Line |
Branch |
Exec |
Source |
1 |
|
|
/* |
2 |
|
|
* Copyright (c) 2013 Paul B Mahol |
3 |
|
|
* Copyright (c) 2006-2008 Rob Sykes <robs@users.sourceforge.net> |
4 |
|
|
* |
5 |
|
|
* This file is part of FFmpeg. |
6 |
|
|
* |
7 |
|
|
* FFmpeg is free software; you can redistribute it and/or |
8 |
|
|
* modify it under the terms of the GNU Lesser General Public |
9 |
|
|
* License as published by the Free Software Foundation; either |
10 |
|
|
* version 2.1 of the License, or (at your option) any later version. |
11 |
|
|
* |
12 |
|
|
* FFmpeg is distributed in the hope that it will be useful, |
13 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
14 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
15 |
|
|
* Lesser General Public License for more details. |
16 |
|
|
* |
17 |
|
|
* You should have received a copy of the GNU Lesser General Public |
18 |
|
|
* License along with FFmpeg; if not, write to the Free Software |
19 |
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
20 |
|
|
*/ |
21 |
|
|
|
22 |
|
|
/* |
23 |
|
|
* 2-pole filters designed by Robert Bristow-Johnson <rbj@audioimagination.com> |
24 |
|
|
* see http://www.musicdsp.org/files/Audio-EQ-Cookbook.txt |
25 |
|
|
* |
26 |
|
|
* 1-pole filters based on code (c) 2000 Chris Bagwell <cbagwell@sprynet.com> |
27 |
|
|
* Algorithms: Recursive single pole low/high pass filter |
28 |
|
|
* Reference: The Scientist and Engineer's Guide to Digital Signal Processing |
29 |
|
|
* |
30 |
|
|
* low-pass: output[N] = input[N] * A + output[N-1] * B |
31 |
|
|
* X = exp(-2.0 * pi * Fc) |
32 |
|
|
* A = 1 - X |
33 |
|
|
* B = X |
34 |
|
|
* Fc = cutoff freq / sample rate |
35 |
|
|
* |
36 |
|
|
* Mimics an RC low-pass filter: |
37 |
|
|
* |
38 |
|
|
* ---/\/\/\/\-----------> |
39 |
|
|
* | |
40 |
|
|
* --- C |
41 |
|
|
* --- |
42 |
|
|
* | |
43 |
|
|
* | |
44 |
|
|
* V |
45 |
|
|
* |
46 |
|
|
* high-pass: output[N] = A0 * input[N] + A1 * input[N-1] + B1 * output[N-1] |
47 |
|
|
* X = exp(-2.0 * pi * Fc) |
48 |
|
|
* A0 = (1 + X) / 2 |
49 |
|
|
* A1 = -(1 + X) / 2 |
50 |
|
|
* B1 = X |
51 |
|
|
* Fc = cutoff freq / sample rate |
52 |
|
|
* |
53 |
|
|
* Mimics an RC high-pass filter: |
54 |
|
|
* |
55 |
|
|
* || C |
56 |
|
|
* ----||---------> |
57 |
|
|
* || | |
58 |
|
|
* < |
59 |
|
|
* > R |
60 |
|
|
* < |
61 |
|
|
* | |
62 |
|
|
* V |
63 |
|
|
*/ |
64 |
|
|
|
65 |
|
|
#include "config_components.h" |
66 |
|
|
|
67 |
|
|
#include "libavutil/avassert.h" |
68 |
|
|
#include "libavutil/channel_layout.h" |
69 |
|
|
#include "libavutil/ffmath.h" |
70 |
|
|
#include "libavutil/mem.h" |
71 |
|
|
#include "libavutil/opt.h" |
72 |
|
|
#include "audio.h" |
73 |
|
|
#include "avfilter.h" |
74 |
|
|
#include "filters.h" |
75 |
|
|
#include "formats.h" |
76 |
|
|
|
77 |
|
|
enum FilterType { |
78 |
|
|
biquad, |
79 |
|
|
equalizer, |
80 |
|
|
bass, |
81 |
|
|
treble, |
82 |
|
|
bandpass, |
83 |
|
|
bandreject, |
84 |
|
|
allpass, |
85 |
|
|
highpass, |
86 |
|
|
lowpass, |
87 |
|
|
lowshelf, |
88 |
|
|
highshelf, |
89 |
|
|
tiltshelf, |
90 |
|
|
}; |
91 |
|
|
|
92 |
|
|
enum WidthType { |
93 |
|
|
NONE, |
94 |
|
|
HERTZ, |
95 |
|
|
OCTAVE, |
96 |
|
|
QFACTOR, |
97 |
|
|
SLOPE, |
98 |
|
|
KHERTZ, |
99 |
|
|
NB_WTYPE, |
100 |
|
|
}; |
101 |
|
|
|
102 |
|
|
enum TransformType { |
103 |
|
|
DI, |
104 |
|
|
DII, |
105 |
|
|
TDI, |
106 |
|
|
TDII, |
107 |
|
|
LATT, |
108 |
|
|
SVF, |
109 |
|
|
ZDF, |
110 |
|
|
NB_TTYPE, |
111 |
|
|
}; |
112 |
|
|
|
113 |
|
|
typedef struct BiquadsContext { |
114 |
|
|
const AVClass *class; |
115 |
|
|
|
116 |
|
|
enum FilterType filter_type; |
117 |
|
|
int width_type; |
118 |
|
|
int poles; |
119 |
|
|
int csg; |
120 |
|
|
int transform_type; |
121 |
|
|
int precision; |
122 |
|
|
int block_samples; |
123 |
|
|
|
124 |
|
|
int bypass; |
125 |
|
|
|
126 |
|
|
double gain; |
127 |
|
|
double frequency; |
128 |
|
|
double width; |
129 |
|
|
double mix; |
130 |
|
|
char *ch_layout_str; |
131 |
|
|
AVChannelLayout ch_layout; |
132 |
|
|
int normalize; |
133 |
|
|
int order; |
134 |
|
|
|
135 |
|
|
double a_double[3]; |
136 |
|
|
double b_double[3]; |
137 |
|
|
|
138 |
|
|
float a_float[3]; |
139 |
|
|
float b_float[3]; |
140 |
|
|
|
141 |
|
|
double oa[3]; |
142 |
|
|
double ob[3]; |
143 |
|
|
|
144 |
|
|
AVFrame *block[3]; |
145 |
|
|
|
146 |
|
|
int *clip; |
147 |
|
|
AVFrame *cache[2]; |
148 |
|
|
int block_align; |
149 |
|
|
|
150 |
|
|
int64_t pts; |
151 |
|
|
int nb_samples; |
152 |
|
|
|
153 |
|
|
void (*filter)(struct BiquadsContext *s, const void *ibuf, void *obuf, int len, |
154 |
|
|
void *cache, int *clip, int disabled); |
155 |
|
|
} BiquadsContext; |
156 |
|
|
|
157 |
|
✗ |
static int query_formats(const AVFilterContext *ctx, |
158 |
|
|
AVFilterFormatsConfig **cfg_in, |
159 |
|
|
AVFilterFormatsConfig **cfg_out) |
160 |
|
|
{ |
161 |
|
✗ |
const BiquadsContext *s = ctx->priv; |
162 |
|
|
static const enum AVSampleFormat auto_sample_fmts[] = { |
163 |
|
|
AV_SAMPLE_FMT_S16P, |
164 |
|
|
AV_SAMPLE_FMT_S32P, |
165 |
|
|
AV_SAMPLE_FMT_FLTP, |
166 |
|
|
AV_SAMPLE_FMT_DBLP, |
167 |
|
|
AV_SAMPLE_FMT_NONE |
168 |
|
|
}; |
169 |
|
✗ |
enum AVSampleFormat sample_fmts[] = { |
170 |
|
|
AV_SAMPLE_FMT_S16P, |
171 |
|
|
AV_SAMPLE_FMT_NONE |
172 |
|
|
}; |
173 |
|
✗ |
const enum AVSampleFormat *sample_fmts_list = sample_fmts; |
174 |
|
|
int ret; |
175 |
|
|
|
176 |
|
✗ |
switch (s->precision) { |
177 |
|
✗ |
case 0: |
178 |
|
✗ |
sample_fmts[0] = AV_SAMPLE_FMT_S16P; |
179 |
|
✗ |
break; |
180 |
|
✗ |
case 1: |
181 |
|
✗ |
sample_fmts[0] = AV_SAMPLE_FMT_S32P; |
182 |
|
✗ |
break; |
183 |
|
✗ |
case 2: |
184 |
|
✗ |
sample_fmts[0] = AV_SAMPLE_FMT_FLTP; |
185 |
|
✗ |
break; |
186 |
|
✗ |
case 3: |
187 |
|
✗ |
sample_fmts[0] = AV_SAMPLE_FMT_DBLP; |
188 |
|
✗ |
break; |
189 |
|
✗ |
default: |
190 |
|
✗ |
sample_fmts_list = auto_sample_fmts; |
191 |
|
✗ |
break; |
192 |
|
|
} |
193 |
|
✗ |
ret = ff_set_common_formats_from_list2(ctx, cfg_in, cfg_out, sample_fmts_list); |
194 |
|
✗ |
if (ret < 0) |
195 |
|
✗ |
return ret; |
196 |
|
|
|
197 |
|
✗ |
return 0; |
198 |
|
|
} |
199 |
|
|
|
200 |
|
|
#define BIQUAD_FILTER(name, type, ftype, min, max, need_clipping) \ |
201 |
|
|
static void biquad_## name (BiquadsContext *s, \ |
202 |
|
|
const void *input, void *output, int len, \ |
203 |
|
|
void *cache, int *clippings, int disabled) \ |
204 |
|
|
{ \ |
205 |
|
|
const type *ibuf = input; \ |
206 |
|
|
type *obuf = output; \ |
207 |
|
|
ftype *fcache = cache; \ |
208 |
|
|
ftype i1 = fcache[0], i2 = fcache[1], o1 = fcache[2], o2 = fcache[3]; \ |
209 |
|
|
ftype *a = s->a_##ftype; \ |
210 |
|
|
ftype *b = s->b_##ftype; \ |
211 |
|
|
ftype a1 = -a[1]; \ |
212 |
|
|
ftype a2 = -a[2]; \ |
213 |
|
|
ftype b0 = b[0]; \ |
214 |
|
|
ftype b1 = b[1]; \ |
215 |
|
|
ftype b2 = b[2]; \ |
216 |
|
|
ftype wet = s->mix; \ |
217 |
|
|
ftype dry = 1. - wet; \ |
218 |
|
|
ftype out; \ |
219 |
|
|
int i; \ |
220 |
|
|
\ |
221 |
|
|
for (i = 0; i+1 < len; i++) { \ |
222 |
|
|
o2 = i2 * b2 + i1 * b1 + ibuf[i] * b0 + o2 * a2 + o1 * a1; \ |
223 |
|
|
i2 = ibuf[i]; \ |
224 |
|
|
out = o2 * wet + i2 * dry; \ |
225 |
|
|
if (disabled) { \ |
226 |
|
|
obuf[i] = i2; \ |
227 |
|
|
} else if (need_clipping && out < min) { \ |
228 |
|
|
(*clippings)++; \ |
229 |
|
|
obuf[i] = min; \ |
230 |
|
|
} else if (need_clipping && out > max) { \ |
231 |
|
|
(*clippings)++; \ |
232 |
|
|
obuf[i] = max; \ |
233 |
|
|
} else { \ |
234 |
|
|
obuf[i] = out; \ |
235 |
|
|
} \ |
236 |
|
|
i++; \ |
237 |
|
|
o1 = i1 * b2 + i2 * b1 + ibuf[i] * b0 + o1 * a2 + o2 * a1; \ |
238 |
|
|
i1 = ibuf[i]; \ |
239 |
|
|
out = o1 * wet + i1 * dry; \ |
240 |
|
|
if (disabled) { \ |
241 |
|
|
obuf[i] = i1; \ |
242 |
|
|
} else if (need_clipping && out < min) { \ |
243 |
|
|
(*clippings)++; \ |
244 |
|
|
obuf[i] = min; \ |
245 |
|
|
} else if (need_clipping && out > max) { \ |
246 |
|
|
(*clippings)++; \ |
247 |
|
|
obuf[i] = max; \ |
248 |
|
|
} else { \ |
249 |
|
|
obuf[i] = out; \ |
250 |
|
|
} \ |
251 |
|
|
} \ |
252 |
|
|
if (i < len) { \ |
253 |
|
|
ftype o0 = ibuf[i] * b0 + i1 * b1 + i2 * b2 + o1 * a1 + o2 * a2; \ |
254 |
|
|
i2 = i1; \ |
255 |
|
|
i1 = ibuf[i]; \ |
256 |
|
|
o2 = o1; \ |
257 |
|
|
o1 = o0; \ |
258 |
|
|
out = o0 * wet + i1 * dry; \ |
259 |
|
|
if (disabled) { \ |
260 |
|
|
obuf[i] = i1; \ |
261 |
|
|
} else if (need_clipping && out < min) { \ |
262 |
|
|
(*clippings)++; \ |
263 |
|
|
obuf[i] = min; \ |
264 |
|
|
} else if (need_clipping && out > max) { \ |
