "color" },
141 { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, .unit = "color" },
142 { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, .unit = "color" },
143 { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, .unit = "color" },
144 { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, .unit = "color" },
145 { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, .unit = "color" },
146 { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, .unit = "color" },
147 { "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, .unit = "color" },
148 { "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, .unit = "color" },
149 { "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, .unit = "color" },
150 { "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, .unit = "color" },
151 { "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, .unit = "color" },
152 { "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, .unit = "color" },
153 { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=SQRT}, LINEAR, NB_SCALES-1, FLAGS, .unit = "scale" },
154 { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, .unit = "scale" },
155 { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, .unit = "scale" },
156 { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, .unit = "scale" },
157 { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, .unit = "scale" },
158 { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, .unit = "scale" },
159 { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, .unit = "scale" },
160 { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, .unit = "fscale" },
161 { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, .unit = "fscale" },
162 { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, .unit = "fscale" },
163 { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
164 WIN_FUNC_OPTION("win_func", OFFSET(win_func), FLAGS, WFUNC_HANNING),
165 { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, .unit = "orientation" },
166 { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, .unit = "orientation" },
167 { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, .unit = "orientation" },
168 { "overlap", "set window overlap", OFFSET(overlap), AV_OPT_TYPE_FLOAT, {.dbl = 0}, 0, 1, FLAGS },
169 { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
170 { "data", "set data mode", OFFSET(data), AV_OPT_TYPE_INT, {.i64 = 0}, 0, NB_DMODES-1, FLAGS, .unit = "data" },
171 { "magnitude", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_MAGNITUDE}, 0, 0, FLAGS, .unit = "data" },
172 { "phase", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_PHASE}, 0, 0, FLAGS, .unit = "data" },
173 { "uphase", NULL, 0, AV_OPT_TYPE_CONST, {.i64=D_UPHASE}, 0, 0, FLAGS, .unit = "data" },
174 { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
175 { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
176 { "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
177 { "fps", "set video rate", OFFSET(rate_str), AV_OPT_TYPE_STRING, {.str = "auto"}, 0, 0, FLAGS },
178 { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 0}, 0, 1, FLAGS },
179 { "drange", "set dynamic range in dBFS", OFFSET(drange), AV_OPT_TYPE_FLOAT, {.dbl = 120}, 10, 200, FLAGS },
180 { "limit", "set upper limit in dBFS", OFFSET(limit), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -100, 100, FLAGS },
181 { "opacity", "set opacity strength", OFFSET(opacity_factor), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 10, FLAGS },
182 { NULL }
183 };
184
185 AVFILTER_DEFINE_CLASS(showspectrum);
186
187 static const struct ColorTable {
188 float a, y, u, v;
189 } color_table[][8] = {
190 [INTENSITY] = {
191 { 0, 0, 0, 0 },
192 { 0.13, .03587126228984074, .1573300977624594, -.02548747583751842 },
193 { 0.30, .18572281794568020, .1772436246393981, .17475554840414750 },
194 { 0.60, .28184980583656130, -.1593064119945782, .47132074554608920 },
195 { 0.73, .65830621175547810, -.3716070802232764, .24352759331252930 },
196 { 0.78, .76318535758242900, -.4307467689263783, .16866496622310430 },
197 { 0.91, .95336363636363640, -.2045454545454546, .03313636363636363 },
198 { 1, 1, 0, 0 }},
199 [RAINBOW] = {
200 { 0, 0, 0, 0 },
201 { 0.13, 44/256., (189-128)/256., (138-128)/256. },
202 { 0.25, 29/256., (186-128)/256., (119-128)/256. },
203 { 0.38, 119/256., (194-128)/256., (53-128)/256. },
204 { 0.60, 111/256., (73-128)/256., (59-128)/256. },
205 { 0.73, 205/256., (19-128)/256., (149-128)/256. },
206 { 0.86, 135/256., (83-128)/256., (200-128)/256. },
207 { 1, 73/256., (95-128)/256., (225-128)/256. }},
208 [MORELAND] = {
209 { 0, 44/256., (181-128)/256., (112-128)/256. },
210 { 0.13, 126/256., (177-128)/256., (106-128)/256. },
211 { 0.25, 164/256., (163-128)/256., (109-128)/256. },
212 { 0.38, 200/256., (140-128)/256., (120-128)/256. },
213 { 0.60, 201/256., (117-128)/256., (141-128)/256. },
214 { 0.73, 177/256., (103-128)/256., (165-128)/256. },
215 { 0.86, 136/256., (100-128)/256., (183-128)/256. },
216 { 1, 68/256., (117-128)/256., (203-128)/256. }},
217 [NEBULAE] = {
218 { 0, 10/256., (134-128)/256., (132-128)/256. },
219 { 0.23, 21/256., (137-128)/256., (130-128)/256. },
220 { 0.45, 35/256., (134-128)/256., (134-128)/256. },
221 { 0.57, 51/256., (130-128)/256., (139-128)/256. },
222 { 0.67, 104/256., (116-128)/256., (162-128)/256. },
223 { 0.77, 120/256., (105-128)/256., (188-128)/256. },
224 { 0.87, 140/256., (105-128)/256., (188-128)/256. },
225 { 1, 1, 0, 0 }},
226 [FIRE] = {
227 { 0, 0, 0, 0 },
228 { 0.23, 44/256., (132-128)/256., (127-128)/256. },
229 { 0.45, 62/256., (116-128)/256., (140-128)/256. },
230 { 0.57, 75/256., (105-128)/256., (152-128)/256. },
231 { 0.67, 95/256., (91-128)/256., (166-128)/256. },
232 { 0.77, 126/256., (74-128)/256., (172-128)/256. },
233 { 0.87, 164/256., (73-128)/256., (162-128)/256. },
234 { 1, 1, 0, 0 }},
235 [FIERY] = {
236 { 0, 0, 0, 0 },
237 { 0.23, 36/256., (116-128)/256., (163-128)/256. },
238 { 0.45, 52/256., (102-128)/256., (200-128)/256. },
239 { 0.57, 116/256., (84-128)/256., (196-128)/256. },
240 { 0.67, 157/256., (67-128)/256., (181-128)/256. },
241 { 0.77, 193/256., (40-128)/256., (155-128)/256. },
242 { 0.87, 221/256., (101-128)/256., (134-128)/256. },
243 { 1, 1, 0, 0 }},
244 [FRUIT] = {
245 { 0, 0, 0, 0 },
246 { 0.20, 29/256., (136-128)/256., (119-128)/256. },
247 { 0.30, 60/256., (119-128)/256., (90-128)/256. },
248 { 0.40, 85/256., (91-128)/256., (85-128)/256. },
249 { 0.50, 116/256., (70-128)/256., (105-128)/256. },
250 { 0.60, 151/256., (50-128)/256., (146-128)/256. },
251 { 0.70, 191/256., (63-128)/256., (178-128)/256. },
252 { 1, 98/256., (80-128)/256., (221-128)/256. }},
253 [COOL] = {
254 { 0, 0, 0, 0 },
255 { .15, 0, .5, -.5 },
256 { 1, 1, -.5, .5 }},
257 [MAGMA] = {
258 { 0, 0, 0, 0 },
259 { 0.10, 23/256., (175-128)/256., (120-128)/256. },
260 { 0.23, 43/256., (158-128)/256., (144-128)/256. },
261 { 0.35, 85/256., (138-128)/256., (179-128)/256. },
262 { 0.48, 96/256., (128-128)/256., (189-128)/256. },
263 { 0.64, 128/256., (103-128)/256., (214-128)/256. },
264 { 0.92, 205/256., (80-128)/256., (152-128)/256. },
265 { 1, 1, 0, 0 }},
266 [GREEN] = {
267 { 0, 0, 0, 0 },
268 { .75, .5, 0, -.5 },
269 { 1, 1, 0, 0 }},
270 [VIRIDIS] = {
271 { 0, 0, 0, 0 },
272 { 0.10, 0x39/255., (0x9D -128)/255., (0x8F -128)/255. },
