FFmpeg coverage


Directory: ../../../ffmpeg/
File: src/libavfilter/af_apsyclip.c
Date: 2025-01-20 09:27:23
Exec Total Coverage
Lines: 0 323 0.0%
Functions: 0 16 0.0%
Branches: 0 186 0.0%

Line Branch Exec Source
1 /*
2 * Copyright (c) 2014 - 2021 Jason Jang
3 * Copyright (c) 2021 Paul B Mahol
4 *
5 * This file is part of FFmpeg.
6 *
7 * FFmpeg is free software; you can redistribute it and/or
8 * modify it under the terms of the GNU Lesser General Public License
9 * as published by the Free Software Foundation; either
10 * version 2.1 of the License, or (at your option) any later version.
11 *
12 * FFmpeg is distributed in the hope that it will be useful,
13 * but WITHOUT ANY WARRANTY; without even the implied warranty of
14 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15 * GNU Lesser General Public License for more details.
16 *
17 * You should have received a copy of the GNU Lesser General Public License
18 * along with FFmpeg; if not, write to the Free Software Foundation, Inc.,
19 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
20 */
21
22 #include "libavutil/mem.h"
23 #include "libavutil/opt.h"
24 #include "libavutil/tx.h"
25 #include "audio.h"
26 #include "avfilter.h"
27 #include "filters.h"
28
29 typedef struct AudioPsyClipContext {
30 const AVClass *class;
31
32 double level_in;
33 double level_out;
34 double clip_level;
35 double adaptive;
36 int auto_level;
37 int diff_only;
38 int iterations;
39 char *protections_str;
40 double *protections;
41
42 int num_psy_bins;
43 int fft_size;
44 int overlap;
45 int channels;
46
47 int spread_table_rows;
48 int *spread_table_index;
49 int (*spread_table_range)[2];
50 float *window, *inv_window, *spread_table, *margin_curve;
51
52 AVFrame *in;
53 AVFrame *in_buffer;
54 AVFrame *in_frame;
55 AVFrame *out_dist_frame;
56 AVFrame *windowed_frame;
57 AVFrame *clipping_delta;
58 AVFrame *spectrum_buf;
59 AVFrame *mask_curve;
60
61 AVTXContext **tx_ctx;
62 av_tx_fn tx_fn;
63 AVTXContext **itx_ctx;
64 av_tx_fn itx_fn;
65 } AudioPsyClipContext;
66
67 #define OFFSET(x) offsetof(AudioPsyClipContext, x)
68 #define FLAGS AV_OPT_FLAG_AUDIO_PARAM | AV_OPT_FLAG_FILTERING_PARAM | AV_OPT_FLAG_RUNTIME_PARAM
69
70 static const AVOption apsyclip_options[] = {
71 { "level_in", "set input level", OFFSET(level_in), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625, 64, FLAGS },
72 { "level_out", "set output level", OFFSET(level_out), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625, 64, FLAGS },
73 { "clip", "set clip level", OFFSET(clip_level), AV_OPT_TYPE_DOUBLE, {.dbl=1},.015625, 1, FLAGS },
74 { "diff", "enable difference", OFFSET(diff_only), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
75 { "adaptive", "set adaptive distortion", OFFSET(adaptive), AV_OPT_TYPE_DOUBLE, {.dbl=0.5}, 0, 1, FLAGS },
76 { "iterations", "set iterations", OFFSET(iterations), AV_OPT_TYPE_INT, {.i64=10}, 1, 20, FLAGS },
77 { "level", "set auto level", OFFSET(auto_level), AV_OPT_TYPE_BOOL, {.i64=0}, 0, 1, FLAGS },
78 {NULL}
79 };
80
81 AVFILTER_DEFINE_CLASS(apsyclip);
82
83 static void generate_hann_window(float *window, float *inv_window, int size)
84 {
85 for (int i = 0; i < size; i++) {
86 float value = 0.5f * (1.f - cosf(2.f * M_PI * i / size));
87
88 window[i] = value;
89 // 1/window to calculate unwindowed peak.
