Line |
Branch |
Exec |
Source |
1 |
|
|
/* |
2 |
|
|
* This file is part of FFmpeg. |
3 |
|
|
* |
4 |
|
|
* FFmpeg is free software; you can redistribute it and/or |
5 |
|
|
* modify it under the terms of the GNU Lesser General Public |
6 |
|
|
* License as published by the Free Software Foundation; either |
7 |
|
|
* version 2.1 of the License, or (at your option) any later version. |
8 |
|
|
* |
9 |
|
|
* FFmpeg is distributed in the hope that it will be useful, |
10 |
|
|
* but WITHOUT ANY WARRANTY; without even the implied warranty of |
11 |
|
|
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU |
12 |
|
|
* Lesser General Public License for more details. |
13 |
|
|
* |
14 |
|
|
* You should have received a copy of the GNU Lesser General Public |
15 |
|
|
* License along with FFmpeg; if not, write to the Free Software |
16 |
|
|
* Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA |
17 |
|
|
*/ |
18 |
|
|
|
19 |
|
|
#undef ftype |
20 |
|
|
#undef SQRT |
21 |
|
|
#undef TAN |
22 |
|
|
#undef ONE |
23 |
|
|
#undef TWO |
24 |
|
|
#undef ZERO |
25 |
|
|
#undef FMAX |
26 |
|
|
#undef FMIN |
27 |
|
|
#undef CLIP |
28 |
|
|
#undef SAMPLE_FORMAT |
29 |
|
|
#undef FABS |
30 |
|
|
#undef FLOG |
31 |
|
|
#undef FEXP |
32 |
|
|
#undef FLOG2 |
33 |
|
|
#undef FLOG10 |
34 |
|
|
#undef FEXP2 |
35 |
|
|
#undef FEXP10 |
36 |
|
|
#undef EPSILON |
37 |
|
|
#if DEPTH == 32 |
38 |
|
|
#define SAMPLE_FORMAT float |
39 |
|
|
#define SQRT sqrtf |
40 |
|
|
#define TAN tanf |
41 |
|
|
#define ONE 1.f |
42 |
|
|
#define TWO 2.f |
43 |
|
|
#define ZERO 0.f |
44 |
|
|
#define FMIN fminf |
45 |
|
|
#define FMAX fmaxf |
46 |
|
|
#define CLIP av_clipf |
47 |
|
|
#define FABS fabsf |
48 |
|
|
#define FLOG logf |
49 |
|
|
#define FEXP expf |
50 |
|
|
#define FLOG2 log2f |
51 |
|
|
#define FLOG10 log10f |
52 |
|
|
#define FEXP2 exp2f |
53 |
|
|
#define FEXP10 ff_exp10f |
54 |
|
|
#define EPSILON (1.f / (1 << 23)) |
55 |
|
|
#define ftype float |
56 |
|
|
#else |
57 |
|
|
#define SAMPLE_FORMAT double |
58 |
|
|
#define SQRT sqrt |
59 |
|
|
#define TAN tan |
60 |
|
|
#define ONE 1.0 |
61 |
|
|
#define TWO 2.0 |
62 |
|
|
#define ZERO 0.0 |
63 |
|
|
#define FMIN fmin |
64 |
|
|
#define FMAX fmax |
65 |
|
|
#define CLIP av_clipd |
66 |
|
|
#define FABS fabs |
67 |
|
|
#define FLOG log |
68 |
|
|
#define FEXP exp |
69 |
|
|
#define FLOG2 log2 |
70 |
|
|
#define FLOG10 log10 |
71 |
|
|
#define FEXP2 exp2 |
72 |
|
|
#define FEXP10 ff_exp10 |
73 |
|
|
#define EPSILON (1.0 / (1LL << 53)) |
74 |
|
|
#define ftype double |
75 |
|
|
#endif |
76 |
|
|
|
77 |
|
|
#define LIN2LOG(x) (20.0 * FLOG10(x)) |
