Line | Branch | Exec | Source |
---|---|---|---|
1 | /* | ||
2 | * AAC encoder psychoacoustic model | ||
3 | * Copyright (C) 2008 Konstantin Shishkov | ||
4 | * | ||
5 | * This file is part of FFmpeg. | ||
6 | * | ||
7 | * FFmpeg is free software; you can redistribute it and/or | ||
8 | * modify it under the terms of the GNU Lesser General Public | ||
9 | * License as published by the Free Software Foundation; either | ||
10 | * version 2.1 of the License, or (at your option) any later version. | ||
11 | * | ||
12 | * FFmpeg is distributed in the hope that it will be useful, | ||
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
15 | * Lesser General Public License for more details. | ||
16 | * | ||
17 | * You should have received a copy of the GNU Lesser General Public | ||
18 | * License along with FFmpeg; if not, write to the Free Software | ||
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||
20 | */ | ||
21 | |||
22 | /** | ||
23 | * @file | ||
24 | * AAC encoder psychoacoustic model | ||
25 | */ | ||
26 | |||
27 | #include "libavutil/attributes.h" | ||
28 | #include "libavutil/ffmath.h" | ||
29 | #include "libavutil/mem.h" | ||
30 | |||
31 | #include "avcodec.h" | ||
32 | #include "aac.h" | ||
33 | #include "psymodel.h" | ||
34 | |||
35 | /*********************************** | ||
36 | * TODOs: | ||
37 | * try other bitrate controlling mechanism (maybe use ratecontrol.c?) | ||
38 | * control quality for quality-based output | ||
39 | **********************************/ | ||
40 | |||
41 | /** | ||
42 | * constants for 3GPP AAC psychoacoustic model | ||
43 | * @{ | ||
44 | */ | ||
45 | #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark) | ||
46 | #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark) | ||
47 | /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */ | ||
48 | #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f | ||
49 | /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */ | ||
50 | #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f | ||
51 | /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */ | ||
52 | #define PSY_3GPP_EN_SPREAD_HI_S 1.5f | ||
53 | /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */ | ||
54 | #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f | ||
55 | /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */ | ||
56 | #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f | ||
57 | |||
58 | #define PSY_3GPP_RPEMIN 0.01f | ||
59 | #define PSY_3GPP_RPELEV 2.0f | ||
60 | |||
61 | #define PSY_3GPP_C1 3.0f /* log2(8) */ | ||
62 | #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */ | ||
63 | #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */ | ||
64 | |||
65 | #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */ | ||
66 | #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */ | ||
67 | |||
68 | #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f | ||
69 | #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f | ||
70 | #define PSY_3GPP_SAVE_ADD_L -0.84285712f | ||
71 | #define PSY_3GPP_SAVE_ADD_S -0.75f | ||
72 | #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f | ||
73 | #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f | ||
74 | #define PSY_3GPP_SPEND_ADD_L -0.35f | ||
75 | #define PSY_3GPP_SPEND_ADD_S -0.26111111f | ||
76 | #define PSY_3GPP_CLIP_LO_L 0.2f | ||
77 | #define PSY_3GPP_CLIP_LO_S 0.2f | ||
78 | #define PSY_3GPP_CLIP_HI_L 0.95f | ||
79 | #define PSY_3GPP_CLIP_HI_S 0.75f | ||
80 | |||
81 | #define PSY_3GPP_AH_THR_LONG 0.5f | ||
82 | #define PSY_3GPP_AH_THR_SHORT 0.63f | ||
83 | |||
84 | #define PSY_PE_FORGET_SLOPE 511 | ||
85 | |||
86 | enum { | ||
87 | PSY_3GPP_AH_NONE, | ||
88 | PSY_3GPP_AH_INACTIVE, | ||