90 inv_window[i] = value > 0.1f ? 1.f / value : 0.f;
91 }
92 }
93
94 static void set_margin_curve(AudioPsyClipContext *s,
95 const int (*points)[2], int num_points, int sample_rate)
96 {
97 int j = 0;
98
99 s->margin_curve[0] = points[0][1];
100
101 for (int i = 0; i < num_points - 1; i++) {
102 while (j < s->fft_size / 2 + 1 && j * sample_rate / s->fft_size < points[i + 1][0]) {
103 // linearly interpolate between points
104 int binHz = j * sample_rate / s->fft_size;
105 s->margin_curve[j] = points[i][1] + (binHz - points[i][0]) * (points[i + 1][1] - points[i][1]) / (points[i + 1][0] - points[i][0]);
106 j++;
107 }
108 }
109 // handle bins after the last point
110 while (j < s->fft_size / 2 + 1) {
111 s->margin_curve[j] = points[num_points - 1][1];
112 j++;
113 }
114
115 // convert margin curve to linear amplitude scale
116 for (j = 0; j < s->fft_size / 2 + 1; j++)
117 s->margin_curve[j] = powf(10.f, s->margin_curve[j] / 20.f);
118 }
119
120 static void generate_spread_table(AudioPsyClipContext *s)
121 {
122 // Calculate tent-shape function in log-log scale.
123
124 // As an optimization, only consider bins close to "bin"
125 // This reduces the number of multiplications needed in calculate_mask_curve
126 // The masking contribution at faraway bins is negligeable
127
128 // Another optimization to save memory and speed up the calculation of the
129 // spread table is to calculate and store only 2 spread functions per
130 // octave, and reuse the same spread function for multiple bins.
131 int table_index = 0;
132 int bin = 0;
133 int increment = 1;
134
135 while (bin < s->num_psy_bins) {
136 float sum = 0;
137 int base_idx = table_index * s->num_psy_bins;
138 int start_bin = bin * 3 / 4;
139 int end_bin = FFMIN(s->num_psy_bins, ((bin + 1) * 4 + 2) / 3);
140 int next_bin;
141
142 for (int j = start_bin; j < end_bin; j++) {
143 // add 0.5 so i=0 doesn't get log(0)
144 float rel_idx_log = FFABS(logf((j + 0.5f) / (bin + 0.5f)));
145 float value;
146 if (j >= bin) {
147 // mask up
148 value = expf(-rel_idx_log * 40.f);
149 } else {
150 // mask down
151 value = expf(-rel_idx_log * 80.f);
152 }
153 // the spreading function is centred in the row
154 sum += value;
155 s->spread_table[base_idx + s->num_psy_bins / 2 + j - bin] = value;
156 }
157 // now normalize it
158 for (int j = start_bin; j < end_bin; j++) {
159 s->spread_table[base_idx + s->num_psy_bins / 2 + j - bin] /= sum;
160 }
161
162 s->spread_table_range[table_index][0] = start_bin - bin;
163 s->spread_table_range[table_index][1] = end_bin - bin;
164
165 if (bin <= 1) {
166 next_bin = bin + 1;
167 } else {
168 if ((bin & (bin - 1)) == 0) {
169 // power of 2
170 increment = bin / 2;
171 }
172
173 next_bin = bin + increment;
174 }
175
176 // set bins between "bin" and "next_bin" to use this table_index
177 for (int i = bin; i < next_bin; i++)
178 s->spread_table_index[i] = table_index;
179
180 bin = next_bin;
181 table_index++;
182 }
183 }
184
185 static int config_input(AVFilterLink *inlink)
186 {
187 AVFilterContext *ctx = inlink->dst;
188 AudioPsyClipContext *s = ctx->priv;
189 static const int points[][2] = { {0,14}, {125,14}, {250,16}, {500,18}, {1000,20}, {2000,20}, {4000,20}, {8000,17}, {16000,14}, {20000,-10} };
190 static const int num_points = 10;
191 float scale = 1.f;
192 int ret;
193
194 s->fft_size = inlink->sample_rate > 100000 ? 1024 : inlink->sample_rate > 50000 ? 512 : 256;
195 s->overlap = s->fft_size / 4;
196
197 // The psy masking calculation is O(n^2),