265 |
|
|
(*clippings)++; \ |
266 |
|
|
obuf[i] = max; \ |
267 |
|
|
} else { \ |
268 |
|
|
obuf[i] = out; \ |
269 |
|
|
} \ |
270 |
|
|
} \ |
271 |
|
|
fcache[0] = i1; \ |
272 |
|
|
fcache[1] = i2; \ |
273 |
|
|
fcache[2] = o1; \ |
274 |
|
|
fcache[3] = o2; \ |
275 |
|
|
} |
276 |
|
|
|
277 |
|
✗ |
BIQUAD_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
278 |
|
✗ |
BIQUAD_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
279 |
|
✗ |
BIQUAD_FILTER(flt, float, float, -1.f, 1.f, 0) |
280 |
|
✗ |
BIQUAD_FILTER(dbl, double, double, -1., 1., 0) |
281 |
|
|
|
282 |
|
|
#define BIQUAD_DII_FILTER(name, type, ftype, min, max, need_clipping) \ |
283 |
|
|
static void biquad_dii_## name (BiquadsContext *s, \ |
284 |
|
|
const void *input, void *output, int len, \ |
285 |
|
|
void *cache, int *clippings, int disabled) \ |
286 |
|
|
{ \ |
287 |
|
|
const type *ibuf = input; \ |
288 |
|
|
type *obuf = output; \ |
289 |
|
|
ftype *fcache = cache; \ |
290 |
|
|
ftype *a = s->a_##ftype; \ |
291 |
|
|
ftype *b = s->b_##ftype; \ |
292 |
|
|
ftype a1 = -a[1]; \ |
293 |
|
|
ftype a2 = -a[2]; \ |
294 |
|
|
ftype b0 = b[0]; \ |
295 |
|
|
ftype b1 = b[1]; \ |
296 |
|
|
ftype b2 = b[2]; \ |
297 |
|
|
ftype w1 = fcache[0]; \ |
298 |
|
|
ftype w2 = fcache[1]; \ |
299 |
|
|
ftype wet = s->mix; \ |
300 |
|
|
ftype dry = 1. - wet; \ |
301 |
|
|
ftype in, out, w0; \ |
302 |
|
|
\ |
303 |
|
|
for (int i = 0; i < len; i++) { \ |
304 |
|
|
in = ibuf[i]; \ |
305 |
|
|
w0 = in + a1 * w1 + a2 * w2; \ |
306 |
|
|
out = b0 * w0 + b1 * w1 + b2 * w2; \ |
307 |
|
|
w2 = w1; \ |
308 |
|
|
w1 = w0; \ |
309 |
|
|
out = out * wet + in * dry; \ |
310 |
|
|
if (disabled) { \ |
311 |
|
|
obuf[i] = in; \ |
312 |
|
|
} else if (need_clipping && out < min) { \ |
313 |
|
|
(*clippings)++; \ |
314 |
|
|
obuf[i] = min; \ |
315 |
|
|
} else if (need_clipping && out > max) { \ |
316 |
|
|
(*clippings)++; \ |
317 |
|
|
obuf[i] = max; \ |
318 |
|
|
} else { \ |
319 |
|
|
obuf[i] = out; \ |
320 |
|
|
} \ |
321 |
|
|
} \ |
322 |
|
|
fcache[0] = w1; \ |
323 |
|
|
fcache[1] = w2; \ |
324 |
|
|
} |
325 |
|
|
|
326 |
|
✗ |
BIQUAD_DII_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
327 |
|
✗ |
BIQUAD_DII_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
328 |
|
✗ |
BIQUAD_DII_FILTER(flt, float, float, -1.f, 1.f, 0) |
329 |
|
✗ |
BIQUAD_DII_FILTER(dbl, double, double, -1., 1., 0) |
330 |
|
|
|
331 |
|
|
#define BIQUAD_TDI_FILTER(name, type, ftype, min, max, need_clipping) \ |
332 |
|
|
static void biquad_tdi_## name (BiquadsContext *s, \ |
333 |
|
|
const void *input, void *output, int len, \ |
334 |
|
|
void *cache, int *clippings, int disabled) \ |
335 |
|
|
{ \ |
336 |
|
|
const type *ibuf = input; \ |
337 |
|
|
type *obuf = output; \ |
338 |
|
|
ftype *fcache = cache; \ |
339 |
|
|
ftype *a = s->a_##ftype; \ |
340 |
|
|
ftype *b = s->b_##ftype; \ |
341 |
|
|
ftype a1 = -a[1]; \ |
342 |
|
|
ftype a2 = -a[2]; \ |
343 |
|
|
ftype b0 = b[0]; \ |
344 |
|
|
ftype b1 = b[1]; \ |
345 |
|
|
ftype b2 = b[2]; \ |
346 |
|
|
ftype s1 = fcache[0]; \ |
347 |
|
|
ftype s2 = fcache[1]; \ |
348 |
|
|
ftype s3 = fcache[2]; \ |
349 |
|
|
ftype s4 = fcache[3]; \ |
350 |
|
|
ftype wet = s->mix; \ |
351 |
|
|
ftype dry = 1. - wet; \ |
352 |
|
|
ftype in, out; \ |
353 |
|
|
\ |
354 |
|
|
for (int i = 0; i < len; i++) { \ |
355 |
|
|
ftype t1, t2, t3, t4; \ |
356 |
|
|
in = ibuf[i] + s1; \ |
357 |
|
|
t1 = in * a1 + s2; \ |
358 |
|
|
t2 = in * a2; \ |
359 |
|
|
t3 = in * b1 + s4; \ |
360 |
|
|
t4 = in * b2; \ |
361 |
|
|
out = b0 * in + s3; \ |
362 |
|
|
out = out * wet + in * dry; \ |
363 |
|
|
s1 = t1; s2 = t2; s3 = t3; s4 = t4; \ |
364 |
|
|
if (disabled) { \ |
365 |
|
|
obuf[i] = in; \ |
366 |
|
|
} else if (need_clipping && out < min) { \ |
367 |
|
|
(*clippings)++; \ |
368 |
|
|
obuf[i] = min; \ |
369 |
|
|
} else if (need_clipping && out > max) { \ |
370 |
|
|
(*clippings)++; \ |
371 |
|
|
obuf[i] = max; \ |
372 |
|
|
} else { \ |
373 |
|
|
obuf[i] = out; \ |
374 |
|
|
} \ |
375 |
|
|
} \ |
376 |
|
|
\ |
377 |
|
|
fcache[0] = s1; \ |
378 |
|
|
fcache[1] = s2; \ |
379 |
|
|
fcache[2] = s3; \ |
380 |
|
|
fcache[3] = s4; \ |
381 |
|
|
} |
382 |
|
|
|
383 |
|
✗ |
BIQUAD_TDI_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
384 |
|
✗ |
BIQUAD_TDI_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
385 |
|
✗ |
BIQUAD_TDI_FILTER(flt, float, float, -1.f, 1.f, 0) |
386 |
|
✗ |
BIQUAD_TDI_FILTER(dbl, double, double, -1., 1., 0) |
387 |
|
|
|
388 |
|
|
#define BIQUAD_TDII_FILTER(name, type, ftype, min, max, need_clipping) \ |
389 |
|
|
static void biquad_tdii_## name (BiquadsContext *s, \ |
390 |
|
|
const void *input, void *output, int len, \ |
391 |
|
|
void *cache, int *clippings, int disabled) \ |
392 |
|
|
{ \ |
393 |
|
|
const type *ibuf = input; \ |
394 |
|
|
type *obuf = output; \ |
395 |
|
|
ftype *fcache = cache; \ |
396 |
|
|
ftype *a = s->a_##ftype; \ |
397 |
|
|
ftype *b = s->b_##ftype; \ |
398 |
|
|
ftype a1 = -a[1]; \ |
399 |
|
|
ftype a2 = -a[2]; \ |
400 |
|
|
ftype b0 = b[0]; \ |
401 |
|
|
ftype b1 = b[1]; \ |
402 |
|
|
ftype b2 = b[2]; \ |
403 |
|
|
ftype w1 = fcache[0]; \ |
404 |
|
|
ftype w2 = fcache[1]; \ |
405 |
|
|
ftype wet = s->mix; \ |
406 |
|
|
ftype dry = 1. - wet; \ |
407 |
|
|
ftype in, out; \ |
408 |
|
|
\ |
409 |
|
|
for (int i = 0; i < len; i++) { \ |
410 |
|
|
in = ibuf[i]; \ |
411 |
|
|
out = b0 * in + w1; \ |
412 |
|
|
w1 = b1 * in + w2 + a1 * out; \ |
413 |
|
|
w2 = b2 * in + a2 * out; \ |
414 |
|
|
out = out * wet + in * dry; \ |
415 |
|
|
if (disabled) { \ |
416 |
|
|
obuf[i] = in; \ |
417 |
|
|
} else if (need_clipping && out < min) { \ |
418 |
|
|
(*clippings)++; \ |
419 |
|
|
obuf[i] = min; \ |
420 |
|
|
} else if (need_clipping && out > max) { \ |
421 |
|
|
(*clippings)++; \ |
422 |
|
|
obuf[i] = max; \ |
423 |
|
|
} else { \ |
424 |
|
|
obuf[i] = out; \ |
425 |
|
|
} \ |
426 |
|
|
} \ |
427 |
|
|
fcache[0] = w1; \ |
428 |
|
|
fcache[1] = w2; \ |
429 |
|
|
} |
430 |
|
|
|
431 |
|
✗ |
BIQUAD_TDII_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
432 |
|
✗ |
BIQUAD_TDII_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
433 |
|
✗ |
BIQUAD_TDII_FILTER(flt, float, float, -1.f, 1.f, 0) |
434 |
|
✗ |
BIQUAD_TDII_FILTER(dbl, double, double, -1., 1., 0) |
435 |
|
|
|
436 |
|
|
#define BIQUAD_LATT_FILTER(name, type, ftype, min, max, need_clipping) \ |
437 |
|
|
static void biquad_latt_## name (BiquadsContext *s, \ |
438 |
|
|
const void *input, void *output, int len, \ |
439 |
|
|
void *cache, int *clippings, int disabled) \ |
440 |
|
|
{ \ |
441 |
|
|
const type *ibuf = input; \ |
442 |
|
|
type *obuf = output; \ |
443 |
|
|
ftype *fcache = cache; \ |
444 |
|
|
ftype *a = s->a_##ftype; \ |
445 |
|
|
ftype *b = s->b_##ftype; \ |
446 |
|
|
ftype k0 = a[1]; \ |
447 |
|
|
ftype k1 = a[2]; \ |
448 |
|
|
ftype v0 = b[0]; \ |
449 |
|
|
ftype v1 = b[1]; \ |
450 |
|
|
ftype v2 = b[2]; \ |
451 |
|
|
ftype s0 = fcache[0]; \ |
452 |
|
|
ftype s1 = fcache[1]; \ |
453 |
|
|
ftype wet = s->mix; \ |
454 |
|
|
ftype dry = 1. - wet; \ |
455 |
|
|
ftype in, out; \ |
456 |
|
|
ftype t0, t1; \ |
457 |
|
|
\ |
458 |
|
|
for (int i = 0; i < len; i++) { \ |
459 |
|
|
out = 0.; \ |
460 |
|
|
in = ibuf[i]; \ |
461 |
|
|
t0 = in - k1 * s0; \ |
462 |
|
|
t1 = t0 * k1 + s0; \ |
463 |
|
|
out += t1 * v2; \ |
464 |
|
|
\ |
465 |
|
|
t0 = t0 - k0 * s1; \ |
466 |
|
|
t1 = t0 * k0 + s1; \ |
467 |
|
|
out += t1 * v1; \ |
468 |
|
|
\ |
469 |
|
|
out += t0 * v0; \ |
470 |
|
|
s0 = t1; \ |
471 |
|
|
s1 = t0; \ |
472 |
|
|
\ |
473 |
|
|
out = out * wet + in * dry; \ |
474 |
|
|
if (disabled) { \ |
475 |
|
|
obuf[i] = in; \ |
476 |
|
|
} else if (need_clipping && out < min) { \ |
477 |
|
|
(*clippings)++; \ |
478 |
|
|
obuf[i] = min; \ |
479 |
|
|
} else if (need_clipping && out > max) { \ |
480 |
|
|
(*clippings)++; \ |
481 |
|
|
obuf[i] = max; \ |
482 |
|
|
} else { \ |
483 |
|
|
obuf[i] = out; \ |
484 |
|
|
} \ |
485 |
|
|
} \ |
486 |
|
|
fcache[0] = s0; \ |
487 |
|
|
fcache[1] = s1; \ |
488 |
|
|
} |
489 |
|
|
|
490 |
|
✗ |
BIQUAD_LATT_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
491 |
|
✗ |
BIQUAD_LATT_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
492 |
|
✗ |
BIQUAD_LATT_FILTER(flt, float, float, -1.f, 1.f, 0) |
493 |
|
✗ |
BIQUAD_LATT_FILTER(dbl, double, double, -1., 1., 0) |
494 |
|
|
|
495 |
|
|
#define BIQUAD_SVF_FILTER(name, type, ftype, min, max, need_clipping) \ |
496 |
|