89 | PSY_3GPP_AH_ACTIVE | ||
90 | }; | ||
91 | |||
92 | #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f) | ||
93 | #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f) | ||
94 | |||
95 | /* LAME psy model constants */ | ||
96 | #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order | ||
97 | #define AAC_BLOCK_SIZE_LONG 1024 ///< long block size | ||
98 | #define AAC_BLOCK_SIZE_SHORT 128 ///< short block size | ||
99 | #define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence | ||
100 | #define PSY_LAME_NUM_SUBBLOCKS 3 ///< Number of sub-blocks in each short block | ||
101 | |||
102 | /** | ||
103 | * @} | ||
104 | */ | ||
105 | |||
106 | /** | ||
107 | * information for single band used by 3GPP TS26.403-inspired psychoacoustic model | ||
108 | */ | ||
109 | typedef struct AacPsyBand{ | ||
110 | float energy; ///< band energy | ||
111 | float thr; ///< energy threshold | ||
112 | float thr_quiet; ///< threshold in quiet | ||
113 | float nz_lines; ///< number of non-zero spectral lines | ||
114 | float active_lines; ///< number of active spectral lines | ||
115 | float pe; ///< perceptual entropy | ||
116 | float pe_const; ///< constant part of the PE calculation | ||
117 | float norm_fac; ///< normalization factor for linearization | ||
118 | int avoid_holes; ///< hole avoidance flag | ||
119 | }AacPsyBand; | ||
120 | |||
121 | /** | ||
122 | * single/pair channel context for psychoacoustic model | ||
123 | */ | ||
124 | typedef struct AacPsyChannel{ | ||
125 | AacPsyBand band[128]; ///< bands information | ||
126 | AacPsyBand prev_band[128]; ///< bands information from the previous frame | ||
127 | |||
128 | float win_energy; ///< sliding average of channel energy | ||
129 | float iir_state[2]; ///< hi-pass IIR filter state | ||
130 | uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence) | ||
131 | enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame | ||
132 | /* LAME psy model specific members */ | ||
133 | float attack_threshold; ///< attack threshold for this channel | ||
134 | float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS]; | ||
135 | int prev_attack; ///< attack value for the last short block in the previous sequence | ||
136 | }AacPsyChannel; | ||
137 | |||
138 | /** | ||
139 | * psychoacoustic model frame type-dependent coefficients | ||
140 | */ | ||
141 | typedef struct AacPsyCoeffs{ | ||
142 | float ath; ///< absolute threshold of hearing per bands | ||
143 | float barks; ///< Bark value for each spectral band in long frame | ||
144 | float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame | ||
145 | float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame | ||
146 | float min_snr; ///< minimal SNR | ||
147 | }AacPsyCoeffs; | ||
148 | |||
149 | /** | ||
150 | * 3GPP TS26.403-inspired psychoacoustic model specific data | ||
151 | */ | ||
152 | typedef struct AacPsyContext{ | ||
153 | int chan_bitrate; ///< bitrate per channel | ||
154 | int frame_bits; ///< average bits per frame | ||
155 | int fill_level; ///< bit reservoir fill level | ||
156 | struct { | ||
157 | float min; ///< minimum allowed PE for bit factor calculation | ||
158 | float max; ///< maximum allowed PE for bit factor calculation | ||
159 | float previous; ///< allowed PE of the previous frame | ||
160 | float correction; ///< PE correction factor | ||
161 | } pe; | ||
162 | AacPsyCoeffs psy_coef[2][64]; | ||
163 | AacPsyChannel *ch; | ||
164 | float global_quality; ///< normalized global quality taken from avctx | ||
165 | }AacPsyContext; | ||
166 | |||
167 | /** | ||
168 | * LAME psy model preset struct | ||
169 | */ | ||
170 | typedef struct PsyLamePreset { | ||
