FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/afir_template.c
Date: 2025-01-20 09:27:23
Exec Total Coverage
Lines: 0 155 0.0%
Functions: 0 12 0.0%
Branches: 0 64 0.0%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2017 Paul B Mahol
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include "libavutil/tx.h"
22 #include "avfilter.h"
23 #include "audio.h"
24
25 #undef ctype
26 #undef ftype
27 #undef SQRT
28 #undef HYPOT
29 #undef SAMPLE_FORMAT
30 #undef TX_TYPE
31 #undef FABS
32 #undef POW
33 #if DEPTH == 32
34 #define SAMPLE_FORMAT float
35 #define SQRT sqrtf
36 #define HYPOT hypotf
37 #define ctype AVComplexFloat
38 #define ftype float
39 #define TX_TYPE AV_TX_FLOAT_RDFT
40 #define FABS fabsf
41 #define POW powf
42 #else
43 #define SAMPLE_FORMAT double
44 #define SQRT sqrt
45 #define HYPOT hypot
46 #define ctype AVComplexDouble
47 #define ftype double
48 #define TX_TYPE AV_TX_DOUBLE_RDFT
49 #define FABS fabs
50 #define POW pow
51 #endif
52
53 #define fn3(a,b) a##_##b
54 #define fn2(a,b) fn3(a,b)
55 #define fn(a) fn2(a, SAMPLE_FORMAT)
56
57 static ftype fn(ir_gain)(AVFilterContext *ctx, AudioFIRContext *s,
58 int cur_nb_taps, const ftype *time)
59 {
60 ftype ch_gain, sum = 0;
61
62 if (s->ir_norm < 0.f) {
63 ch_gain = 1;
64 } else if (s->ir_norm == 0.f) {
65 for (int i = 0; i < cur_nb_taps; i++)
66 sum += time[i];
67 ch_gain = 1. / sum;
68 } else {
69 ftype ir_norm = s->ir_norm;
70
71 for (int i = 0; i < cur_nb_taps; i++)
72 sum += POW(FABS(time[i]), ir_norm);
73 ch_gain = 1. / POW(sum, 1. / ir_norm);
74 }
75
76 return ch_gain;
77 }
78
79 static void fn(ir_scale)(AVFilterContext *ctx, AudioFIRContext *s,
80 int cur_nb_taps, int ch,
81 ftype *time, ftype ch_gain)
82 {
83 if (ch_gain != 1. || s->ir_gain != 1.) {
84 ftype gain = ch_gain * s->ir_gain;
85
86 av_log(ctx, AV_LOG_DEBUG, "ch%d gain %f\n", ch, gain);
87 #if DEPTH == 32
88 s->fdsp->vector_fmul_scalar(time, time, gain, FFALIGN(cur_nb_taps, 4));
89 #else
90 s->fdsp->vector_dmul_scalar(time, time, gain, FFALIGN(cur_nb_taps, 8));
91 #endif
92 }
93 }
94
95 static void fn(convert_channel)(AVFilterContext *ctx, AudioFIRContext *s, int ch,
96 AudioFIRSegment *seg, int coeff_partition, int selir)
97 {
98 const int coffset = coeff_partition * seg->coeff_size;
99 const int nb_taps = s->nb_taps[selir];
100 ftype *time = (ftype *)s->norm_ir[selir]->extended_data[ch];
101 ftype *tempin = (ftype *)seg->tempin->extended_data[ch];
102 ftype *tempout = (ftype *)seg->tempout->extended_data[ch];
103 ctype *coeff = (ctype *)seg->coeff->extended_data[ch];
104 const int remaining = nb_taps - (seg->input_offset + coeff_partition * seg->part_size);
105 const int size = remaining >= seg->part_size ? seg->part_size : remaining;
106
107 memset(tempin + size, 0, sizeof(*tempin) * (seg->block_size - size));
108 memcpy(tempin, time + seg->input_offset + coeff_partition * seg->part_size,
109 size * sizeof(*tempin));
110 seg->ctx_fn(seg->ctx[ch], tempout, tempin, sizeof(*tempin));
111 memcpy(coeff + coffset, tempout, seg->coeff_size * sizeof(*coeff));
112
113 av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
114 av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
115 av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
116 av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
117 av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
