Line | Branch | Exec | Source |
---|---|---|---|
1 | /* | ||
2 | * AAC encoder psychoacoustic model | ||
3 | * Copyright (C) 2008 Konstantin Shishkov | ||
4 | * | ||
5 | * This file is part of FFmpeg. | ||
6 | * | ||
7 | * FFmpeg is free software; you can redistribute it and/or | ||
8 | * modify it under the terms of the GNU Lesser General Public | ||
9 | * License as published by the Free Software Foundation; either | ||
10 | * version 2.1 of the License, or (at your option) any later version. | ||
11 | * | ||
12 | * FFmpeg is distributed in the hope that it will be useful, | ||
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
15 | * Lesser General Public License for more details. | ||
16 | * | ||
17 | * You should have received a copy of the GNU Lesser General Public | ||
18 | * License along with FFmpeg; if not, write to the Free Software | ||
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||
20 | */ | ||
21 | |||
22 | /** | ||
23 | * @file | ||
24 | * AAC encoder psychoacoustic model | ||
25 | */ | ||
26 | |||
27 | #include "libavutil/attributes.h" | ||
28 | #include "libavutil/ffmath.h" | ||
29 | |||
30 | #include "avcodec.h" | ||
31 | #include "aactab.h" | ||
32 | #include "psymodel.h" | ||
33 | |||
34 | /*********************************** | ||
35 | * TODOs: | ||
36 | * try other bitrate controlling mechanism (maybe use ratecontrol.c?) | ||
37 | * control quality for quality-based output | ||
38 | **********************************/ | ||
39 | |||
40 | /** | ||
41 | * constants for 3GPP AAC psychoacoustic model | ||
42 | * @{ | ||
43 | */ | ||
44 | #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark) | ||
45 | #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark) | ||
46 | /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */ | ||
47 | #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f | ||
48 | /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */ | ||
49 | #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f | ||
50 | /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */ | ||
51 | #define PSY_3GPP_EN_SPREAD_HI_S 1.5f | ||
52 | /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */ | ||
53 | #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f | ||
54 | /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */ | ||
55 | #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f | ||
56 | |||
57 | #define PSY_3GPP_RPEMIN 0.01f | ||
58 | #define PSY_3GPP_RPELEV 2.0f | ||
59 | |||
60 | #define PSY_3GPP_C1 3.0f /* log2(8) */ | ||
61 | #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */ | ||
62 | #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */ | ||
63 | |||
64 | #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */ | ||
65 | #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */ | ||
66 | |||
67 | #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f | ||
68 | #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f | ||
69 | #define PSY_3GPP_SAVE_ADD_L -0.84285712f | ||
70 | #define PSY_3GPP_SAVE_ADD_S -0.75f | ||
71 | #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f | ||
72 | #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f | ||
73 | #define PSY_3GPP_SPEND_ADD_L -0.35f | ||
74 | #define PSY_3GPP_SPEND_ADD_S -0.26111111f | ||
75 | #define PSY_3GPP_CLIP_LO_L 0.2f | ||
76 | #define PSY_3GPP_CLIP_LO_S 0.2f | ||
77 | #define PSY_3GPP_CLIP_HI_L 0.95f | ||
78 | #define PSY_3GPP_CLIP_HI_S 0.75f | ||
79 | |||
80 | #define PSY_3GPP_AH_THR_LONG 0.5f | ||
81 | #define PSY_3GPP_AH_THR_SHORT 0.63f | ||
82 | |||
83 | #define PSY_PE_FORGET_SLOPE 511 | ||
84 | |||
85 | enum { | ||
86 | PSY_3GPP_AH_NONE, | ||
87 | PSY_3GPP_AH_INACTIVE, | ||
88 | PSY_3GPP_AH_ACTIVE | ||
89 | }; | ||
90 | |||
91 | #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f) | ||
92 | #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f) | ||
93 | |||
94 | /* LAME psy model constants */ | ||
95 | #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order | ||
96 | #define AAC_BLOCK_SIZE_LONG 1024 ///< long block size | ||
97 | #define AAC_BLOCK_SIZE_SHORT 128 ///< short block size | ||
98 | #define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence | ||
99 | #define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block | ||
100 | |||
101 | /** | ||
102 | * @} | ||
103 | */ | ||
104 | |||
105 | /** | ||
106 | * information for single band used by 3GPP TS26.403-inspired psychoacoustic model | ||
107 | */ | ||
108 | typedef struct AacPsyBand{ | ||
109 | float energy; ///< band energy | ||
110 | float thr; ///< energy threshold | ||
111 | float thr_quiet; ///< threshold in quiet | ||
112 | float nz_lines; ///< number of non-zero spectral lines | ||
113 | float active_lines; ///< number of active spectral lines | ||
114 | float pe; ///< perceptual entropy | ||
115 | float pe_const; ///< constant part of the PE calculation | ||
116 | float norm_fac; ///< normalization factor for linearization | ||
117 | int avoid_holes; ///< hole avoidance flag | ||
118 | }AacPsyBand; | ||
119 | |||
120 | /** | ||
121 | * single/pair channel context for psychoacoustic model | ||
122 | */ | ||
123 | typedef struct AacPsyChannel{ | ||
124 | AacPsyBand band[128]; ///< bands information | ||
125 | AacPsyBand prev_band[128]; ///< bands information from the previous frame | ||
126 | |||
127 | float win_energy; ///< sliding average of channel energy | ||
128 | float iir_state[2]; ///< hi-pass IIR filter state | ||
129 | uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence) | ||
130 | enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame | ||
131 | /* LAME psy model specific members */ | ||
132 | float attack_threshold; ///< attack threshold for this channel | ||
133 | float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS]; | ||
134 | int prev_attack; ///< attack value for the last short block in the previous sequence | ||
135 | }AacPsyChannel; | ||
136 | |||
137 | /** | ||
138 | * psychoacoustic model frame type-dependent coefficients | ||
139 | */ | ||
140 | typedef struct AacPsyCoeffs{ | ||
141 | float ath; ///< absolute threshold of hearing per bands | ||
142 | float barks; ///< Bark value for each spectral band in long frame | ||
143 | float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame | ||
144 | float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame | ||
145 | float min_snr; ///< minimal SNR | ||
146 | }AacPsyCoeffs; | ||
147 | |||
148 | /** | ||
149 | * 3GPP TS26.403-inspired psychoacoustic model specific data | ||
150 | */ | ||
151 | typedef struct AacPsyContext{ | ||
152 | int chan_bitrate; ///< bitrate per channel | ||
153 | int frame_bits; ///< average bits per frame | ||
154 | int fill_level; ///< bit reservoir fill level | ||
155 | struct { | ||
156 | float min; ///< minimum allowed PE for bit factor calculation | ||
157 | float max; ///< maximum allowed PE for bit factor calculation | ||
158 | float previous; ///< allowed PE of the previous frame | ||
159 | float correction; ///< PE correction factor | ||
160 | } pe; | ||
161 | AacPsyCoeffs psy_coef[2][64]; | ||
162 | AacPsyChannel *ch; | ||
163 | float global_quality; ///< normalized global quality taken from avctx | ||
164 | }AacPsyContext; | ||
165 | |||
166 | /** | ||
