Line |
Branch |
Exec |
Source |
1 |
|
|
/* |
2 |
|
|
* Copyright (c) 2019 The FFmpeg Project |
3 |
|
|
* |
4 |
|
|
* This file is part of FFmpeg. |
5 |
|
|
* |
6 |
|
|
* FFmpeg is free software; you can redistribute it and/or |
7 |
|
|
* modify it under the terms of the GNU Lesser General Public |
8 |
|
|
* License as published by the Free Software Foundation; either |
9 |
|
|
* version 2.1 of the License, or (at your option) any later version. |
10 |
|
|
* |
11 |
|
|
* FFmpeg is distributed in the hope that it will be useful, |
12 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
13 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
14 |
|
|
* Lesser General Public License for more details. |
15 |
|
|
* |
16 |
|
|
* You should have received a copy of the GNU Lesser General Public |
17 |
|
|
* License along with FFmpeg; if not, write to the Free Software |
18 |
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
19 |
|
|
*/ |
20 |
|
|
|
21 |
|
|
#include "libavutil/avassert.h" |
22 |
|
|
#include "libavutil/channel_layout.h" |
23 |
|
|
#include "libavutil/opt.h" |
24 |
|
|
#include "avfilter.h" |
25 |
|
|
#include "audio.h" |
26 |
|
|
#include "filters.h" |
27 |
|
|
|
28 |
|
|
#define MAX_OVERSAMPLE 64 |
29 |
|
|
|
30 |
|
|
enum ASoftClipTypes { |
31 |
|
|
ASC_HARD = -1, |
32 |
|
|
ASC_TANH, |
33 |
|
|
ASC_ATAN, |
34 |
|
|
ASC_CUBIC, |
35 |
|
|
ASC_EXP, |
36 |
|
|
ASC_ALG, |
37 |
|
|
ASC_QUINTIC, |
38 |
|
|
ASC_SIN, |
39 |
|
|
ASC_ERF, |
40 |
|
|
NB_TYPES, |
41 |
|
|
}; |
42 |
|
|
|
43 |
|
|
typedef struct Lowpass { |
44 |
|
|
float fb0, fb1, fb2; |
45 |
|
|
float fa0, fa1, fa2; |
46 |
|
|
|
47 |
|
|
double db0, db1, db2; |
48 |
|
|
double da0, da1, da2; |
49 |
|
|
} Lowpass; |
50 |
|
|
|
51 |
|
|
typedef struct ASoftClipContext { |
52 |
|
|
const AVClass *class; |
53 |
|
|
|
54 |
|
|
int type; |
55 |
|
|
int oversample; |
56 |
|
|
int64_t delay; |
57 |
|
|
double threshold; |
58 |
|
|
double output; |
59 |
|
|
double param; |
60 |
|
|
|
61 |
|
|
Lowpass lowpass[MAX_OVERSAMPLE]; |
62 |
|
|
AVFrame *frame[2]; |
63 |
|
|
|
64 |
|
|
void (*filter)(struct ASoftClipContext *s, void **dst, const void **src, |
65 |
|
|
int nb_samples, int channels, int start, int end); |
66 |
|
|
} ASoftClipContext; |
67 |
|
|
|
68 |
|
|
#define OFFSET(x) offsetof(ASoftClipContext, x) |
69 |
|
|
#define A AV_OPT_FLAG_AUDIO_PARAM|AV_OPT_FLAG_FILTERING_PARAM|AV_OPT_FLAG_RUNTIME_PARAM |
70 |
|
|
|
71 |
|
|
static const AVOption asoftclip_options[] = { |
72 |
|
|
{ "type", "set softclip type", OFFSET(type), AV_OPT_TYPE_INT, {.i64=0}, -1, NB_TYPES-1, A, .unit = "types" }, |
73 |
|
|