78 |
|
|
#define LOG2LIN(x) (FEXP10(x / 20.0)) |
79 |
|
|
|
80 |
|
|
#define fn3(a,b) a##_##b |
81 |
|
|
#define fn2(a,b) fn3(a,b) |
82 |
|
|
#define fn(a) fn2(a, SAMPLE_FORMAT) |
83 |
|
|
|
84 |
|
✗ |
static ftype fn(get_svf)(ftype in, const ftype *m, const ftype *a, ftype *b) |
85 |
|
|
{ |
86 |
|
✗ |
const ftype v0 = in; |
87 |
|
✗ |
const ftype v3 = v0 - b[1]; |
88 |
|
✗ |
const ftype v1 = a[0] * b[0] + a[1] * v3; |
89 |
|
✗ |
const ftype v2 = b[1] + a[1] * b[0] + a[2] * v3; |
90 |
|
|
|
91 |
|
✗ |
b[0] = TWO * v1 - b[0]; |
92 |
|
✗ |
b[1] = TWO * v2 - b[1]; |
93 |
|
|
|
94 |
|
✗ |
return m[0] * v0 + m[1] * v1 + m[2] * v2; |
95 |
|
|
} |
96 |
|
|
|
97 |
|
✗ |
static int fn(filter_prepare)(AVFilterContext *ctx) |
98 |
|
|
{ |
99 |
|
✗ |
AudioDynamicEqualizerContext *s = ctx->priv; |
100 |
|
✗ |
const ftype sample_rate = ctx->inputs[0]->sample_rate; |
101 |
|
✗ |
const ftype dfrequency = FMIN(s->dfrequency, sample_rate * 0.5); |
102 |
|
✗ |
const ftype dg = TAN(M_PI * dfrequency / sample_rate); |
103 |
|
✗ |
const ftype dqfactor = s->dqfactor; |
104 |
|
✗ |
const int dftype = s->dftype; |
105 |
|
✗ |
ftype *da = fn(s->da); |
106 |
|
✗ |
ftype *dm = fn(s->dm); |
107 |
|
|
ftype k; |
108 |
|
|
|
109 |
|
✗ |
s->threshold_log = LIN2LOG(s->threshold); |
110 |
|
✗ |
s->dattack_coef = get_coef(s->dattack, sample_rate); |
111 |
|
✗ |
s->drelease_coef = get_coef(s->drelease, sample_rate); |
112 |
|
✗ |
s->gattack_coef = s->dattack_coef * 0.25; |
113 |
|
✗ |
s->grelease_coef = s->drelease_coef * 0.25; |
114 |
|
|
|
115 |
|
✗ |
switch (dftype) { |
116 |
|
✗ |
case 0: |
117 |
|
✗ |
k = ONE / dqfactor; |
118 |
|
|
|
119 |
|
✗ |
da[0] = ONE / (ONE + dg * (dg + k)); |
120 |
|
✗ |
da[1] = dg * da[0]; |
121 |
|
✗ |
da[2] = dg * da[1]; |
122 |
|
|
|
123 |
|
✗ |
dm[0] = ZERO; |
124 |
|
✗ |
dm[1] = k; |
125 |
|
✗ |
dm[2] = ZERO; |
126 |
|
✗ |
break; |
127 |
|
✗ |
case 1: |
128 |
|
✗ |
k = ONE / dqfactor; |
129 |
|
|
|
130 |
|
✗ |
da[0] = ONE / (ONE + dg * (dg + k)); |
131 |
|
✗ |
da[1] = dg * da[0]; |
132 |
|
✗ |
da[2] = dg * da[1]; |
133 |
|
|
|
134 |
|
✗ |
dm[0] = ZERO; |
135 |
|
✗ |
dm[1] = ZERO; |
136 |
|
✗ |
dm[2] = ONE; |
137 |
|
✗ |
break; |
138 |
|
✗ |
case 2: |
139 |
|
✗ |
k = ONE / dqfactor; |
140 |
|
|
|
141 |
|
✗ |
da[0] = ONE / (ONE + dg * (dg + k)); |
142 |
|
✗ |
da[1] = dg * da[0]; |
143 |
|
✗ |
da[2] = dg * da[1]; |
144 |
|
|
|
145 |
|
✗ |
dm[0] = ZERO; |
146 |
|
✗ |
dm[1] = -k; |
147 |
|
✗ |
dm[2] = -ONE; |
148 |
|
✗ |
break; |
149 |
|
✗ |
case 3: |
150 |
|
✗ |
k = ONE / dqfactor; |
151 |
|
|
|
152 |
|
✗ |
da[0] = ONE / (ONE + dg * (dg + k)); |