167 | * LAME psy model preset struct | ||
168 | */ | ||
169 | typedef struct PsyLamePreset { | ||
170 | int quality; ///< Quality to map the rest of the vaules to. | ||
171 | /* This is overloaded to be both kbps per channel in ABR mode, and | ||
172 | * requested quality in constant quality mode. | ||
173 | */ | ||
174 | float st_lrm; ///< short threshold for L, R, and M channels | ||
175 | } PsyLamePreset; | ||
176 | |||
177 | /** | ||
178 | * LAME psy model preset table for ABR | ||
179 | */ | ||
180 | static const PsyLamePreset psy_abr_map[] = { | ||
181 | /* TODO: Tuning. These were taken from LAME. */ | ||
182 | /* kbps/ch st_lrm */ | ||
183 | { 8, 6.60}, | ||
184 | { 16, 6.60}, | ||
185 | { 24, 6.60}, | ||
186 | { 32, 6.60}, | ||
187 | { 40, 6.60}, | ||
188 | { 48, 6.60}, | ||
189 | { 56, 6.60}, | ||
190 | { 64, 6.40}, | ||
191 | { 80, 6.00}, | ||
192 | { 96, 5.60}, | ||
193 | {112, 5.20}, | ||
194 | {128, 5.20}, | ||
195 | {160, 5.20} | ||
196 | }; | ||
197 | |||
198 | /** | ||
199 | * LAME psy model preset table for constant quality | ||
200 | */ | ||
201 | static const PsyLamePreset psy_vbr_map[] = { | ||
202 | /* vbr_q st_lrm */ | ||
203 | { 0, 4.20}, | ||
204 | { 1, 4.20}, | ||
205 | { 2, 4.20}, | ||
206 | { 3, 4.20}, | ||
207 | { 4, 4.20}, | ||
208 | { 5, 4.20}, | ||
209 | { 6, 4.20}, | ||
210 | { 7, 4.20}, | ||
211 | { 8, 4.20}, | ||
212 | { 9, 4.20}, | ||
213 | {10, 4.20} | ||
214 | }; | ||
215 | |||
216 | /** | ||
217 | * LAME psy model FIR coefficient table | ||
218 | */ | ||
219 | static const float psy_fir_coeffs[] = { | ||
220 | -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2, | ||
221 | -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2, | ||
222 | -5.52212e-17 * 2, -0.313819 * 2 | ||
223 | }; | ||
224 | |||
225 | #if ARCH_MIPS | ||
226 | # include "mips/aacpsy_mips.h" | ||
227 | #endif /* ARCH_MIPS */ | ||
228 | |||
229 | /** | ||
230 | * Calculate the ABR attack threshold from the above LAME psymodel table. | ||
231 | */ | ||
232 | 25 | static float lame_calc_attack_threshold(int bitrate) | |
233 | { | ||
234 | /* Assume max bitrate to start with */ | ||
235 | 25 | int lower_range = 12, upper_range = 12; | |
236 | 25 | int lower_range_kbps = psy_abr_map[12].quality; | |
237 | 25 | int upper_range_kbps = psy_abr_map[12].quality; | |
238 | int i; | ||
239 | |||
240 | /* Determine which bitrates the value specified falls between. | ||
241 | * If the loop ends without breaking our above assumption of 320kbps was correct. | ||
242 | */ | ||
243 |
2/2✓ Branch 0 taken 210 times.
✓ Branch 1 taken 4 times.
|
214 | for (i = 1; i < 13; i++) { |
244 |
2/2✓ Branch 0 taken 21 times.
✓ Branch 1 taken 189 times.
|
210 | if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) { |
245 | 21 | upper_range = i; | |
246 | 21 | upper_range_kbps = psy_abr_map[i ].quality; | |
247 | 21 | lower_range = i - 1; | |
248 | 21 | lower_range_kbps = psy_abr_map[i - 1].quality; | |
249 | 21 | break; /* Upper range found */ | |
250 | } | ||
251 | } | ||
252 | |||
253 | /* Determine which range the value specified is closer to */ | ||
254 |
2/2✓ Branch 0 taken 21 times.
✓ Branch 1 taken 4 times.
|
25 | if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps)) |
255 | 21 | return psy_abr_map[lower_range].st_lrm; | |
256 | 4 | return psy_abr_map[upper_range].st_lrm; | |
257 | } | ||
258 | |||
259 | /** | ||
260 | * LAME psy model specific initialization | ||
261 | */ | ||
262 | 11 | static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) | |
263 | { | ||
264 | int i, j; | ||
265 | |||
266 |
2/2✓ Branch 0 taken 25 times.
✓ Branch 1 taken 11 times.
|
36 | for (i = 0; i < avctx->ch_layout.nb_channels; i++) { |
267 | 25 | AacPsyChannel *pch = &ctx->ch[i]; | |
268 | |||
269 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 25 times.
|
25 | if (avctx->flags & AV_CODEC_FLAG_QSCALE) |
270 | ✗ | pch->attack_threshold = psy_vbr_map[av_clip(avctx->global_quality / FF_QP2LAMBDA, 0, 10)].st_lrm; | |
271 | else | ||
272 | 25 | pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->ch_layout.nb_channels / 1000); | |
273 | |||
274 |
2/2✓ Branch 0 taken 600 times.
✓ Branch 1 taken 25 times.
|
625 | for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++) |
275 | 600 | pch->prev_energy_subshort[j] = 10.0f; | |
276 | } | ||
277 | 11 | } | |
278 | |||
279 | /** | ||
280 | * Calculate Bark value for given line. | ||
281 | */ | ||
282 | 704 | static av_cold float calc_bark(float f) | |
283 | { | ||
284 | 704 | return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f)); | |
285 | } | ||
286 | |||
287 | #define ATH_ADD 4 | ||
288 | /** | ||
289 | * Calculate ATH value for given frequency. | ||
290 | * Borrowed from Lame. | ||
291 | */ | ||
292 | 14341 | static av_cold float ath(float f, float add) | |
293 | { | ||
294 | 14341 | f /= 1000.0f; | |
295 | 14341 | return 3.64 * pow(f, -0.8) | |
296 | 14341 | - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4)) | |
297 | 14341 | + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7)) | |
298 | 14341 | + (0.6 + 0.04 * add) * 0.001 * f * f * f * f; | |
299 | } | ||
300 | |||
301 | 11 | static av_cold int psy_3gpp_init(FFPsyContext *ctx) { | |
302 | AacPsyContext *pctx; | ||
303 | float bark; | ||
304 | int i, j, g, start; | ||
305 | float prev, minscale, minath, minsnr, pe_min; | ||
306 |
1/2✓ Branch 0 taken 11 times.
✗ Branch 1 not taken.
|
11 | int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->ch_layout.nb_channels); |
307 | |||
308 |
5/8✓ Branch 0 taken 6 times.
✓ Branch 1 taken 5 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 5 times.
✓ Branch 4 taken 5 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 5 times.
|
11 | const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx); |
309 | 11 | const float num_bark = calc_bark((float)bandwidth); | |
310 | |||
311 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 11 times.
|
11 | if (bandwidth <= 0) |
312 | ✗ | return AVERROR(EINVAL); | |
313 | |||
314 | 11 | ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); | |
315 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 11 times.
|
11 | if (!ctx->model_priv_data) |
316 | ✗ | return AVERROR(ENOMEM); | |
317 | 11 | pctx = ctx->model_priv_data; | |
318 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 11 times.
|
11 | pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f; |
319 | |||
320 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 11 times.
|
11 | if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) { |
321 | /* Use the target average bitrate to compute spread parameters */ | ||
322 | ✗ | chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120)); | |
323 | } | ||
324 | |||
325 | 11 | pctx->chan_bitrate = chan_bitrate; | |
326 | 11 | pctx->frame_bits = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate); | |
327 | 11 | pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); | |
328 | 11 | pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); | |
329 | 11 | ctx->bitres.size = 6144 - pctx->frame_bits; | |
330 | 11 | ctx->bitres.size -= ctx->bitres.size % 8; | |
331 | 11 | pctx->fill_level = ctx->bitres.size; | |
332 | 11 | minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD); | |
333 |
2/2✓ Branch 0 taken 22 times.