{ "hard", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_HARD}, 0, 0, A, .unit = "types" }, |
74 |
|
|
{ "tanh", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_TANH}, 0, 0, A, .unit = "types" }, |
75 |
|
|
{ "atan", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ATAN}, 0, 0, A, .unit = "types" }, |
76 |
|
|
{ "cubic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_CUBIC}, 0, 0, A, .unit = "types" }, |
77 |
|
|
{ "exp", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_EXP}, 0, 0, A, .unit = "types" }, |
78 |
|
|
{ "alg", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ALG}, 0, 0, A, .unit = "types" }, |
79 |
|
|
{ "quintic", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_QUINTIC},0, 0, A, .unit = "types" }, |
80 |
|
|
{ "sin", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_SIN}, 0, 0, A, .unit = "types" }, |
81 |
|
|
{ "erf", NULL, 0, AV_OPT_TYPE_CONST, {.i64=ASC_ERF}, 0, 0, A, .unit = "types" }, |
82 |
|
|
{ "threshold", "set softclip threshold", OFFSET(threshold), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 1, A }, |
83 |
|
|
{ "output", "set softclip output gain", OFFSET(output), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.000001, 16, A }, |
84 |
|
|
{ "param", "set softclip parameter", OFFSET(param), AV_OPT_TYPE_DOUBLE, {.dbl=1}, 0.01, 3, A }, |
85 |
|
|
{ "oversample", "set oversample factor", OFFSET(oversample), AV_OPT_TYPE_INT, {.i64=1}, 1, MAX_OVERSAMPLE, A }, |
86 |
|
|
{ NULL } |
87 |
|
|
}; |
88 |
|
|
|
89 |
|
|
AVFILTER_DEFINE_CLASS(asoftclip); |
90 |
|
|
|
91 |
|
✗ |
static void get_lowpass(Lowpass *s, |
92 |
|
|
double frequency, |
93 |
|
|
double sample_rate) |
94 |
|
|
{ |
95 |
|
✗ |
double w0 = 2 * M_PI * frequency / sample_rate; |
96 |
|
✗ |
double alpha = sin(w0) / (2 * 0.8); |
97 |
|
|
double factor; |
98 |
|
|
|
99 |
|
✗ |
s->da0 = 1 + alpha; |
100 |
|
✗ |
s->da1 = -2 * cos(w0); |
101 |
|
✗ |
s->da2 = 1 - alpha; |
102 |
|
✗ |
s->db0 = (1 - cos(w0)) / 2; |
103 |
|
✗ |
s->db1 = 1 - cos(w0); |
104 |
|
✗ |
s->db2 = (1 - cos(w0)) / 2; |
105 |
|
|
|
106 |
|
✗ |
s->da1 /= s->da0; |
107 |
|
✗ |
s->da2 /= s->da0; |
108 |
|
✗ |
s->db0 /= s->da0; |
109 |
|
✗ |
s->db1 /= s->da0; |
110 |
|
✗ |
s->db2 /= s->da0; |
111 |
|
✗ |
s->da0 /= s->da0; |
112 |
|
|
|
113 |
|
✗ |
factor = (s->da0 + s->da1 + s->da2) / (s->db0 + s->db1 + s->db2); |
114 |
|
✗ |
s->db0 *= factor; |
115 |
|
✗ |
s->db1 *= factor; |
116 |
|
✗ |
s->db2 *= factor; |
117 |
|
|
|
118 |
|
✗ |
s->fa0 = s->da0; |
119 |
|
✗ |
s->fa1 = s->da1; |
120 |
|
✗ |
s->fa2 = s->da2; |
121 |
|
✗ |
s->fb0 = s->db0; |
122 |
|
✗ |
s->fb1 = s->db1; |
123 |
|
✗ |
s->fb2 = s->db2; |
124 |
|
✗ |
} |
125 |
|