|
static void biquad_svf_## name (BiquadsContext *s, \ |
497 |
|
|
const void *input, void *output, int len, \ |
498 |
|
|
void *cache, int *clippings, int disabled) \ |
499 |
|
|
{ \ |
500 |
|
|
const type *ibuf = input; \ |
501 |
|
|
type *obuf = output; \ |
502 |
|
|
ftype *fcache = cache; \ |
503 |
|
|
ftype *a = s->a_##ftype; \ |
504 |
|
|
ftype *b = s->b_##ftype; \ |
505 |
|
|
ftype a1 = a[1]; \ |
506 |
|
|
ftype a2 = a[2]; \ |
507 |
|
|
ftype b0 = b[0]; \ |
508 |
|
|
ftype b1 = b[1]; \ |
509 |
|
|
ftype b2 = b[2]; \ |
510 |
|
|
ftype s0 = fcache[0]; \ |
511 |
|
|
ftype s1 = fcache[1]; \ |
512 |
|
|
ftype wet = s->mix; \ |
513 |
|
|
ftype dry = 1. - wet; \ |
514 |
|
|
ftype in, out; \ |
515 |
|
|
ftype t0, t1; \ |
516 |
|
|
\ |
517 |
|
|
for (int i = 0; i < len; i++) { \ |
518 |
|
|
in = ibuf[i]; \ |
519 |
|
|
out = b2 * in + s0; \ |
520 |
|
|
t0 = b0 * in + a1 * s0 + s1; \ |
521 |
|
|
t1 = b1 * in + a2 * s0; \ |
522 |
|
|
s0 = t0; \ |
523 |
|
|
s1 = t1; \ |
524 |
|
|
\ |
525 |
|
|
out = out * wet + in * dry; \ |
526 |
|
|
if (disabled) { \ |
527 |
|
|
obuf[i] = in; \ |
528 |
|
|
} else if (need_clipping && out < min) { \ |
529 |
|
|
(*clippings)++; \ |
530 |
|
|
obuf[i] = min; \ |
531 |
|
|
} else if (need_clipping && out > max) { \ |
532 |
|
|
(*clippings)++; \ |
533 |
|
|
obuf[i] = max; \ |
534 |
|
|
} else { \ |
535 |
|
|
obuf[i] = out; \ |
536 |
|
|
} \ |
537 |
|
|
} \ |
538 |
|
|
fcache[0] = s0; \ |
539 |
|
|
fcache[1] = s1; \ |
540 |
|
|
} |
541 |
|
|
|
542 |
|
✗ |
BIQUAD_SVF_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1) |
543 |
|
✗ |
BIQUAD_SVF_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1) |
544 |
|
✗ |
BIQUAD_SVF_FILTER(flt, float, float, -1.f, 1.f, 0) |
545 |
|
✗ |
BIQUAD_SVF_FILTER(dbl, double, double, -1., 1., 0) |
546 |
|
|
|
547 |
|
|
#define BIQUAD_ZDF_FILTER(name, type, ftype, min, max, need_clipping, two) \ |
548 |
|
|
static void biquad_zdf_## name (BiquadsContext *s, \ |
549 |
|
|
const void *input, void *output, int len, \ |
550 |
|
|
void *cache, int *clippings, int disabled) \ |
551 |
|
|
{ \ |
552 |
|
|
const type *ibuf = input; \ |
553 |
|
|
type *obuf = output; \ |
554 |
|
|
ftype *fcache = cache; \ |
555 |
|
|
ftype *a = s->a_##ftype; \ |
556 |
|
|
ftype *b = s->b_##ftype; \ |
557 |
|
|
ftype m0 = b[0]; \ |
558 |
|
|
ftype m1 = b[1]; \ |
559 |
|
|
ftype m2 = b[2]; \ |
560 |
|
|
ftype a0 = a[0]; \ |
561 |
|
|
ftype a1 = a[1]; \ |
562 |
|
|
ftype a2 = a[2]; \ |
563 |
|
|
ftype b0 = fcache[0]; \ |
564 |
|
|
ftype b1 = fcache[1]; \ |
565 |
|
|
ftype wet = s->mix; \ |
566 |
|
|
ftype dry = 1. - wet; \ |
567 |
|
|
ftype out; \ |
568 |
|
|
\ |
569 |
|
|
for (int i = 0; i < len; i++) { \ |
570 |
|
|
const ftype in = ibuf[i]; \ |
571 |
|
|
const ftype v0 = in; \ |
572 |
|
|
const ftype v3 = v0 - b1; \ |
573 |
|
|
const ftype v1 = a0 * b0 + a1 * v3; \ |
574 |
|
|
const ftype v2 = b1 + a1 * b0 + a2 * v3; \ |
575 |
|
|
\ |
576 |
|
|
b0 = two * v1 - b0; \ |
577 |
|
|
b1 = two * v2 - b1; \ |
578 |
|
|
\ |
579 |
|
|
out = m0 * v0 + m1 * v1 + m2 * v2; \ |
580 |
|
|
out = out * wet + in * dry; \ |
581 |
|
|
if (disabled) { \ |
582 |
|
|
obuf[i] = in; \ |
583 |
|
|
} else if (need_clipping && out < min) { \ |
584 |
|
|
(*clippings)++; \ |
585 |
|
|
obuf[i] = min; \ |
586 |
|
|
} else if (need_clipping && out > max) { \ |
587 |
|
|
(*clippings)++; \ |
588 |
|
|
obuf[i] = max; \ |
589 |
|
|
} else { \ |
590 |
|
|
obuf[i] = out; \ |
591 |
|
|
} \ |
592 |
|
|
} \ |
593 |
|
|
fcache[0] = b0; \ |
594 |
|
|
fcache[1] = b1; \ |
595 |
|
|
} |
596 |
|
|
|
597 |
|
✗ |
BIQUAD_ZDF_FILTER(s16, int16_t, float, INT16_MIN, INT16_MAX, 1, 2.f) |
598 |
|
✗ |
BIQUAD_ZDF_FILTER(s32, int32_t, double, INT32_MIN, INT32_MAX, 1, 2.0) |
599 |
|
✗ |
BIQUAD_ZDF_FILTER(flt, float, float, -1.f, 1.f, 0, 2.f) |
600 |
|
✗ |
BIQUAD_ZDF_FILTER(dbl, double, double, -1., 1., 0, 2.0) |
601 |
|
|
|
602 |
|
✗ |
static void convert_dir2latt(BiquadsContext *s) |
603 |
|
|
{ |
604 |
|
|
double k0, k1, v0, v1, v2; |
605 |
|
|
|
606 |
|
✗ |
k1 = s->a_double[2]; |
607 |
|
✗ |
k0 = s->a_double[1] / (1. + k1); |
608 |
|
✗ |
v2 = s->b_double[2]; |
609 |
|
✗ |
v1 = s->b_double[1] - v2 * s->a_double[1]; |
610 |
|
✗ |
v0 = s->b_double[0] - v1 * k0 - v2 * k1; |
611 |
|
|
|
612 |
|
✗ |
s->a_double[1] = k0; |
613 |
|
✗ |
s->a_double[2] = k1; |
614 |
|
✗ |
s->b_double[0] = v0; |
615 |
|
✗ |
s->b_double[1] = v1; |
616 |
|
✗ |
s->b_double[2] = v2; |
617 |
|
✗ |
} |
618 |
|
|
|
619 |
|
✗ |
static void convert_dir2svf(BiquadsContext *s) |
620 |
|
|
{ |
621 |
|
|
double a[2]; |
622 |
|
|
double b[3]; |
623 |
|
|
|
624 |
|
✗ |
a[0] = -s->a_double[1]; |
625 |
|
✗ |
a[1] = -s->a_double[2]; |
626 |
|
✗ |
b[0] = s->b_double[1] - s->a_double[1] * s->b_double[0]; |
627 |
|
✗ |
b[1] = s->b_double[2] - s->a_double[2] * s->b_double[0]; |
628 |
|
✗ |
b[2] = s->b_double[0]; |
629 |
|
|
|
630 |
|
✗ |
s->a_double[1] = a[0]; |
631 |
|
✗ |
s->a_double[2] = a[1]; |
632 |
|
✗ |
s->b_double[0] = b[0]; |
633 |
|
✗ |
s->b_double[1] = b[1]; |
634 |
|
✗ |
s->b_double[2] = b[2]; |
635 |
|
✗ |
} |
636 |
|
|
|
637 |
|
✗ |
static double convert_width2qfactor(double width, |
638 |
|
|
double frequency, |
639 |
|
|
double gain, |
640 |
|
|
double sample_rate, |
641 |
|
|
int width_type) |
642 |
|
|
{ |
643 |
|
✗ |
double w0 = 2. * M_PI * frequency / sample_rate; |
644 |
|
✗ |
double A = ff_exp10(gain / 40.); |
645 |
|
|
double ret; |
646 |
|
|
|
647 |
|
✗ |
switch (width_type) { |
648 |
|
✗ |
case NONE: |
649 |
|
|
case QFACTOR: |
650 |
|
✗ |
ret = width; |
651 |
|
✗ |
break; |
652 |
|
✗ |
case HERTZ: |
653 |
|
✗ |
ret = frequency / width; |
654 |
|
✗ |
break; |
655 |
|
✗ |
case KHERTZ: |
656 |
|
✗ |
ret = frequency / (width * 1000.); |
657 |
|
✗ |
break; |
658 |
|
✗ |
case OCTAVE: |
659 |
|
✗ |
ret = 1. / (2. * sinh(log(2.) / 2. * width * w0 / sin(w0))); |
660 |
|
✗ |
break; |
661 |
|
✗ |
case SLOPE: |
662 |
|
✗ |
ret = 1. / sqrt((A + 1. / A) * (1. / width - 1.) + 2.); |
663 |
|
✗ |
break; |
664 |
|
✗ |
default: |
665 |
|
✗ |
av_assert0(0); |
666 |
|
|
break; |
667 |
|
|
} |
668 |
|
|
|
669 |
|
✗ |
return ret; |
670 |
|
|
} |
671 |
|
|
|
672 |
|
✗ |
static void convert_dir2zdf(BiquadsContext *s, int sample_rate) |
673 |
|
|
{ |
674 |
|
✗ |
double Q = convert_width2qfactor(s->width, s->frequency, s->gain, sample_rate, s->width_type); |
675 |
|
|
double g, k, A; |
676 |
|
|
double a[3]; |
677 |
|
|
double m[3]; |
678 |
|
|
|
679 |
|
✗ |
switch (s->filter_type) { |
680 |
|
✗ |
case biquad: |
681 |
|
✗ |
a[0] = s->oa[0]; |
682 |
|
✗ |
a[1] = s->oa[1]; |
683 |
|
✗ |
a[2] = s->oa[2]; |
684 |
|
✗ |
m[0] = s->ob[0]; |
685 |
|
✗ |
m[1] = s->ob[1]; |
686 |
|
✗ |
m[2] = s->ob[2]; |
687 |
|
✗ |
break; |
688 |
|
✗ |
case equalizer: |
689 |
|
✗ |
A = ff_exp10(s->gain / 40.); |
690 |
|
✗ |
g = tan(M_PI * s->frequency / sample_rate); |
691 |
|
✗ |
k = 1. / (Q * A); |
692 |
|
✗ |
a[0] = 1. / (1. + g * (g + k)); |
693 |
|
✗ |
a[1] = g * a[0]; |
694 |
|
✗ |
a[2] = g * a[1]; |
695 |
|
✗ |
m[0] = 1.; |
696 |
|
✗ |
m[1] = k * (A * A - 1.); |
697 |
|
✗ |
m[2] = 0.; |
698 |
|
✗ |
break; |
699 |
|
✗ |
case bass: |
700 |
|
|
case lowshelf: |
701 |
|
✗ |
A = ff_exp10(s->gain / 40.); |
702 |
|
✗ |
g = tan(M_PI * s->frequency / sample_rate) / sqrt(A); |
703 |
|
✗ |
k = 1. / Q; |
704 |
|
✗ |
a[0] = 1. / (1. + g * (g + k)); |
705 |
|
✗ |
a[1] = g * a[0]; |
706 |
|
✗ |
a[2] = g * a[1]; |
707 |
|
✗ |
m[0] = 1.; |
708 |
|
✗ |
m[1] = k * (A - 1.); |
709 |
|
✗ |
m[2] = A * A - 1.; |
710 |
|
✗ |
break; |
711 |
|
✗ |
case tiltshelf: |
712 |
|
✗ |
A = ff_exp10(s->gain / 20.); |
713 |
|
✗ |
g = tan(M_PI * s->frequency / sample_rate) / sqrt(A); |
714 |
|
✗ |
k = 1. / Q; |
715 |
|
✗ |
a[0] = 1. / (1. + g * (g + k)); |
716 |
|
✗ |
a[1] = g * a[0]; |
717 |
|
✗ |
a[2] = g * a[1]; |
718 |
|
✗ |
m[0] = 1./ A; |
719 |
|
✗ |
m[1] = k * (A - 1.) / A; |
720 |
|
✗ |
m[2] = (A * A - 1.) / A; |
721 |
|
✗ |
break; |
722 |
|
✗ |
case treble: |
723 |
|
|
case highshelf: |
724 |
|
✗ |
A = ff_exp10(s->gain / 40.); |
725 |
|
✗ |
g = tan(M_PI * s->frequency / sample_rate) * sqrt(A); |
726 |
|
✗ |
k = 1. / Q; |
727 |
|
✗ |
a[0] = 1. / (1. + g * (g + k)); |
728 |
|
✗ |
a[1] = g * a[0]; |
729 |
|
✗ |
a[2] = g * a[1]; |
730 |
|
✗ |
m[0] = A * A; |
731 |
|
✗ |
m[1] = k * (1. - A) * A; |
732 |
|
✗ |
m[2] = 1. - A * A; |
733 |
|
✗ |
break; |
734 |
|
✗ |
case bandpass: |
735 |
|
✗ |
g = tan(M_PI * s->frequency / sample_rate); |
736 |
|
✗ |
k = 1. / Q; |
737 |
|
✗ |