118 av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
119 av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
120 av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
121 }
122
123 static void fn(fir_fadd)(AudioFIRContext *s, ftype *dst, const ftype *src, int nb_samples)
124 {
125 if ((nb_samples & 15) == 0 && nb_samples >= 8) {
126 #if DEPTH == 32
127 s->fdsp->vector_fmac_scalar(dst, src, 1.f, nb_samples);
128 #else
129 s->fdsp->vector_dmac_scalar(dst, src, 1.0, nb_samples);
130 #endif
131 } else {
132 for (int n = 0; n < nb_samples; n++)
133 dst[n] += src[n];
134 }
135 }
136
137 static int fn(fir_quantum)(AVFilterContext *ctx, AVFrame *out, int ch, int ioffset, int offset, int selir)
138 {
139 AudioFIRContext *s = ctx->priv;
140 const ftype *in = (const ftype *)s->in->extended_data[ch] + ioffset;
141 ftype *blockout, *ptr = (ftype *)out->extended_data[ch] + offset;
142 const int min_part_size = s->min_part_size;
143 const int nb_samples = FFMIN(min_part_size, out->nb_samples - offset);
144 const int nb_segments = s->nb_segments[selir];
145 const float dry_gain = s->dry_gain;
146 const float wet_gain = s->wet_gain;
147
148 for (int segment = 0; segment < nb_segments; segment++) {
149 AudioFIRSegment *seg = &s->seg[selir][segment];
150 ftype *src = (ftype *)seg->input->extended_data[ch];
151 ftype *dst = (ftype *)seg->output->extended_data[ch];
152 ftype *sumin = (ftype *)seg->sumin->extended_data[ch];
153 ftype *sumout = (ftype *)seg->sumout->extended_data[ch];
154 ftype *tempin = (ftype *)seg->tempin->extended_data[ch];
155 ftype *buf = (ftype *)seg->buffer->extended_data[ch];
156 int *output_offset = &seg->output_offset[ch];
157 const int nb_partitions = seg->nb_partitions;
158 const int input_offset = seg->input_offset;
159 const int part_size = seg->part_size;
160 int j;
161
162 seg->part_index[ch] = seg->part_index[ch] % nb_partitions;
163 if (dry_gain == 1.f) {
164 memcpy(src + input_offset, in, nb_samples * sizeof(*src));
165 } else if (min_part_size >= 8) {
166 #if DEPTH == 32
167 s->fdsp->vector_fmul_scalar(src + input_offset, in, dry_gain, FFALIGN(nb_samples, 4));
168 #else
169 s->fdsp->vector_dmul_scalar(src + input_offset, in, dry_gain, FFALIGN(nb_samples, 8));
170 #endif
171 } else {
172 ftype *src2 = src + input_offset;
173 for (int n = 0; n < nb_samples; n++)
174 src2[n] = in[n] * dry_gain;
175 }
176
177 output_offset[0] += min_part_size;
178 if (output_offset[0] >= part_size) {
179 output_offset[0] = 0;
180 } else {
181 memmove(src, src + min_part_size, (seg->input_size - min_part_size) * sizeof(*src));
182
183 dst += output_offset[0];
184 fn(fir_fadd)(s, ptr, dst, nb_samples);
185 continue;
186 }
187
188 memset(sumin, 0, sizeof(*sumin) * seg->fft_length);
189
190 blockout = (ftype *)seg->blockout->extended_data[ch] + seg->part_index[ch] * seg->block_size;
191 memset(tempin + part_size, 0, sizeof(*tempin) * (seg->block_size - part_size));
192 memcpy(tempin, src, sizeof(*src) * part_size);
193 seg->tx_fn(seg->tx[ch], blockout, tempin, sizeof(ftype));
194
195 j = seg->part_index[ch];
196 for (int i = 0; i < nb_partitions; i++) {
197 const int input_partition = j;
198 const int coeff_partition = i;
199 const int coffset = coeff_partition * seg->coeff_size;
200 const ftype *blockout = (const ftype *)seg->blockout->extended_data[ch] + input_partition * seg->block_size;