|
|
126 |
|
✗ |
static inline float run_lowpassf(const Lowpass *const s, |
127 |
|
|
float src, float *w) |
128 |
|
|
{ |
129 |
|
|
float dst; |
130 |
|
|
|
131 |
|
✗ |
dst = src * s->fb0 + w[0]; |
132 |
|
✗ |
w[0] = s->fb1 * src + w[1] - s->fa1 * dst; |
133 |
|
✗ |
w[1] = s->fb2 * src - s->fa2 * dst; |
134 |
|
|
|
135 |
|
✗ |
return dst; |
136 |
|
|
} |
137 |
|
|
|
138 |
|
✗ |
static void filter_flt(ASoftClipContext *s, |
139 |
|
|
void **dptr, const void **sptr, |
140 |
|
|
int nb_samples, int channels, |
141 |
|
|
int start, int end) |
142 |
|
|
{ |
143 |
|
✗ |
const int oversample = s->oversample; |
144 |
|
✗ |
const int nb_osamples = nb_samples * oversample; |
145 |
|
✗ |
const float scale = oversample > 1 ? oversample * 0.5f : 1.f; |
146 |
|
✗ |
float threshold = s->threshold; |
147 |
|
✗ |
float gain = s->output * threshold; |
148 |
|
✗ |
float factor = 1.f / threshold; |
149 |
|
✗ |
float param = s->param; |
150 |
|
|
|
151 |
|
✗ |
for (int c = start; c < end; c++) { |
152 |
|
✗ |
float *w = (float *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1); |
153 |
|
✗ |
const float *src = sptr[c]; |
154 |
|
✗ |
float *dst = dptr[c]; |
155 |
|
|
|
156 |
|
✗ |
for (int n = 0; n < nb_samples; n++) { |
157 |
|
✗ |
dst[oversample * n] = src[n]; |
158 |
|
|
|
159 |
|
✗ |
for (int m = 1; m < oversample; m++) |
160 |
|
✗ |
dst[oversample * n + m] = 0.f; |
161 |
|
|
} |
162 |
|
|
|
163 |
|
✗ |
for (int n = 0; n < nb_osamples && oversample > 1; n++) |
164 |
|
✗ |
dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w); |
165 |
|
|
|
166 |
|
✗ |
switch (s->type) { |
167 |
|
✗ |
case ASC_HARD: |
168 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
169 |
|
✗ |
dst[n] = av_clipf(dst[n] * factor, -1.f, 1.f); |
170 |
|
✗ |
dst[n] *= gain; |
171 |
|
|
} |
172 |
|
✗ |
break; |
173 |
|
✗ |
case ASC_TANH: |
174 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
175 |
|
✗ |
dst[n] = tanhf(dst[n] * factor * param); |
176 |
|
✗ |
dst[n] *= gain; |
177 |
|
|
} |
178 |
|
✗ |
break; |
179 |
|
✗ |
case ASC_ATAN: |
180 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
181 |
|
✗ |
dst[n] = 2.f / M_PI * atanf(dst[n] * factor * param); |
182 |
|
✗ |
dst[n] *= gain; |
183 |
|
|
} |
184 |
|
✗ |
break; |
185 |
|
✗ |
case ASC_CUBIC: |
186 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
187 |
|
✗ |
float sample = dst[n] * factor; |
188 |
|
|
|
189 |
|
✗ |
if (FFABS(sample) >= 1.5f) |
190 |
|
✗ |
dst[n] = FFSIGN(sample); |
191 |
|
|
else |
192 |
|
✗ |
dst[n] = sample - 0.1481f * powf(sample, 3.f); |
193 |
|
✗ |
dst[n] *= gain; |
194 |
|
|
} |
195 |
|
✗ |
break; |
196 |
|
✗ |
case ASC_EXP: |