a[0] = 1. / (1. + g * (g + k)); |
738 |
|
✗ |
a[1] = g * a[0]; |
739 |
|
✗ |
a[2] = g * a[1]; |
740 |
|
✗ |
m[0] = 0.; |
741 |
|
✗ |
m[1] = s->csg ? 1. : k; |
742 |
|
✗ |
m[2] = 0.; |
743 |
|
✗ |
break; |
744 |
|
✗ |
case bandreject: |
745 |
|
✗ |
g = tan(M_PI * s->frequency / sample_rate); |
746 |
|
✗ |
k = 1. / Q; |
747 |
|
✗ |
a[0] = 1. / (1. + g * (g + k)); |
748 |
|
✗ |
a[1] = g * a[0]; |
749 |
|
✗ |
a[2] = g * a[1]; |
750 |
|
✗ |
m[0] = 1.; |
751 |
|
✗ |
m[1] = -k; |
752 |
|
✗ |
m[2] = 0.; |
753 |
|
✗ |
break; |
754 |
|
✗ |
case lowpass: |
755 |
|
✗ |
g = tan(M_PI * s->frequency / sample_rate); |
756 |
|
✗ |
k = 1. / Q; |
757 |
|
✗ |
a[0] = 1. / (1. + g * (g + k)); |
758 |
|
✗ |
a[1] = g * a[0]; |
759 |
|
✗ |
a[2] = g * a[1]; |
760 |
|
✗ |
m[0] = 0.; |
761 |
|
✗ |
m[1] = 0.; |
762 |
|
✗ |
m[2] = 1.; |
763 |
|
✗ |
break; |
764 |
|
✗ |
case highpass: |
765 |
|
✗ |
g = tan(M_PI * s->frequency / sample_rate); |
766 |
|
✗ |
k = 1. / Q; |
767 |
|
✗ |
a[0] = 1. / (1. + g * (g + k)); |
768 |
|
✗ |
a[1] = g * a[0]; |
769 |
|
✗ |
a[2] = g * a[1]; |
770 |
|
✗ |
m[0] = 1.; |
771 |
|
✗ |
m[1] = -k; |
772 |
|
✗ |
m[2] = -1.; |
773 |
|
✗ |
break; |
774 |
|
✗ |
case allpass: |
775 |
|
✗ |
g = tan(M_PI * s->frequency / sample_rate); |
776 |
|
✗ |
k = 1. / Q; |
777 |
|
✗ |
a[0] = 1. / (1. + g * (g + k)); |
778 |
|
✗ |
a[1] = g * a[0]; |
779 |
|
✗ |
a[2] = g * a[1]; |
780 |
|
✗ |
m[0] = 1.; |
781 |
|
✗ |
m[1] = -2. * k; |
782 |
|
✗ |
m[2] = 0.; |
783 |
|
✗ |
break; |
784 |
|
✗ |
default: |
785 |
|
✗ |
av_assert0(0); |
786 |
|
|
} |
787 |
|
|
|
788 |
|
✗ |
s->a_double[0] = a[0]; |
789 |
|
✗ |
s->a_double[1] = a[1]; |
790 |
|
✗ |
s->a_double[2] = a[2]; |
791 |
|
✗ |
s->b_double[0] = m[0]; |
792 |
|
✗ |
s->b_double[1] = m[1]; |
793 |
|
✗ |
s->b_double[2] = m[2]; |
794 |
|
✗ |
} |
795 |
|
|
|
796 |
|
✗ |
static int config_filter(AVFilterLink *outlink, int reset) |
797 |
|
|
{ |
798 |
|
✗ |
AVFilterContext *ctx = outlink->src; |
799 |
|
✗ |
BiquadsContext *s = ctx->priv; |
800 |
|
✗ |
AVFilterLink *inlink = ctx->inputs[0]; |
801 |
|
✗ |
double gain = s->gain * ((s->filter_type == tiltshelf) + 1.); |
802 |
|
✗ |
double A = ff_exp10(gain / 40); |
803 |
|
✗ |
double w0 = 2 * M_PI * s->frequency / inlink->sample_rate; |
804 |
|
✗ |
double K = tan(w0 / 2.); |
805 |
|
|
double alpha, beta; |
806 |
|
|
|
807 |
|
✗ |
s->bypass = (((w0 > M_PI || w0 <= 0.) && reset) || (s->width <= 0.)) && (s->filter_type != biquad); |
808 |
|
✗ |
if (s->bypass) { |
809 |
|
✗ |
av_log(ctx, AV_LOG_WARNING, "Invalid frequency and/or width!\n"); |
810 |
|
✗ |
return 0; |
811 |
|
|
} |
812 |
|
|
|
813 |
|
✗ |
if ((w0 > M_PI || w0 <= 0.) && (s->filter_type != biquad)) |
814 |
|
✗ |
return AVERROR(EINVAL); |
815 |
|
|
|
816 |
|
✗ |
switch (s->width_type) { |
817 |
|
✗ |
case NONE: |
818 |
|
✗ |
alpha = 0.0; |
819 |
|
✗ |
break; |
820 |
|
✗ |
case HERTZ: |
821 |
|
✗ |
alpha = sin(w0) / (2 * s->frequency / s->width); |
822 |
|
✗ |
break; |
823 |
|
✗ |
case KHERTZ: |
824 |
|
✗ |
alpha = sin(w0) / (2 * s->frequency / (s->width * 1000)); |
825 |
|
✗ |
break; |
826 |
|
✗ |
case OCTAVE: |
827 |
|
✗ |
alpha = sin(w0) * sinh(log(2.) / 2 * s->width * w0 / sin(w0)); |
828 |
|
✗ |
break; |
829 |
|
✗ |
case QFACTOR: |
830 |
|
✗ |
alpha = sin(w0) / (2 * s->width); |
831 |
|
✗ |
break; |
832 |
|
✗ |
case SLOPE: |
833 |
|
✗ |
alpha = sin(w0) / 2 * sqrt((A + 1 / A) * (1 / s->width - 1) + 2); |
834 |
|
✗ |
break; |
835 |
|
✗ |
default: |
836 |
|
✗ |
av_assert0(0); |
837 |
|
|
} |
838 |
|
|
|
839 |
|
✗ |
beta = 2 * sqrt(A); |
840 |
|
|
|
841 |
|
✗ |
switch (s->filter_type) { |
842 |
|
✗ |
case biquad: |
843 |
|
✗ |
s->a_double[0] = s->oa[0]; |
844 |
|
✗ |
s->a_double[1] = s->oa[1]; |
845 |
|
✗ |
s->a_double[2] = s->oa[2]; |
846 |
|
✗ |
s->b_double[0] = s->ob[0]; |
847 |
|
✗ |
s->b_double[1] = s->ob[1]; |
848 |
|
✗ |
s->b_double[2] = s->ob[2]; |
849 |
|
✗ |
break; |
850 |
|
✗ |
case equalizer: |
851 |
|
✗ |
s->a_double[0] = 1 + alpha / A; |
852 |
|
✗ |
s->a_double[1] = -2 * cos(w0); |
853 |
|
✗ |
s->a_double[2] = 1 - alpha / A; |
854 |
|
✗ |
s->b_double[0] = 1 + alpha * A; |
855 |
|
✗ |
s->b_double[1] = -2 * cos(w0); |
856 |
|
✗ |
s->b_double[2] = 1 - alpha * A; |
857 |
|
✗ |
break; |
858 |
|
✗ |
case bass: |
859 |
|
✗ |
beta = sqrt((A * A + 1) - (A - 1) * (A - 1)); |
860 |
|
✗ |
case tiltshelf: |
861 |
|
|
case lowshelf: |
862 |
|
✗ |
if (s->poles == 1) { |
863 |
|
✗ |
double A = ff_exp10(gain / 20); |
864 |
|
✗ |
double ro = -sin(w0 / 2. - M_PI_4) / sin(w0 / 2. + M_PI_4); |
865 |
|
✗ |
double n = (A + 1) / (A - 1); |
866 |
|
✗ |
double alpha1 = A == 1. ? 0. : n - FFSIGN(n) * sqrt(n * n - 1); |
867 |
|
✗ |
double beta0 = ((1 + A) + (1 - A) * alpha1) * 0.5; |
868 |
|
✗ |
double beta1 = ((1 - A) + (1 + A) * alpha1) * 0.5; |
869 |
|
|
|
870 |
|
✗ |
s->a_double[0] = 1 + ro * alpha1; |
871 |
|
✗ |
s->a_double[1] = -ro - alpha1; |
872 |
|
✗ |
s->a_double[2] = 0; |
873 |
|
✗ |
s->b_double[0] = beta0 + ro * beta1; |
874 |
|
✗ |
s->b_double[1] = -beta1 - ro * beta0; |
875 |
|
✗ |
s->b_double[2] = 0; |
876 |
|
|
} else { |
877 |
|
✗ |
s->a_double[0] = (A + 1) + (A - 1) * cos(w0) + beta * alpha; |
878 |
|
✗ |
s->a_double[1] = -2 * ((A - 1) + (A + 1) * cos(w0)); |
879 |
|
✗ |
s->a_double[2] = (A + 1) + (A - 1) * cos(w0) - beta * alpha; |
880 |
|
✗ |
s->b_double[0] = A * ((A + 1) - (A - 1) * cos(w0) + beta * alpha); |
881 |
|
✗ |
s->b_double[1] = 2 * A * ((A - 1) - (A + 1) * cos(w0)); |
882 |
|
✗ |
s->b_double[2] = A * ((A + 1) - (A - 1) * cos(w0) - beta * alpha); |
883 |
|
|
} |
884 |
|
✗ |
break; |
885 |
|
✗ |
case treble: |
886 |
|
✗ |
beta = sqrt((A * A + 1) - (A - 1) * (A - 1)); |
887 |
|
✗ |
case highshelf: |
888 |
|
✗ |
if (s->poles == 1) { |
889 |
|
✗ |
double A = ff_exp10(gain / 20); |
890 |
|
✗ |
double ro = sin(w0 / 2. - M_PI_4) / sin(w0 / 2. + M_PI_4); |
891 |
|
✗ |
double n = (A + 1) / (A - 1); |
892 |
|
✗ |
double alpha1 = A == 1. ? 0. : n - FFSIGN(n) * sqrt(n * n - 1); |
893 |
|
✗ |
double beta0 = ((1 + A) + (1 - A) * alpha1) * 0.5; |
894 |
|
✗ |
double beta1 = ((1 - A) + (1 + A) * alpha1) * 0.5; |
895 |
|
|
|
896 |
|
✗ |
s->a_double[0] = 1 + ro * alpha1; |
897 |
|
✗ |
s->a_double[1] = ro + alpha1; |
898 |
|
✗ |
s->a_double[2] = 0; |
899 |
|
✗ |
s->b_double[0] = beta0 + ro * beta1; |
900 |
|
✗ |
s->b_double[1] = beta1 + ro * beta0; |
901 |
|
✗ |
s->b_double[2] = 0; |
902 |
|
|
} else { |
903 |
|
✗ |
s->a_double[0] = (A + 1) - (A - 1) * cos(w0) + beta * alpha; |
904 |
|
✗ |
s->a_double[1] = 2 * ((A - 1) - (A + 1) * cos(w0)); |
905 |
|
✗ |
s->a_double[2] = (A + 1) - (A - 1) * cos(w0) - beta * alpha; |
906 |
|
✗ |
s->b_double[0] = A * ((A + 1) + (A - 1) * cos(w0) + beta * alpha); |
907 |
|
✗ |
s->b_double[1] =-2 * A * ((A - 1) + (A + 1) * cos(w0)); |
908 |
|
✗ |
s->b_double[2] = A * ((A + 1) + (A - 1) * cos(w0) - beta * alpha); |
909 |
|
|
} |
910 |
|
✗ |
break; |
911 |
|
✗ |
case bandpass: |
912 |
|
✗ |
if (s->csg) { |
913 |
|
✗ |
s->a_double[0] = 1 + alpha; |
914 |
|
✗ |
s->a_double[1] = -2 * cos(w0); |
915 |
|
✗ |
s->a_double[2] = 1 - alpha; |
916 |
|
✗ |
s->b_double[0] = sin(w0) / 2; |
917 |
|
✗ |
s->b_double[1] = 0; |
918 |
|
✗ |
s->b_double[2] = -sin(w0) / 2; |
919 |
|
|
} else { |
920 |
|
✗ |
s->a_double[0] = 1 + alpha; |
921 |
|
✗ |
s->a_double[1] = -2 * cos(w0); |
922 |
|
✗ |
s->a_double[2] = 1 - alpha; |
923 |
|
✗ |
s->b_double[0] = alpha; |
924 |
|
✗ |
s->b_double[1] = 0; |
925 |
|
✗ |
s->b_double[2] = -alpha; |
926 |
|
|
} |
927 |
|
✗ |
break; |
928 |
|
✗ |
case bandreject: |
929 |
|
✗ |
s->a_double[0] = 1 + alpha; |
930 |
|
✗ |
s->a_double[1] = -2 * cos(w0); |
931 |
|
✗ |
s->a_double[2] = 1 - alpha; |
932 |
|
✗ |
s->b_double[0] = 1; |
933 |
|
✗ |
s->b_double[1] = -2 * cos(w0); |
934 |
|
✗ |
s->b_double[2] = 1; |
935 |
|
✗ |
break; |
936 |
|
✗ |
case lowpass: |
937 |
|
✗ |
if (s->poles == 1) { |
938 |
|
✗ |
s->a_double[0] = 1; |
939 |
|
✗ |
s->a_double[1] = -exp(-w0); |
940 |
|
✗ |
s->a_double[2] = 0; |
941 |
|
✗ |
s->b_double[0] = 1 + s->a_double[1]; |
942 |
|
✗ |
s->b_double[1] = 0; |
943 |
|
✗ |
s->b_double[2] = 0; |
944 |
|
|
} else { |
945 |
|
✗ |
s->a_double[0] = 1 + alpha; |
946 |
|
✗ |
s->a_double[1] = -2 * cos(w0); |
947 |
|
✗ |
s->a_double[2] = 1 - alpha; |
948 |
|
✗ |
s->b_double[0] = (1 - cos(w0)) / 2; |
949 |
|
✗ |
s->b_double[1] = 1 - cos(w0); |
950 |
|
✗ |
s->b_double[2] = (1 - cos(w0)) / 2; |
951 |
|
|
} |
952 |
|
✗ |
break; |
953 |
|
✗ |
case highpass: |
954 |
|
✗ |
if (s->poles == 1) { |
955 |
|
✗ |
s->a_double[0] = 1; |