273 { 0.23, 0x5C/255., (0x9A -128)/255., (0x68 -128)/255. },
274 { 0.35, 0x69/255., (0x93 -128)/255., (0x57 -128)/255. },
275 { 0.48, 0x76/255., (0x88 -128)/255., (0x4B -128)/255. },
276 { 0.64, 0x8A/255., (0x72 -128)/255., (0x4F -128)/255. },
277 { 0.80, 0xA3/255., (0x50 -128)/255., (0x66 -128)/255. },
278 { 1, 0xCC/255., (0x2F -128)/255., (0x87 -128)/255. }},
279 [PLASMA] = {
280 { 0, 0, 0, 0 },
281 { 0.10, 0x27/255., (0xC2 -128)/255., (0x82 -128)/255. },
282 { 0.58, 0x5B/255., (0x9A -128)/255., (0xAE -128)/255. },
283 { 0.70, 0x89/255., (0x44 -128)/255., (0xAB -128)/255. },
284 { 0.80, 0xB4/255., (0x2B -128)/255., (0x9E -128)/255. },
285 { 0.91, 0xD2/255., (0x38 -128)/255., (0x92 -128)/255. },
286 { 1, 1, 0, 0. }},
287 [CIVIDIS] = {
288 { 0, 0, 0, 0 },
289 { 0.20, 0x28/255., (0x98 -128)/255., (0x6F -128)/255. },
290 { 0.50, 0x48/255., (0x95 -128)/255., (0x74 -128)/255. },
291 { 0.63, 0x69/255., (0x84 -128)/255., (0x7F -128)/255. },
292 { 0.76, 0x89/255., (0x75 -128)/255., (0x84 -128)/255. },
293 { 0.90, 0xCE/255., (0x35 -128)/255., (0x95 -128)/255. },
294 { 1, 1, 0, 0. }},
295 [TERRAIN] = {
296 { 0, 0, 0, 0 },
297 { 0.15, 0, .5, 0 },
298 { 0.60, 1, -.5, -.5 },
299 { 0.85, 1, -.5, .5 },
300 { 1, 1, 0, 0 }},
301 };
302
303 static av_cold void uninit(AVFilterContext *ctx)
304 {
305 ShowSpectrumContext *s = ctx->priv;
306 int i;
307
308 av_freep(&s->combine_buffer);
309 if (s->fft) {
310 for (i = 0; i < s->nb_display_channels; i++)
311 av_tx_uninit(&s->fft[i]);
312 }
313 av_freep(&s->fft);
314 if (s->ifft) {
315 for (i = 0; i < s->nb_display_channels; i++)
316 av_tx_uninit(&s->ifft[i]);
317 }
318 av_freep(&s->ifft);
319 if (s->fft_data) {
320 for (i = 0; i < s->nb_display_channels; i++)
321 av_freep(&s->fft_data[i]);
322 }
323 av_freep(&s->fft_data);
324 if (s->fft_in) {
325 for (i = 0; i < s->nb_display_channels; i++)
326 av_freep(&s->fft_in[i]);
327 }
328 av_freep(&s->fft_in);
329 if (s->fft_scratch) {
330 for (i = 0; i < s->nb_display_channels; i++)
331 av_freep(&s->fft_scratch[i]);
332 }
333 av_freep(&s->fft_scratch);
334 if (s->color_buffer) {
335 for (i = 0; i < s->nb_display_channels; i++)
336 av_freep(&s->color_buffer[i]);
337 }
338 av_freep(&s->color_buffer);
339 av_freep(&s->window_func_lut);
340 if (s->magnitudes) {
341 for (i = 0; i < s->nb_display_channels; i++)
342 av_freep(&s->magnitudes[i]);
343 }
344 av_freep(&s->magnitudes);
345 av_frame_free(&s->outpicref);
346 av_frame_free(&s->in_frame);
347 if (s->phases) {
348 for (i = 0; i < s->nb_display_channels; i++)
349 av_freep(&s->phases[i]);
350 }
351 av_freep(&s->phases);
352
353 while (s->nb_frames > 0) {
354 av_frame_free(&s->frames[s->nb_frames - 1]);
355 s->nb_frames--;
356 }
357
358 av_freep(&s->frames);
359 }
360
361 static int query_formats(AVFilterContext *ctx)
362 {
363 AVFilterFormats *formats = NULL;
364 AVFilterChannelLayouts *layouts = NULL;
365 AVFilterLink *inlink = ctx->inputs[0];
366 AVFilterLink *outlink = ctx->outputs[0];
367 static const enum AVSampleFormat sample_fmts[] = { AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_NONE };
368 static const enum AVPixelFormat pix_fmts[] = { AV_PIX_FMT_YUV444P, AV_PIX_FMT_YUVJ444P, AV_PIX_FMT_YUVA444P, AV_PIX_FMT_NONE };
369 int ret;
370
371 /* set input audio formats */
372 formats = ff_make_format_list(sample_fmts);
373 if ((ret = ff_formats_ref(formats, &inlink->outcfg.formats)) < 0)
374 return ret;
375
376 layouts = ff_all_channel_counts();
377 if ((ret = ff_channel_layouts_ref(layouts, &inlink->outcfg.channel_layouts)) < 0)
378 return ret;
379
380 formats = ff_all_samplerates();
381 if ((ret = ff_formats_ref(formats, &inlink->outcfg.samplerates)) < 0)
382 return ret;
383
384 /* set output video format */
385 formats = ff_make_format_list(pix_fmts);
386 if ((ret = ff_formats_ref(formats, &outlink->incfg.formats)) < 0)
387 return ret;
388
389 return 0;
390 }
391
392 static int run_channel_fft(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
393 {
394 ShowSpectrumContext *s = ctx->priv;
395 AVFilterLink *inlink = ctx->inputs[0];
396 const float *window_func_lut = s->window_func_lut;
397 AVFrame *fin = arg;
398 const int ch = jobnr;
399 int n;
400
401 /* fill FFT input with the number of samples available */
402 const float *p = (float *)fin->extended_data[ch];
403 float *in_frame = (float *)s->in_frame->extended_data[ch];
404
405 memmove(in_frame, in_frame + s->hop_size, (s->fft_size - s->hop_size) * sizeof(float));
406 memcpy(in_frame + s->fft_size - s->hop_size, p, fin->nb_samples * sizeof(float));
407
408 for (int i = fin->nb_samples; i < s->hop_size; i++)
409 in_frame[i + s->fft_size - s->hop_size] = 0.f;
410
411 if (s->stop) {
412 float theta, phi, psi, a, b, S, c;
413 AVComplexFloat *f = s->fft_in[ch];
414 AVComplexFloat *g = s->fft_data[ch];
415 AVComplexFloat *h = s->fft_scratch[ch];
416 int L = s->buf_size;
417 int N = s->win_size;
418 int M = s->win_size / 2;
419
420 for (n = 0; n < s->win_size; n++) {
421 s->fft_data[ch][n].re = in_frame[n] * window_func_lut[n];
422 s->fft_data[ch][n].im = 0;
423 }
424
425 phi = 2.f * M_PI * (s->stop - s->start) / (float)inlink->sample_rate / (M - 1);
426 theta = 2.f * M_PI * s->start / (float)inlink->sample_rate;
427
428 for (int n = 0; n < M; n++) {
429 h[n].re = cosf(n * n / 2.f * phi);
430 h[n].im = sinf(n * n / 2.f * phi);
431 }
432
433 for (int n = M; n < L; n++) {
434 h[n].re = 0.f;
435 h[n].im = 0.f;
436 }
437
438 for (int n = L - N; n < L; n++) {
439 h[n].re = cosf((L - n) * (L - n) / 2.f * phi);
440 h[n].im = sinf((L - n) * (L - n) / 2.f * phi);
441 }
442
443 for (int n = N; n < L; n++) {
444 g[n].re = 0.f;
445 g[n].im = 0.f;
446 }
447
448 for (int n = 0; n < N; n++) {
449 psi = n * theta + n * n / 2.f * phi;
450 c = cosf(psi);
451 S = -sinf(psi);
452 a = c * g[n].re - S * g[n].im;
453 b = S * g[n].re + c * g[n].im;
454 g[n].re = a;
455 g[n].im = b;
456 }
457
458 memcpy(f, h, s->buf_size * sizeof(*f));
459 s->tx_fn(s->fft[ch], h, f, sizeof(AVComplexFloat));
460
461 memcpy(f, g, s->buf_size * sizeof(*f));
462 s->tx_fn(s->fft[ch], g, f, sizeof(AVComplexFloat));
463
464 for (int n = 0; n < L; n++) {
465 c = g[n].re;
466 S = g[n].im;
467 a = c * h[n].re - S * h[n].im;
468 b = S * h[n].re + c * h[n].im;
469
470 g[n].re = a / L;
471 g[n].im = b / L;
472 }
473
474 memcpy(f, g, s->buf_size * sizeof(*f));
475 s->itx_fn(s->ifft[ch], g, f, sizeof(AVComplexFloat));
476
477 for (int k = 0; k < M; k++) {
478 psi = k * k / 2.f * phi;
479 c = cosf(psi);
480 S = -sinf(psi);
481 a = c * g[k].re - S * g[k].im;
482 b = S * g[k].re + c * g[k].im;
483 s->fft_data[ch][k].re = a;
484 s->fft_data[ch][k].im = b;
485 }
486 } else {
487 for (n = 0; n < s->win_size; n++) {
488 s->fft_in[ch][n].re = in_frame[n] * window_func_lut[n];
489 s->fft_in[ch][n].im = 0;
490 }
491
492 /* run FFT on each samples set */
493 s->tx_fn(s->fft[ch], s->fft_data[ch], s->fft_in[ch], sizeof(AVComplexFloat));
494 }
495
496 return 0;
497 }
498
499 static void drawtext(AVFrame *pic, int x, int y, const char *txt, int o)
500 {
501 const uint8_t *font;
502 int font_height;
503
504 font = avpriv_cga_font, font_height = 8;
505
506 for (int i = 0; txt[i]; i++) {
507 int char_y, mask;
508
509 if (o) {
510 for (char_y = font_height - 1; char_y >= 0; char_y--) {
511 uint8_t *p = pic->data[0] + (y + i * 10) * pic->linesize[0] + x;
