FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/afir_template.c
Date: 2024-04-19 17:50:32
Exec Total Coverage
Lines: 0 155 0.0%
Functions: 0 12 0.0%
Branches: 0 64 0.0%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2017 Paul B Mahol
3 *
4 * This file is part of FFmpeg.
5 *
6 * FFmpeg is free software; you can redistribute it and/or
7 * modify it under the terms of the GNU Lesser General Public
8 * License as published by the Free Software Foundation; either
9 * version 2.1 of the License, or (at your option) any later version.
10 *
11 * FFmpeg is distributed in the hope that it will be useful,
12 * but WITHOUT ANY WARRANTY; without even the implied warranty of
13 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 * Lesser General Public License for more details.
15 *
16 * You should have received a copy of the GNU Lesser General Public
17 * License along with FFmpeg; if not, write to the Free Software
18 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 */
20
21 #include "libavutil/tx.h"
22 #include "avfilter.h"
23 #include "internal.h"
24 #include "audio.h"
25
26 #undef ctype
27 #undef ftype
28 #undef SQRT
29 #undef HYPOT
30 #undef SAMPLE_FORMAT
31 #undef TX_TYPE
32 #undef FABS
33 #undef POW
34 #if DEPTH == 32
35 #define SAMPLE_FORMAT float
36 #define SQRT sqrtf
37 #define HYPOT hypotf
38 #define ctype AVComplexFloat
39 #define ftype float
40 #define TX_TYPE AV_TX_FLOAT_RDFT
41 #define FABS fabsf
42 #define POW powf
43 #else
44 #define SAMPLE_FORMAT double
45 #define SQRT sqrt
46 #define HYPOT hypot
47 #define ctype AVComplexDouble
48 #define ftype double
49 #define TX_TYPE AV_TX_DOUBLE_RDFT
50 #define FABS fabs
51 #define POW pow
52 #endif
53
54 #define fn3(a,b) a##_##b
55 #define fn2(a,b) fn3(a,b)
56 #define fn(a) fn2(a, SAMPLE_FORMAT)
57
58 static ftype fn(ir_gain)(AVFilterContext *ctx, AudioFIRContext *s,
59 int cur_nb_taps, const ftype *time)
60 {
61 ftype ch_gain, sum = 0;
62
63 if (s->ir_norm < 0.f) {
64 ch_gain = 1;
65 } else if (s->ir_norm == 0.f) {
66 for (int i = 0; i < cur_nb_taps; i++)
67 sum += time[i];
68 ch_gain = 1. / sum;
69 } else {
70 ftype ir_norm = s->ir_norm;
71
72 for (int i = 0; i < cur_nb_taps; i++)
73 sum += POW(FABS(time[i]), ir_norm);
74 ch_gain = 1. / POW(sum, 1. / ir_norm);
75 }
76
77 return ch_gain;
78 }
79
80 static void fn(ir_scale)(AVFilterContext *ctx, AudioFIRContext *s,
81 int cur_nb_taps, int ch,
82 ftype *time, ftype ch_gain)
83 {
84 if (ch_gain != 1. || s->ir_gain != 1.) {
85 ftype gain = ch_gain * s->ir_gain;
86
87 av_log(ctx, AV_LOG_DEBUG, "ch%d gain %f\n", ch, gain);
88 #if DEPTH == 32
89 s->fdsp->vector_fmul_scalar(time, time, gain, FFALIGN(cur_nb_taps, 4));
90 #else
91 s->fdsp->vector_dmul_scalar(time, time, gain, FFALIGN(cur_nb_taps, 8));
92 #endif
93 }
94 }
95
96 static void fn(convert_channel)(AVFilterContext *ctx, AudioFIRContext *s, int ch,
97 AudioFIRSegment *seg, int coeff_partition, int selir)
98 {
99 const int coffset = coeff_partition * seg->coeff_size;
100 const int nb_taps = s->nb_taps[selir];
101 ftype *time = (ftype *)s->norm_ir[selir]->extended_data[ch];
102 ftype *tempin = (ftype *)seg->tempin->extended_data[ch];
103 ftype *tempout = (ftype *)seg->tempout->extended_data[ch];
104 ctype *coeff = (ctype *)seg->coeff->extended_data[ch];
105 const int remaining = nb_taps - (seg->input_offset + coeff_partition * seg->part_size);
106 const int size = remaining >= seg->part_size ? seg->part_size : remaining;
107
108 memset(tempin + size, 0, sizeof(*tempin) * (seg->block_size - size));
109 memcpy(tempin, time + seg->input_offset + coeff_partition * seg->part_size,
110 size * sizeof(*tempin));