197 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
198 |
|
✗ |
dst[n] = 2.f / (1.f + expf(-2.f * dst[n] * factor)) - 1.; |
199 |
|
✗ |
dst[n] *= gain; |
200 |
|
|
} |
201 |
|
✗ |
break; |
202 |
|
✗ |
case ASC_ALG: |
203 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
204 |
|
✗ |
float sample = dst[n] * factor; |
205 |
|
|
|
206 |
|
✗ |
dst[n] = sample / (sqrtf(param + sample * sample)); |
207 |
|
✗ |
dst[n] *= gain; |
208 |
|
|
} |
209 |
|
✗ |
break; |
210 |
|
✗ |
case ASC_QUINTIC: |
211 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
212 |
|
✗ |
float sample = dst[n] * factor; |
213 |
|
|
|
214 |
|
✗ |
if (FFABS(sample) >= 1.25) |
215 |
|
✗ |
dst[n] = FFSIGN(sample); |
216 |
|
|
else |
217 |
|
✗ |
dst[n] = sample - 0.08192f * powf(sample, 5.f); |
218 |
|
✗ |
dst[n] *= gain; |
219 |
|
|
} |
220 |
|
✗ |
break; |
221 |
|
✗ |
case ASC_SIN: |
222 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
223 |
|
✗ |
float sample = dst[n] * factor; |
224 |
|
|
|
225 |
|
✗ |
if (FFABS(sample) >= M_PI_2) |
226 |
|
✗ |
dst[n] = FFSIGN(sample); |
227 |
|
|
else |
228 |
|
✗ |
dst[n] = sinf(sample); |
229 |
|
✗ |
dst[n] *= gain; |
230 |
|
|
} |
231 |
|
✗ |
break; |
232 |
|
✗ |
case ASC_ERF: |
233 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
234 |
|
✗ |
dst[n] = erff(dst[n] * factor); |
235 |
|
✗ |
dst[n] *= gain; |
236 |
|
|
} |
237 |
|
✗ |
break; |
238 |
|
✗ |
default: |
239 |
|
✗ |
av_assert0(0); |
240 |
|
|
} |
241 |
|
|
|
242 |
|
✗ |
w = (float *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1); |
243 |
|
✗ |
for (int n = 0; n < nb_osamples && oversample > 1; n++) |
244 |
|
✗ |
dst[n] = run_lowpassf(&s->lowpass[oversample - 1], dst[n], w); |
245 |
|
|
|
246 |
|
✗ |
for (int n = 0; n < nb_samples; n++) |
247 |
|
✗ |
dst[n] = dst[n * oversample] * scale; |
248 |
|
|
} |
249 |
|
✗ |
} |
250 |
|
|
|
251 |
|
✗ |
static inline double run_lowpassd(const Lowpass *const s, |
252 |
|
|
double src, double *w) |
253 |
|
|
{ |
254 |
|
|
double dst; |
255 |
|
|
|
256 |
|
✗ |
dst = src * s->db0 + w[0]; |
257 |
|
✗ |
w[0] = s->db1 * src + w[1] - s->da1 * dst; |
258 |
|
✗ |
w[1] = s->db2 * src - s->da2 * dst; |
259 |
|
|
|
260 |
|
✗ |
return dst; |
261 |
|
|
} |
262 |
|
|
|
263 |
|
✗ |
static void filter_dbl(ASoftClipContext *s, |
264 |
|
|
void **dptr, const void **sptr, |
265 |
|
|
int nb_samples, int channels, |
266 |
|
|
int start, int end) |
267 |
|
|
{ |
268 |
|
✗ |
const int oversample = s->oversample; |
269 |
|
✗ |
const int nb_osamples = nb_samples * oversample; |
270 |
|
✗ |
const double scale = oversample > 1 ? oversample * 0.5 : 1.; |
271 |
|
✗ |
double threshold = s->threshold; |