512 for (mask = 0x80; mask; mask >>= 1) {
513 if (font[txt[i] * font_height + font_height - 1 - char_y] & mask)
514 p[char_y] = ~p[char_y];
515 p += pic->linesize[0];
516 }
517 }
518 } else {
519 uint8_t *p = pic->data[0] + y*pic->linesize[0] + (x + i*8);
520 for (char_y = 0; char_y < font_height; char_y++) {
521 for (mask = 0x80; mask; mask >>= 1) {
522 if (font[txt[i] * font_height + char_y] & mask)
523 *p = ~(*p);
524 p++;
525 }
526 p += pic->linesize[0] - 8;
527 }
528 }
529 }
530
531 for (int i = 0; txt[i] && pic->data[3]; i++) {
532 int char_y, mask;
533
534 if (o) {
535 for (char_y = font_height - 1; char_y >= 0; char_y--) {
536 uint8_t *p = pic->data[3] + (y + i * 10) * pic->linesize[3] + x;
537 for (mask = 0x80; mask; mask >>= 1) {
538 for (int k = 0; k < 8; k++)
539 p[k] = 255;
540 p += pic->linesize[3];
541 }
542 }
543 } else {
544 uint8_t *p = pic->data[3] + y*pic->linesize[3] + (x + i*8);
545 for (char_y = 0; char_y < font_height; char_y++) {
546 for (mask = 0x80; mask; mask >>= 1)
547 *p++ = 255;
548 p += pic->linesize[3] - 8;
549 }
550 }
551 }
552 }
553
554 static void color_range(ShowSpectrumContext *s, int ch,
555 float *yf, float *uf, float *vf)
556 {
557 switch (s->mode) {
558 case COMBINED:
559 // reduce range by channel count
560 *yf = 256.0f / s->nb_display_channels;
561 switch (s->color_mode) {
562 case RAINBOW:
563 case MORELAND:
564 case NEBULAE:
565 case FIRE:
566 case FIERY:
567 case FRUIT:
568 case COOL:
569 case GREEN:
570 case VIRIDIS:
571 case PLASMA:
572 case CIVIDIS:
573 case TERRAIN:
574 case MAGMA:
575 case INTENSITY:
576 *uf = *yf;
577 *vf = *yf;
578 break;
579 case CHANNEL:
580 /* adjust saturation for mixed UV coloring */
581 /* this factor is correct for infinite channels, an approximation otherwise */
582 *uf = *yf * M_PI;
583 *vf = *yf * M_PI;
584 break;
585 default:
586 av_assert0(0);
587 }
588 break;
589 case SEPARATE:
590 // full range
591 *yf = 256.0f;
592 *uf = 256.0f;
593 *vf = 256.0f;
594 break;
595 default:
596 av_assert0(0);
597 }
598
599 if (s->color_mode == CHANNEL) {
600 if (s->nb_display_channels > 1) {
601 *uf *= 0.5f * sinf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
602 *vf *= 0.5f * cosf((2 * M_PI * ch) / s->nb_display_channels + M_PI * s->rotation);
603 } else {
604 *uf *= 0.5f * sinf(M_PI * s->rotation);
605 *vf *= 0.5f * cosf(M_PI * s->rotation + M_PI_2);
606 }
607 } else {
608 *uf += *uf * sinf(M_PI * s->rotation);
609 *vf += *vf * cosf(M_PI * s->rotation + M_PI_2);
610 }
611
612 *uf *= s->saturation;
613 *vf *= s->saturation;
614 }
615
616 static void pick_color(ShowSpectrumContext *s,
617 float yf, float uf, float vf,
618 float a, float *out)
619 {
620 const float af = s->opacity_factor * 255.f;
621
622 if (s->color_mode > CHANNEL) {
623 const int cm = s->color_mode;
624 float y, u, v;
625 int i;
626
627 for (i = 1; i < FF_ARRAY_ELEMS(color_table[cm]) - 1; i++)
628 if (color_table[cm][i].a >= a)
629 break;
630 // i now is the first item >= the color
631 // now we know to interpolate between item i - 1 and i
632 if (a <= color_table[cm][i - 1].a) {
633 y = color_table[cm][i - 1].y;
634 u = color_table[cm][i - 1].u;
635 v = color_table[cm][i - 1].v;
636 } else if (a >= color_table[cm][i].a) {
637 y = color_table[cm][i].y;
638 u = color_table[cm][i].u;
639 v = color_table[cm][i].v;
640 } else {
641 float start = color_table[cm][i - 1].a;
642 float end = color_table[cm][i].a;
643 float lerpfrac = (a - start) / (end - start);
644 y = color_table[cm][i - 1].y * (1.0f - lerpfrac)
645 + color_table[cm][i].y * lerpfrac;
646 u = color_table[cm][i - 1].u * (1.0f - lerpfrac)
647 + color_table[cm][i].u * lerpfrac;
648 v = color_table[cm][i - 1].v * (1.0f - lerpfrac)
649 + color_table[cm][i].v * lerpfrac;
650 }
651
652 out[0] = y * yf;
653 out[1] = u * uf;
654 out[2] = v * vf;
655 out[3] = a * af;
656 } else {
657 out[0] = a * yf;
658 out[1] = a * uf;
659 out[2] = a * vf;
660 out[3] = a * af;
661 }
662 }
663
664 static char *get_time(AVFilterContext *ctx, float seconds, int x)
665 {
666 char *units;
667
668 if (x == 0)
669 units = av_asprintf("0");
670 else if (log10(seconds) > 6)
671 units = av_asprintf("%.2fh", seconds / (60 * 60));
672 else if (log10(seconds) > 3)
673 units = av_asprintf("%.2fm", seconds / 60);
674 else
675 units = av_asprintf("%.2fs", seconds);
676 return units;
677 }
678
679 static float log_scale(const float bin,
680 const float bmin, const float bmax,
681 const float min, const float max)
682 {
683 return exp2f(((bin - bmin) / (bmax - bmin)) * (log2f(max) - log2f(min)) + log2f(min));
684 }
685
686 static float get_hz(const float bin, const float bmax,
687 const float min, const float max,
688 int fscale)
689 {
690 switch (fscale) {
691 case F_LINEAR:
692 return min + (bin / bmax) * (max - min);
693 case F_LOG:
694 return min + log_scale(bin, 0, bmax, 20.f, max - min);
695 default:
696 return 0.f;
697 }
698 }
699
700 static float inv_log_scale(float bin,
701 float bmin, float bmax,
702 float min, float max)
703 {
704 return (min * exp2f((bin * (log2f(max) - log2f(20.f))) / bmax) + min) * bmax / max;
705 }
706
707 static float bin_pos(const int bin, const int num_bins, const float min, const float max)
708 {
709 return inv_log_scale(bin, 0.f, num_bins, 20.f, max - min);
710 }
711
712 static float get_scale(AVFilterContext *ctx, int scale, float a)
713 {
714 ShowSpectrumContext *s = ctx->priv;
715 const float dmin = s->dmin;
716 const float dmax = s->dmax;
717
718 a = av_clipf(a, dmin, dmax);
719 if (scale != LOG)
720 a = (a - dmin) / (dmax - dmin);
721
722 switch (scale) {
723 case LINEAR:
724 break;
725 case SQRT:
726 a = sqrtf(a);
727 break;
728 case CBRT:
729 a = cbrtf(a);
730 break;
731 case FOURTHRT:
732 a = sqrtf(sqrtf(a));
733 break;
734 case FIFTHRT:
735 a = powf(a, 0.2f);
736 break;
737 case LOG:
738 a = (s->drange - s->limit + log10f(a) * 20.f) / s->drange;
739 break;
740 default:
741 av_assert0(0);
742 }
743
744 return a;
745 }
746
747 static float get_iscale(AVFilterContext *ctx, int scale, float a)
748 {
749 ShowSpectrumContext *s = ctx->priv;
750 const float dmin = s->dmin;
751 const float dmax = s->dmax;
752
753 switch (scale) {
754 case LINEAR:
755 break;
756 case SQRT:
757 a = a * a;
758 break;
759 case CBRT:
760 a = a * a * a;
761 break;
762 case FOURTHRT:
763 a = a * a * a * a;
764 break;
765 case FIFTHRT:
766 a = a * a * a * a * a;
767 break;
768 case LOG:
769 a = expf(M_LN10 * (a * s->drange - s->drange + s->limit) / 20.f);
770 break;
771 default:
772 av_assert0(0);
773 }
774
775 if (scale != LOG)
776 a = a * (dmax - dmin) + dmin;
777
778 return a;
779 }
780
781 static int draw_legend(AVFilterContext *ctx, uint64_t samples)
782 {
783 ShowSpectrumContext *s = ctx->priv;
784 AVFilterLink *inlink = ctx->inputs[0];
785 AVFilterLink *outlink = ctx->outputs[0];
786 int ch, y, x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
787 int multi = (s->mode == SEPARATE && s->color_mode == CHANNEL);
788 float spp = samples / (float)sz;
789 char *text;
790 uint8_t *dst;
791 char chlayout_str[128];
792
793 av_channel_layout_describe(&inlink->ch_layout, chlayout_str, sizeof(chlayout_str));
794
795 text = av_asprintf("%d Hz | %s", inlink->sample_rate, chlayout_str);
796 if (!text)
797 return AVERROR(ENOMEM);
798
799 drawtext(s->outpicref, 2, outlink->h - 10, "CREATED BY LIBAVFILTER", 0);