111 seg->ctx_fn(seg->ctx[ch], tempout, tempin, sizeof(*tempin));
112 memcpy(coeff + coffset, tempout, seg->coeff_size * sizeof(*coeff));
113
114 av_log(ctx, AV_LOG_DEBUG, "channel: %d\n", ch);
115 av_log(ctx, AV_LOG_DEBUG, "nb_partitions: %d\n", seg->nb_partitions);
116 av_log(ctx, AV_LOG_DEBUG, "partition size: %d\n", seg->part_size);
117 av_log(ctx, AV_LOG_DEBUG, "block size: %d\n", seg->block_size);
118 av_log(ctx, AV_LOG_DEBUG, "fft_length: %d\n", seg->fft_length);
119 av_log(ctx, AV_LOG_DEBUG, "coeff_size: %d\n", seg->coeff_size);
120 av_log(ctx, AV_LOG_DEBUG, "input_size: %d\n", seg->input_size);
121 av_log(ctx, AV_LOG_DEBUG, "input_offset: %d\n", seg->input_offset);
122 }
123
124 static void fn(fir_fadd)(AudioFIRContext *s, ftype *dst, const ftype *src, int nb_samples)
125 {
126 if ((nb_samples & 15) == 0 && nb_samples >= 8) {
127 #if DEPTH == 32
128 s->fdsp->vector_fmac_scalar(dst, src, 1.f, nb_samples);
129 #else
130 s->fdsp->vector_dmac_scalar(dst, src, 1.0, nb_samples);
131 #endif
132 } else {
133 for (int n = 0; n < nb_samples; n++)
134 dst[n] += src[n];
135 }
136 }
137
138 static int fn(fir_quantum)(AVFilterContext *ctx, AVFrame *out, int ch, int ioffset, int offset, int selir)
139 {
140 AudioFIRContext *s = ctx->priv;
141 const ftype *in = (const ftype *)s->in->extended_data[ch] + ioffset;
142 ftype *blockout, *ptr = (ftype *)out->extended_data[ch] + offset;
143 const int min_part_size = s->min_part_size;
144 const int nb_samples = FFMIN(min_part_size, out->nb_samples - offset);
145 const int nb_segments = s->nb_segments[selir];
146 const float dry_gain = s->dry_gain;
147 const float wet_gain = s->wet_gain;
148
149 for (int segment = 0; segment < nb_segments; segment++) {
150 AudioFIRSegment *seg = &s->seg[selir][segment];
151 ftype *src = (ftype *)seg->input->extended_data[ch];
152 ftype *dst = (ftype *)seg->output->extended_data[ch];
153 ftype *sumin = (ftype *)seg->sumin->extended_data[ch];
154 ftype *sumout = (ftype *)seg->sumout->extended_data[ch];
155 ftype *tempin = (ftype *)seg->tempin->extended_data[ch];
156 ftype *buf = (ftype *)seg->buffer->extended_data[ch];
157 int *output_offset = &seg->output_offset[ch];
158 const int nb_partitions = seg->nb_partitions;
159 const int input_offset = seg->input_offset;
160 const int part_size = seg->part_size;
161 int j;
162
163 seg->part_index[ch] = seg->part_index[ch] % nb_partitions;
164 if (dry_gain == 1.f) {
165 memcpy(src + input_offset, in, nb_samples * sizeof(*src));
166 } else if (min_part_size >= 8) {
167 #if DEPTH == 32
168 s->fdsp->vector_fmul_scalar(src + input_offset, in, dry_gain, FFALIGN(nb_samples, 4));
169 #else
170 s->fdsp->vector_dmul_scalar(src + input_offset, in, dry_gain, FFALIGN(nb_samples, 8));
171 #endif
172 } else {
173 ftype *src2 = src + input_offset;
174 for (int n = 0; n < nb_samples; n++)
175 src2[n] = in[n] * dry_gain;
176 }
177
178 output_offset[0] += min_part_size;
179 if (output_offset[0] >= part_size) {
180 output_offset[0] = 0;
181 } else {
182 memmove(src, src + min_part_size, (seg->input_size - min_part_size) * sizeof(*src));
183
184 dst += output_offset[0];
185 fn(fir_fadd)(s, ptr, dst, nb_samples);
186 continue;
187 }
188
189 memset(sumin, 0, sizeof(*sumin) * seg->fft_length);
190
191 blockout = (ftype *)seg->blockout->extended_data[ch] + seg->part_index[ch] * seg->block_size;
192 memset(tempin + part_size, 0, sizeof(*tempin) * (seg->block_size - part_size));
193 memcpy(tempin, src, sizeof(*src) * part_size);
194 seg->tx_fn(seg->tx[ch], blockout, tempin, sizeof(ftype));
195
196 j = seg->part_index[ch];
197 for (int i = 0; i < nb_partitions; i++) {