956 |
|
✗ |
s->a_double[1] = -exp(-w0); |
957 |
|
✗ |
s->a_double[2] = 0; |
958 |
|
✗ |
s->b_double[0] = (1 - s->a_double[1]) / 2; |
959 |
|
✗ |
s->b_double[1] = -s->b_double[0]; |
960 |
|
✗ |
s->b_double[2] = 0; |
961 |
|
|
} else { |
962 |
|
✗ |
s->a_double[0] = 1 + alpha; |
963 |
|
✗ |
s->a_double[1] = -2 * cos(w0); |
964 |
|
✗ |
s->a_double[2] = 1 - alpha; |
965 |
|
✗ |
s->b_double[0] = (1 + cos(w0)) / 2; |
966 |
|
✗ |
s->b_double[1] = -(1 + cos(w0)); |
967 |
|
✗ |
s->b_double[2] = (1 + cos(w0)) / 2; |
968 |
|
|
} |
969 |
|
✗ |
break; |
970 |
|
✗ |
case allpass: |
971 |
|
✗ |
switch (s->order) { |
972 |
|
✗ |
case 1: |
973 |
|
✗ |
s->a_double[0] = 1.; |
974 |
|
✗ |
s->a_double[1] = -(1. - K) / (1. + K); |
975 |
|
✗ |
s->a_double[2] = 0.; |
976 |
|
✗ |
s->b_double[0] = s->a_double[1]; |
977 |
|
✗ |
s->b_double[1] = s->a_double[0]; |
978 |
|
✗ |
s->b_double[2] = 0.; |
979 |
|
✗ |
break; |
980 |
|
✗ |
case 2: |
981 |
|
✗ |
s->a_double[0] = 1 + alpha; |
982 |
|
✗ |
s->a_double[1] = -2 * cos(w0); |
983 |
|
✗ |
s->a_double[2] = 1 - alpha; |
984 |
|
✗ |
s->b_double[0] = 1 - alpha; |
985 |
|
✗ |
s->b_double[1] = -2 * cos(w0); |
986 |
|
✗ |
s->b_double[2] = 1 + alpha; |
987 |
|
✗ |
break; |
988 |
|
|
} |
989 |
|
✗ |
break; |
990 |
|
✗ |
default: |
991 |
|
✗ |
av_assert0(0); |
992 |
|
|
} |
993 |
|
|
|
994 |
|
✗ |
av_log(ctx, AV_LOG_VERBOSE, "a=%f %f %f:b=%f %f %f\n", |
995 |
|
|
s->a_double[0], s->a_double[1], s->a_double[2], |
996 |
|
|
s->b_double[0], s->b_double[1], s->b_double[2]); |
997 |
|
|
|
998 |
|
✗ |
s->a_double[1] /= s->a_double[0]; |
999 |
|
✗ |
s->a_double[2] /= s->a_double[0]; |
1000 |
|
✗ |
s->b_double[0] /= s->a_double[0]; |
1001 |
|
✗ |
s->b_double[1] /= s->a_double[0]; |
1002 |
|
✗ |
s->b_double[2] /= s->a_double[0]; |
1003 |
|
✗ |
s->a_double[0] /= s->a_double[0]; |
1004 |
|
|
|
1005 |
|
✗ |
if (s->normalize && fabs(s->b_double[0] + s->b_double[1] + s->b_double[2]) > 1e-6) { |
1006 |
|
✗ |
double factor = (s->a_double[0] + s->a_double[1] + s->a_double[2]) / |
1007 |
|
✗ |
(s->b_double[0] + s->b_double[1] + s->b_double[2]); |
1008 |
|
|
|
1009 |
|
✗ |
s->b_double[0] *= factor; |
1010 |
|
✗ |
s->b_double[1] *= factor; |
1011 |
|
✗ |
s->b_double[2] *= factor; |
1012 |
|
|
} |
1013 |
|
|
|
1014 |
|
✗ |
switch (s->filter_type) { |
1015 |
|
✗ |
case tiltshelf: |
1016 |
|
✗ |
s->b_double[0] /= A; |
1017 |
|
✗ |
s->b_double[1] /= A; |
1018 |
|
✗ |
s->b_double[2] /= A; |
1019 |
|
✗ |
break; |
1020 |
|
|
} |
1021 |
|
|
|
1022 |
|
✗ |
if (!s->cache[0]) |
1023 |
|
✗ |
s->cache[0] = ff_get_audio_buffer(outlink, 4 * sizeof(double)); |
1024 |
|
✗ |
if (!s->clip) |
1025 |
|
✗ |
s->clip = av_calloc(outlink->ch_layout.nb_channels, sizeof(*s->clip)); |
1026 |
|
✗ |
if (!s->cache[0] || !s->clip) |
1027 |
|
✗ |
return AVERROR(ENOMEM); |
1028 |
|
✗ |
if (reset) { |
1029 |
|
✗ |
av_samples_set_silence(s->cache[0]->extended_data, 0, s->cache[0]->nb_samples, |
1030 |
|
✗ |
s->cache[0]->ch_layout.nb_channels, s->cache[0]->format); |
1031 |
|
|
} |
1032 |
|
|
|
1033 |
|
✗ |
if (reset && s->block_samples > 0) { |
1034 |
|
✗ |
if (!s->cache[1]) |
1035 |
|
✗ |
s->cache[1] = ff_get_audio_buffer(outlink, 4 * sizeof(double)); |
1036 |
|
✗ |
if (!s->cache[1]) |
1037 |
|
✗ |
return AVERROR(ENOMEM); |
1038 |
|
✗ |
av_samples_set_silence(s->cache[1]->extended_data, 0, s->cache[1]->nb_samples, |
1039 |
|
✗ |
s->cache[1]->ch_layout.nb_channels, s->cache[1]->format); |
1040 |
|
✗ |
for (int i = 0; i < 3; i++) { |
1041 |
|
✗ |
if (!s->block[i]) |
1042 |
|
✗ |
s->block[i] = ff_get_audio_buffer(outlink, s->block_samples * 2); |
1043 |
|
✗ |
if (!s->block[i]) |
1044 |
|
✗ |
return AVERROR(ENOMEM); |
1045 |
|
✗ |
av_samples_set_silence(s->block[i]->extended_data, 0, s->block_samples * 2, |
1046 |
|
✗ |
s->block[i]->ch_layout.nb_channels, s->block[i]->format); |
1047 |
|
|
} |
1048 |
|
|
} |
1049 |
|
|
|
1050 |
|
✗ |
switch (s->transform_type) { |
1051 |
|
✗ |
case DI: |
1052 |
|
✗ |
switch (inlink->format) { |
1053 |
|
✗ |
case AV_SAMPLE_FMT_S16P: |
1054 |
|
✗ |
s->filter = biquad_s16; |
1055 |
|
✗ |
break; |
1056 |
|
✗ |
case AV_SAMPLE_FMT_S32P: |
1057 |
|
✗ |
s->filter = biquad_s32; |
1058 |
|
✗ |
break; |
1059 |
|
✗ |
case AV_SAMPLE_FMT_FLTP: |
1060 |
|
✗ |
s->filter = biquad_flt; |
1061 |
|
✗ |
break; |
1062 |
|
✗ |
case AV_SAMPLE_FMT_DBLP: |
1063 |
|
✗ |
s->filter = biquad_dbl; |
1064 |
|
✗ |
break; |
1065 |
|
✗ |
default: av_assert0(0); |
1066 |
|
|
} |
1067 |
|
✗ |
break; |
1068 |
|
✗ |
case DII: |
1069 |
|
✗ |
switch (inlink->format) { |
1070 |
|
✗ |
case AV_SAMPLE_FMT_S16P: |
1071 |
|
✗ |
s->filter = biquad_dii_s16; |
1072 |
|
✗ |
break; |
1073 |
|
✗ |
case AV_SAMPLE_FMT_S32P: |
1074 |
|
✗ |
s->filter = biquad_dii_s32; |
1075 |
|
✗ |
break; |
1076 |
|
✗ |
case AV_SAMPLE_FMT_FLTP: |
1077 |
|
✗ |
s->filter = biquad_dii_flt; |
1078 |
|
✗ |
break; |
1079 |
|
✗ |
case AV_SAMPLE_FMT_DBLP: |
1080 |
|
✗ |
s->filter = biquad_dii_dbl; |
1081 |
|
✗ |
break; |
1082 |
|
✗ |
default: av_assert0(0); |
1083 |
|
|
} |
1084 |
|
✗ |
break; |
1085 |
|
✗ |
case TDI: |
1086 |
|
✗ |
switch (inlink->format) { |
1087 |
|
✗ |
case AV_SAMPLE_FMT_S16P: |
1088 |
|
✗ |
s->filter = biquad_tdi_s16; |
1089 |
|
✗ |
break; |
1090 |
|
✗ |
case AV_SAMPLE_FMT_S32P: |
1091 |
|
✗ |
s->filter = biquad_tdi_s32; |
1092 |
|
✗ |
break; |
1093 |
|
✗ |
case AV_SAMPLE_FMT_FLTP: |
1094 |
|
✗ |
s->filter = biquad_tdi_flt; |
1095 |
|
✗ |
break; |
1096 |
|
✗ |
case AV_SAMPLE_FMT_DBLP: |
1097 |
|
✗ |
s->filter = biquad_tdi_dbl; |
1098 |
|
✗ |
break; |
1099 |
|
✗ |
default: av_assert0(0); |
1100 |
|
|
} |
1101 |
|
✗ |
break; |
1102 |
|
✗ |
case TDII: |
1103 |
|
✗ |
switch (inlink->format) { |
1104 |
|
✗ |
case AV_SAMPLE_FMT_S16P: |
1105 |
|
✗ |
s->filter = biquad_tdii_s16; |
1106 |
|
✗ |
break; |
1107 |
|
✗ |
case AV_SAMPLE_FMT_S32P: |
1108 |
|
✗ |
s->filter = biquad_tdii_s32; |
1109 |
|
✗ |
break; |
1110 |
|
✗ |
case AV_SAMPLE_FMT_FLTP: |
1111 |
|
✗ |
s->filter = biquad_tdii_flt; |
1112 |
|
✗ |
break; |
1113 |
|
✗ |
case AV_SAMPLE_FMT_DBLP: |
1114 |
|
✗ |
s->filter = biquad_tdii_dbl; |
1115 |
|
✗ |
break; |
1116 |
|
✗ |
default: av_assert0(0); |
1117 |
|
|
} |
1118 |
|
✗ |
break; |
1119 |
|
✗ |
case LATT: |
1120 |
|
✗ |
switch (inlink->format) { |
1121 |
|
✗ |
case AV_SAMPLE_FMT_S16P: |
1122 |
|
✗ |
s->filter = biquad_latt_s16; |
1123 |
|
✗ |
break; |
1124 |
|
✗ |
case AV_SAMPLE_FMT_S32P: |
1125 |
|
✗ |
s->filter = biquad_latt_s32; |
1126 |
|
✗ |
break; |
1127 |
|
✗ |
case AV_SAMPLE_FMT_FLTP: |
1128 |
|
✗ |
s->filter = biquad_latt_flt; |
1129 |
|
✗ |
break; |
1130 |
|
✗ |
case AV_SAMPLE_FMT_DBLP: |
1131 |
|
✗ |
s->filter = biquad_latt_dbl; |
1132 |
|
✗ |
break; |
1133 |
|
✗ |
default: av_assert0(0); |
1134 |
|
|
} |
1135 |
|
✗ |
break; |
1136 |
|
✗ |
case SVF: |
1137 |
|
✗ |
switch (inlink->format) { |
1138 |
|
✗ |
case AV_SAMPLE_FMT_S16P: |
1139 |
|
✗ |
s->filter = biquad_svf_s16; |
1140 |
|
✗ |
break; |
1141 |
|
✗ |
case AV_SAMPLE_FMT_S32P: |
1142 |
|
✗ |
s->filter = biquad_svf_s32; |
1143 |
|
✗ |
break; |
1144 |
|
✗ |
case AV_SAMPLE_FMT_FLTP: |
1145 |
|
✗ |
s->filter = biquad_svf_flt; |
1146 |
|
✗ |
break; |
1147 |
|
✗ |
case AV_SAMPLE_FMT_DBLP: |
1148 |
|
✗ |
s->filter = biquad_svf_dbl; |
1149 |
|
✗ |
break; |
1150 |
|
✗ |
default: av_assert0(0); |
1151 |
|
|
} |
1152 |
|
✗ |
break; |
1153 |
|
✗ |
case ZDF: |
1154 |
|
✗ |
switch (inlink->format) { |
1155 |
|
✗ |
case AV_SAMPLE_FMT_S16P: |
1156 |
|
✗ |
s->filter = biquad_zdf_s16; |
1157 |
|
✗ |
break; |
1158 |
|
✗ |
case AV_SAMPLE_FMT_S32P: |
1159 |
|
✗ |
s->filter = biquad_zdf_s32; |
1160 |
|
✗ |
break; |
1161 |
|
✗ |
case AV_SAMPLE_FMT_FLTP: |
1162 |
|
✗ |
s->filter = biquad_zdf_flt; |
1163 |
|
✗ |
break; |
1164 |
|
✗ |
case AV_SAMPLE_FMT_DBLP: |
1165 |
|
✗ |
s->filter = biquad_zdf_dbl; |
1166 |
|
✗ |
break; |
1167 |
|
✗ |
default: av_assert0(0); |
1168 |
|
|
} |
1169 |
|
✗ |
break; |
1170 |
|
✗ |
default: |
1171 |
|
✗ |
av_assert0(0); |
1172 |
|
|
} |
1173 |
|
|
|
1174 |
|
✗ |
s->block_align = av_get_bytes_per_sample(inlink->format); |
1175 |
|
|
|
1176 |
|
✗ |
if (s->transform_type == LATT) |
1177 |
|
✗ |
convert_dir2latt(s); |
1178 |
|
✗ |
else if (s->transform_type == SVF) |
1179 |
|
✗ |
convert_dir2svf(s); |
1180 |
|
✗ |
else if (s->transform_type == ZDF) |
1181 |
|
✗ |
convert_dir2zdf(s, inlink->sample_rate); |
1182 |
|
|
|
1183 |
|
✗ |
s->a_float[0] = s->a_double[0]; |
1184 |
|
✗ |
s->a_float[1] = s->a_double[1]; |
1185 |
|
✗ |
s->a_float[2] = s->a_double[2]; |