800 drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, outlink->h - 10, text, 0);
801 av_freep(&text);
802 if (s->stop) {
803 text = av_asprintf("Zoom: %d Hz - %d Hz", s->start, s->stop);
804 if (!text)
805 return AVERROR(ENOMEM);
806 drawtext(s->outpicref, outlink->w - 2 - strlen(text) * 10, 3, text, 0);
807 av_freep(&text);
808 }
809
810 dst = s->outpicref->data[0] + (s->start_y - 1) * s->outpicref->linesize[0] + s->start_x - 1;
811 for (x = 0; x < s->w + 1; x++)
812 dst[x] = 200;
813 dst = s->outpicref->data[0] + (s->start_y + s->h) * s->outpicref->linesize[0] + s->start_x - 1;
814 for (x = 0; x < s->w + 1; x++)
815 dst[x] = 200;
816 for (y = 0; y < s->h + 2; y++) {
817 dst = s->outpicref->data[0] + (y + s->start_y - 1) * s->outpicref->linesize[0];
818 dst[s->start_x - 1] = 200;
819 dst[s->start_x + s->w] = 200;
820 }
821 if (s->orientation == VERTICAL) {
822 int h = s->mode == SEPARATE ? s->h / s->nb_display_channels : s->h;
823 int hh = s->mode == SEPARATE ? -(s->h % s->nb_display_channels) + 1 : 1;
824 for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
825 for (y = 0; y < h; y += 20) {
826 dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
827 dst[s->start_x - 2] = 200;
828 dst[s->start_x + s->w + 1] = 200;
829 }
830 for (y = 0; y < h; y += 40) {
831 dst = s->outpicref->data[0] + (s->start_y + h * (ch + 1) - y - hh) * s->outpicref->linesize[0];
832 dst[s->start_x - 3] = 200;
833 dst[s->start_x + s->w + 2] = 200;
834 }
835 dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x;
836 for (x = 0; x < s->w; x+=40)
837 dst[x] = 200;
838 dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x;
839 for (x = 0; x < s->w; x+=80)
840 dst[x] = 200;
841 dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x;
842 for (x = 0; x < s->w; x+=40) {
843 dst[x] = 200;
844 }
845 dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x;
846 for (x = 0; x < s->w; x+=80) {
847 dst[x] = 200;
848 }
849 for (y = 0; y < h; y += 40) {
850 float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
851 float hertz = get_hz(y, h, s->start, s->start + range, s->fscale);
852 char *units;
853
854 if (hertz == 0)
855 units = av_asprintf("DC");
856 else
857 units = av_asprintf("%.2f", hertz);
858 if (!units)
859 return AVERROR(ENOMEM);
860
861 drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, h * (ch + 1) + s->start_y - y - 4 - hh, units, 0);
862 av_free(units);
863 }
864 }
865
866 for (x = 0; x < s->w && s->single_pic; x+=80) {
867 float seconds = x * spp / inlink->sample_rate;
868 char *units = get_time(ctx, seconds, x);
869 if (!units)
870 return AVERROR(ENOMEM);
871
872 drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->h + s->start_y + 6, units, 0);
873 drawtext(s->outpicref, s->start_x + x - 4 * strlen(units), s->start_y - 12, units, 0);
874 av_free(units);
875 }
876
877 drawtext(s->outpicref, outlink->w / 2 - 4 * 4, outlink->h - s->start_y / 2, "TIME", 0);
878 drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 14 * 4, "FREQUENCY (Hz)", 1);
879 } else {
880 int w = s->mode == SEPARATE ? s->w / s->nb_display_channels : s->w;
881 for (y = 0; y < s->h; y += 20) {
882 dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
883 dst[s->start_x - 2] = 200;
884 dst[s->start_x + s->w + 1] = 200;
885 }
886 for (y = 0; y < s->h; y += 40) {
887 dst = s->outpicref->data[0] + (s->start_y + y) * s->outpicref->linesize[0];
888 dst[s->start_x - 3] = 200;
889 dst[s->start_x + s->w + 2] = 200;
890 }
891 for (ch = 0; ch < (s->mode == SEPARATE ? s->nb_display_channels : 1); ch++) {
892 dst = s->outpicref->data[0] + (s->start_y - 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
893 for (x = 0; x < w; x+=40)
894 dst[x] = 200;
895 dst = s->outpicref->data[0] + (s->start_y - 3) * s->outpicref->linesize[0] + s->start_x + w * ch;
896 for (x = 0; x < w; x+=80)
897 dst[x] = 200;
898 dst = s->outpicref->data[0] + (s->h + s->start_y + 1) * s->outpicref->linesize[0] + s->start_x + w * ch;
899 for (x = 0; x < w; x+=40) {
900 dst[x] = 200;
901 }
902 dst = s->outpicref->data[0] + (s->h + s->start_y + 2) * s->outpicref->linesize[0] + s->start_x + w * ch;
903 for (x = 0; x < w; x+=80) {
904 dst[x] = 200;
905 }
906 for (x = 0; x < w - 79; x += 80) {
907 float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
908 float hertz = get_hz(x, w, s->start, s->start + range, s->fscale);
909 char *units;
910
911 if (hertz == 0)
912 units = av_asprintf("DC");
913 else
914 units = av_asprintf("%.2f", hertz);
915 if (!units)
916 return AVERROR(ENOMEM);
917
918 drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->start_y - 12, units, 0);
919 drawtext(s->outpicref, s->start_x - 4 * strlen(units) + x + w * ch, s->h + s->start_y + 6, units, 0);
920 av_free(units);
921 }
922 }
923 for (y = 0; y < s->h && s->single_pic; y+=40) {
924 float seconds = y * spp / inlink->sample_rate;
925 char *units = get_time(ctx, seconds, x);
926 if (!units)
927 return AVERROR(ENOMEM);
928
929 drawtext(s->outpicref, s->start_x - 8 * strlen(units) - 4, s->start_y + y - 4, units, 0);
930 av_free(units);
931 }
932 drawtext(s->outpicref, s->start_x / 7, outlink->h / 2 - 4 * 4, "TIME", 1);
933 drawtext(s->outpicref, outlink->w / 2 - 14 * 4, outlink->h - s->start_y / 2, "FREQUENCY (Hz)", 0);
934 }
935
936 for (ch = 0; ch < (multi ? s->nb_display_channels : 1); ch++) {
937 int h = multi ? s->h / s->nb_display_channels : s->h;
938
939 for (y = 0; y < h; y++) {
940 float out[4] = { 0., 127.5, 127.5, 0.f};
941 int chn;
942
943 for (chn = 0; chn < (s->mode == SEPARATE ? 1 : s->nb_display_channels); chn++) {
944 float yf, uf, vf;
945 int channel = (multi) ? s->nb_display_channels - ch - 1 : chn;
946 float lout[4];
947
948 color_range(s, channel, &yf, &uf, &vf);
949 pick_color(s, yf, uf, vf, y / (float)h, lout);
950 out[0] += lout[0];
951 out[1] += lout[1];
952 out[2] += lout[2];
953 out[3] += lout[3];
954 }
955 memset(s->outpicref->data[0]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[0] + s->w + s->start_x + 20, av_clip_uint8(out[0]), 10);
956 memset(s->outpicref->data[1]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[1] + s->w + s->start_x + 20, av_clip_uint8(out[1]), 10);
957 memset(s->outpicref->data[2]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[2] + s->w + s->start_x + 20, av_clip_uint8(out[2]), 10);
958 if (s->outpicref->data[3])
959 memset(s->outpicref->data[3]+(s->start_y + h * (ch + 1) - y - 1) * s->outpicref->linesize[3] + s->w + s->start_x + 20, av_clip_uint8(out[3]), 10);
960 }
961
962 for (y = 0; ch == 0 && y < h + 5; y += 25) {
963 static const char *log_fmt = "%.0f";
964 static const char *lin_fmt = "%.3f";
965 const float a = av_clipf(1.f - y / (float)(h - 1), 0.f, 1.f);
966 const float value = s->scale == LOG ? log10f(get_iscale(ctx, s->scale, a)) * 20.f : get_iscale(ctx, s->scale, a);
967 char *text;
968
969 text = av_asprintf(s->scale == LOG ? log_fmt : lin_fmt, value);
970 if (!text)
971 continue;
972 drawtext(s->outpicref, s->w + s->start_x + 35, s->start_y + y - 3, text, 0);
973 av_free(text);
974 }
975 }
976
977 if (s->scale == LOG)
978 drawtext(s->outpicref, s->w + s->start_x + 22, s->start_y + s->h + 20, "dBFS", 0);
979
980 return 0;
981 }
982
983 static float get_value(AVFilterContext *ctx, int ch, int y)
984 {
985 ShowSpectrumContext *s = ctx->priv;