198 // so skip it for frequencies not covered by base sampling rantes (i.e. 44k)
199 if (inlink->sample_rate <= 50000) {
200 s->num_psy_bins = s->fft_size / 2;
201 } else if (inlink->sample_rate <= 100000) {
202 s->num_psy_bins = s->fft_size / 4;
203 } else {
204 s->num_psy_bins = s->fft_size / 8;
205 }
206
207 s->window = av_calloc(s->fft_size, sizeof(*s->window));
208 s->inv_window = av_calloc(s->fft_size, sizeof(*s->inv_window));
209 if (!s->window || !s->inv_window)
210 return AVERROR(ENOMEM);
211
212 s->in_buffer = ff_get_audio_buffer(inlink, s->fft_size * 2);
213 s->in_frame = ff_get_audio_buffer(inlink, s->fft_size * 2);
214 s->out_dist_frame = ff_get_audio_buffer(inlink, s->fft_size * 2);
215 s->windowed_frame = ff_get_audio_buffer(inlink, s->fft_size * 2);
216 s->clipping_delta = ff_get_audio_buffer(inlink, s->fft_size * 2);
217 s->spectrum_buf = ff_get_audio_buffer(inlink, s->fft_size * 2);
218 s->mask_curve = ff_get_audio_buffer(inlink, s->fft_size / 2 + 1);
219 if (!s->in_buffer || !s->in_frame ||
220 !s->out_dist_frame || !s->windowed_frame ||
221 !s->clipping_delta || !s->spectrum_buf || !s->mask_curve)
222 return AVERROR(ENOMEM);
223
224 generate_hann_window(s->window, s->inv_window, s->fft_size);
225
226 s->margin_curve = av_calloc(s->fft_size / 2 + 1, sizeof(*s->margin_curve));
227 if (!s->margin_curve)
228 return AVERROR(ENOMEM);
229
230 s->spread_table_rows = av_log2(s->num_psy_bins) * 2;
231 s->spread_table = av_calloc(s->spread_table_rows * s->num_psy_bins, sizeof(*s->spread_table));
232 if (!s->spread_table)
233 return AVERROR(ENOMEM);
234
235 s->spread_table_range = av_calloc(s->spread_table_rows * 2, sizeof(*s->spread_table_range));
236 if (!s->spread_table_range)
237 return AVERROR(ENOMEM);
238
239 s->spread_table_index = av_calloc(s->num_psy_bins, sizeof(*s->spread_table_index));
240 if (!s->spread_table_index)
241 return AVERROR(ENOMEM);
242
243 set_margin_curve(s, points, num_points, inlink->sample_rate);
244
245 generate_spread_table(s);
246
247 s->channels = inlink->ch_layout.nb_channels;
248
249 s->tx_ctx = av_calloc(s->channels, sizeof(*s->tx_ctx));
250 s->itx_ctx = av_calloc(s->channels, sizeof(*s->itx_ctx));
251 if (!s->tx_ctx || !s->itx_ctx)
252 return AVERROR(ENOMEM);
253
254 for (int ch = 0; ch < s->channels; ch++) {
255 ret = av_tx_init(&s->tx_ctx[ch], &s->tx_fn, AV_TX_FLOAT_FFT, 0, s->fft_size, &scale, 0);
256 if (ret < 0)
257 return ret;
258
259 ret = av_tx_init(&s->itx_ctx[ch], &s->itx_fn, AV_TX_FLOAT_FFT, 1, s->fft_size, &scale, 0);
260 if (ret < 0)
261 return ret;
262 }
263
264 return 0;
265 }
266
267 static void apply_window(AudioPsyClipContext *s,
268 const float *in_frame, float *out_frame, const int add_to_out_frame)
269 {
270 const float *window = s->window;
271
272 for (int i = 0; i < s->fft_size; i++) {
273 if (add_to_out_frame) {
274 out_frame[i] += in_frame[i] * window[i];
275 } else {
276 out_frame[i] = in_frame[i] * window[i];
277 }
278 }
279 }
280
281 static void calculate_mask_curve(AudioPsyClipContext *s,
282 const float *spectrum, float *mask_curve)
283 {
284 for (int i = 0; i < s->fft_size / 2 + 1; i++)
285 mask_curve[i] = 0;
286
287 for (int i = 0; i < s->num_psy_bins; i++) {
288 int base_idx, start_bin, end_bin, table_idx;
289 float magnitude;
290 int range[2];
291
292 if (i == 0) {
293 magnitude = FFABS(spectrum[0]);
294 } else if (i == s->fft_size / 2) {
295 magnitude = FFABS(spectrum[s->fft_size]);
296 } else {
297 // Because the input signal is real, the + and - frequencies are redundant.