1186 |
|
✗ |
s->b_float[0] = s->b_double[0]; |
1187 |
|
✗ |
s->b_float[1] = s->b_double[1]; |
1188 |
|
✗ |
s->b_float[2] = s->b_double[2]; |
1189 |
|
|
|
1190 |
|
✗ |
return 0; |
1191 |
|
|
} |
1192 |
|
|
|
1193 |
|
✗ |
static int config_output(AVFilterLink *outlink) |
1194 |
|
|
{ |
1195 |
|
✗ |
return config_filter(outlink, 1); |
1196 |
|
|
} |
1197 |
|
|
|
1198 |
|
|
typedef struct ThreadData { |
1199 |
|
|
AVFrame *in, *out; |
1200 |
|
|
int eof; |
1201 |
|
|
} ThreadData; |
1202 |
|
|
|
1203 |
|
✗ |
static void reverse_samples(AVFrame *out, AVFrame *in, int p, |
1204 |
|
|
int oo, int io, int nb_samples) |
1205 |
|
|
{ |
1206 |
|
✗ |
switch (out->format) { |
1207 |
|
✗ |
case AV_SAMPLE_FMT_S16P: { |
1208 |
|
✗ |
const int16_t *src = ((const int16_t *)in->extended_data[p]) + io; |
1209 |
|
✗ |
int16_t *dst = ((int16_t *)out->extended_data[p]) + oo; |
1210 |
|
✗ |
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) |
1211 |
|
✗ |
dst[i] = src[j]; |
1212 |
|
|
} |
1213 |
|
✗ |
break; |
1214 |
|
✗ |
case AV_SAMPLE_FMT_S32P: { |
1215 |
|
✗ |
const int32_t *src = ((const int32_t *)in->extended_data[p]) + io; |
1216 |
|
✗ |
int32_t *dst = ((int32_t *)out->extended_data[p]) + oo; |
1217 |
|
✗ |
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) |
1218 |
|
✗ |
dst[i] = src[j]; |
1219 |
|
|
} |
1220 |
|
✗ |
break; |
1221 |
|
✗ |
case AV_SAMPLE_FMT_FLTP: { |
1222 |
|
✗ |
const float *src = ((const float *)in->extended_data[p]) + io; |
1223 |
|
✗ |
float *dst = ((float *)out->extended_data[p]) + oo; |
1224 |
|
✗ |
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) |
1225 |
|
✗ |
dst[i] = src[j]; |
1226 |
|
|
} |
1227 |
|
✗ |
break; |
1228 |
|
✗ |
case AV_SAMPLE_FMT_DBLP: { |
1229 |
|
✗ |
const double *src = ((const double *)in->extended_data[p]) + io; |
1230 |
|
✗ |
double *dst = ((double *)out->extended_data[p]) + oo; |
1231 |
|
✗ |
for (int i = 0, j = nb_samples - 1; i < nb_samples; i++, j--) |
1232 |
|
✗ |
dst[i] = src[j]; |
1233 |
|
|
} |
1234 |
|
✗ |
break; |
1235 |
|
|
} |
1236 |
|
✗ |
} |
1237 |
|
|
|
1238 |
|
✗ |
static int filter_channel(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
1239 |
|
|
{ |
1240 |
|
✗ |
AVFilterLink *inlink = ctx->inputs[0]; |
1241 |
|
✗ |
ThreadData *td = arg; |
1242 |
|
✗ |
AVFrame *buf = td->in; |
1243 |
|
✗ |
AVFrame *out_buf = td->out; |
1244 |
|
✗ |
BiquadsContext *s = ctx->priv; |
1245 |
|
✗ |
const int start = (buf->ch_layout.nb_channels * jobnr) / nb_jobs; |
1246 |
|
✗ |
const int end = (buf->ch_layout.nb_channels * (jobnr+1)) / nb_jobs; |
1247 |
|
|
int ch; |
1248 |
|
|
|
1249 |
|
✗ |
for (ch = start; ch < end; ch++) { |
1250 |
|
✗ |
enum AVChannel channel = av_channel_layout_channel_from_index(&inlink->ch_layout, ch); |
1251 |
|
|
|
1252 |
|
✗ |
if (av_channel_layout_index_from_channel(&s->ch_layout, channel) < 0) { |
1253 |
|
✗ |
if (buf != out_buf) |
1254 |
|
✗ |
memcpy(out_buf->extended_data[ch], buf->extended_data[ch], |
1255 |
|
✗ |
buf->nb_samples * s->block_align); |
1256 |
|
✗ |
continue; |
1257 |
|
|
} |
1258 |
|
|
|
1259 |
|
✗ |
if (!s->block_samples) { |
1260 |
|
✗ |
s->filter(s, buf->extended_data[ch], out_buf->extended_data[ch], buf->nb_samples, |
1261 |
|
✗ |
s->cache[0]->extended_data[ch], s->clip+ch, ctx->is_disabled); |
1262 |
|
✗ |
} else if (td->eof) { |
1263 |
|
✗ |
memcpy(out_buf->extended_data[ch], s->block[1]->extended_data[ch] + s->block_align * s->block_samples, |
1264 |
|
✗ |
s->nb_samples * s->block_align); |
1265 |
|
|
} else { |
1266 |
|
✗ |
memcpy(s->block[0]->extended_data[ch] + s->block_align * s->block_samples, buf->extended_data[ch], |
1267 |
|
✗ |
buf->nb_samples * s->block_align); |
1268 |
|
✗ |
memset(s->block[0]->extended_data[ch] + s->block_align * (s->block_samples + buf->nb_samples), |
1269 |
|
✗ |
0, (s->block_samples - buf->nb_samples) * s->block_align); |
1270 |
|
✗ |
s->filter(s, s->block[0]->extended_data[ch], s->block[1]->extended_data[ch], s->block_samples, |
1271 |
|
✗ |
s->cache[0]->extended_data[ch], s->clip+ch, ctx->is_disabled); |
1272 |
|
✗ |
av_samples_copy(s->cache[1]->extended_data, s->cache[0]->extended_data, 0, 0, |
1273 |
|
✗ |
s->cache[0]->nb_samples, s->cache[0]->ch_layout.nb_channels, |
1274 |
|
✗ |
s->cache[0]->format); |
1275 |
|
✗ |
s->filter(s, s->block[0]->extended_data[ch] + s->block_samples * s->block_align, |
1276 |
|
✗ |
s->block[1]->extended_data[ch] + s->block_samples * s->block_align, |
1277 |
|
✗ |
s->block_samples, s->cache[1]->extended_data[ch], s->clip+ch, |
1278 |
|
|
ctx->is_disabled); |
1279 |
|
✗ |
reverse_samples(s->block[2], s->block[1], ch, 0, 0, 2 * s->block_samples); |
1280 |
|
✗ |
av_samples_set_silence(s->cache[1]->extended_data, 0, s->cache[1]->nb_samples, |
1281 |
|
✗ |
s->cache[1]->ch_layout.nb_channels, s->cache[1]->format); |
1282 |
|
✗ |
s->filter(s, s->block[2]->extended_data[ch], s->block[2]->extended_data[ch], 2 * s->block_samples, |
1283 |
|
✗ |
s->cache[1]->extended_data[ch], s->clip+ch, ctx->is_disabled); |
1284 |
|
✗ |
reverse_samples(s->block[1], s->block[2], ch, 0, 0, 2 * s->block_samples); |
1285 |
|
✗ |
memcpy(out_buf->extended_data[ch], s->block[1]->extended_data[ch], |
1286 |
|
✗ |
s->block_samples * s->block_align); |
1287 |
|
✗ |
memmove(s->block[0]->extended_data[ch], s->block[0]->extended_data[ch] + s->block_align * s->block_samples, |
1288 |
|
✗ |
s->block_samples * s->block_align); |
1289 |
|
|
} |
1290 |
|
|
} |
1291 |
|
|
|
1292 |
|
✗ |
return 0; |
1293 |
|
|
} |
1294 |
|
|
|
1295 |
|
✗ |
static int filter_frame(AVFilterLink *inlink, AVFrame *buf, int eof) |
1296 |
|
|
{ |
1297 |
|
✗ |
AVFilterContext *ctx = inlink->dst; |
1298 |
|
✗ |
BiquadsContext *s = ctx->priv; |
1299 |
|
✗ |
AVFilterLink *outlink = ctx->outputs[0]; |
1300 |
|
|
AVFrame *out_buf; |
1301 |
|
|
ThreadData td; |
1302 |
|
✗ |
int ch, ret, drop = 0; |
1303 |
|
|
|
1304 |
|
✗ |
if (s->bypass) |
1305 |
|
✗ |
return ff_filter_frame(outlink, buf); |
1306 |
|
|
|
1307 |
|
✗ |
ret = av_channel_layout_copy(&s->ch_layout, &inlink->ch_layout); |
1308 |
|
✗ |
if (ret < 0) { |
1309 |
|
✗ |
av_frame_free(&buf); |
1310 |
|
✗ |
return ret; |
1311 |
|
|
} |
1312 |
|
✗ |
if (strcmp(s->ch_layout_str, "all")) |
1313 |
|
✗ |
av_channel_layout_from_string(&s->ch_layout, |
1314 |
|
✗ |
s->ch_layout_str); |
1315 |
|
|
|
1316 |
|
✗ |
if (av_frame_is_writable(buf) && s->block_samples == 0) { |
1317 |
|
✗ |
out_buf = buf; |
1318 |
|
|
} else { |
1319 |
|
✗ |
out_buf = ff_get_audio_buffer(outlink, s->block_samples > 0 ? s->block_samples : buf->nb_samples); |
1320 |
|
✗ |
if (!out_buf) { |
1321 |
|
✗ |
av_frame_free(&buf); |
1322 |
|
✗ |
return AVERROR(ENOMEM); |
1323 |
|
|
} |
1324 |
|
✗ |
av_frame_copy_props(out_buf, buf); |
1325 |
|
|
} |
1326 |
|
|
|
1327 |
|
✗ |
if (s->block_samples > 0 && s->pts == AV_NOPTS_VALUE) |
1328 |
|
✗ |
drop = 1; |
1329 |
|
✗ |
td.in = buf; |
1330 |
|
✗ |
td.out = out_buf; |
1331 |
|
✗ |
td.eof = eof; |
1332 |
|
✗ |
ff_filter_execute(ctx, filter_channel, &td, NULL, |
1333 |
|
✗ |
FFMIN(outlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx))); |
1334 |
|
|
|
1335 |
|
✗ |
for (ch = 0; ch < outlink->ch_layout.nb_channels; ch++) { |
1336 |
|
✗ |
if (s->clip[ch] > 0) |
1337 |
|
✗ |
av_log(ctx, AV_LOG_WARNING, "Channel %d clipping %d times. Please reduce gain.\n", |
1338 |
|
✗ |
ch, s->clip[ch]); |
1339 |
|
✗ |
s->clip[ch] = 0; |
1340 |
|
|
} |
1341 |
|
|
|
1342 |
|
✗ |
if (s->block_samples > 0) { |
1343 |
|
✗ |
int nb_samples = buf->nb_samples; |
1344 |
|
✗ |
int64_t pts = buf->pts; |
1345 |
|
|
|
1346 |
|
✗ |
out_buf->pts = s->pts; |
1347 |
|
✗ |
out_buf->nb_samples = s->nb_samples; |
1348 |
|
✗ |
s->pts = pts; |
1349 |
|
✗ |
s->nb_samples = nb_samples; |
1350 |
|
|
} |
1351 |
|
|
|
1352 |
|
✗ |
if (buf != out_buf) |
1353 |
|
✗ |
av_frame_free(&buf); |
1354 |
|
|
|
1355 |
|
✗ |
if (!drop) |
1356 |
|
✗ |
return ff_filter_frame(outlink, out_buf); |
1357 |
|
|
else { |
1358 |
|
✗ |
av_frame_free(&out_buf); |
1359 |
|
✗ |
ff_filter_set_ready(ctx, 10); |
1360 |
|
✗ |
return 0; |
1361 |
|
|
} |
1362 |
|
|
} |
1363 |
|
|
|
1364 |
|
✗ |
static int activate(AVFilterContext *ctx) |
1365 |
|
|
{ |
1366 |
|
✗ |
AVFilterLink *inlink = ctx->inputs[0]; |
1367 |
|
✗ |
AVFilterLink *outlink = ctx->outputs[0]; |
1368 |
|
✗ |
BiquadsContext *s = ctx->priv; |
1369 |
|
✗ |
AVFrame *in = NULL; |
1370 |
|
|
int64_t pts; |
1371 |
|
|
int status; |
1372 |
|
|
int ret; |
1373 |
|
|
|
1374 |
|
✗ |
FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink); |