986 float *magnitudes = s->magnitudes[ch];
987 float *phases = s->phases[ch];
988 float a;
989
990 switch (s->data) {
991 case D_MAGNITUDE:
992 /* get magnitude */
993 a = magnitudes[y];
994 break;
995 case D_UPHASE:
996 case D_PHASE:
997 /* get phase */
998 a = phases[y];
999 break;
1000 default:
1001 av_assert0(0);
1002 }
1003
1004 return av_clipf(get_scale(ctx, s->scale, a), 0.f, 1.f);
1005 }
1006
1007 static int plot_channel_lin(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1008 {
1009 ShowSpectrumContext *s = ctx->priv;
1010 const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
1011 const int ch = jobnr;
1012 float yf, uf, vf;
1013 int y;
1014
1015 /* decide color range */
1016 color_range(s, ch, &yf, &uf, &vf);
1017
1018 /* draw the channel */
1019 for (y = 0; y < h; y++) {
1020 int row = (s->mode == COMBINED) ? y : ch * h + y;
1021 float *out = &s->color_buffer[ch][4 * row];
1022 float a = get_value(ctx, ch, y);
1023
1024 pick_color(s, yf, uf, vf, a, out);
1025 }
1026
1027 return 0;
1028 }
1029
1030 static int plot_channel_log(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1031 {
1032 ShowSpectrumContext *s = ctx->priv;
1033 AVFilterLink *inlink = ctx->inputs[0];
1034 const int h = s->orientation == VERTICAL ? s->channel_height : s->channel_width;
1035 const int ch = jobnr;
1036 float yf, uf, vf;
1037
1038 /* decide color range */
1039 color_range(s, ch, &yf, &uf, &vf);
1040
1041 /* draw the channel */
1042 for (int yy = 0; yy < h; yy++) {
1043 float range = s->stop ? s->stop - s->start : inlink->sample_rate / 2;
1044 float pos = bin_pos(yy, h, s->start, s->start + range);
1045 float delta = pos - floorf(pos);
1046 float a0, a1;
1047
1048 a0 = get_value(ctx, ch, av_clip(pos, 0, h-1));
1049 a1 = get_value(ctx, ch, av_clip(pos+1, 0, h-1));
1050 {
1051 int row = (s->mode == COMBINED) ? yy : ch * h + yy;
1052 float *out = &s->color_buffer[ch][4 * row];
1053
1054 pick_color(s, yf, uf, vf, delta * a1 + (1.f - delta) * a0, out);
1055 }
1056 }
1057
1058 return 0;
1059 }
1060
1061 static int config_output(AVFilterLink *outlink)
1062 {
1063 AVFilterContext *ctx = outlink->src;
1064 AVFilterLink *inlink = ctx->inputs[0];
1065 ShowSpectrumContext *s = ctx->priv;
1066 int i, fft_size, h, w, ret;
1067 float overlap;
1068
1069 s->old_pts = AV_NOPTS_VALUE;
1070 s->dmax = expf(s->limit * M_LN10 / 20.f);
1071 s->dmin = expf((s->limit - s->drange) * M_LN10 / 20.f);
1072
1073 switch (s->fscale) {
1074 case F_LINEAR: s->plot_channel = plot_channel_lin; break;
1075 case F_LOG: s->plot_channel = plot_channel_log; break;
1076 default: return AVERROR_BUG;
1077 }
1078
1079 s->stop = FFMIN(s->stop, inlink->sample_rate / 2);
1080 if ((s->stop || s->start) && s->stop <= s->start) {
1081 av_log(ctx, AV_LOG_ERROR, "Stop frequency should be greater than start.\n");
1082 return AVERROR(EINVAL);
1083 }
1084
1085 if (!strcmp(ctx->filter->name, "showspectrumpic"))
1086 s->single_pic = 1;
1087
1088 outlink->w = s->w;
1089 outlink->h = s->h;
1090 outlink->sample_aspect_ratio = (AVRational){1,1};
1091
1092 if (s->legend) {
1093 s->start_x = (log10(inlink->sample_rate) + 1) * 25;
1094 s->start_y = 64;
1095 outlink->w += s->start_x * 2;
1096 outlink->h += s->start_y * 2;
1097 }
1098
1099 h = (s->mode == COMBINED || s->orientation == HORIZONTAL) ? s->h : s->h / inlink->ch_layout.nb_channels;
1100 w = (s->mode == COMBINED || s->orientation == VERTICAL) ? s->w : s->w / inlink->ch_layout.nb_channels;
1101 s->channel_height = h;
1102 s->channel_width = w;
1103
1104 if (s->orientation == VERTICAL) {
1105 /* FFT window size (precision) according to the requested output frame height */
1106 fft_size = h * 2;
1107 } else {
1108 /* FFT window size (precision) according to the requested output frame width */
1109 fft_size = w * 2;
1110 }
1111
1112 s->win_size = fft_size;
1113 s->buf_size = FFALIGN(s->win_size << (!!s->stop), av_cpu_max_align());
1114
1115 if (!s->fft) {
1116 s->fft = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->fft));
1117 if (!s->fft)
1118 return AVERROR(ENOMEM);
1119 }
1120
1121 if (s->stop) {
1122 if (!s->ifft) {
1123 s->ifft = av_calloc(inlink->ch_layout.nb_channels, sizeof(*s->ifft));
1124 if (!s->ifft)
1125 return AVERROR(ENOMEM);
1126 }
1127 }
1128
1129 /* (re-)configuration if the video output changed (or first init) */
1130 if (fft_size != s->fft_size) {
1131 AVFrame *outpicref;
1132
1133 s->fft_size = fft_size;
1134
1135 /* FFT buffers: x2 for each (display) channel buffer.
1136 * Note: we use free and malloc instead of a realloc-like function to
1137 * make sure the buffer is aligned in memory for the FFT functions. */
1138 for (i = 0; i < s->nb_display_channels; i++) {
1139 if (s->stop) {
1140 av_tx_uninit(&s->ifft[i]);
1141 av_freep(&s->fft_scratch[i]);
1142 }
1143 av_tx_uninit(&s->fft[i]);
1144 av_freep(&s->fft_in[i]);
1145 av_freep(&s->fft_data[i]);
1146 }
1147 av_freep(&s->fft_data);
1148
1149 s->nb_display_channels = inlink->ch_layout.nb_channels;
1150 for (i = 0; i < s->nb_display_channels; i++) {
1151 float scale = 1.f;
1152
1153 ret = av_tx_init(&s->fft[i], &s->tx_fn, AV_TX_FLOAT_FFT, 0, fft_size << (!!s->stop), &scale, 0);
1154 if (s->stop) {
1155 ret = av_tx_init(&s->ifft[i], &s->itx_fn, AV_TX_FLOAT_FFT, 1, fft_size << (!!s->stop), &scale, 0);
1156 if (ret < 0) {
1157 av_log(ctx, AV_LOG_ERROR, "Unable to create Inverse FFT context. "
1158 "The window size might be too high.\n");
1159 return ret;
1160 }
1161 }
1162 if (ret < 0) {
1163 av_log(ctx, AV_LOG_ERROR, "Unable to create FFT context. "
1164 "The window size might be too high.\n");
1165 return ret;
1166 }
1167 }
1168
1169 s->magnitudes = av_calloc(s->nb_display_channels, sizeof(*s->magnitudes));
1170 if (!s->magnitudes)
1171 return AVERROR(ENOMEM);
1172 for (i = 0; i < s->nb_display_channels; i++) {
1173 s->magnitudes[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->magnitudes));
1174 if (!s->magnitudes[i])
1175 return AVERROR(ENOMEM);
1176 }
1177
1178 s->phases = av_calloc(s->nb_display_channels, sizeof(*s->phases));
1179 if (!s->phases)
1180 return AVERROR(ENOMEM);
1181 for (i = 0; i < s->nb_display_channels; i++) {
1182 s->phases[i] = av_calloc(s->orientation == VERTICAL ? s->h : s->w, sizeof(**s->phases));
1183 if (!s->phases[i])
1184 return AVERROR(ENOMEM);
1185 }
1186
1187 av_freep(&s->color_buffer);
1188 s->color_buffer = av_calloc(s->nb_display_channels, sizeof(*s->color_buffer));
1189 if (!s->color_buffer)
1190 return AVERROR(ENOMEM);
1191 for (i = 0; i < s->nb_display_channels; i++) {
1192 s->color_buffer[i] = av_calloc(s->orientation == VERTICAL ? s->h * 4 : s->w * 4, sizeof(**s->color_buffer));
1193 if (!s->color_buffer[i])
1194 return AVERROR(ENOMEM);
1195 }
1196
1197 s->fft_in = av_calloc(s->nb_display_channels, sizeof(*s->fft_in));
1198 if (!s->fft_in)
1199 return AVERROR(ENOMEM);
1200 s->fft_data = av_calloc(s->nb_display_channels, sizeof(*s->fft_data));
1201 if (!s->fft_data)
1202 return AVERROR(ENOMEM);
1203 s->fft_scratch = av_calloc(s->nb_display_channels, sizeof(*s->fft_scratch));
1204 if (!s->fft_scratch)
1205 return AVERROR(ENOMEM);
1206 for (i = 0; i < s->nb_display_channels; i++) {
1207 s->fft_in[i] = av_calloc(s->buf_size, sizeof(**s->fft_in));
1208 if (!s->fft_in[i])
1209 return AVERROR(ENOMEM);
1210
1211 s->fft_data[i] = av_calloc(s->buf_size, sizeof(**s->fft_data));