✓ Branch 1 taken 11 times.
|
33 | for (j = 0; j < 2; j++) { |
334 | 22 | AacPsyCoeffs *coeffs = pctx->psy_coef[j]; | |
335 | 22 | const uint8_t *band_sizes = ctx->bands[j]; | |
336 |
2/2✓ Branch 0 taken 11 times.
✓ Branch 1 taken 11 times.
|
22 | float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f); |
337 |
2/2✓ Branch 0 taken 11 times.
✓ Branch 1 taken 11 times.
|
22 | float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate; |
338 | /* reference encoder uses 2.4% here instead of 60% like the spec says */ | ||
339 | 22 | float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark; | |
340 |
2/2✓ Branch 0 taken 11 times.
✓ Branch 1 taken 11 times.
|
22 | float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L; |
341 | /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */ | ||
342 |
3/4✓ Branch 0 taken 11 times.
✓ Branch 1 taken 11 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 11 times.
|
22 | float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1; |
343 | |||
344 | 22 | i = 0; | |
345 | 22 | prev = 0.0; | |
346 |
2/2✓ Branch 0 taken 693 times.
✓ Branch 1 taken 22 times.
|
715 | for (g = 0; g < ctx->num_bands[j]; g++) { |
347 | 693 | i += band_sizes[g]; | |
348 | 693 | bark = calc_bark((i-1) * line_to_frequency); | |
349 | 693 | coeffs[g].barks = (bark + prev) / 2.0; | |
350 | 693 | prev = bark; | |
351 | } | ||
352 |
2/2✓ Branch 0 taken 671 times.
✓ Branch 1 taken 22 times.
|
693 | for (g = 0; g < ctx->num_bands[j] - 1; g++) { |
353 | 671 | AacPsyCoeffs *coeff = &coeffs[g]; | |
354 | 671 | float bark_width = coeffs[g+1].barks - coeffs->barks; | |
355 | 671 | coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW); | |
356 | 671 | coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI); | |
357 | 671 | coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low); | |
358 | 671 | coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi); | |
359 | 671 | pe_min = bark_pe * bark_width; | |
360 | 671 | minsnr = exp2(pe_min / band_sizes[g]) - 1.5f; | |
361 | 671 | coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB); | |
362 | } | ||
363 | 22 | start = 0; | |
364 |
2/2✓ Branch 0 taken 693 times.
✓ Branch 1 taken 22 times.
|
715 | for (g = 0; g < ctx->num_bands[j]; g++) { |
365 | 693 | minscale = ath(start * line_to_frequency, ATH_ADD); | |
366 |
2/2✓ Branch 0 taken 11979 times.
✓ Branch 1 taken 693 times.
|
12672 | for (i = 1; i < band_sizes[g]; i++) |
367 |
2/2✓ Branch 1 taken 1658 times.
✓ Branch 2 taken 10321 times.
|
11979 | minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD)); |
368 | 693 | coeffs[g].ath = minscale - minath; | |
369 | 693 | start += band_sizes[g]; | |
370 | } | ||
371 | } | ||
372 | |||
373 | 11 | pctx->ch = av_calloc(ctx->avctx->ch_layout.nb_channels, sizeof(*pctx->ch)); | |
374 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 11 times.
|
11 | if (!pctx->ch) { |
375 | ✗ | av_freep(&ctx->model_priv_data); | |
376 | ✗ | return AVERROR(ENOMEM); | |
377 | } | ||
378 | |||
379 | 11 | lame_window_init(pctx, ctx->avctx); | |
380 | |||
381 | 11 | return 0; | |
382 | } | ||
383 | |||
384 | /** | ||
385 | * IIR filter used in block switching decision | ||
386 | */ | ||
387 | ✗ | static float iir_filter(int in, float state[2]) | |
388 | { | ||
389 | float ret; | ||
390 | |||
391 | ✗ | ret = 0.7548f * (in - state[0]) + 0.5095f * state[1]; | |
392 | ✗ | state[0] = in; | |
393 | ✗ | state[1] = ret; | |
394 | ✗ | return ret; | |
395 | } | ||
396 | |||
397 | /** | ||
398 | * window grouping information stored as bits (0 - new group, 1 - group continues) | ||
399 | */ | ||
400 | static const uint8_t window_grouping[9] = { | ||
401 | 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36 | ||
402 | }; | ||
403 | |||
404 | /** | ||
405 | * Tell encoder which window types to use. | ||
406 | * @see 3GPP TS26.403 5.4.1 "Blockswitching" | ||
407 | */ | ||
408 | ✗ | static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, | |
409 | const int16_t *audio, | ||
410 | const int16_t *la, | ||
411 | int channel, int prev_type) | ||
412 | { | ||
413 | int i, j; | ||
414 | ✗ | int br = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate; | |
415 | ✗ | int attack_ratio = br <= 16000 ? 18 : 10; | |
416 | ✗ | AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; | |
417 | ✗ | AacPsyChannel *pch = &pctx->ch[channel]; | |
418 | ✗ | uint8_t grouping = 0; | |
419 | ✗ | int next_type = pch->next_window_seq; | |
420 | ✗ | FFPsyWindowInfo wi = { { 0 } }; | |
421 | |||
422 | ✗ | if (la) { | |
423 | float s[8], v; | ||
424 | ✗ | int switch_to_eight = 0; | |
425 | ✗ | float sum = 0.0, sum2 = 0.0; | |
426 | ✗ | int attack_n = 0; | |
427 | ✗ | int stay_short = 0; | |
428 | ✗ | for (i = 0; i < 8; i++) { | |
429 | ✗ | for (j = 0; j < 128; j++) { | |
430 | ✗ | v = iir_filter(la[i*128+j], pch->iir_state); | |
431 | ✗ | sum += v*v; | |
432 | } | ||
433 | ✗ | s[i] = sum; | |
434 | ✗ | sum2 += sum; | |
435 | } | ||
436 | ✗ | for (i = 0; i < 8; i++) { | |
437 | ✗ | if (s[i] > pch->win_energy * attack_ratio) { | |
438 | ✗ | attack_n = i + 1; | |
439 | ✗ | switch_to_eight = 1; | |
440 | ✗ | break; | |
441 | } | ||
442 | } | ||
443 | ✗ | pch->win_energy = pch->win_energy*7/8 + sum2/64; | |
444 | |||
445 | ✗ | wi.window_type[1] = prev_type; | |
446 | ✗ | switch (prev_type) { | |
447 | ✗ | case ONLY_LONG_SEQUENCE: | |
448 | ✗ | wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; | |
449 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; | |
450 | ✗ | break; | |
451 | ✗ | case LONG_START_SEQUENCE: | |
452 | ✗ | wi.window_type[0] = EIGHT_SHORT_SEQUENCE; | |
453 | ✗ | grouping = pch->next_grouping; | |
454 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; | |
455 | ✗ | break; | |
456 | ✗ | case LONG_STOP_SEQUENCE: | |
457 | ✗ | wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; | |
458 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; | |
459 | ✗ | break; | |
460 | ✗ | case EIGHT_SHORT_SEQUENCE: | |
461 | ✗ | stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight; | |
462 | ✗ | wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; | |
463 | ✗ | grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0; | |
464 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; | |
465 | ✗ | break; | |
466 | } | ||
467 | |||
468 | ✗ | pch->next_grouping = window_grouping[attack_n]; | |
469 | ✗ | pch->next_window_seq = next_type; | |
470 | } else { | ||
471 | ✗ | for (i = 0; i < 3; i++) | |
472 | ✗ | wi.window_type[i] = prev_type; | |
473 | ✗ | grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; | |
474 | } | ||
475 | |||
476 | ✗ | wi.window_shape = 1; | |
477 | ✗ | if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { | |
478 | ✗ | wi.num_windows = 1; | |
479 | ✗ | wi.grouping[0] = 1; | |
480 | } else { | ||
481 | ✗ | int lastgrp = 0; | |
482 | ✗ | wi.num_windows = 8; | |
483 | ✗ | for (i = 0; i < 8; i++) { | |
484 | ✗ | if (!((grouping >> i) & 1)) | |
485 | ✗ | lastgrp = i; | |
486 | ✗ | wi.grouping[lastgrp]++; | |
487 | } | ||
488 | } | ||
489 | |||
490 | ✗ | return wi; | |
491 | } | ||
492 | |||
493 | /* 5.6.1.2 "Calculation of Bit Demand" */ | ||
494 | 10231 | static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, | |
495 | int short_window) | ||
496 | { | ||
497 |
2/2✓ Branch 0 taken 253 times.