198 const int input_partition = j;
199 const int coeff_partition = i;
200 const int coffset = coeff_partition * seg->coeff_size;
201 const ftype *blockout = (const ftype *)seg->blockout->extended_data[ch] + input_partition * seg->block_size;
202 const ctype *coeff = ((const ctype *)seg->coeff->extended_data[ch]) + coffset;
203
204 if (j == 0)
205 j = nb_partitions;
206 j--;
207
208 #if DEPTH == 32
209 s->afirdsp.fcmul_add(sumin, blockout, (const ftype *)coeff, part_size);
210 #else
211 s->afirdsp.dcmul_add(sumin, blockout, (const ftype *)coeff, part_size);
212 #endif
213 }
214
215 seg->itx_fn(seg->itx[ch], sumout, sumin, sizeof(ctype));
216
217 fn(fir_fadd)(s, buf, sumout, part_size);
218 memcpy(dst, buf, part_size * sizeof(*dst));
219 memcpy(buf, sumout + part_size, part_size * sizeof(*buf));
220
221 fn(fir_fadd)(s, ptr, dst, nb_samples);
222
223 if (part_size != min_part_size)
224 memmove(src, src + min_part_size, (seg->input_size - min_part_size) * sizeof(*src));
225
226 seg->part_index[ch] = (seg->part_index[ch] + 1) % nb_partitions;
227 }
228
229 if (wet_gain == 1.f)
230 return 0;
231
232 if (min_part_size >= 8) {
233 #if DEPTH == 32
234 s->fdsp->vector_fmul_scalar(ptr, ptr, wet_gain, FFALIGN(nb_samples, 4));
235 #else
236 s->fdsp->vector_dmul_scalar(ptr, ptr, wet_gain, FFALIGN(nb_samples, 8));
237 #endif
238 } else {
239 for (int n = 0; n < nb_samples; n++)
240 ptr[n] *= wet_gain;
241 }
242
243 return 0;
244 }
245
246 static void fn(fir_quantums)(AVFilterContext *ctx, AudioFIRContext *s, AVFrame *out,
247 int min_part_size, int ch, int offset,
248 int prev_selir, int selir)
249 {
250 if (ctx->is_disabled || s->prev_is_disabled) {
251 const ftype *in = (const ftype *)s->in->extended_data[ch] + offset;
252 const ftype *xfade0 = (const ftype *)s->xfade[0]->extended_data[ch];
253 const ftype *xfade1 = (const ftype *)s->xfade[1]->extended_data[ch];
254 ftype *src0 = (ftype *)s->fadein[0]->extended_data[ch];
255 ftype *src1 = (ftype *)s->fadein[1]->extended_data[ch];
256 ftype *dst = ((ftype *)out->extended_data[ch]) + offset;
257
258 if (ctx->is_disabled && !s->prev_is_disabled) {
259 memset(src0, 0, min_part_size * sizeof(ftype));
260 fn(fir_quantum)(ctx, s->fadein[0], ch, offset, 0, selir);
261 for (int n = 0; n < min_part_size; n++)
262 dst[n] = xfade1[n] * src0[n] + xfade0[n] * in[n];
263 } else if (!ctx->is_disabled && s->prev_is_disabled) {
264 memset(src1, 0, min_part_size * sizeof(ftype));
265 fn(fir_quantum)(ctx, s->fadein[1], ch, offset, 0, selir);
266 for (int n = 0; n < min_part_size; n++)
267 dst[n] = xfade1[n] * in[n] + xfade0[n] * src1[n];
268 } else {
269 memcpy(dst, in, sizeof(ftype) * min_part_size);
270 }
271 } else if (prev_selir != selir && s->loading[ch] != 0) {
272 const ftype *xfade0 = (const ftype *)s->xfade[0]->extended_data[ch];
273 const ftype *xfade1 = (const ftype *)s->xfade[1]->extended_data[ch];
274 ftype *src0 = (ftype *)s->fadein[0]->extended_data[ch];
275 ftype *src1 = (ftype *)s->fadein[1]->extended_data[ch];
276 ftype *dst = ((ftype *)out->extended_data[ch]) + offset;
277
278 memset(src0, 0, min_part_size * sizeof(ftype));
279 memset(src1, 0, min_part_size * sizeof(ftype));
280
281 fn(fir_quantum)(ctx, s->fadein[0], ch, offset, 0, prev_selir);
282 fn(fir_quantum)(ctx, s->fadein[1], ch, offset, 0, selir);
283
284 if (s->loading[ch] > s->max_offset[selir]) {
285 for (int n = 0; n < min_part_size; n++)
286 dst[n] = xfade1[n] * src0[n] + xfade0[n] * src1[n];
287 s->loading[ch] = 0;
288 } else {
289 memcpy(dst, src0, min_part_size * sizeof(ftype));
290 }
291 } else {
292 fn(fir_quantum)(ctx, out, ch, offset, offset, selir);
293 }
294 }
295