1212 if (!s->fft_data[i])
1213 return AVERROR(ENOMEM);
1214
1215 s->fft_scratch[i] = av_calloc(s->buf_size, sizeof(**s->fft_scratch));
1216 if (!s->fft_scratch[i])
1217 return AVERROR(ENOMEM);
1218 }
1219
1220 /* pre-calc windowing function */
1221 s->window_func_lut =
1222 av_realloc_f(s->window_func_lut, s->win_size,
1223 sizeof(*s->window_func_lut));
1224 if (!s->window_func_lut)
1225 return AVERROR(ENOMEM);
1226 generate_window_func(s->window_func_lut, s->win_size, s->win_func, &overlap);
1227 if (s->overlap == 1)
1228 s->overlap = overlap;
1229 s->hop_size = (1.f - s->overlap) * s->win_size;
1230 if (s->hop_size < 1) {
1231 av_log(ctx, AV_LOG_ERROR, "overlap %f too big\n", s->overlap);
1232 return AVERROR(EINVAL);
1233 }
1234
1235 for (s->win_scale = 0, i = 0; i < s->win_size; i++) {
1236 s->win_scale += s->window_func_lut[i] * s->window_func_lut[i];
1237 }
1238 s->win_scale = 1.f / sqrtf(s->win_scale);
1239
1240 /* prepare the initial picref buffer (black frame) */
1241 av_frame_free(&s->outpicref);
1242 s->outpicref = outpicref =
1243 ff_get_video_buffer(outlink, outlink->w, outlink->h);
1244 if (!outpicref)
1245 return AVERROR(ENOMEM);
1246 outpicref->sample_aspect_ratio = (AVRational){1,1};
1247 for (i = 0; i < outlink->h; i++) {
1248 memset(outpicref->data[0] + i * outpicref->linesize[0], 0, outlink->w);
1249 memset(outpicref->data[1] + i * outpicref->linesize[1], 128, outlink->w);
1250 memset(outpicref->data[2] + i * outpicref->linesize[2], 128, outlink->w);
1251 if (outpicref->data[3])
1252 memset(outpicref->data[3] + i * outpicref->linesize[3], 0, outlink->w);
1253 }
1254 outpicref->color_range = AVCOL_RANGE_JPEG;
1255
1256 if (!s->single_pic && s->legend)
1257 draw_legend(ctx, 0);
1258 }
1259
1260 if ((s->orientation == VERTICAL && s->xpos >= s->w) ||
1261 (s->orientation == HORIZONTAL && s->xpos >= s->h))
1262 s->xpos = 0;
1263
1264 if (s->sliding == LREPLACE) {
1265 if (s->orientation == VERTICAL)
1266 s->xpos = s->w - 1;
1267 if (s->orientation == HORIZONTAL)
1268 s->xpos = s->h - 1;
1269 }
1270
1271 s->auto_frame_rate = av_make_q(inlink->sample_rate, s->hop_size);
1272 if (s->orientation == VERTICAL && s->sliding == FULLFRAME)
1273 s->auto_frame_rate = av_mul_q(s->auto_frame_rate, av_make_q(1, s->w));
1274 if (s->orientation == HORIZONTAL && s->sliding == FULLFRAME)
1275 s->auto_frame_rate = av_mul_q(s->auto_frame_rate, av_make_q(1, s->h));
1276 if (!s->single_pic && strcmp(s->rate_str, "auto")) {
1277 int ret = av_parse_video_rate(&s->frame_rate, s->rate_str);
1278 if (ret < 0)
1279 return ret;
1280 } else if (s->single_pic) {
1281 s->frame_rate = av_make_q(1, 1);
1282 } else {
1283 s->frame_rate = s->auto_frame_rate;
1284 }
1285 outlink->frame_rate = s->frame_rate;
1286 outlink->time_base = av_inv_q(outlink->frame_rate);
1287
1288 if (s->orientation == VERTICAL) {
1289 s->combine_buffer =
1290 av_realloc_f(s->combine_buffer, s->h * 4,
1291 sizeof(*s->combine_buffer));
1292 } else {
1293 s->combine_buffer =
1294 av_realloc_f(s->combine_buffer, s->w * 4,
1295 sizeof(*s->combine_buffer));
1296 }
1297 if (!s->combine_buffer)
1298 return AVERROR(ENOMEM);
1299
1300 av_log(ctx, AV_LOG_VERBOSE, "s:%dx%d FFT window size:%d\n",
1301 s->w, s->h, s->win_size);
1302
1303 s->in_frame = ff_get_audio_buffer(inlink, s->win_size);
1304 if (!s->in_frame)
1305 return AVERROR(ENOMEM);
1306
1307 s->frames = av_fast_realloc(NULL, &s->frames_size,
1308 DEFAULT_LENGTH * sizeof(*(s->frames)));
1309 if (!s->frames)
1310 return AVERROR(ENOMEM);
1311
1312 return 0;
1313 }
1314
1315 #define RE(y, ch) s->fft_data[ch][y].re
1316 #define IM(y, ch) s->fft_data[ch][y].im
1317 #define MAGNITUDE(y, ch) hypotf(RE(y, ch), IM(y, ch))
1318 #define PHASE(y, ch) atan2f(IM(y, ch), RE(y, ch))
1319
1320 static int calc_channel_magnitudes(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1321 {
1322 ShowSpectrumContext *s = ctx->priv;
1323 const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
1324 int y, h = s->orientation == VERTICAL ? s->h : s->w;
1325 const float f = s->gain * w;
1326 const int ch = jobnr;
1327 float *magnitudes = s->magnitudes[ch];
1328
1329 for (y = 0; y < h; y++)
1330 magnitudes[y] = MAGNITUDE(y, ch) * f;
1331
1332 return 0;
1333 }
1334
1335 static int calc_channel_phases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1336 {
1337 ShowSpectrumContext *s = ctx->priv;
1338 const int h = s->orientation == VERTICAL ? s->h : s->w;
1339 const int ch = jobnr;
1340 float *phases = s->phases[ch];
1341 int y;
1342
1343 for (y = 0; y < h; y++)
1344 phases[y] = (PHASE(y, ch) / M_PI + 1) / 2;
1345
1346 return 0;
1347 }
1348
1349 static void unwrap(float *x, int N, float tol, float *mi, float *ma)
1350 {
1351 const float rng = 2.f * M_PI;
1352 float prev_p = 0.f;
1353 float max = -FLT_MAX;
1354 float min = FLT_MAX;
1355
1356 for (int i = 0; i < N; i++) {
1357 const float d = x[FFMIN(i + 1, N)] - x[i];
1358 const float p = ceilf(fabsf(d) / rng) * rng * (((d < tol) > 0.f) - ((d > -tol) > 0.f));
1359
1360 x[i] += p + prev_p;
1361 prev_p += p;
1362 max = fmaxf(x[i], max);
1363 min = fminf(x[i], min);
1364 }
1365
1366 *mi = min;
1367 *ma = max;
1368 }
1369
1370 static int calc_channel_uphases(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
1371 {
1372 ShowSpectrumContext *s = ctx->priv;
1373 const int h = s->orientation == VERTICAL ? s->h : s->w;
1374 const int ch = jobnr;
1375 float *phases = s->phases[ch];
1376 float min, max, scale;
1377 int y;
1378
1379 for (y = 0; y < h; y++)
1380 phases[y] = PHASE(y, ch);
1381 unwrap(phases, h, M_PI, &min, &max);
1382 scale = 1.f / (max - min + FLT_MIN);
1383 for (y = 0; y < h; y++)
1384 phases[y] = fabsf((phases[y] - min) * scale);
1385
1386 return 0;
1387 }
1388
1389 static void acalc_magnitudes(ShowSpectrumContext *s)
1390 {
1391 const double w = s->win_scale * (s->scale == LOG ? s->win_scale : 1);
1392 int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
1393 const float f = s->gain * w;
1394
1395 for (ch = 0; ch < s->nb_display_channels; ch++) {
1396 float *magnitudes = s->magnitudes[ch];
1397
1398 for (y = 0; y < h; y++)
1399 magnitudes[y] += MAGNITUDE(y, ch) * f;
1400 }
1401 }
1402
1403 static void scale_magnitudes(ShowSpectrumContext *s, float scale)
1404 {
1405 int ch, y, h = s->orientation == VERTICAL ? s->h : s->w;
1406
1407 for (ch = 0; ch < s->nb_display_channels; ch++) {
1408 float *magnitudes = s->magnitudes[ch];
1409
1410 for (y = 0; y < h; y++)
1411 magnitudes[y] *= scale;
1412 }
1413 }
1414
1415 static void clear_combine_buffer(ShowSpectrumContext *s, int size)
1416 {
1417 int y;
1418
1419 for (y = 0; y < size; y++) {
1420 s->combine_buffer[4 * y ] = 0;
1421 s->combine_buffer[4 * y + 1] = 127.5;
1422 s->combine_buffer[4 * y + 2] = 127.5;
1423 s->combine_buffer[4 * y + 3] = 0;
1424 }
1425 }
1426
1427 static int plot_spectrum_column(AVFilterLink *inlink, AVFrame *insamples)
1428 {
1429 AVFilterContext *ctx = inlink->dst;
1430 AVFilterLink *outlink = ctx->outputs[0];
1431 ShowSpectrumContext *s = ctx->priv;
1432 AVFrame *outpicref = s->outpicref;
1433 int ret, plane, x, y, z = s->orientation == VERTICAL ? s->h : s->w;
1434 const int alpha = outpicref->data[3] != NULL;
1435
1436 /* fill a new spectrum column */
1437 /* initialize buffer for combining to black */
1438 clear_combine_buffer(s, z);
1439