153 |
|
✗ |
da[1] = dg * da[0]; |
154 |
|
✗ |
da[2] = dg * da[1]; |
155 |
|
|
|
156 |
|
✗ |
dm[0] = ONE; |
157 |
|
✗ |
dm[1] = -k; |
158 |
|
✗ |
dm[2] = -TWO; |
159 |
|
✗ |
break; |
160 |
|
|
} |
161 |
|
|
|
162 |
|
✗ |
return 0; |
163 |
|
|
} |
164 |
|
|
|
165 |
|
|
#define PEAKS(empty_value,op,sample, psample)\ |
166 |
|
|
if (!empty && psample == ss[front]) { \ |
167 |
|
|
ss[front] = empty_value; \ |
168 |
|
|
if (back != front) { \ |
169 |
|
|
front--; \ |
170 |
|
|
if (front < 0) \ |
171 |
|
|
front = n - 1; \ |
172 |
|
|
} \ |
173 |
|
|
empty = front == back; \ |
174 |
|
|
} \ |
175 |
|
|
\ |
176 |
|
|
if (!empty && sample op ss[front]) { \ |
177 |
|
|
while (1) { \ |
178 |
|
|
ss[front] = empty_value; \ |
179 |
|
|
if (back == front) { \ |
180 |
|
|
empty = 1; \ |
181 |
|
|
break; \ |
182 |
|
|
} \ |
183 |
|
|
front--; \ |
184 |
|
|
if (front < 0) \ |
185 |
|
|
front = n - 1; \ |
186 |
|
|
} \ |
187 |
|
|
} \ |
188 |
|
|
\ |
189 |
|
|
while (!empty && sample op ss[back]) { \ |
190 |
|
|
ss[back] = empty_value; \ |
191 |
|
|
if (back == front) { \ |
192 |
|
|
empty = 1; \ |
193 |
|
|
break; \ |
194 |
|
|
} \ |
195 |
|
|
back++; \ |
196 |
|
|
if (back >= n) \ |
197 |
|
|
back = 0; \ |
198 |
|
|
} \ |
199 |
|
|
\ |
200 |
|
|
if (!empty) { \ |
201 |
|
|
back--; \ |
202 |
|
|
if (back < 0) \ |
203 |
|
|
back = n - 1; \ |
204 |
|
|
} |
205 |
|
|
|
206 |
|
✗ |
static void fn(queue_sample)(ChannelContext *cc, |
207 |
|
|
const ftype x, |
208 |
|
|
const int nb_samples) |
209 |
|
|
{ |
210 |
|
✗ |
ftype *ss = cc->dqueue; |
211 |
|
✗ |
ftype *qq = cc->queue; |
212 |
|
✗ |
int front = cc->front; |
213 |
|
✗ |
int back = cc->back; |
214 |
|
✗ |
int empty, n, pos = cc->position; |
215 |
|
✗ |
ftype px = qq[pos]; |
216 |
|
|
|
217 |
|
✗ |
fn(cc->sum) += x; |
218 |
|
✗ |
fn(cc->log_sum) += FLOG2(x); |
219 |
|
✗ |
if (cc->size >= nb_samples) { |
220 |
|
✗ |
fn(cc->sum) -= px; |
221 |
|
✗ |
fn(cc->log_sum) -= FLOG2(px); |
222 |
|
|
} |
223 |
|
|
|
224 |
|
✗ |
qq[pos] = x; |
225 |
|
✗ |
pos++; |
226 |
|
✗ |
if (pos >= nb_samples) |
227 |
|
✗ |
pos = 0; |
228 |
|
✗ |
cc->position = pos; |
229 |
|
|
|
230 |
|
✗ |
if (cc->size < nb_samples) |
231 |
|
✗ |
cc->size++; |
232 |
|
✗ |
n = cc->size; |
233 |
|
|
|
234 |
|
✗ |
empty = (front == back) && (ss[front] == ZERO); |
235 |
|
✗ |
PEAKS(ZERO, >, x, px) |
236 |
|
|
|
237 |
|
✗ |
ss[back] = x; |
238 |
|
|
|
239 |
|
✗ |
cc->front = front; |
240 |
|
✗ |
cc->back = back; |
241 |
|
✗ |
} |
242 |
|
|
|
243 |
|
✗ |
static ftype fn(get_peak)(ChannelContext *cc, ftype *score) |
244 |
|
|
{ |
245 |
|
✗ |