✓ Branch 1 taken 9978 times.
|
10231 | const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L; |
498 |
2/2✓ Branch 0 taken 253 times.
✓ Branch 1 taken 9978 times.
|
10231 | const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L; |
499 |
2/2✓ Branch 0 taken 253 times.
✓ Branch 1 taken 9978 times.
|
10231 | const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L; |
500 |
2/2✓ Branch 0 taken 253 times.
✓ Branch 1 taken 9978 times.
|
10231 | const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L; |
501 | 10231 | const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L; | |
502 |
2/2✓ Branch 0 taken 253 times.
✓ Branch 1 taken 9978 times.
|
10231 | const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L; |
503 | float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe; | ||
504 | |||
505 | 10231 | ctx->fill_level += ctx->frame_bits - bits; | |
506 | 10231 | ctx->fill_level = av_clip(ctx->fill_level, 0, size); | |
507 | 10231 | fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high); | |
508 | 10231 | clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max); | |
509 | 10231 | bit_save = (fill_level + bitsave_add) * bitsave_slope; | |
510 | assert(bit_save <= 0.3f && bit_save >= -0.05000001f); | ||
511 | 10231 | bit_spend = (fill_level + bitspend_add) * bitspend_slope; | |
512 | assert(bit_spend <= 0.5f && bit_spend >= -0.1f); | ||
513 | /* The bit factor graph in the spec is obviously incorrect. | ||
514 | * bit_spend + ((bit_spend - bit_spend))... | ||
515 | * The reference encoder subtracts everything from 1, but also seems incorrect. | ||
516 | * 1 - bit_save + ((bit_spend + bit_save))... | ||
517 | * Hopefully below is correct. | ||
518 | */ | ||
519 | 10231 | bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min); | |
520 | /* NOTE: The reference encoder attempts to center pe max/min around the current pe. | ||
521 | * Here we do that by slowly forgetting pe.min when pe stays in a range that makes | ||
522 | * it unlikely (ie: above the mean) | ||
523 | */ | ||
524 |
2/2✓ Branch 0 taken 21 times.
✓ Branch 1 taken 10210 times.
|
10231 | ctx->pe.max = FFMAX(pe, ctx->pe.max); |
525 | 20462 | forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE) | |
526 |
2/2✓ Branch 0 taken 2778 times.
✓ Branch 1 taken 7453 times.
|
10231 | + FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1); |
527 |
2/2✓ Branch 0 taken 10135 times.
✓ Branch 1 taken 96 times.
|
10231 | ctx->pe.min = FFMIN(pe, forgetful_min_pe); |
528 | |||
529 | /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid | ||
530 | * reservoir starvation from producing zero-bit frames | ||
531 | */ | ||
532 |
6/6✓ Branch 0 taken 10217 times.
✓ Branch 1 taken 14 times.
✓ Branch 2 taken 1160 times.
✓ Branch 3 taken 9071 times.
✓ Branch 4 taken 1146 times.
✓ Branch 5 taken 14 times.
|
10231 | return FFMIN( |
533 | ctx->frame_bits * bit_factor, | ||
534 | FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8)); | ||
535 | } | ||
536 | |||
537 | 1698900 | static float calc_pe_3gpp(AacPsyBand *band) | |
538 | { | ||
539 | float pe, a; | ||
540 | |||
541 | 1698900 | band->pe = 0.0f; | |
542 | 1698900 | band->pe_const = 0.0f; | |
543 | 1698900 | band->active_lines = 0.0f; | |
544 |
2/2✓ Branch 0 taken 1650823 times.
✓ Branch 1 taken 48077 times.
|
1698900 | if (band->energy > band->thr) { |
545 | 1650823 | a = log2f(band->energy); | |
546 | 1650823 | pe = a - log2f(band->thr); | |
547 | 1650823 | band->active_lines = band->nz_lines; | |
548 |
2/2✓ Branch 0 taken 787703 times.
✓ Branch 1 taken 863120 times.
|
1650823 | if (pe < PSY_3GPP_C1) { |
549 | 787703 | pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2; | |
550 | 787703 | a = a * PSY_3GPP_C3 + PSY_3GPP_C2; | |
551 | 787703 | band->active_lines *= PSY_3GPP_C3; | |
552 | } | ||
553 | 1650823 | band->pe = pe * band->nz_lines; | |
554 | 1650823 | band->pe_const = a * band->nz_lines; | |
555 | } | ||
556 | |||
557 | 1698900 | return band->pe; | |
558 | } | ||
559 | |||
560 | 24837 | static float calc_reduction_3gpp(float a, float desired_pe, float pe, | |
561 | float active_lines) | ||
562 | { | ||
563 | float thr_avg, reduction; | ||
564 | |||
565 |
2/2✓ Branch 0 taken 26 times.
✓ Branch 1 taken 24811 times.
|
24837 | if(active_lines == 0.0) |
566 | 26 | return 0; | |
567 | |||
568 | 24811 | thr_avg = exp2f((a - pe) / (4.0f * active_lines)); | |
569 | 24811 | reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg; | |
570 | |||
571 |
2/2✓ Branch 0 taken 22629 times.
✓ Branch 1 taken 2182 times.
|
24811 | return FFMAX(reduction, 0.0f); |
572 | } | ||
573 | |||
574 | 1181642 | static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, | |
575 | float reduction) | ||
576 | { | ||
577 | 1181642 | float thr = band->thr; | |
578 | |||
579 |
2/2✓ Branch 0 taken 1154859 times.
✓ Branch 1 taken 26783 times.
|
1181642 | if (band->energy > thr) { |
580 | 1154859 | thr = sqrtf(thr); | |
581 | 1154859 | thr = sqrtf(thr) + reduction; | |
582 | 1154859 | thr *= thr; | |
583 | 1154859 | thr *= thr; | |
584 | |||
585 | /* This deviates from the 3GPP spec to match the reference encoder. | ||
586 | * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands | ||
587 | * that have hole avoidance on (active or inactive). It always reduces the | ||
588 | * threshold of bands with hole avoidance off. | ||
589 | */ | ||
590 |
4/4✓ Branch 0 taken 367101 times.