298 // Multiply the magnitude by 2 to simulate adding up the + and - frequencies.
299 magnitude = hypotf(spectrum[2 * i], spectrum[2 * i + 1]) * 2;
300 }
301
302 table_idx = s->spread_table_index[i];
303 range[0] = s->spread_table_range[table_idx][0];
304 range[1] = s->spread_table_range[table_idx][1];
305 base_idx = table_idx * s->num_psy_bins;
306 start_bin = FFMAX(0, i + range[0]);
307 end_bin = FFMIN(s->num_psy_bins, i + range[1]);
308
309 for (int j = start_bin; j < end_bin; j++)
310 mask_curve[j] += s->spread_table[base_idx + s->num_psy_bins / 2 + j - i] * magnitude;
311 }
312
313 // for ultrasonic frequencies, skip the O(n^2) spread calculation and just copy the magnitude
314 for (int i = s->num_psy_bins; i < s->fft_size / 2 + 1; i++) {
315 float magnitude;
316 if (i == s->fft_size / 2) {
317 magnitude = FFABS(spectrum[s->fft_size]);
318 } else {
319 // Because the input signal is real, the + and - frequencies are redundant.
320 // Multiply the magnitude by 2 to simulate adding up the + and - frequencies.
321 magnitude = hypotf(spectrum[2 * i], spectrum[2 * i + 1]) * 2;
322 }
323
324 mask_curve[i] = magnitude;
325 }
326
327 for (int i = 0; i < s->fft_size / 2 + 1; i++)
328 mask_curve[i] = mask_curve[i] / s->margin_curve[i];
329 }
330
331 static void clip_to_window(AudioPsyClipContext *s,
332 const float *windowed_frame, float *clipping_delta, float delta_boost)
333 {
334 const float *window = s->window;
335
336 for (int i = 0; i < s->fft_size; i++) {
337 const float limit = s->clip_level * window[i];
338 const float effective_value = windowed_frame[i] + clipping_delta[i];
339
340 if (effective_value > limit) {
341 clipping_delta[i] += (limit - effective_value) * delta_boost;
342 } else if (effective_value < -limit) {
343 clipping_delta[i] += (-limit - effective_value) * delta_boost;
344 }
345 }
346 }
347
348 static void limit_clip_spectrum(AudioPsyClipContext *s,
349 float *clip_spectrum, const float *mask_curve)
350 {
351 // bin 0
352 float relative_distortion_level = FFABS(clip_spectrum[0]) / mask_curve[0];
353
354 if (relative_distortion_level > 1.f)
355 clip_spectrum[0] /= relative_distortion_level;
356
357 // bin 1..N/2-1
358 for (int i = 1; i < s->fft_size / 2; i++) {
359 float real = clip_spectrum[i * 2];
360 float imag = clip_spectrum[i * 2 + 1];
361 // Because the input signal is real, the + and - frequencies are redundant.
362 // Multiply the magnitude by 2 to simulate adding up the + and - frequencies.