ftype s, *ss = cc->dqueue; |
246 |
|
✗ |
s = FEXP2(fn(cc->log_sum) / cc->size) / (fn(cc->sum) / cc->size); |
247 |
|
✗ |
*score = LIN2LOG(s); |
248 |
|
✗ |
return ss[cc->front]; |
249 |
|
|
} |
250 |
|
|
|
251 |
|
✗ |
static int fn(filter_channels)(AVFilterContext *ctx, void *arg, int jobnr, int nb_jobs) |
252 |
|
|
{ |
253 |
|
✗ |
AudioDynamicEqualizerContext *s = ctx->priv; |
254 |
|
✗ |
ThreadData *td = arg; |
255 |
|
✗ |
AVFrame *in = td->in; |
256 |
|
✗ |
AVFrame *out = td->out; |
257 |
|
✗ |
const ftype sample_rate = in->sample_rate; |
258 |
|
✗ |
const int isample_rate = in->sample_rate; |
259 |
|
✗ |
const ftype makeup = s->makeup; |
260 |
|
✗ |
const ftype ratio = s->ratio; |
261 |
|
✗ |
const ftype range = s->range; |
262 |
|
✗ |
const ftype tfrequency = FMIN(s->tfrequency, sample_rate * 0.5); |
263 |
|
✗ |
const int mode = s->mode; |
264 |
|
✗ |
const ftype power = (mode == CUT_BELOW || mode == CUT_ABOVE) ? -ONE : ONE; |
265 |
|
✗ |
const ftype grelease = s->grelease_coef; |
266 |
|
✗ |
const ftype gattack = s->gattack_coef; |
267 |
|
✗ |
const ftype drelease = s->drelease_coef; |
268 |
|
✗ |
const ftype dattack = s->dattack_coef; |
269 |
|
✗ |
const ftype tqfactor = s->tqfactor; |
270 |
|
✗ |
const ftype itqfactor = ONE / tqfactor; |
271 |
|
✗ |
const ftype fg = TAN(M_PI * tfrequency / sample_rate); |
272 |
|
✗ |
const int start = (in->ch_layout.nb_channels * jobnr) / nb_jobs; |
273 |
|
✗ |
const int end = (in->ch_layout.nb_channels * (jobnr+1)) / nb_jobs; |
274 |
|
✗ |
const int is_disabled = ctx->is_disabled; |
275 |
|
✗ |
const int detection = s->detection; |
276 |
|
✗ |
const int tftype = s->tftype; |
277 |
|
✗ |
const ftype *da = fn(s->da); |
278 |
|
✗ |
const ftype *dm = fn(s->dm); |
279 |
|
|
|
280 |
|
✗ |
if (detection == DET_ON) { |
281 |
|
✗ |
for (int ch = start; ch < end; ch++) { |
282 |
|
✗ |
const ftype *src = (const ftype *)in->extended_data[ch]; |
283 |
|
✗ |
ChannelContext *cc = &s->cc[ch]; |
284 |
|
✗ |
ftype *tstate = fn(cc->tstate); |
285 |
|
✗ |
ftype new_threshold = ZERO; |
286 |
|
|
|
287 |
|
✗ |
if (cc->detection != detection) { |
288 |
|
✗ |
cc->detection = detection; |
289 |
|
✗ |
fn(cc->new_threshold_log) = LIN2LOG(EPSILON); |
290 |
|
|
} |
291 |
|
|
|
292 |
|
✗ |
for (int n = 0; n < in->nb_samples; n++) { |
293 |
|
✗ |
ftype detect = FABS(fn(get_svf)(src[n], dm, da, tstate)); |
294 |
|
✗ |
new_threshold = FMAX(new_threshold, detect); |
295 |
|
|
} |
296 |
|
|
|
297 |
|
✗ |
fn(cc->new_threshold_log) = FMAX(fn(cc->new_threshold_log), LIN2LOG(new_threshold)); |
298 |
|
|
} |
299 |
|
✗ |
} else if (detection == DET_ADAPTIVE) { |