1440 ff_filter_execute(ctx, s->plot_channel, NULL, NULL, s->nb_display_channels);
1441
1442 for (y = 0; y < z * 4; y++) {
1443 for (x = 0; x < s->nb_display_channels; x++) {
1444 s->combine_buffer[y] += s->color_buffer[x][y];
1445 }
1446 }
1447
1448 ret = ff_inlink_make_frame_writable(outlink, &s->outpicref);
1449 if (ret < 0)
1450 return ret;
1451 outpicref = s->outpicref;
1452 /* copy to output */
1453 if (s->orientation == VERTICAL) {
1454 if (s->sliding == SCROLL) {
1455 for (plane = 0; plane < 3 + alpha; plane++) {
1456 for (y = 0; y < s->h; y++) {
1457 uint8_t *p = outpicref->data[plane] + s->start_x +
1458 (y + s->start_y) * outpicref->linesize[plane];
1459 memmove(p, p + 1, s->w - 1);
1460 }
1461 }
1462 s->xpos = s->w - 1;
1463 } else if (s->sliding == RSCROLL) {
1464 for (plane = 0; plane < 3 + alpha; plane++) {
1465 for (y = 0; y < s->h; y++) {
1466 uint8_t *p = outpicref->data[plane] + s->start_x +
1467 (y + s->start_y) * outpicref->linesize[plane];
1468 memmove(p + 1, p, s->w - 1);
1469 }
1470 }
1471 s->xpos = 0;
1472 }
1473 for (plane = 0; plane < 3; plane++) {
1474 uint8_t *p = outpicref->data[plane] + s->start_x +
1475 (outlink->h - 1 - s->start_y) * outpicref->linesize[plane] +
1476 s->xpos;
1477 for (y = 0; y < s->h; y++) {
1478 *p = lrintf(av_clipf(s->combine_buffer[4 * y + plane], 0, 255));
1479 p -= outpicref->linesize[plane];
1480 }
1481 }
1482 if (alpha) {
1483 uint8_t *p = outpicref->data[3] + s->start_x +
1484 (outlink->h - 1 - s->start_y) * outpicref->linesize[3] +
1485 s->xpos;
1486 for (y = 0; y < s->h; y++) {
1487 *p = lrintf(av_clipf(s->combine_buffer[4 * y + 3], 0, 255));
1488 p -= outpicref->linesize[3];
1489 }
1490 }
1491 } else {
1492 if (s->sliding == SCROLL) {
1493 for (plane = 0; plane < 3 + alpha; plane++) {
1494 for (y = 1; y < s->h; y++) {
1495 memmove(outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
1496 outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x,
1497 s->w);
1498 }
1499 }
1500 s->xpos = s->h - 1;
1501 } else if (s->sliding == RSCROLL) {
1502 for (plane = 0; plane < 3 + alpha; plane++) {
1503 for (y = s->h - 1; y >= 1; y--) {
1504 memmove(outpicref->data[plane] + (y + s->start_y) * outpicref->linesize[plane] + s->start_x,
1505 outpicref->data[plane] + (y-1 + s->start_y) * outpicref->linesize[plane] + s->start_x,
1506 s->w);
1507 }
1508 }
1509 s->xpos = 0;
1510 }
1511 for (plane = 0; plane < 3; plane++) {
1512 uint8_t *p = outpicref->data[plane] + s->start_x +
1513 (s->xpos + s->start_y) * outpicref->linesize[plane];
1514 for (x = 0; x < s->w; x++) {
1515 *p = lrintf(av_clipf(s->combine_buffer[4 * x + plane], 0, 255));
1516 p++;
1517 }
1518 }
1519 if (alpha) {
1520 uint8_t *p = outpicref->data[3] + s->start_x +
1521 (s->xpos + s->start_y) * outpicref->linesize[3];
1522 for (x = 0; x < s->w; x++) {
1523 *p = lrintf(av_clipf(s->combine_buffer[4 * x + 3], 0, 255));
1524 p++;
1525 }
1526 }
1527 }
1528
1529 if (s->sliding != FULLFRAME || s->xpos == 0)
1530 s->pts = outpicref->pts = av_rescale_q(s->in_pts, inlink->time_base, outlink->time_base);
1531
1532 if (s->sliding == LREPLACE) {
1533 s->xpos--;
1534 if (s->orientation == VERTICAL && s->xpos < 0)
1535 s->xpos = s->w - 1;
1536 if (s->orientation == HORIZONTAL && s->xpos < 0)
1537 s->xpos = s->h - 1;
1538 } else {
1539 s->xpos++;
1540 if (s->orientation == VERTICAL && s->xpos >= s->w)
1541 s->xpos = 0;
1542 if (s->orientation == HORIZONTAL && s->xpos >= s->h)
1543 s->xpos = 0;
1544 }
1545
1546 if (!s->single_pic && (s->sliding != FULLFRAME || s->xpos == 0)) {
1547 if (s->old_pts < outpicref->pts || s->sliding == FULLFRAME ||
1548 (s->eof && ff_inlink_queued_samples(inlink) <= s->hop_size)) {
1549 AVFrame *clone;
1550
1551 if (s->legend) {
1552 char *units = get_time(ctx, insamples->pts /(float)inlink->sample_rate, x);
1553 if (!units)
1554 return AVERROR(ENOMEM);
1555
1556 if (s->orientation == VERTICAL) {
1557 for (y = 0; y < 10; y++) {
1558 memset(s->outpicref->data[0] + outlink->w / 2 - 4 * s->old_len +
1559 (outlink->h - s->start_y / 2 - 20 + y) * s->outpicref->linesize[0], 0, 10 * s->old_len);
1560 }
1561 drawtext(s->outpicref,
1562 outlink->w / 2 - 4 * strlen(units),
1563 outlink->h - s->start_y / 2 - 20,
1564 units, 0);
1565 } else {
1566 for (y = 0; y < 10 * s->old_len; y++) {
1567 memset(s->outpicref->data[0] + s->start_x / 7 + 20 +
1568 (outlink->h / 2 - 4 * s->old_len + y) * s->outpicref->linesize[0], 0, 10);
1569 }
1570 drawtext(s->outpicref,
1571 s->start_x / 7 + 20,
1572 outlink->h / 2 - 4 * strlen(units),
1573 units, 1);
1574 }
1575 s->old_len = strlen(units);
1576 av_free(units);
1577 }
1578 s->old_pts = outpicref->pts;
1579 clone = av_frame_clone(s->outpicref);
1580 if (!clone)
1581 return AVERROR(ENOMEM);
1582 ret = ff_filter_frame(outlink, clone);
1583 if (ret < 0)
1584 return ret;
1585 return 0;
1586 }
1587 }
1588
1589 return 1;
1590 }
1591
1592 #if CONFIG_SHOWSPECTRUM_FILTER
1593
1594 static int activate(AVFilterContext *ctx)
1595 {
1596 AVFilterLink *inlink = ctx->inputs[0];
1597 AVFilterLink *outlink = ctx->outputs[0];
1598 ShowSpectrumContext *s = ctx->priv;
1599 int ret, status;
1600 int64_t pts;
1601
1602 FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
1603
1604 if (s->outpicref && ff_inlink_queued_samples(inlink) > 0) {
1605 AVFrame *fin;
1606
1607 ret = ff_inlink_consume_samples(inlink, s->hop_size, s->hop_size, &fin);
1608 if (ret < 0)
1609 return ret;
1610 if (ret > 0) {
1611 ff_filter_execute(ctx, run_channel_fft, fin, NULL, s->nb_display_channels);
1612
1613 if (s->data == D_MAGNITUDE)
1614 ff_filter_execute(ctx, calc_channel_magnitudes, NULL, NULL, s->nb_display_channels);
1615
1616 if (s->data == D_PHASE)
1617 ff_filter_execute(ctx, calc_channel_phases, NULL, NULL, s->nb_display_channels);
1618
1619 if (s->data == D_UPHASE)
1620 ff_filter_execute(ctx, calc_channel_uphases, NULL, NULL, s->nb_display_channels);
1621
1622 if (s->sliding != FULLFRAME || s->xpos == 0)
1623 s->in_pts = fin->pts;
1624 ret = plot_spectrum_column(inlink, fin);
1625 av_frame_free(&fin);
1626 if (ret <= 0)
1627 return ret;
1628 }
1629 }
1630
1631 if (s->eof && s->sliding == FULLFRAME &&
1632 s->xpos > 0 && s->outpicref) {
1633
1634 if (s->orientation == VERTICAL) {
1635 for (int i = 0; i < outlink->h; i++) {
1636 memset(s->outpicref->data[0] + i * s->outpicref->linesize[0] + s->xpos, 0, outlink->w - s->xpos);
1637 memset(s->outpicref->data[1] + i * s->outpicref->linesize[1] + s->xpos, 128, outlink->w - s->xpos);
1638 memset(s->outpicref->data[2] + i * s->outpicref->linesize[2] + s->xpos, 128, outlink->w - s->xpos);
1639 if (s->outpicref->data[3])
1640 memset(s->outpicref->data[3] + i * s->outpicref->linesize[3] + s->xpos, 0, outlink->w - s->xpos);
1641 }
1642 } else {
1643 for (int i = s->xpos; i < outlink->h; i++) {
1644 memset(s->outpicref->data[0] + i * s->outpicref->linesize[0], 0, outlink->w);
1645 memset(s->outpicref->data[1] + i * s->outpicref->linesize[1], 128, outlink->w);
1646 memset(s->outpicref->data[2] + i * s->outpicref->linesize[2], 128, outlink->w);
1647 if (s->outpicref->data[3])
1648 memset(s->outpicref->data[3] + i * s->outpicref->linesize[3], 0, outlink->w);
1649 }
1650 }
1651 s->outpicref->pts = av_rescale_q(s->in_pts, inlink->time_base, outlink->time_base);
1652 pts = s->outpicref->pts;
1653 ret = ff_filter_frame(outlink, s->outpicref);