363 relative_distortion_level = hypotf(real, imag) * 2 / mask_curve[i];
364 if (relative_distortion_level > 1.0) {
365 clip_spectrum[i * 2] /= relative_distortion_level;
366 clip_spectrum[i * 2 + 1] /= relative_distortion_level;
367 clip_spectrum[s->fft_size * 2 - i * 2] /= relative_distortion_level;
368 clip_spectrum[s->fft_size * 2 - i * 2 + 1] /= relative_distortion_level;
369 }
370 }
371 // bin N/2
372 relative_distortion_level = FFABS(clip_spectrum[s->fft_size]) / mask_curve[s->fft_size / 2];
373 if (relative_distortion_level > 1.f)
374 clip_spectrum[s->fft_size] /= relative_distortion_level;
375 }
376
377 static void r2c(float *buffer, int size)
378 {
379 for (int i = size - 1; i >= 0; i--)
380 buffer[2 * i] = buffer[i];
381
382 for (int i = size - 1; i >= 0; i--)
383 buffer[2 * i + 1] = 0.f;
384 }
385
386 static void c2r(float *buffer, int size)
387 {
388 for (int i = 0; i < size; i++)
389 buffer[i] = buffer[2 * i];
390
391 for (int i = 0; i < size; i++)
392 buffer[i + size] = 0.f;
393 }
394
395 static void feed(AVFilterContext *ctx, int ch,
396 const float *in_samples, float *out_samples, int diff_only,
397 float *in_frame, float *out_dist_frame,
398 float *windowed_frame, float *clipping_delta,
399 float *spectrum_buf, float *mask_curve)
400 {
401 AudioPsyClipContext *s = ctx->priv;
402 const float clip_level_inv = 1.f / s->clip_level;
403 const float level_out = s->level_out;
404 float orig_peak = 0;
405 float peak;
406
407 // shift in/out buffers
408 for (int i = 0; i < s->fft_size - s->overlap; i++) {
409 in_frame[i] = in_frame[i + s->overlap];
410 out_dist_frame[i] = out_dist_frame[i + s->overlap];
411 }
412
413 for (int i = 0; i < s->overlap; i++) {
414 in_frame[i + s->fft_size - s->overlap] = in_samples[i];
415 out_dist_frame[i + s->fft_size - s->overlap] = 0.f;
416 }
417
418 apply_window(s, in_frame, windowed_frame, 0);
419 r2c(windowed_frame, s->fft_size);
420 s->tx_fn(s->tx_ctx[ch], spectrum_buf, windowed_frame, sizeof(AVComplexFloat));
421 c2r(windowed_frame, s->fft_size);
422 calculate_mask_curve(s, spectrum_buf, mask_curve);
423
424 // It would be easier to calculate the peak from the unwindowed input.
425 // This is just for consistency with the clipped peak calculateion
426 // because the inv_window zeros out samples on the edge of the window.
427 for (int i = 0; i < s->fft_size; i++)
428 orig_peak = FFMAX(orig_peak, FFABS(windowed_frame[i] * s->inv_window[i]));
429 orig_peak *= clip_level_inv;
430 peak = orig_peak;
431
432 // clear clipping_delta
433 for (int i = 0; i < s->fft_size * 2; i++)
434 clipping_delta[i] = 0.f;
435
436 // repeat clipping-filtering process a few times to control both the peaks and the spectrum
437 for (int i = 0; i < s->iterations; i++) {
438 float mask_curve_shift = 1.122f; // 1.122 is 1dB
439 // The last 1/3 of rounds have boosted delta to help reach the peak target faster
440 float delta_boost = 1.f;
441 if (i >= s->iterations - s->iterations / 3) {
442 // boosting the delta when largs peaks are still present is dangerous
443 if (peak < 2.f)
444 delta_boost = 2.f;
445 }
446
447 clip_to_window(s, windowed_frame, clipping_delta, delta_boost);
448
449 r2c(clipping_delta, s->fft_size);
450 s->tx_fn(s->tx_ctx[ch], spectrum_buf, clipping_delta, sizeof(AVComplexFloat));
451
452 limit_clip_spectrum(s, spectrum_buf, mask_curve);
453
454 s->itx_fn(s->itx_ctx[ch], clipping_delta, spectrum_buf, sizeof(AVComplexFloat));
455 c2r(clipping_delta, s->fft_size);
456
457 for (int i = 0; i < s->fft_size; i++)
458 clipping_delta[i] /= s->fft_size;
459
460 peak = 0;
461 for (int i = 0; i < s->fft_size; i++)
462 peak = FFMAX(peak, FFABS((windowed_frame[i] + clipping_delta[i]) * s->inv_window[i]));
463 peak *= clip_level_inv;
464
465 // Automatically adjust mask_curve as necessary to reach peak target
466 if (orig_peak > 1.f && peak > 1.f) {
467 float diff_achieved = orig_peak - peak;
468 if (i + 1 < s->iterations - s->iterations / 3 && diff_achieved > 0) {
469 float diff_needed = orig_peak - 1.f;
470 float diff_ratio = diff_needed / diff_achieved;
471 // If a good amount of peak reduction was already achieved,
472 // don't shift the mask_curve by the full peak value
473 // On the other hand, if only a little peak reduction was achieved,
474 // don't shift the mask_curve by the enormous diff_ratio.