201 const ctype *coeff = ((const ctype *)seg->coeff->extended_data[ch]) + coffset;
202
203 if (j == 0)
204 j = nb_partitions;
205 j--;
206
207 #if DEPTH == 32
208 s->afirdsp.fcmul_add(sumin, blockout, (const ftype *)coeff, part_size);
209 #else
210 s->afirdsp.dcmul_add(sumin, blockout, (const ftype *)coeff, part_size);
211 #endif
212 }
213
214 seg->itx_fn(seg->itx[ch], sumout, sumin, sizeof(ctype));
215
216 fn(fir_fadd)(s, buf, sumout, part_size);
217 memcpy(dst, buf, part_size * sizeof(*dst));
218 memcpy(buf, sumout + part_size, part_size * sizeof(*buf));
219
220 fn(fir_fadd)(s, ptr, dst, nb_samples);
221
222 if (part_size != min_part_size)
223 memmove(src, src + min_part_size, (seg->input_size - min_part_size) * sizeof(*src));
224
225 seg->part_index[ch] = (seg->part_index[ch] + 1) % nb_partitions;
226 }
227
228 if (wet_gain == 1.f)
229 return 0;
230
231 if (min_part_size >= 8) {
232 #if DEPTH == 32
233 s->fdsp->vector_fmul_scalar(ptr, ptr, wet_gain, FFALIGN(nb_samples, 4));
234 #else
235 s->fdsp->vector_dmul_scalar(ptr, ptr, wet_gain, FFALIGN(nb_samples, 8));
236 #endif
237 } else {
238 for (int n = 0; n < nb_samples; n++)
239 ptr[n] *= wet_gain;
240 }
241
242 return 0;
243 }
244
245 static void fn(fir_quantums)(AVFilterContext *ctx, AudioFIRContext *s, AVFrame *out,
246 int min_part_size, int ch, int offset,
247 int prev_selir, int selir)
248 {
249 if (ctx->is_disabled || s->prev_is_disabled) {
250 const ftype *in = (const ftype *)s->in->extended_data[ch] + offset;
251 const ftype *xfade0 = (const ftype *)s->xfade[0]->extended_data[ch];
252 const ftype *xfade1 = (const ftype *)s->xfade[1]->extended_data[ch];
253 ftype *src0 = (ftype *)s->fadein[0]->extended_data[ch];
254 ftype *src1 = (ftype *)s->fadein[1]->extended_data[ch];
255 ftype *dst = ((ftype *)out->extended_data[ch]) + offset;
256
257 if (ctx->is_disabled && !s->prev_is_disabled) {
258 memset(src0, 0, min_part_size * sizeof(ftype));
259 fn(fir_quantum)(ctx, s->fadein[0], ch, offset, 0, selir);
260 for (int n = 0; n < min_part_size; n++)
261 dst[n] = xfade1[n] * src0[n] + xfade0[n] * in[n];
262 } else if (!ctx->is_disabled && s->prev_is_disabled) {
263 memset(src1, 0, min_part_size * sizeof(ftype));
264 fn(fir_quantum)(ctx, s->fadein[1], ch, offset, 0, selir);
265 for (int n = 0; n < min_part_size; n++)
266 dst[n] = xfade1[n] * in[n] + xfade0[n] * src1[n];
267 } else {
268 memcpy(dst, in, sizeof(ftype) * min_part_size);
269 }
270 } else if (prev_selir != selir && s->loading[ch] != 0) {
271 const ftype *xfade0 = (const ftype *)s->xfade[0]->extended_data[ch];
272 const ftype *xfade1 = (const ftype *)s->xfade[1]->extended_data[ch];
273 ftype *src0 = (ftype *)s->fadein[0]->extended_data[ch];
274 ftype *src1 = (ftype *)s->fadein[1]->extended_data[ch];
275 ftype *dst = ((ftype *)out->extended_data[ch]) + offset;
276
277 memset(src0, 0, min_part_size * sizeof(ftype));
278 memset(src1, 0, min_part_size * sizeof(ftype));
279
280 fn(fir_quantum)(ctx, s->fadein[0], ch, offset, 0, prev_selir);
281 fn(fir_quantum)(ctx, s->fadein[1], ch, offset, 0, selir);
282
283 if (s->loading[ch] > s->max_offset[selir]) {
284 for (int n = 0; n < min_part_size; n++)
285 dst[n] = xfade1[n] * src0[n] + xfade0[n] * src1[n];
286 s->loading[ch] = 0;
287 } else {
288 memcpy(dst, src0, min_part_size * sizeof(ftype));
289 }
290 } else {
291 fn(fir_quantum)(ctx, out, ch, offset, offset, selir);
292 }
293 }
294