1654 s->outpicref = NULL;
1655 ff_outlink_set_status(outlink, AVERROR_EOF, pts);
1656 return 0;
1657 }
1658
1659 if (!s->eof && ff_inlink_acknowledge_status(inlink, &status, &pts)) {
1660 s->eof = status == AVERROR_EOF;
1661 ff_filter_set_ready(ctx, 100);
1662 return 0;
1663 }
1664
1665 if (s->eof) {
1666 ff_outlink_set_status(outlink, AVERROR_EOF, s->pts);
1667 return 0;
1668 }
1669
1670 if (ff_inlink_queued_samples(inlink) >= s->hop_size) {
1671 ff_filter_set_ready(ctx, 10);
1672 return 0;
1673 }
1674
1675 if (ff_outlink_frame_wanted(outlink)) {
1676 ff_inlink_request_frame(inlink);
1677 return 0;
1678 }
1679
1680 return FFERROR_NOT_READY;
1681 }
1682
1683 static const AVFilterPad showspectrum_outputs[] = {
1684 {
1685 .name = "default",
1686 .type = AVMEDIA_TYPE_VIDEO,
1687 .config_props = config_output,
1688 },
1689 };
1690
1691 const AVFilter ff_avf_showspectrum = {
1692 .name = "showspectrum",
1693 .description = NULL_IF_CONFIG_SMALL("Convert input audio to a spectrum video output."),
1694 .uninit = uninit,
1695 .priv_size = sizeof(ShowSpectrumContext),
1696 FILTER_INPUTS(ff_audio_default_filterpad),
1697 FILTER_OUTPUTS(showspectrum_outputs),
1698 FILTER_QUERY_FUNC(query_formats),
1699 .activate = activate,
1700 .priv_class = &showspectrum_class,
1701 .flags = AVFILTER_FLAG_SLICE_THREADS,
1702 };
1703 #endif // CONFIG_SHOWSPECTRUM_FILTER
1704
1705 #if CONFIG_SHOWSPECTRUMPIC_FILTER
1706
1707 static const AVOption showspectrumpic_options[] = {
1708 { "size", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
1709 { "s", "set video size", OFFSET(w), AV_OPT_TYPE_IMAGE_SIZE, {.str = "4096x2048"}, 0, 0, FLAGS },
1710 { "mode", "set channel display mode", OFFSET(mode), AV_OPT_TYPE_INT, {.i64=COMBINED}, 0, NB_MODES-1, FLAGS, .unit = "mode" },
1711 { "combined", "combined mode", 0, AV_OPT_TYPE_CONST, {.i64=COMBINED}, 0, 0, FLAGS, .unit = "mode" },
1712 { "separate", "separate mode", 0, AV_OPT_TYPE_CONST, {.i64=SEPARATE}, 0, 0, FLAGS, .unit = "mode" },
1713 { "color", "set channel coloring", OFFSET(color_mode), AV_OPT_TYPE_INT, {.i64=INTENSITY}, 0, NB_CLMODES-1, FLAGS, .unit = "color" },
1714 { "channel", "separate color for each channel", 0, AV_OPT_TYPE_CONST, {.i64=CHANNEL}, 0, 0, FLAGS, .unit = "color" },
1715 { "intensity", "intensity based coloring", 0, AV_OPT_TYPE_CONST, {.i64=INTENSITY}, 0, 0, FLAGS, .unit = "color" },
1716 { "rainbow", "rainbow based coloring", 0, AV_OPT_TYPE_CONST, {.i64=RAINBOW}, 0, 0, FLAGS, .unit = "color" },
1717 { "moreland", "moreland based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MORELAND}, 0, 0, FLAGS, .unit = "color" },
1718 { "nebulae", "nebulae based coloring", 0, AV_OPT_TYPE_CONST, {.i64=NEBULAE}, 0, 0, FLAGS, .unit = "color" },
1719 { "fire", "fire based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIRE}, 0, 0, FLAGS, .unit = "color" },
1720 { "fiery", "fiery based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FIERY}, 0, 0, FLAGS, .unit = "color" },
1721 { "fruit", "fruit based coloring", 0, AV_OPT_TYPE_CONST, {.i64=FRUIT}, 0, 0, FLAGS, .unit = "color" },
1722 { "cool", "cool based coloring", 0, AV_OPT_TYPE_CONST, {.i64=COOL}, 0, 0, FLAGS, .unit = "color" },
1723 { "magma", "magma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=MAGMA}, 0, 0, FLAGS, .unit = "color" },
1724 { "green", "green based coloring", 0, AV_OPT_TYPE_CONST, {.i64=GREEN}, 0, 0, FLAGS, .unit = "color" },
1725 { "viridis", "viridis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=VIRIDIS}, 0, 0, FLAGS, .unit = "color" },
1726 { "plasma", "plasma based coloring", 0, AV_OPT_TYPE_CONST, {.i64=PLASMA}, 0, 0, FLAGS, .unit = "color" },
1727 { "cividis", "cividis based coloring", 0, AV_OPT_TYPE_CONST, {.i64=CIVIDIS}, 0, 0, FLAGS, .unit = "color" },
1728 { "terrain", "terrain based coloring", 0, AV_OPT_TYPE_CONST, {.i64=TERRAIN}, 0, 0, FLAGS, .unit = "color" },
1729 { "scale", "set display scale", OFFSET(scale), AV_OPT_TYPE_INT, {.i64=LOG}, 0, NB_SCALES-1, FLAGS, .unit = "scale" },
1730 { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=LINEAR}, 0, 0, FLAGS, .unit = "scale" },
1731 { "sqrt", "square root", 0, AV_OPT_TYPE_CONST, {.i64=SQRT}, 0, 0, FLAGS, .unit = "scale" },
1732 { "cbrt", "cubic root", 0, AV_OPT_TYPE_CONST, {.i64=CBRT}, 0, 0, FLAGS, .unit = "scale" },
1733 { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=LOG}, 0, 0, FLAGS, .unit = "scale" },
1734 { "4thrt","4th root", 0, AV_OPT_TYPE_CONST, {.i64=FOURTHRT}, 0, 0, FLAGS, .unit = "scale" },
1735 { "5thrt","5th root", 0, AV_OPT_TYPE_CONST, {.i64=FIFTHRT}, 0, 0, FLAGS, .unit = "scale" },
1736 { "fscale", "set frequency scale", OFFSET(fscale), AV_OPT_TYPE_INT, {.i64=F_LINEAR}, 0, NB_FSCALES-1, FLAGS, .unit = "fscale" },
1737 { "lin", "linear", 0, AV_OPT_TYPE_CONST, {.i64=F_LINEAR}, 0, 0, FLAGS, .unit = "fscale" },
1738 { "log", "logarithmic", 0, AV_OPT_TYPE_CONST, {.i64=F_LOG}, 0, 0, FLAGS, .unit = "fscale" },
1739 { "saturation", "color saturation multiplier", OFFSET(saturation), AV_OPT_TYPE_FLOAT, {.dbl = 1}, -10, 10, FLAGS },
1740 WIN_FUNC_OPTION("win_func", OFFSET(win_func), FLAGS, WFUNC_HANNING),
1741 { "orientation", "set orientation", OFFSET(orientation), AV_OPT_TYPE_INT, {.i64=VERTICAL}, 0, NB_ORIENTATIONS-1, FLAGS, .unit = "orientation" },
1742 { "vertical", NULL, 0, AV_OPT_TYPE_CONST, {.i64=VERTICAL}, 0, 0, FLAGS, .unit = "orientation" },
1743 { "horizontal", NULL, 0, AV_OPT_TYPE_CONST, {.i64=HORIZONTAL}, 0, 0, FLAGS, .unit = "orientation" },
1744 { "gain", "set scale gain", OFFSET(gain), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 128, FLAGS },
1745 { "legend", "draw legend", OFFSET(legend), AV_OPT_TYPE_BOOL, {.i64 = 1}, 0, 1, FLAGS },
1746 { "rotation", "color rotation", OFFSET(rotation), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -1, 1, FLAGS },
1747 { "start", "start frequency", OFFSET(start), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
1748 { "stop", "stop frequency", OFFSET(stop), AV_OPT_TYPE_INT, {.i64 = 0}, 0, INT32_MAX, FLAGS },
1749 { "drange", "set dynamic range in dBFS", OFFSET(drange), AV_OPT_TYPE_FLOAT, {.dbl = 120}, 10, 200, FLAGS },
1750 { "limit", "set upper limit in dBFS", OFFSET(limit), AV_OPT_TYPE_FLOAT, {.dbl = 0}, -100, 100, FLAGS },
1751 { "opacity", "set opacity strength", OFFSET(opacity_factor), AV_OPT_TYPE_FLOAT, {.dbl = 1}, 0, 10, FLAGS },
1752 { NULL }
1753 };
1754
1755 AVFILTER_DEFINE_CLASS(showspectrumpic);
1756
1757 static int showspectrumpic_request_frame(AVFilterLink *outlink)
1758 {
1759 AVFilterContext *ctx = outlink->src;
1760 ShowSpectrumContext *s = ctx->priv;
1761 AVFilterLink *inlink = ctx->inputs[0];
1762 int ret;
1763
1764 ret = ff_request_frame(inlink);
1765 if (ret == AVERROR_EOF && s->outpicref && s->samples > 0) {
1766 int consumed = 0;
1767 int x = 0, sz = s->orientation == VERTICAL ? s->w : s->h;
1768 unsigned int nb_frame = 0;
1769 int ch, spf, spb;
1770 int src_offset = 0;
1771 AVFrame *fin;
1772
1773 spf = s->win_size * (s->samples / ((s->win_size * sz) * ceil(s->samples / (float)(s->win_size * sz))));
1774 spf = FFMAX(1, spf);
1775 s->hop_size = spf;
1776
1777 spb = (s->samples / (spf * sz)) * spf;
1778
1779 fin = ff_get_audio_buffer(inlink, spf);
1780 if (!fin)
1781 return AVERROR(ENOMEM);
1782
1783 while (x < sz) {
1784 int acc_samples = 0;
1785 int dst_offset = 0;
1786
1787