1375 |
|
|
|
1376 |
|
✗ |
if (s->block_samples > 0) { |
1377 |
|
✗ |
ret = ff_inlink_consume_samples(inlink, s->block_samples, s->block_samples, &in); |
1378 |
|
|
} else { |
1379 |
|
✗ |
ret = ff_inlink_consume_frame(inlink, &in); |
1380 |
|
|
} |
1381 |
|
✗ |
if (ret < 0) |
1382 |
|
✗ |
return ret; |
1383 |
|
✗ |
if (ret > 0) |
1384 |
|
✗ |
return filter_frame(inlink, in, 0); |
1385 |
|
|
|
1386 |
|
✗ |
if (s->block_samples > 0 && ff_inlink_queued_samples(inlink) >= s->block_samples) { |
1387 |
|
✗ |
ff_filter_set_ready(ctx, 10); |
1388 |
|
✗ |
return 0; |
1389 |
|
|
} |
1390 |
|
|
|
1391 |
|
✗ |
if (ff_inlink_acknowledge_status(inlink, &status, &pts)) { |
1392 |
|
✗ |
if (s->block_samples > 0) { |
1393 |
|
✗ |
AVFrame *in = ff_get_audio_buffer(outlink, s->block_samples); |
1394 |
|
✗ |
if (!in) |
1395 |
|
✗ |
return AVERROR(ENOMEM); |
1396 |
|
|
|
1397 |
|
✗ |
ret = filter_frame(inlink, in, 1); |
1398 |
|
|
} |
1399 |
|
|
|
1400 |
|
✗ |
ff_outlink_set_status(outlink, status, pts); |
1401 |
|
|
|
1402 |
|
✗ |
return ret; |
1403 |
|
|
} |
1404 |
|
|
|
1405 |
|
✗ |
FF_FILTER_FORWARD_WANTED(outlink, inlink); |
1406 |
|
|
|
1407 |
|
✗ |
return FFERROR_NOT_READY; |
1408 |
|
|
} |
1409 |
|
|
|
1410 |
|
✗ |
static int process_command(AVFilterContext *ctx, const char *cmd, const char *args, |
1411 |
|
|
char *res, int res_len, int flags) |
1412 |
|
|
{ |
1413 |
|
✗ |
AVFilterLink *outlink = ctx->outputs[0]; |
1414 |
|
|
int ret; |
1415 |
|
|
|
1416 |
|
✗ |
ret = ff_filter_process_command(ctx, cmd, args, res, res_len, flags); |
1417 |
|
✗ |
if (ret < 0) |
1418 |
|
✗ |
return ret; |
1419 |
|
|
|
1420 |
|
✗ |
return config_filter(outlink, 0); |
1421 |
|
|
} |
1422 |
|
|
|
1423 |
|
✗ |
static av_cold void uninit(AVFilterContext *ctx) |
1424 |
|
|
{ |
1425 |
|
✗ |
BiquadsContext *s = ctx->priv; |
1426 |
|
|
|
1427 |
|
✗ |
for (int i = 0; i < 3; i++) |
1428 |
|
✗ |
av_frame_free(&s->block[i]); |
1429 |
|
✗ |
av_frame_free(&s->cache[0]); |
1430 |
|
✗ |
av_frame_free(&s->cache[1]); |
1431 |
|
✗ |
av_freep(&s->clip); |
1432 |
|
✗ |
av_channel_layout_uninit(&s->ch_layout); |
1433 |
|
✗ |
} |
1434 |
|
|
|
1435 |
|
|
static const AVFilterPad outputs[] = { |
1436 |
|
|
{ |
1437 |
|
|
.name = "default", |
1438 |
|
|
.type = AVMEDIA_TYPE_AUDIO, |
1439 |
|
|
.config_props = config_output, |
1440 |
|
|
}, |
1441 |
|
|
}; |
1442 |
|
|
|
1443 |
|
|
#define OFFSET(x) offsetof(BiquadsContext, x) |
1444 |
|
|
#define FLAGS AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM |
1445 |
|
|
#define AF AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM |
1446 |
|
|
|
1447 |
|
|
#define DEFINE_BIQUAD_FILTER_2(name_, description_, priv_class_) \ |
1448 |
|
|
static av_cold int name_##_init(AVFilterContext *ctx) \ |
1449 |
|
|
{ \ |
1450 |
|
|
BiquadsContext *s = ctx->priv; \ |
1451 |
|
|
s->filter_type = name_; \ |
1452 |
|
|
s->pts = AV_NOPTS_VALUE; \ |
1453 |
|
|
return 0; \ |
1454 |
|
|
} \ |
1455 |
|
|
\ |
1456 |
|
|
const FFFilter ff_af_##name_ = { \ |
1457 |
|
|
.p.name = #name_, \ |
1458 |
|
|
.p.description = NULL_IF_CONFIG_SMALL(description_), \ |
1459 |
|
|
.p.priv_class = &priv_class_##_class, \ |
1460 |
|
|
.p.flags = AVFILTER_FLAG_SLICE_THREADS | \ |
1461 |
|
|
AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL, \ |
1462 |
|
|
.priv_size = sizeof(BiquadsContext), \ |
1463 |
|
|
.init = name_##_init, \ |
1464 |
|
|
.activate = activate, \ |
1465 |
|
|
.uninit = uninit, \ |
1466 |
|
|
FILTER_INPUTS(ff_audio_default_filterpad), \ |
1467 |
|
|
FILTER_OUTPUTS(outputs), \ |
1468 |
|
|
FILTER_QUERY_FUNC2(query_formats), \ |
1469 |
|
|
.process_command = process_command, \ |
1470 |
|
|
} |
1471 |
|
|
|
1472 |
|
|
#define DEFINE_BIQUAD_FILTER(name, description) \ |
1473 |
|
|
AVFILTER_DEFINE_CLASS(name); \ |
1474 |
|
|
DEFINE_BIQUAD_FILTER_2(name, description, name) |
1475 |
|
|
|
1476 |
|
|
#define WIDTH_OPTION(x) \ |
1477 |
|
|
{"width", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 99999, FLAGS}, \ |
1478 |
|
|
{"w", "set width", OFFSET(width), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 99999, FLAGS} |
1479 |
|
|
|
1480 |
|
|
#define WIDTH_TYPE_OPTION(x) \ |
1481 |
|
|
{"width_type", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=x}, HERTZ, NB_WTYPE-1, FLAGS, .unit = "width_type"}, \ |
1482 |
|
|
{"t", "set filter-width type", OFFSET(width_type), AV_OPT_TYPE_INT, {.i64=x}, HERTZ, NB_WTYPE-1, FLAGS, .unit = "width_type"}, \ |
1483 |
|
|
{"h", "Hz", 0, AV_OPT_TYPE_CONST, {.i64=HERTZ}, 0, 0, FLAGS, .unit = "width_type"}, \ |
1484 |
|
|
{"q", "Q-Factor", 0, AV_OPT_TYPE_CONST, {.i64=QFACTOR}, 0, 0, FLAGS, .unit = "width_type"}, \ |
1485 |
|
|
{"o", "octave", 0, AV_OPT_TYPE_CONST, {.i64=OCTAVE}, 0, 0, FLAGS, .unit = "width_type"}, \ |
1486 |
|
|
{"s", "slope", 0, AV_OPT_TYPE_CONST, {.i64=SLOPE}, 0, 0, FLAGS, .unit = "width_type"}, \ |
1487 |
|
|
{"k", "kHz", 0, AV_OPT_TYPE_CONST, {.i64=KHERTZ}, 0, 0, FLAGS, .unit = "width_type"} |
1488 |
|
|
|
1489 |
|
|
#define MIX_CHANNELS_NORMALIZE_OPTION(x, y, z) \ |
1490 |
|
|
{"mix", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 1, FLAGS}, \ |
1491 |
|
|
{"m", "set mix", OFFSET(mix), AV_OPT_TYPE_DOUBLE, {.dbl=x}, 0, 1, FLAGS}, \ |
1492 |
|
|
{"channels", "set channels to filter", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str=y}, 0, 0, FLAGS}, \ |
1493 |
|
|
{"c", "set channels to filter", OFFSET(ch_layout_str), AV_OPT_TYPE_STRING, {.str=y}, 0, 0, FLAGS}, \ |
1494 |
|
|
{"normalize", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=z}, 0, 1, FLAGS}, \ |
1495 |
|
|
{"n", "normalize coefficients", OFFSET(normalize), AV_OPT_TYPE_BOOL, {.i64=z}, 0, 1, FLAGS} |
1496 |
|
|
|
1497 |
|
|
#define TRANSFORM_OPTION(x) \ |
1498 |
|
|
{"transform", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=x}, 0, NB_TTYPE-1, AF, .unit = "transform_type"}, \ |
1499 |
|
|
{"a", "set transform type", OFFSET(transform_type), AV_OPT_TYPE_INT, {.i64=x}, 0, NB_TTYPE-1, AF, .unit = "transform_type"}, \ |
1500 |
|
|
{"di", "direct form I", 0, AV_OPT_TYPE_CONST, {.i64=DI}, 0, 0, AF, .unit = "transform_type"}, \ |
1501 |
|
|
{"dii", "direct form II", 0, AV_OPT_TYPE_CONST, {.i64=DII}, 0, 0, AF, .unit = "transform_type"}, \ |
1502 |
|
|
{"tdi", "transposed direct form I", 0, AV_OPT_TYPE_CONST, {.i64=TDI}, 0, 0, AF, .unit = "transform_type"}, \ |
1503 |
|
|
{"tdii", "transposed direct form II", 0, AV_OPT_TYPE_CONST, {.i64=TDII}, 0, 0, AF, .unit = "transform_type"}, \ |
1504 |
|
|
{"latt", "lattice-ladder form", 0, AV_OPT_TYPE_CONST, {.i64=LATT}, 0, 0, AF, .unit = "transform_type"}, \ |
1505 |
|
|
{"svf", "state variable filter form", 0, AV_OPT_TYPE_CONST, {.i64=SVF}, 0, 0, AF, .unit = "transform_type"}, \ |
1506 |
|
|
{"zdf", "zero-delay filter form", 0, AV_OPT_TYPE_CONST, {.i64=ZDF}, 0, 0, AF, .unit = "transform_type"} |
1507 |
|
|
|
1508 |
|
|
#define PRECISION_OPTION(x) \ |
1509 |
|
|
{"precision", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=x}, -1, 3, AF, .unit = "precision"}, \ |
1510 |
|
|
{"r", "set filtering precision", OFFSET(precision), AV_OPT_TYPE_INT, {.i64=x}, -1, 3, AF, .unit = "precision"}, \ |
1511 |
|
|
{"auto", "automatic", 0, AV_OPT_TYPE_CONST, {.i64=-1}, 0, 0, AF, .unit = "precision"}, \ |
1512 |
|
|
{"s16", "signed 16-bit", 0, AV_OPT_TYPE_CONST, {.i64=0}, 0, 0, AF, .unit = "precision"}, \ |
1513 |
|
|
{"s32", "signed 32-bit", 0, AV_OPT_TYPE_CONST, {.i64=1}, 0, 0, AF, .unit = "precision"}, \ |
1514 |
|
|
{"f32", "floating-point single", 0, AV_OPT_TYPE_CONST, {.i64=2}, 0, 0, AF, .unit = "precision"}, \ |
1515 |
|
|
{"f64", "floating-point double", 0, AV_OPT_TYPE_CONST, {.i64=3}, 0, 0, AF, .unit = "precision"} |
1516 |
|
|
|
1517 |
|
|
#define BLOCKSIZE_OPTION(x) \ |
1518 |
|
|
{"blocksize", "set the block size", OFFSET(block_samples), AV_OPT_TYPE_INT, {.i64=x}, 0, 32768, AF}, \ |
1519 |
|
|
{"b", "set the block size", OFFSET(block_samples), AV_OPT_TYPE_INT, {.i64=x}, 0, 32768, AF} |
1520 |
|
|
|
1521 |
|
|
#if CONFIG_EQUALIZER_FILTER |
1522 |
|
|
static const AVOption equalizer_options[] = { |
1523 |
|
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS}, |
1524 |
|
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=0}, 0, 999999, FLAGS}, |
1525 |
|
|
WIDTH_TYPE_OPTION(QFACTOR), |
1526 |
|
|
WIDTH_OPTION(1.0), |
1527 |
|
|
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
1528 |
|
|
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
1529 |
|
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