475 diff_ratio = FFMIN(diff_ratio, peak);
476 mask_curve_shift = FFMAX(mask_curve_shift, diff_ratio);
477 } else {
478 // If the peak got higher than the input or we are in the last 1/3 rounds,
479 // go back to the heavy-handed peak heuristic.
480 mask_curve_shift = FFMAX(mask_curve_shift, peak);
481 }
482 }
483
484 mask_curve_shift = 1.f + (mask_curve_shift - 1.f) * s->adaptive;
485
486 // Be less strict in the next iteration.
487 // This helps with peak control.
488 for (int i = 0; i < s->fft_size / 2 + 1; i++)
489 mask_curve[i] *= mask_curve_shift;
490 }
491
492 // do overlap & add
493 apply_window(s, clipping_delta, out_dist_frame, 1);
494
495 for (int i = 0; i < s->overlap; i++) {
496 // 4 times overlap with squared hanning window results in 1.5 time increase in amplitude
497 if (!ctx->is_disabled) {
498 out_samples[i] = out_dist_frame[i] / 1.5f;
499 if (!diff_only)
500 out_samples[i] += in_frame[i];
501 if (s->auto_level)
502 out_samples[i] *= clip_level_inv;
503 out_samples[i] *= level_out;
504 } else {
505 out_samples[i] = in_frame[i];
506 }
507 }
508 }
509
510 static int psy_channel(AVFilterContext *ctx, AVFrame *in, AVFrame *out, int ch)
511 {
512 AudioPsyClipContext *s = ctx->priv;
513 const float *src = (const float *)in->extended_data[ch];
514 float *in_buffer = (float *)s->in_buffer->extended_data[ch];
515 float *dst = (float *)out->extended_data[ch];
516
517 for (int n = 0; n < s->overlap; n++)
518 in_buffer[n] = src[n] * s->level_in;
519
520 feed(ctx, ch, in_buffer, dst, s->diff_only,
521 (float *)(s->in_frame->extended_data[ch]),
522 (float *)(s->out_dist_frame->extended_data[ch]),
523 (float *)(s->windowed_frame->extended_data[ch]),
524 (float *)(s->clipping_delta->extended_data[ch]),
525 (float *)(s->spectrum_buf->extended_data[ch]),
526 (float *)(s->mask_curve->extended_data[ch]));
527
528 return 0;
529 }
530
531 static int psy_channels(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs)
532 {
533 AudioPsyClipContext *s = ctx->priv;
534 AVFrame *out = arg;
535 const int start = (out->ch_layout.nb_channels * jobnr) / nb_jobs;
536 const int end = (out->ch_layout.nb_channels * (jobnr+1)) / nb_jobs;
537
538 for (int ch = start; ch < end; ch++)
539 psy_channel(ctx, s->in, out, ch);
540
541 return 0;
542 }
543
544 static int filter_frame(AVFilterLink *inlink, AVFrame *in)
545 {
546 AVFilterContext *ctx = inlink->dst;
547 AVFilterLink *outlink = ctx->outputs[0];
548 AudioPsyClipContext *s = ctx->priv;
549 AVFrame *out;
550 int ret;
551
552 out = ff_get_audio_buffer(outlink, s->overlap);
553 if (!out) {
554 ret = AVERROR(ENOMEM);
555 goto fail;
556 }
557
558 s->in = in;
559 av_frame_copy_props(out, in);