300 |
|
✗ |
for (int ch = start; ch < end; ch++) { |
301 |
|
✗ |
const ftype *src = (const ftype *)in->extended_data[ch]; |
302 |
|
✗ |
ChannelContext *cc = &s->cc[ch]; |
303 |
|
✗ |
ftype *tstate = fn(cc->tstate); |
304 |
|
|
ftype score, peak; |
305 |
|
|
|
306 |
|
✗ |
for (int n = 0; n < in->nb_samples; n++) { |
307 |
|
✗ |
ftype detect = FMAX(FABS(fn(get_svf)(src[n], dm, da, tstate)), EPSILON); |
308 |
|
✗ |
fn(queue_sample)(cc, detect, isample_rate); |
309 |
|
|
} |
310 |
|
|
|
311 |
|
✗ |
peak = fn(get_peak)(cc, &score); |
312 |
|
|
|
313 |
|
✗ |
if (score >= -3.5) { |
314 |
|
✗ |
fn(cc->threshold_log) = LIN2LOG(peak); |
315 |
|
✗ |
} else if (cc->detection == DET_UNSET) { |
316 |
|
✗ |
fn(cc->threshold_log) = s->threshold_log; |
317 |
|
|
} |
318 |
|
✗ |
cc->detection = detection; |
319 |
|
|
} |
320 |
|
✗ |
} else if (detection == DET_DISABLED) { |
321 |
|
✗ |
for (int ch = start; ch < end; ch++) { |
322 |
|
✗ |
ChannelContext *cc = &s->cc[ch]; |
323 |
|
✗ |
fn(cc->threshold_log) = s->threshold_log; |
324 |
|
✗ |
cc->detection = detection; |
325 |
|
|
} |
326 |
|
✗ |
} else if (detection == DET_OFF) { |
327 |
|
✗ |
for (int ch = start; ch < end; ch++) { |
328 |
|
✗ |
ChannelContext *cc = &s->cc[ch]; |
329 |
|
✗ |
if (cc->detection == DET_ON) |
330 |
|
✗ |
fn(cc->threshold_log) = fn(cc->new_threshold_log); |
331 |
|
✗ |
else if (cc->detection == DET_UNSET) |
332 |
|
✗ |
fn(cc->threshold_log) = s->threshold_log; |
333 |
|
✗ |
cc->detection = detection; |
334 |
|
|
} |
335 |
|
|
} |
336 |
|
|
|
337 |
|
✗ |
for (int ch = start; ch < end; ch++) { |
338 |
|
✗ |
const ftype *src = (const ftype *)in->extended_data[ch]; |
339 |
|
✗ |
ftype *dst = (ftype *)out->extended_data[ch]; |
340 |
|
✗ |
ChannelContext *cc = &s->cc[ch]; |
341 |
|
✗ |
const ftype threshold_log = fn(cc->threshold_log); |
342 |
|
✗ |
ftype *fa = fn(cc->fa), *fm = fn(cc->fm); |
343 |
|
✗ |
ftype *fstate = fn(cc->fstate); |
344 |
|
✗ |
ftype *dstate = fn(cc->dstate); |
345 |
|
✗ |
ftype detect = fn(cc->detect); |
346 |
|
✗ |
ftype lin_gain = fn(cc->lin_gain); |
347 |
|
✗ |
int init = cc->init; |
348 |
|
|
|
349 |
|
✗ |
for (int n = 0; n < out->nb_samples; n++) { |
350 |
|
✗ |
ftype new_detect, new_lin_gain = ONE; |
351 |
|
|
ftype f, v, listen, k, g, ld; |
352 |
|
|
|
353 |
|
✗ |
listen = fn(get_svf)(src[n], dm, da, dstate); |
354 |
|
✗ |
if (mode > LISTEN) { |
355 |
|
✗ |
new_detect = FABS(listen); |
356 |
|
✗ |
f = (new_detect > detect) * dattack + (new_detect <= detect) * drelease; |
357 |
|
✗ |
detect = f * new_detect + (ONE - f) * detect; |
358 |
|
|
} |
359 |
|
|
|