272 |
|
✗ |
double gain = s->output * threshold; |
273 |
|
✗ |
double factor = 1. / threshold; |
274 |
|
✗ |
double param = s->param; |
275 |
|
|
|
276 |
|
✗ |
for (int c = start; c < end; c++) { |
277 |
|
✗ |
double *w = (double *)(s->frame[0]->extended_data[c]) + 2 * (oversample - 1); |
278 |
|
✗ |
const double *src = sptr[c]; |
279 |
|
✗ |
double *dst = dptr[c]; |
280 |
|
|
|
281 |
|
✗ |
for (int n = 0; n < nb_samples; n++) { |
282 |
|
✗ |
dst[oversample * n] = src[n]; |
283 |
|
|
|
284 |
|
✗ |
for (int m = 1; m < oversample; m++) |
285 |
|
✗ |
dst[oversample * n + m] = 0.f; |
286 |
|
|
} |
287 |
|
|
|
288 |
|
✗ |
for (int n = 0; n < nb_osamples && oversample > 1; n++) |
289 |
|
✗ |
dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w); |
290 |
|
|
|
291 |
|
✗ |
switch (s->type) { |
292 |
|
✗ |
case ASC_HARD: |
293 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
294 |
|
✗ |
dst[n] = av_clipd(dst[n] * factor, -1., 1.); |
295 |
|
✗ |
dst[n] *= gain; |
296 |
|
|
} |
297 |
|
✗ |
break; |
298 |
|
✗ |
case ASC_TANH: |
299 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
300 |
|
✗ |
dst[n] = tanh(dst[n] * factor * param); |
301 |
|
✗ |
dst[n] *= gain; |
302 |
|
|
} |
303 |
|
✗ |
break; |
304 |
|
✗ |
case ASC_ATAN: |
305 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
306 |
|
✗ |
dst[n] = 2. / M_PI * atan(dst[n] * factor * param); |
307 |
|
✗ |
dst[n] *= gain; |
308 |
|
|
} |
309 |
|
✗ |
break; |
310 |
|
✗ |
case ASC_CUBIC: |
311 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
312 |
|
✗ |
double sample = dst[n] * factor; |
313 |
|
|
|
314 |
|
✗ |
if (FFABS(sample) >= 1.5) |
315 |
|
✗ |
dst[n] = FFSIGN(sample); |
316 |
|
|
else |
317 |
|
✗ |
dst[n] = sample - 0.1481 * pow(sample, 3.); |
318 |
|
✗ |
dst[n] *= gain; |
319 |
|
|
} |
320 |
|
✗ |
break; |
321 |
|
✗ |
case ASC_EXP: |
322 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
323 |
|
✗ |
dst[n] = 2. / (1. + exp(-2. * dst[n] * factor)) - 1.; |
324 |
|
✗ |
dst[n] *= gain; |
325 |
|
|
} |
326 |
|
✗ |
break; |
327 |
|
✗ |
case ASC_ALG: |
328 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
329 |
|
✗ |
double sample = dst[n] * factor; |
330 |
|
|
|
331 |
|
✗ |
dst[n] = sample / (sqrt(param + sample * sample)); |
332 |
|
✗ |
dst[n] *= gain; |
333 |
|
|
} |
334 |
|
✗ |
break; |
335 |
|
✗ |
case ASC_QUINTIC: |
336 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
337 |
|
✗ |
double sample = dst[n] * factor; |
338 |
|
|
|
339 |
|
✗ |
if (FFABS(sample) >= 1.25) |
340 |
|
✗ |
dst[n] = FFSIGN(sample); |
341 |
|
|
else |
342 |
|
✗ |
dst[n] = sample - 0.08192 * pow(sample, 5.); |
343 |
|
✗ |
dst[n] *= gain; |