✓ Branch 1 taken 787758 times.
✓ Branch 2 taken 367032 times.
✓ Branch 3 taken 69 times.
|
1154859 | if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) { |
591 |
2/2✓ Branch 0 taken 5003 times.
✓ Branch 1 taken 362029 times.
|
367032 | thr = FFMAX(band->thr, band->energy * min_snr); |
592 | 367032 | band->avoid_holes = PSY_3GPP_AH_ACTIVE; | |
593 | } | ||
594 | } | ||
595 | |||
596 | 1181642 | return thr; | |
597 | } | ||
598 | |||
599 | #ifndef calc_thr_3gpp | ||
600 | 10231 | static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch, | |
601 | const uint8_t *band_sizes, const float *coefs, const int cutoff) | ||
602 | { | ||
603 | int i, w, g; | ||
604 | 10231 | int start = 0, wstart = 0; | |
605 |
2/2✓ Branch 0 taken 12002 times.
✓ Branch 1 taken 10231 times.
|
22233 | for (w = 0; w < wi->num_windows*16; w += 16) { |
606 | 12002 | wstart = 0; | |
607 |
2/2✓ Branch 0 taken 517258 times.
✓ Branch 1 taken 12002 times.
|
529260 | for (g = 0; g < num_bands; g++) { |
608 | 517258 | AacPsyBand *band = &pch->band[w+g]; | |
609 | |||
610 | 517258 | float form_factor = 0.0f; | |
611 | float Temp; | ||
612 | 517258 | band->energy = 0.0f; | |
613 |
2/2✓ Branch 0 taken 509507 times.
✓ Branch 1 taken 7751 times.
|
517258 | if (wstart < cutoff) { |
614 |
2/2✓ Branch 0 taken 10159392 times.
✓ Branch 1 taken 509507 times.
|
10668899 | for (i = 0; i < band_sizes[g]; i++) { |
615 | 10159392 | band->energy += coefs[start+i] * coefs[start+i]; | |
616 | 10159392 | form_factor += sqrtf(fabs(coefs[start+i])); | |
617 | } | ||
618 | } | ||
619 |
2/2✓ Branch 0 taken 498622 times.
✓ Branch 1 taken 18636 times.
|
517258 | Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0; |
620 | 517258 | band->thr = band->energy * 0.001258925f; | |
621 | 517258 | band->nz_lines = form_factor * sqrtf(Temp); | |
622 | |||
623 | 517258 | start += band_sizes[g]; | |
624 | 517258 | wstart += band_sizes[g]; | |
625 | } | ||
626 | } | ||
627 | 10231 | } | |
628 | #endif /* calc_thr_3gpp */ | ||
629 | |||
630 | #ifndef psy_hp_filter | ||
631 | 7188 | static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs) | |
632 | { | ||
633 | int i, j; | ||
634 |
2/2✓ Branch 0 taken 7360512 times.
✓ Branch 1 taken 7188 times.
|
7367700 | for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) { |
635 | float sum1, sum2; | ||
636 | 7360512 | sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2]; | |
637 | 7360512 | sum2 = 0.0; | |
638 |
2/2✓ Branch 0 taken 36802560 times.
✓ Branch 1 taken 7360512 times.
|
44163072 | for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) { |
639 | 36802560 | sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]); | |
640 | 36802560 | sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]); | |
641 | } | ||
642 | /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768. | ||
643 | * Tuning this for normalized floats would be difficult. */ | ||
644 | 7360512 | hpfsmpl[i] = (sum1 + sum2) * 32768.0f; | |
645 | } | ||
646 | 7188 | } | |
647 | #endif /* psy_hp_filter */ | ||
648 | |||
649 | /** | ||
650 | * Calculate band thresholds as suggested in 3GPP TS26.403 | ||
651 | */ | ||
652 | 10231 | static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel, | |
653 | const float *coefs, const FFPsyWindowInfo *wi) | ||
654 | { | ||
655 | 10231 | AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; | |
656 | 10231 | AacPsyChannel *pch = &pctx->ch[channel]; | |
657 | int i, w, g; | ||
658 | 10231 | float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0}; | |
659 | 10231 | float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f; | |
660 |
1/4✗ Branch 0 not taken.
✓ Branch 1 taken 10231 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
10231 | float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f); |
661 |
2/2✓ Branch 0 taken 253 times.
✓ Branch 1 taken 9978 times.
|
10231 | const int num_bands = ctx->num_bands[wi->num_windows == 8]; |
662 |
2/2✓ Branch 0 taken 253 times.
✓ Branch 1 taken 9978 times.
|
10231 | const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; |
663 | 10231 | AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; | |
664 |
2/2✓ Branch 0 taken 253 times.
✓ Branch 1 taken 9978 times.
|
10231 | const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG; |
665 |
5/8✓ Branch 0 taken 5736 times.
✓ Branch 1 taken 4495 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 4495 times.
✓ Branch 4 taken 4495 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 4495 times.
|
10231 | const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx); |
666 | 10231 | const int cutoff = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate; | |
667 | |||
668 | //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" | ||
669 | 10231 | calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff); | |
670 | |||
671 | //modify thresholds and energies - spread, threshold in quiet, pre-echo control | ||
672 |
2/2✓ Branch 0 taken 12002 times.
✓ Branch 1 taken 10231 times.
|
22233 | for (w = 0; w < wi->num_windows*16; w += 16) { |
673 | 12002 | AacPsyBand *bands = &pch->band[w]; | |
674 | |||
675 | /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */ | ||
676 | 12002 | spread_en[0] = bands[0].energy; | |
677 |
2/2✓ Branch 0 taken 505256 times.
✓ Branch 1 taken 12002 times.
|
517258 | for (g = 1; g < num_bands; g++) { |
678 |
2/2✓ Branch 0 taken 486792 times.
✓ Branch 1 taken 18464 times.
|
505256 | bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]); |
679 |
2/2✓ Branch 0 taken 487279 times.
✓ Branch 1 taken 17977 times.
|
505256 | spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]); |
680 | } | ||
681 |
2/2✓ Branch 0 taken 505256 times.
✓ Branch 1 taken 12002 times.
|
517258 | for (g = num_bands - 2; g >= 0; g--) { |
682 |
2/2✓ Branch 0 taken 489901 times.
✓ Branch 1 taken 15355 times.
|
505256 | bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]); |
683 |
2/2✓ Branch 0 taken 487650 times.
✓ Branch 1 taken 17606 times.
|
505256 | spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]); |
684 | } | ||
685 | //5.4.2.4 "Threshold in quiet" | ||
686 |
2/2✓ Branch 0 taken 517258 times.
✓ Branch 1 taken 12002 times.
|
529260 | for (g = 0; g < num_bands; g++) { |
687 | 517258 | AacPsyBand *band = &bands[g]; | |
688 | |||
689 |
2/2✓ Branch 0 taken 387885 times.
✓ Branch 1 taken 129373 times.
|
517258 | band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath); |
690 | //5.4.2.5 "Pre-echo control" | ||
691 |
6/6✓ Branch 0 taken 511525 times.
✓ Branch 1 taken 5733 times.
✓ Branch 2 taken 486731 times.
✓ Branch 3 taken 24794 times.
✓ Branch 4 taken 484869 times.
✓ Branch 5 taken 1862 times.
|
517258 | if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (!w && wi->window_type[1] == LONG_START_SEQUENCE))) |
692 |
6/6✓ Branch 0 taken 61955 times.
✓ Branch 1 taken 447708 times.