360 |
|
✗ |
switch (mode) { |
361 |
|
✗ |
case LISTEN: |
362 |
|
✗ |
break; |
363 |
|
✗ |
case CUT_BELOW: |
364 |
|
|
case BOOST_BELOW: |
365 |
|
✗ |
ld = LIN2LOG(detect); |
366 |
|
✗ |
if (ld < threshold_log) { |
367 |
|
✗ |
ftype new_log_gain = CLIP(makeup + (threshold_log - ld) * ratio, ZERO, range) * power; |
368 |
|
✗ |
new_lin_gain = LOG2LIN(new_log_gain); |
369 |
|
|
} |
370 |
|
✗ |
break; |
371 |
|
✗ |
case CUT_ABOVE: |
372 |
|
|
case BOOST_ABOVE: |
373 |
|
✗ |
ld = LIN2LOG(detect); |
374 |
|
✗ |
if (ld > threshold_log) { |
375 |
|
✗ |
ftype new_log_gain = CLIP(makeup + (ld - threshold_log) * ratio, ZERO, range) * power; |
376 |
|
✗ |
new_lin_gain = LOG2LIN(new_log_gain); |
377 |
|
|
} |
378 |
|
✗ |
break; |
379 |
|
|
} |
380 |
|
|
|
381 |
|
✗ |
f = (new_lin_gain > lin_gain) * gattack + (new_lin_gain <= lin_gain) * grelease; |
382 |
|
✗ |
new_lin_gain = f * new_lin_gain + (ONE - f) * lin_gain; |
383 |
|
|
|
384 |
|
✗ |
if (lin_gain != new_lin_gain || !init) { |
385 |
|
✗ |
init = 1; |
386 |
|
✗ |
lin_gain = new_lin_gain; |
387 |
|
|
|
388 |
|
✗ |
switch (tftype) { |
389 |
|
✗ |
case 0: |
390 |
|
✗ |
k = itqfactor / lin_gain; |
391 |
|
|
|
392 |
|
✗ |
fa[0] = ONE / (ONE + fg * (fg + k)); |
393 |
|
✗ |
fa[1] = fg * fa[0]; |
394 |
|
✗ |
fa[2] = fg * fa[1]; |
395 |
|
|
|
396 |
|
✗ |
fm[0] = ONE; |
397 |
|
✗ |
fm[1] = k * (lin_gain * lin_gain - ONE); |
398 |
|
✗ |
fm[2] = ZERO; |
399 |
|
✗ |
break; |
400 |
|
✗ |
case 1: |
401 |
|
✗ |
k = itqfactor; |
402 |
|
✗ |
g = fg / SQRT(lin_gain); |
403 |
|
|
|
404 |
|
✗ |
fa[0] = ONE / (ONE + g * (g + k)); |
405 |
|
✗ |
fa[1] = g * fa[0]; |
406 |
|
✗ |
fa[2] = g * fa[1]; |
407 |
|
|
|
408 |
|
✗ |
fm[0] = ONE; |
409 |
|
✗ |
fm[1] = k * (lin_gain - ONE); |
410 |
|
✗ |
fm[2] = lin_gain * lin_gain - ONE; |
411 |
|
✗ |
break; |
412 |
|
✗ |
case 2: |
413 |
|
✗ |
k = itqfactor; |
414 |
|
✗ |
g = fg * SQRT(lin_gain); |
415 |
|
|
|
416 |
|
✗ |
fa[0] = ONE / (ONE + g * (g + k)); |
417 |
|
✗ |
fa[1] = g * fa[0]; |
418 |
|
✗ |
fa[2] = g * fa[1]; |
419 |
|
|
|
420 |
|
✗ |
fm[0] = lin_gain * lin_gain; |
421 |
|
✗ |
fm[1] = k * (ONE - lin_gain) * lin_gain; |
422 |
|
✗ |
fm[2] = ONE - lin_gain * lin_gain; |
423 |
|
✗ |
break; |
424 |
|
|
} |
425 |
|
|
} |
426 |
|
|
|
427 |
|
✗ |
v = fn(get_svf)(src[n], fm, fa, fstate); |
428 |
|
✗ |
v = mode == LISTEN ? listen : v; |
429 |
|
✗ |
dst[n] = is_disabled ? src[n] : v; |
430 |
|
|
} |
431 |
|
|
|
432 |
|
✗ |
fn(cc->detect) = detect; |
433 |
|
✗ |
fn(cc->lin_gain) = lin_gain; |
434 |
|
✗ |
cc->init = 1; |
435 |
|
|
} |
436 |
|
|
|
437 |
|
✗ |
return 0; |
438 |
|
|
} |
439 |
|
|
|