344 |
|
|
} |
345 |
|
✗ |
break; |
346 |
|
✗ |
case ASC_SIN: |
347 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
348 |
|
✗ |
double sample = dst[n] * factor; |
349 |
|
|
|
350 |
|
✗ |
if (FFABS(sample) >= M_PI_2) |
351 |
|
✗ |
dst[n] = FFSIGN(sample); |
352 |
|
|
else |
353 |
|
✗ |
dst[n] = sin(sample); |
354 |
|
✗ |
dst[n] *= gain; |
355 |
|
|
} |
356 |
|
✗ |
break; |
357 |
|
✗ |
case ASC_ERF: |
358 |
|
✗ |
for (int n = 0; n < nb_osamples; n++) { |
359 |
|
✗ |
dst[n] = erf(dst[n] * factor); |
360 |
|
✗ |
dst[n] *= gain; |
361 |
|
|
} |
362 |
|
✗ |
break; |
363 |
|
✗ |
default: |
364 |
|
✗ |
av_assert0(0); |
365 |
|
|
} |
366 |
|
|
|
367 |
|
✗ |
w = (double *)(s->frame[1]->extended_data[c]) + 2 * (oversample - 1); |
368 |
|
✗ |
for (int n = 0; n < nb_osamples && oversample > 1; n++) |
369 |
|
✗ |
dst[n] = run_lowpassd(&s->lowpass[oversample - 1], dst[n], w); |
370 |
|
|
|
371 |
|
✗ |
for (int n = 0; n < nb_samples; n++) |
372 |
|
✗ |
dst[n] = dst[n * oversample] * scale; |
373 |
|
|
} |
374 |
|
✗ |
} |
375 |
|
|
|
376 |
|
✗ |
static int config_input(AVFilterLink *inlink) |
377 |
|
|
{ |
378 |
|
✗ |
AVFilterContext *ctx = inlink->dst; |
379 |
|
✗ |
ASoftClipContext *s = ctx->priv; |
380 |
|
|
|
381 |
|
✗ |
switch (inlink->format) { |
382 |
|
✗ |
case AV_SAMPLE_FMT_FLTP: s->filter = filter_flt; break; |
383 |
|
✗ |
case AV_SAMPLE_FMT_DBLP: s->filter = filter_dbl; break; |
384 |
|
✗ |
default: av_assert0(0); |
385 |
|
|
} |
386 |
|
|
|
387 |
|
✗ |
s->frame[0] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE); |
388 |
|
✗ |
s->frame[1] = ff_get_audio_buffer(inlink, 2 * MAX_OVERSAMPLE); |
389 |
|
✗ |
if (!s->frame[0] || !s->frame[1]) |
390 |
|
✗ |
return AVERROR(ENOMEM); |
391 |
|
|
|
392 |
|
✗ |
for (int i = 0; i < MAX_OVERSAMPLE; i++) { |
393 |
|
✗ |
get_lowpass(&s->lowpass[i], inlink->sample_rate / 2, inlink->sample_rate * (i + 1)); |
394 |
|
|
} |
395 |
|
|
|
396 |
|
✗ |
return 0; |
397 |
|
|
} |
398 |
|
|
|
399 |
|
|
typedef struct ThreadData { |
400 |
|
|
AVFrame *in, *out; |
401 |
|
|
int nb_samples; |
402 |
|
|
int channels; |
403 |
|
|
} ThreadData; |
404 |
|
|
|
405 |
|
✗ |
static int filter_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
406 |
|
|
{ |
407 |
|
✗ |
ASoftClipContext *s = ctx->priv; |
408 |
|
✗ |
ThreadData *td = arg; |
409 |
|
✗ |
AVFrame *out = td->out; |
410 |
|
✗ |
AVFrame *in = td->in; |
411 |
|
✗ |
const int channels = td->channels; |
412 |
|
✗ |
const int nb_samples = td->nb_samples; |
413 |
|
✗ |
const int start = (channels * jobnr) / nb_jobs; |
414 |
|
✗ |
const int end = (channels * (jobnr+1)) / nb_jobs; |
415 |
|
|
|
416 |
|
✗ |