✓ Branch 2 taken 4923 times.
✓ Branch 3 taken 504740 times.
✓ Branch 4 taken 57032 times.
✓ Branch 5 taken 447708 times.
|
509663 | band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr, |
693 | PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); | ||
694 | |||
695 | /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */ | ||
696 | 517258 | pe += calc_pe_3gpp(band); | |
697 | 517258 | a += band->pe_const; | |
698 | 517258 | active_lines += band->active_lines; | |
699 | |||
700 | /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */ | ||
701 |
3/4✓ Branch 0 taken 517054 times.
✓ Branch 1 taken 204 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 517054 times.
|
517258 | if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f) |
702 | 204 | band->avoid_holes = PSY_3GPP_AH_NONE; | |
703 | else | ||
704 | 517054 | band->avoid_holes = PSY_3GPP_AH_INACTIVE; | |
705 | } | ||
706 | } | ||
707 | |||
708 | /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */ | ||
709 | 10231 | ctx->ch[channel].entropy = pe; | |
710 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10231 times.
|
10231 | if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) { |
711 | /* (2.5 * 120) achieves almost transparent rate, and we want to give | ||
712 | * ample room downwards, so we make that equivalent to QSCALE=2.4 | ||
713 | */ | ||
714 | ✗ | desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f); | |
715 | ✗ | desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe)); | |
716 | ✗ | desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping | |
717 | |||
718 | /* PE slope smoothing */ | ||
719 | ✗ | if (ctx->bitres.bits > 0) { | |
720 | ✗ | desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe)); | |
721 | ✗ | desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping | |
722 | } | ||
723 | |||
724 | ✗ | pctx->pe.max = FFMAX(pe, pctx->pe.max); | |
725 | ✗ | pctx->pe.min = FFMIN(pe, pctx->pe.min); | |
726 | } else { | ||
727 | 10231 | desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8); | |
728 | 10231 | desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); | |
729 | |||
730 | /* NOTE: PE correction is kept simple. During initial testing it had very | ||
731 | * little effect on the final bitrate. Probably a good idea to come | ||
732 | * back and do more testing later. | ||
733 | */ | ||
734 |
2/2✓ Branch 0 taken 10168 times.
✓ Branch 1 taken 63 times.
|
10231 | if (ctx->bitres.bits > 0) |
735 | 10168 | desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits), | |
736 | 0.85f, 1.15f); | ||
737 | } | ||
738 | 10231 | pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits); | |
739 | 10231 | ctx->bitres.alloc = desired_bits; | |
740 | |||
741 |
2/2✓ Branch 0 taken 10110 times.
✓ Branch 1 taken 121 times.
|
10231 | if (desired_pe < pe) { |
742 | /* 5.6.1.3.4 "First Estimation of the reduction value" */ | ||
743 |
2/2✓ Branch 0 taken 11251 times.
✓ Branch 1 taken 10110 times.
|
21361 | for (w = 0; w < wi->num_windows*16; w += 16) { |
744 | 11251 | reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines); | |
745 | 11251 | pe = 0.0f; | |
746 | 11251 | a = 0.0f; | |
747 | 11251 | active_lines = 0.0f; | |
748 |
2/2✓ Branch 0 taken 505659 times.
✓ Branch 1 taken 11251 times.
|
516910 | for (g = 0; g < num_bands; g++) { |
749 | 505659 | AacPsyBand *band = &pch->band[w+g]; | |
750 | |||
751 | 505659 | band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); | |
752 | /* recalculate PE */ | ||
753 | 505659 | pe += calc_pe_3gpp(band); | |
754 | 505659 | a += band->pe_const; | |
755 | 505659 | active_lines += band->active_lines; | |
756 | } | ||
757 | } | ||
758 | |||
759 | /* 5.6.1.3.5 "Second Estimation of the reduction value" */ | ||
760 |
2/2✓ Branch 0 taken 13586 times.
✓ Branch 1 taken 3476 times.
|
17062 | for (i = 0; i < 2; i++) { |
761 | 13586 | float pe_no_ah = 0.0f, desired_pe_no_ah; | |
762 | 13586 | active_lines = a = 0.0f; | |
763 |
2/2✓ Branch 0 taken 14727 times.
✓ Branch 1 taken 13586 times.
|
28313 | for (w = 0; w < wi->num_windows*16; w += 16) { |
764 |
2/2✓ Branch 0 taken 675983 times.
✓ Branch 1 taken 14727 times.
|
690710 | for (g = 0; g < num_bands; g++) { |
765 | 675983 | AacPsyBand *band = &pch->band[w+g]; | |
766 | |||
767 |
2/2✓ Branch 0 taken 538891 times.
✓ Branch 1 taken 137092 times.
|
675983 | if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) { |
768 | 538891 | pe_no_ah += band->pe; | |
769 | 538891 | a += band->pe_const; | |
770 | 538891 | active_lines += band->active_lines; | |
771 | } | ||
772 | } | ||
773 | } | ||
774 |
2/2✓ Branch 0 taken 13550 times.
✓ Branch 1 taken 36 times.
|
13586 | desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f); |
775 |
1/2✓ Branch 0 taken 13586 times.
✗ Branch 1 not taken.
|
13586 | if (active_lines > 0.0f) |
776 | 13586 | reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines); | |
777 | |||
778 | 13586 | pe = 0.0f; | |
779 |
2/2✓ Branch 0 taken 14727 times.
✓ Branch 1 taken 13586 times.
|
28313 | for (w = 0; w < wi->num_windows*16; w += 16) { |
780 |
2/2✓ Branch 0 taken 675983 times.
✓ Branch 1 taken 14727 times.
|
690710 | for (g = 0; g < num_bands; g++) { |
781 | 675983 | AacPsyBand *band = &pch->band[w+g]; | |
782 | |||
783 |
1/2✓ Branch 0 taken 675983 times.
✗ Branch 1 not taken.
|
675983 | if (active_lines > 0.0f) |
784 | 675983 | band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); | |
785 | 675983 | pe += calc_pe_3gpp(band); | |
786 |
1/2✓ Branch 0 taken 675983 times.
✗ Branch 1 not taken.
|
675983 | if (band->thr > 0.0f) |
787 | 675983 | band->norm_fac = band->active_lines / band->thr; | |
788 | else | ||
789 | ✗ | band->norm_fac = 0.0f; | |
790 | 675983 | norm_fac += band->norm_fac; | |
791 | } | ||
792 | } | ||
793 | 13586 | delta_pe = desired_pe - pe; | |
794 |
2/2✓ Branch 0 taken 6634 times.
✓ Branch 1 taken 6952 times.
|
13586 | if (fabs(delta_pe) > 0.05f * desired_pe) |
795 | 6634 | break; | |
796 | } | ||
797 | |||
798 |
2/2✓ Branch 0 taken 5299 times.
✓ Branch 1 taken 4811 times.
|
10110 | if (pe < 1.15f * desired_pe) { |
799 | /* 6.6.1.3.6 "Final threshold modification by linearization" */ | ||
800 |
1/2✓ Branch 0 taken 5299 times.
✗ Branch 1 not taken.
|
5299 | norm_fac = norm_fac ? 1.0f / norm_fac : 0; |
801 |
2/2✓ Branch 0 taken 5299 times.
✓ Branch 1 taken 5299 times.
|
10598 | for (w = 0; w < wi->num_windows*16; w += 16) { |
802 |
2/2✓ Branch 0 taken 259651 times.