1530 |
|
|
TRANSFORM_OPTION(DI), |
1531 |
|
|
PRECISION_OPTION(-1), |
1532 |
|
|
BLOCKSIZE_OPTION(0), |
1533 |
|
|
{NULL} |
1534 |
|
|
}; |
1535 |
|
|
|
1536 |
|
✗ |
DEFINE_BIQUAD_FILTER(equalizer, "Apply two-pole peaking equalization (EQ) filter."); |
1537 |
|
|
#endif /* CONFIG_EQUALIZER_FILTER */ |
1538 |
|
|
#if CONFIG_BASS_FILTER || CONFIG_LOWSHELF_FILTER |
1539 |
|
|
static const AVOption bass_lowshelf_options[] = { |
1540 |
|
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS}, |
1541 |
|
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=100}, 0, 999999, FLAGS}, |
1542 |
|
|
WIDTH_TYPE_OPTION(QFACTOR), |
1543 |
|
|
WIDTH_OPTION(0.5), |
1544 |
|
|
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
1545 |
|
|
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
1546 |
|
|
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
1547 |
|
|
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
1548 |
|
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
1549 |
|
|
TRANSFORM_OPTION(DI), |
1550 |
|
|
PRECISION_OPTION(-1), |
1551 |
|
|
BLOCKSIZE_OPTION(0), |
1552 |
|
|
{NULL} |
1553 |
|
|
}; |
1554 |
|
|
|
1555 |
|
|
AVFILTER_DEFINE_CLASS_EXT(bass_lowshelf, "bass/lowshelf", bass_lowshelf_options); |
1556 |
|
|
#if CONFIG_BASS_FILTER |
1557 |
|
✗ |
DEFINE_BIQUAD_FILTER_2(bass, "Boost or cut lower frequencies.", bass_lowshelf); |
1558 |
|
|
#endif /* CONFIG_BASS_FILTER */ |
1559 |
|
|
|
1560 |
|
|
#if CONFIG_LOWSHELF_FILTER |
1561 |
|
✗ |
DEFINE_BIQUAD_FILTER_2(lowshelf, "Apply a low shelf filter.", bass_lowshelf); |
1562 |
|
|
#endif /* CONFIG_LOWSHELF_FILTER */ |
1563 |
|
|
#endif /* CONFIG_BASS_FILTER || CONFIG LOWSHELF_FILTER */ |
1564 |
|
|
#if CONFIG_TREBLE_FILTER || CONFIG_HIGHSHELF_FILTER || CONFIG_TILTSHELF_FILTER |
1565 |
|
|
static const AVOption treble_highshelf_options[] = { |
1566 |
|
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
1567 |
|
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
1568 |
|
|
WIDTH_TYPE_OPTION(QFACTOR), |
1569 |
|
|
WIDTH_OPTION(0.5), |
1570 |
|
|
{"gain", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
1571 |
|
|
{"g", "set gain", OFFSET(gain), AV_OPT_TYPE_DOUBLE, {.dbl=0}, -900, 900, FLAGS}, |
1572 |
|
|
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
1573 |
|
|
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
1574 |
|
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
1575 |
|
|
TRANSFORM_OPTION(DI), |
1576 |
|
|
PRECISION_OPTION(-1), |
1577 |
|
|
BLOCKSIZE_OPTION(0), |
1578 |
|
|
{NULL} |
1579 |
|
|
}; |
1580 |
|
|
|
1581 |
|
|
AVFILTER_DEFINE_CLASS_EXT(treble_highshelf, "treble/high/tiltshelf", |
1582 |
|
|
treble_highshelf_options); |
1583 |
|
|
|
1584 |
|
|
#if CONFIG_TREBLE_FILTER |
1585 |
|
✗ |
DEFINE_BIQUAD_FILTER_2(treble, "Boost or cut upper frequencies.", treble_highshelf); |
1586 |
|
|
#endif /* CONFIG_TREBLE_FILTER */ |
1587 |
|
|
|
1588 |
|
|
#if CONFIG_HIGHSHELF_FILTER |
1589 |
|
✗ |
DEFINE_BIQUAD_FILTER_2(highshelf, "Apply a high shelf filter.", treble_highshelf); |
1590 |
|
|
#endif /* CONFIG_HIGHSHELF_FILTER */ |
1591 |
|
|
|
1592 |
|
|
#if CONFIG_TILTSHELF_FILTER |
1593 |
|
✗ |
DEFINE_BIQUAD_FILTER_2(tiltshelf, "Apply a tilt shelf filter.", treble_highshelf); |
1594 |
|
|
#endif |
1595 |
|
|
#endif /* CONFIG_TREBLE_FILTER || CONFIG_HIGHSHELF_FILTER || CONFIG_TILTSHELF_FILTER */ |
1596 |
|
|
|
1597 |
|
|
#if CONFIG_BANDPASS_FILTER |
1598 |
|
|
static const AVOption bandpass_options[] = { |
1599 |
|
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
1600 |
|
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
1601 |
|
|
WIDTH_TYPE_OPTION(QFACTOR), |
1602 |
|
|
WIDTH_OPTION(0.5), |
1603 |
|
|
{"csg", "use constant skirt gain", OFFSET(csg), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS}, |
1604 |
|
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
1605 |
|
|
TRANSFORM_OPTION(DI), |
1606 |
|
|
PRECISION_OPTION(-1), |
1607 |
|
|
BLOCKSIZE_OPTION(0), |
1608 |
|
|
{NULL} |
1609 |
|
|
}; |
1610 |
|
|
|
1611 |
|
✗ |
DEFINE_BIQUAD_FILTER(bandpass, "Apply a two-pole Butterworth band-pass filter."); |
1612 |
|
|
#endif /* CONFIG_BANDPASS_FILTER */ |
1613 |
|
|
#if CONFIG_BANDREJECT_FILTER |
1614 |
|
|
static const AVOption bandreject_options[] = { |
1615 |
|
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
1616 |
|
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
1617 |
|
|
WIDTH_TYPE_OPTION(QFACTOR), |
1618 |
|
|
WIDTH_OPTION(0.5), |
1619 |
|
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
1620 |
|
|
TRANSFORM_OPTION(DI), |
1621 |
|
|
PRECISION_OPTION(-1), |
1622 |
|
|
BLOCKSIZE_OPTION(0), |
1623 |
|
|
{NULL} |
1624 |
|
|
}; |
1625 |
|
|
|
1626 |
|
✗ |
DEFINE_BIQUAD_FILTER(bandreject, "Apply a two-pole Butterworth band-reject filter."); |
1627 |
|
|
#endif /* CONFIG_BANDREJECT_FILTER */ |
1628 |
|
|
#if CONFIG_LOWPASS_FILTER |
1629 |
|
|
static const AVOption lowpass_options[] = { |
1630 |
|
|
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS}, |
1631 |
|
|
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=500}, 0, 999999, FLAGS}, |
1632 |
|
|
WIDTH_TYPE_OPTION(QFACTOR), |
1633 |
|
|
WIDTH_OPTION(0.707), |
1634 |
|
|
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
1635 |
|
|
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
1636 |
|
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
1637 |
|
|
TRANSFORM_OPTION(DI), |
1638 |
|
|
PRECISION_OPTION(-1), |
1639 |
|
|
BLOCKSIZE_OPTION(0), |
1640 |
|
|
{NULL} |
1641 |
|
|
}; |
1642 |
|
|
|
1643 |
|
✗ |
DEFINE_BIQUAD_FILTER(lowpass, "Apply a low-pass filter with 3dB point frequency."); |
1644 |
|
|
#endif /* CONFIG_LOWPASS_FILTER */ |
1645 |
|
|
#if CONFIG_HIGHPASS_FILTER |
1646 |
|
|
static const AVOption highpass_options[] = { |
1647 |
|
|
{"frequency", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
1648 |
|
|
{"f", "set frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
1649 |
|
|
WIDTH_TYPE_OPTION(QFACTOR), |
1650 |
|
|
WIDTH_OPTION(0.707), |
1651 |
|
|
{"poles", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
1652 |
|
|
{"p", "set number of poles", OFFSET(poles), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, AF}, |
1653 |
|
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
1654 |
|
|
TRANSFORM_OPTION(DI), |
1655 |
|
|
PRECISION_OPTION(-1), |
1656 |
|
|
BLOCKSIZE_OPTION(0), |
1657 |
|
|
{NULL} |
1658 |
|
|
}; |
1659 |
|
|
|
1660 |
|
✗ |
DEFINE_BIQUAD_FILTER(highpass, "Apply a high-pass filter with 3dB point frequency."); |
1661 |
|
|
#endif /* CONFIG_HIGHPASS_FILTER */ |
1662 |
|
|
#if CONFIG_ALLPASS_FILTER |
1663 |
|
|
static const AVOption allpass_options[] = { |
1664 |
|
|
{"frequency", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
1665 |
|
|
{"f", "set central frequency", OFFSET(frequency), AV_OPT_TYPE_DOUBLE, {.dbl=3000}, 0, 999999, FLAGS}, |
1666 |
|
|
WIDTH_TYPE_OPTION(QFACTOR), |
1667 |
|
|
WIDTH_OPTION(0.707), |
1668 |
|
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
1669 |
|
|
{"order", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS}, |
1670 |
|
|
{"o", "set filter order", OFFSET(order), AV_OPT_TYPE_INT, {.i64=2}, 1, 2, FLAGS}, |
1671 |
|
|
TRANSFORM_OPTION(DI), |
1672 |
|
|
PRECISION_OPTION(-1), |
1673 |
|
|
{NULL} |
1674 |
|
|
}; |
1675 |
|
|
|
1676 |
|
✗ |
DEFINE_BIQUAD_FILTER(allpass, "Apply a two-pole all-pass filter."); |
1677 |
|
|
#endif /* CONFIG_ALLPASS_FILTER */ |
1678 |
|
|
#if CONFIG_BIQUAD_FILTER |
1679 |
|
|
static const AVOption biquad_options[] = { |
1680 |
|
|
{"a0", NULL, OFFSET(oa[0]), AV_OPT_TYPE_DOUBLE, {.dbl=1}, INT32_MIN, INT32_MAX, FLAGS}, |
1681 |
|
|
{"a1", NULL, OFFSET(oa[1]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, |
1682 |
|
|
{"a2", NULL, OFFSET(oa[2]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, |
1683 |
|
|
{"b0", NULL, OFFSET(ob[0]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, |
1684 |
|
|
{"b1", NULL, OFFSET(ob[1]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, |
1685 |
|
|
{"b2", NULL, OFFSET(ob[2]), AV_OPT_TYPE_DOUBLE, {.dbl=0}, INT32_MIN, INT32_MAX, FLAGS}, |
1686 |
|
|
MIX_CHANNELS_NORMALIZE_OPTION(1, "all", 0), |
1687 |
|
|
TRANSFORM_OPTION(DI), |
1688 |
|
|
PRECISION_OPTION(-1), |
1689 |
|
|
BLOCKSIZE_OPTION(0), |
1690 |
|
|
{NULL} |
1691 |
|
|
}; |
1692 |
|
|
|
1693 |
|
✗ |
DEFINE_BIQUAD_FILTER(biquad, "Apply a biquad IIR filter with the given coefficients."); |
1694 |
|
|
#endif /* CONFIG_BIQUAD_FILTER */ |
1695 |
|
|
|