s->filter(s, (void **)out->extended_data, (const void **)in->extended_data, |
417 |
|
|
nb_samples, channels, start, end); |
418 |
|
|
|
419 |
|
✗ |
return 0; |
420 |
|
|
} |
421 |
|
|
|
422 |
|
✗ |
static int filter_frame(AVFilterLink *inlink, AVFrame *in) |
423 |
|
|
{ |
424 |
|
✗ |
AVFilterContext *ctx = inlink->dst; |
425 |
|
✗ |
ASoftClipContext *s = ctx->priv; |
426 |
|
✗ |
AVFilterLink *outlink = ctx->outputs[0]; |
427 |
|
|
int nb_samples, channels; |
428 |
|
|
ThreadData td; |
429 |
|
|
AVFrame *out; |
430 |
|
|
|
431 |
|
✗ |
if (av_frame_is_writable(in) && s->oversample == 1) { |
432 |
|
✗ |
out = in; |
433 |
|
|
} else { |
434 |
|
✗ |
out = ff_get_audio_buffer(outlink, in->nb_samples * s->oversample); |
435 |
|
✗ |
if (!out) { |
436 |
|
✗ |
av_frame_free(&in); |
437 |
|
✗ |
return AVERROR(ENOMEM); |
438 |
|
|
} |
439 |
|
✗ |
av_frame_copy_props(out, in); |
440 |
|
|
} |
441 |
|
|
|
442 |
|
✗ |
nb_samples = in->nb_samples; |
443 |
|
✗ |
channels = in->ch_layout.nb_channels; |
444 |
|
|
|
445 |
|
✗ |
td.in = in; |
446 |
|
✗ |
td.out = out; |
447 |
|
✗ |
td.nb_samples = nb_samples; |
448 |
|
✗ |
td.channels = channels; |
449 |
|
✗ |
ff_filter_execute(ctx, filter_channels, &td, NULL, |
450 |
|
✗ |
FFMIN(channels, ff_filter_get_nb_threads(ctx))); |
451 |
|
|
|
452 |
|
✗ |
if (out != in) |
453 |
|
✗ |
av_frame_free(&in); |
454 |
|
|
|
455 |
|
✗ |
out->nb_samples /= s->oversample; |
456 |
|
✗ |
return ff_filter_frame(outlink, out); |
457 |
|
|
} |
458 |
|
|
|
459 |
|
✗ |
static av_cold void uninit(AVFilterContext *ctx) |
460 |
|
|
{ |
461 |
|
✗ |
ASoftClipContext *s = ctx->priv; |
462 |
|
|
|
463 |
|
✗ |
av_frame_free(&s->frame[0]); |
464 |
|
✗ |
av_frame_free(&s->frame[1]); |
465 |
|
✗ |
} |
466 |
|
|
|
467 |
|
|
static const AVFilterPad inputs[] = { |
468 |
|
|
{ |
469 |
|
|
.name = "default", |
470 |
|
|
.type = AVMEDIA_TYPE_AUDIO, |
471 |
|
|
.filter_frame = filter_frame, |
472 |
|
|
.config_props = config_input, |
473 |
|
|
}, |
474 |
|
|
}; |
475 |
|
|
|
476 |
|
|
const FFFilter ff_af_asoftclip = { |
477 |
|
|
.p.name = "asoftclip", |
478 |
|
|
.p.description = NULL_IF_CONFIG_SMALL("Audio Soft Clipper."), |
479 |
|
|
.p.priv_class = &asoftclip_class, |
480 |
|
|
.p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_GENERIC | |
481 |
|
|
AVFILTER_FLAG_SLICE_THREADS, |
482 |
|
|
.priv_size = sizeof(ASoftClipContext), |
483 |
|
|
FILTER_INPUTS(inputs), |
484 |
|
|
FILTER_OUTPUTS(ff_audio_default_filterpad), |
485 |
|
|
FILTER_SAMPLEFMTS(AV_SAMPLE_FMT_FLTP, AV_SAMPLE_FMT_DBLP), |
486 |
|
|
.uninit = uninit, |
487 |
|
|
.process_command = ff_filter_process_command, |
488 |
|
|
}; |
489 |
|
|
|