✓ Branch 1 taken 5299 times.
|
264950 | for (g = 0; g < num_bands; g++) { |
803 | 259651 | AacPsyBand *band = &pch->band[w+g]; | |
804 | |||
805 |
2/2✓ Branch 0 taken 252879 times.
✓ Branch 1 taken 6772 times.
|
259651 | if (band->active_lines > 0.5f) { |
806 | 252879 | float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe; | |
807 | 252879 | float thr = band->thr; | |
808 | |||
809 | 252879 | thr *= exp2f(delta_sfb_pe / band->active_lines); | |
810 |
4/4✓ Branch 0 taken 23394 times.
✓ Branch 1 taken 229485 times.
✓ Branch 2 taken 66 times.
✓ Branch 3 taken 23328 times.
|
252879 | if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE) |
811 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 66 times.
|
66 | thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy); |
812 | 252879 | band->thr = thr; | |
813 | } | ||
814 | } | ||
815 | } | ||
816 | } else { | ||
817 | /* 5.6.1.3.7 "Further perceptual entropy reduction" */ | ||
818 | 4811 | g = num_bands; | |
819 |
4/4✓ Branch 0 taken 234399 times.
✓ Branch 1 taken 16 times.
✓ Branch 2 taken 229604 times.
✓ Branch 3 taken 4795 times.
|
234415 | while (pe > desired_pe && g--) { |
820 |
2/2✓ Branch 0 taken 245578 times.
✓ Branch 1 taken 229604 times.
|
475182 | for (w = 0; w < wi->num_windows*16; w+= 16) { |
821 | 245578 | AacPsyBand *band = &pch->band[w+g]; | |
822 |
4/4✓ Branch 0 taken 245434 times.
✓ Branch 1 taken 144 times.
✓ Branch 2 taken 401 times.
✓ Branch 3 taken 245033 times.
|
245578 | if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) { |
823 | 401 | coeffs[g].min_snr = PSY_SNR_1DB; | |
824 | 401 | band->thr = band->energy * PSY_SNR_1DB; | |
825 | 401 | pe += band->active_lines * 1.5f - band->pe; | |
826 | } | ||
827 | } | ||
828 | } | ||
829 | /* TODO: allow more holes (unused without mid/side) */ | ||
830 | } | ||
831 | } | ||
832 | |||
833 |
2/2✓ Branch 0 taken 12002 times.
✓ Branch 1 taken 10231 times.
|
22233 | for (w = 0; w < wi->num_windows*16; w += 16) { |
834 |
2/2✓ Branch 0 taken 517258 times.
✓ Branch 1 taken 12002 times.
|
529260 | for (g = 0; g < num_bands; g++) { |
835 | 517258 | AacPsyBand *band = &pch->band[w+g]; | |
836 | 517258 | FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g]; | |
837 | |||
838 | 517258 | psy_band->threshold = band->thr; | |
839 | 517258 | psy_band->energy = band->energy; | |
840 | 517258 | psy_band->spread = band->active_lines * 2.0f / band_sizes[g]; | |
841 | 517258 | psy_band->bits = PSY_3GPP_PE_TO_BITS(band->pe); | |
842 | } | ||
843 | } | ||
844 | |||
845 | 10231 | memcpy(pch->prev_band, pch->band, sizeof(pch->band)); | |
846 | 10231 | } | |
847 | |||
848 | 5448 | static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, | |
849 | const float **coeffs, const FFPsyWindowInfo *wi) | ||
850 | { | ||
851 | int ch; | ||
852 | 5448 | FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel); | |
853 | |||
854 |
2/2✓ Branch 0 taken 10231 times.
✓ Branch 1 taken 5448 times.
|
15679 | for (ch = 0; ch < group->num_ch; ch++) |
855 | 10231 | psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]); | |
856 | 5448 | } | |
857 | |||
858 | 11 | static av_cold void psy_3gpp_end(FFPsyContext *apc) | |
859 | { | ||
860 | 11 | AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data; | |
861 |
1/2✓ Branch 0 taken 11 times.
✗ Branch 1 not taken.
|
11 | if (pctx) |
862 | 11 | av_freep(&pctx->ch); | |
863 | 11 | av_freep(&apc->model_priv_data); | |
864 | 11 | } | |
865 | |||
866 | 7236 | static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock) | |
867 | { | ||
868 | 7236 | int blocktype = ONLY_LONG_SEQUENCE; | |
869 |
2/2✓ Branch 0 taken 7073 times.
✓ Branch 1 taken 163 times.
|
7236 | if (uselongblock) { |
870 |
2/2✓ Branch 0 taken 120 times.
✓ Branch 1 taken 6953 times.
|
7073 | if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE) |
871 | 120 | blocktype = LONG_STOP_SEQUENCE; | |
872 | } else { | ||
873 | 163 | blocktype = EIGHT_SHORT_SEQUENCE; | |
874 |
2/2✓ Branch 0 taken 119 times.
✓ Branch 1 taken 44 times.
|
163 | if (ctx->next_window_seq == ONLY_LONG_SEQUENCE) |
875 | 119 | ctx->next_window_seq = LONG_START_SEQUENCE; | |
876 |
2/2✓ Branch 0 taken 18 times.
✓ Branch 1 taken 145 times.
|
163 | if (ctx->next_window_seq == LONG_STOP_SEQUENCE) |
877 | 18 | ctx->next_window_seq = EIGHT_SHORT_SEQUENCE; | |
878 | } | ||
879 | |||
880 | 7236 | wi->window_type[0] = ctx->next_window_seq; | |
881 | 7236 | ctx->next_window_seq = blocktype; | |
882 | 7236 | } | |
883 | |||
884 | 7236 | static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio, | |
885 | const float *la, int channel, int prev_type) | ||
886 | { | ||
887 | 7236 | AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; | |
888 | 7236 | AacPsyChannel *pch = &pctx->ch[channel]; | |
889 | 7236 | int grouping = 0; | |
890 | 7236 | int uselongblock = 1; | |
891 | 7236 | int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; | |
892 | int i; | ||
893 | 7236 | FFPsyWindowInfo wi = { { 0 } }; | |
894 | |||
895 |
2/2✓ Branch 0 taken 7188 times.
✓ Branch 1 taken 48 times.
|
7236 | if (la) { |
896 | float hpfsmpl[AAC_BLOCK_SIZE_LONG]; | ||
897 | 7188 | const float *pf = hpfsmpl; | |
898 | float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; | ||
899 | float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; | ||
900 | 7188 | float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; | |
901 | 7188 | const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN); | |
902 | 7188 | int att_sum = 0; | |
903 | |||
904 | /* LAME comment: apply high pass filter of fs/4 */ | ||
905 | 7188 | psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs); | |
906 | |||
907 | /* Calculate the energies of each sub-shortblock */ | ||
908 |
2/2✓ Branch 0 taken 21564 times.
✓ Branch 1 taken 7188 times.
|
28752 | for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) { |
909 | 21564 | energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)]; | |
910 | assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0); | ||
911 | 21564 | attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)]; | |
912 | 21564 | energy_short[0] += energy_subshort[i]; | |
913 | } | ||
914 | |||
915 |
2/2✓ Branch 0 taken 172512 times.
✓ Branch 1 taken 7188 times.
|
179700 | for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) { |
916 | 172512 | const float *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS); | |
917 | 172512 | float p = 1.0f; | |
918 |
2/2✓ Branch 0 taken 7245504 times.
✓ Branch 1 taken 172512 times.
|
7418016 | for (; pf < pfe; pf++) |
919 |
2/2✓ Branch 0 taken 6407868 times.