560 ff_filter_execute(ctx, psy_channels, out, NULL,
561 FFMIN(outlink->ch_layout.nb_channels, ff_filter_get_nb_threads(ctx)));
562
563 out->pts = in->pts;
564 out->nb_samples = in->nb_samples;
565 ret = ff_filter_frame(outlink, out);
566 fail:
567 av_frame_free(&in);
568 s->in = NULL;
569 return ret < 0 ? ret : 0;
570 }
571
572 static int activate(AVFilterContext *ctx)
573 {
574 AVFilterLink *inlink = ctx->inputs[0];
575 AVFilterLink *outlink = ctx->outputs[0];
576 AudioPsyClipContext *s = ctx->priv;
577 AVFrame *in = NULL;
578 int ret = 0, status;
579 int64_t pts;
580
581 FF_FILTER_FORWARD_STATUS_BACK(outlink, inlink);
582
583 ret = ff_inlink_consume_samples(inlink, s->overlap, s->overlap, &in);
584 if (ret < 0)
585 return ret;
586
587 if (ret > 0) {
588 return filter_frame(inlink, in);
589 } else if (ff_inlink_acknowledge_status(inlink, &status, &pts)) {
590 ff_outlink_set_status(outlink, status, pts);
591 return 0;
592 } else {
593 if (ff_inlink_queued_samples(inlink) >= s->overlap) {
594 ff_filter_set_ready(ctx, 10);
595 } else if (ff_outlink_frame_wanted(outlink)) {
596 ff_inlink_request_frame(inlink);
597 }
598 return 0;
599 }
600 }
601
602 static av_cold void uninit(AVFilterContext *ctx)
603 {
604 AudioPsyClipContext *s = ctx->priv;
605
606 av_freep(&s->window);
607 av_freep(&s->inv_window);
608 av_freep(&s->spread_table);
609 av_freep(&s->spread_table_range);
610 av_freep(&s->spread_table_index);
611 av_freep(&s->margin_curve);
612
613 av_frame_free(&s->in_buffer);
614 av_frame_free(&s->in_frame);
615 av_frame_free(&s->out_dist_frame);
616 av_frame_free(&s->windowed_frame);
617 av_frame_free(&s->clipping_delta);
618 av_frame_free(&s->spectrum_buf);
619 av_frame_free(&s->mask_curve);
620
621 for (int ch = 0; ch < s->channels; ch++) {
622 if (s->tx_ctx)
623 av_tx_uninit(&s->tx_ctx[ch]);
624 if (s->itx_ctx)
625 av_tx_uninit(&s->itx_ctx[ch]);
626 }
627
628 av_freep(&s->tx_ctx);
629 av_freep(&s->itx_ctx);
630 }
631
632 static const AVFilterPad inputs[] = {
633 {
634 .name = "default",
635 .type = AVMEDIA_TYPE_AUDIO,
636 .config_props = config_input,
637 },
638 };
639
640 const FFFilter ff_af_apsyclip = {
641 .p.name = "apsyclip",
642 .p.description = NULL_IF_CONFIG_SMALL("Audio Psychoacoustic Clipper."),
643 .p.priv_class = &apsyclip_class,
644 .p.flags = AVFILTER_FLAG_SUPPORT_TIMELINE_INTERNAL |
645 AVFILTER_FLAG_SLICE_THREADS,
646 .priv_size = sizeof(AudioPsyClipContext),
647 .uninit = uninit,
648 FILTER_INPUTS(inputs),
649 FILTER_OUTPUTS(ff_audio_default_filterpad),
650 FILTER_SINGLE_SAMPLEFMT(AV_SAMPLE_FMT_FLTP),
651 .activate = activate,
652 .process_command = ff_filter_process_command,
653 };
654