✓ Branch 1 taken 837636 times.
|
7245504 | p = FFMAX(p, fabsf(*pf)); |
920 | 172512 | pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p; | |
921 | 172512 | energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p; | |
922 | /* NOTE: The indexes below are [i + 3 - 2] in the LAME source. | ||
923 | * Obviously the 3 and 2 have some significance, or this would be just [i + 1] | ||
924 | * (which is what we use here). What the 3 stands for is ambiguous, as it is both | ||
925 | * number of short blocks, and the number of sub-short blocks. | ||
926 | * It seems that LAME is comparing each sub-block to sub-block + 1 in the | ||
927 | * previous block. | ||
928 | */ | ||
929 |
2/2✓ Branch 0 taken 85320 times.
✓ Branch 1 taken 87192 times.
|
172512 | if (p > energy_subshort[i + 1]) |
930 | 85320 | p = p / energy_subshort[i + 1]; | |
931 |
2/2✓ Branch 0 taken 52 times.
✓ Branch 1 taken 87140 times.
|
87192 | else if (energy_subshort[i + 1] > p * 10.0f) |
932 | 52 | p = energy_subshort[i + 1] / (p * 10.0f); | |
933 | else | ||
934 | 87140 | p = 0.0; | |
935 | 172512 | attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p; | |
936 | } | ||
937 | |||
938 | /* compare energy between sub-short blocks */ | ||
939 |
2/2✓ Branch 0 taken 194076 times.
✓ Branch 1 taken 7188 times.
|
201264 | for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++) |
940 |
2/2✓ Branch 0 taken 193893 times.
✓ Branch 1 taken 183 times.
|
194076 | if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS]) |
941 |
2/2✓ Branch 0 taken 190 times.
✓ Branch 1 taken 193703 times.
|
193893 | if (attack_intensity[i] > pch->attack_threshold) |
942 | 190 | attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1; | |
943 | |||
944 | /* should have energy change between short blocks, in order to avoid periodic signals */ | ||
945 | /* Good samples to show the effect are Trumpet test songs */ | ||
946 | /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */ | ||
947 | /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */ | ||
948 |
2/2✓ Branch 0 taken 57504 times.
✓ Branch 1 taken 7188 times.
|
64692 | for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) { |
949 | 57504 | const float u = energy_short[i - 1]; | |
950 | 57504 | const float v = energy_short[i]; | |
951 |
2/2✓ Branch 0 taken 29281 times.
✓ Branch 1 taken 28223 times.
|
57504 | const float m = FFMAX(u, v); |
952 |
2/2✓ Branch 0 taken 54508 times.
✓ Branch 1 taken 2996 times.
|
57504 | if (m < 40000) { /* (2) */ |
953 |
4/4✓ Branch 0 taken 53054 times.
✓ Branch 1 taken 1454 times.
✓ Branch 2 taken 51265 times.
✓ Branch 3 taken 1789 times.
|
54508 | if (u < 1.7f * v && v < 1.7f * u) { /* (1) */ |
954 |
4/4✓ Branch 0 taken 6370 times.
✓ Branch 1 taken 44895 times.
✓ Branch 2 taken 9 times.
✓ Branch 3 taken 6361 times.
|
51265 | if (i == 1 && attacks[0] < attacks[i]) |
955 | 9 | attacks[0] = 0; | |
956 | 51265 | attacks[i] = 0; | |
957 | } | ||
958 | } | ||
959 | 57504 | att_sum += attacks[i]; | |
960 | } | ||
961 | |||
962 |
1/2✓ Branch 0 taken 7188 times.
✗ Branch 1 not taken.
|
7188 | if (attacks[0] <= pch->prev_attack) |
963 | 7188 | attacks[0] = 0; | |
964 | |||
965 | 7188 | att_sum += attacks[0]; | |
966 | /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */ | ||
967 |
4/4✓ Branch 0 taken 7174 times.
✓ Branch 1 taken 14 times.
✓ Branch 2 taken 132 times.
✓ Branch 3 taken 7042 times.
|
7188 | if (pch->prev_attack == 3 || att_sum) { |
968 | 146 | uselongblock = 0; | |
969 | |||
970 |
2/2✓ Branch 0 taken 1168 times.
✓ Branch 1 taken 146 times.
|
1314 | for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) |
971 |
3/4✓ Branch 0 taken 143 times.
✓ Branch 1 taken 1025 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 143 times.
|
1168 | if (attacks[i] && attacks[i-1]) |
972 | ✗ | attacks[i] = 0; | |
973 | } | ||
974 | } else { | ||
975 | /* We have no lookahead info, so just use same type as the previous sequence. */ | ||
976 | 48 | uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE); | |
977 | } | ||
978 | |||
979 | 7236 | lame_apply_block_type(pch, &wi, uselongblock); | |
980 | |||
981 | 7236 | wi.window_type[1] = prev_type; | |
982 |
2/2✓ Branch 0 taken 7072 times.
✓ Branch 1 taken 164 times.
|
7236 | if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
983 | |||
984 | 7072 | wi.num_windows = 1; | |
985 | 7072 | wi.grouping[0] = 1; | |
986 |
2/2✓ Branch 0 taken 119 times.
✓ Branch 1 taken 6953 times.
|
7072 | if (wi.window_type[0] == LONG_START_SEQUENCE) |
987 | 119 | wi.window_shape = 0; | |
988 | else | ||
989 | 6953 | wi.window_shape = 1; | |
990 | |||
991 | } else { | ||
992 | 164 | int lastgrp = 0; | |
993 | |||
994 | 164 | wi.num_windows = 8; | |
995 | 164 | wi.window_shape = 0; | |
996 |
2/2✓ Branch 0 taken 1312 times.
✓ Branch 1 taken 164 times.
|
1476 | for (i = 0; i < 8; i++) { |
997 |
2/2✓ Branch 0 taken 624 times.
✓ Branch 1 taken 688 times.
|
1312 | if (!((pch->next_grouping >> i) & 1)) |
998 | 624 | lastgrp = i; | |
999 | 1312 | wi.grouping[lastgrp]++; | |
1000 | } | ||
1001 | } | ||
1002 | |||
1003 | /* Determine grouping, based on the location of the first attack, and save for | ||
1004 | * the next frame. | ||
1005 | * FIXME: Move this to analysis. | ||
1006 | * TODO: Tune groupings depending on attack location | ||
1007 | * TODO: Handle more than one attack in a group | ||
1008 | */ | ||
1009 |
2/2✓ Branch 0 taken 64721 times.
✓ Branch 1 taken 7104 times.
|
71825 | for (i = 0; i < 9; i++) { |
1010 |
2/2✓ Branch 0 taken 132 times.
✓ Branch 1 taken 64589 times.
|
64721 | if (attacks[i]) { |
1011 | 132 | grouping = i; | |
1012 | 132 | break; | |
1013 | } | ||
1014 | } | ||
1015 | 7236 | pch->next_grouping = window_grouping[grouping]; | |
1016 | |||
1017 | 7236 | pch->prev_attack = attacks[8]; | |
1018 | |||
1019 | 7236 | return wi; | |
1020 | } | ||
1021 | |||
1022 | const FFPsyModel ff_aac_psy_model = | ||
1023 | { | ||
1024 | .name = "3GPP TS 26.403-inspired model", | ||
1025 | .init = psy_3gpp_init, | ||
1026 | .window = psy_lame_window, | ||
1027 | .analyze = psy_3gpp_analyze, | ||
1028 | .end = psy_3gpp_end, | ||
1029 | }; | ||
1030 |