171 | int quality; ///< Quality to map the rest of the vaules to. | ||
172 | /* This is overloaded to be both kbps per channel in ABR mode, and | ||
173 | * requested quality in constant quality mode. | ||
174 | */ | ||
175 | float st_lrm; ///< short threshold for L, R, and M channels | ||
176 | } PsyLamePreset; | ||
177 | |||
178 | /** | ||
179 | * LAME psy model preset table for ABR | ||
180 | */ | ||
181 | static const PsyLamePreset psy_abr_map[] = { | ||
182 | /* TODO: Tuning. These were taken from LAME. */ | ||
183 | /* kbps/ch st_lrm */ | ||
184 | { 8, 6.60}, | ||
185 | { 16, 6.60}, | ||
186 | { 24, 6.60}, | ||
187 | { 32, 6.60}, | ||
188 | { 40, 6.60}, | ||
189 | { 48, 6.60}, | ||
190 | { 56, 6.60}, | ||
191 | { 64, 6.40}, | ||
192 | { 80, 6.00}, | ||
193 | { 96, 5.60}, | ||
194 | {112, 5.20}, | ||
195 | {128, 5.20}, | ||
196 | {160, 5.20} | ||
197 | }; | ||
198 | |||
199 | /** | ||
200 | * LAME psy model preset table for constant quality | ||
201 | */ | ||
202 | static const PsyLamePreset psy_vbr_map[] = { | ||
203 | /* vbr_q st_lrm */ | ||
204 | { 0, 4.20}, | ||
205 | { 1, 4.20}, | ||
206 | { 2, 4.20}, | ||
207 | { 3, 4.20}, | ||
208 | { 4, 4.20}, | ||
209 | { 5, 4.20}, | ||
210 | { 6, 4.20}, | ||
211 | { 7, 4.20}, | ||
212 | { 8, 4.20}, | ||
213 | { 9, 4.20}, | ||
214 | {10, 4.20} | ||
215 | }; | ||
216 | |||
217 | /** | ||
218 | * LAME psy model FIR coefficient table | ||
219 | */ | ||
220 | static const float psy_fir_coeffs[] = { | ||
221 | -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2, | ||
222 | -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2, | ||
223 | -5.52212e-17 * 2, -0.313819 * 2 | ||
224 | }; | ||
225 | |||
226 | /** | ||
227 | * Calculate the ABR attack threshold from the above LAME psymodel table. | ||
228 | */ | ||
229 | 23 | static float lame_calc_attack_threshold(int bitrate) | |
230 | { | ||
231 | /* Assume max bitrate to start with */ | ||
232 | 23 | int lower_range = 12, upper_range = 12; | |
233 | 23 | int lower_range_kbps = psy_abr_map[12].quality; | |
234 | 23 | int upper_range_kbps = psy_abr_map[12].quality; | |
235 | int i; | ||
236 | |||
237 | /* Determine which bitrates the value specified falls between. | ||
238 | * If the loop ends without breaking our above assumption of 320kbps was correct. | ||
239 | */ | ||
240 |
2/2✓ Branch 0 taken 194 times.
✓ Branch 1 taken 4 times.
|
198 | for (i = 1; i < 13; i++) { |
241 |
2/2✓ Branch 0 taken 19 times.
✓ Branch 1 taken 175 times.
|
194 | if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) { |
242 | 19 | upper_range = i; | |
243 | 19 | upper_range_kbps = psy_abr_map[i ].quality; | |
244 | 19 | lower_range = i - 1; | |
245 | 19 | lower_range_kbps = psy_abr_map[i - 1].quality; | |
246 | 19 | break; /* Upper range found */ | |
247 | } | ||
248 | } | ||
249 | |||
250 | /* Determine which range the value specified is closer to */ | ||
251 |
2/2✓ Branch 0 taken 19 times.
✓ Branch 1 taken 4 times.
|
23 | if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps)) |
252 | 19 | return psy_abr_map[lower_range].st_lrm; | |
253 | 4 | return psy_abr_map[upper_range].st_lrm; | |
254 | } | ||
255 | |||
256 | /** | ||
257 | * LAME psy model specific initialization | ||
258 | */ | ||
259 | 10 | static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) | |
260 | { | ||
261 | int i, j; | ||
262 | |||
263 |
2/2✓ Branch 0 taken 23 times.
✓ Branch 1 taken 10 times.
|
33 | for (i = 0; i < avctx->ch_layout.nb_channels; i++) { |
264 | 23 | AacPsyChannel *pch = &ctx->ch[i]; | |
265 | |||
266 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 23 times.
|
23 | if (avctx->flags & AV_CODEC_FLAG_QSCALE) |
267 | ✗ | pch->attack_threshold = psy_vbr_map[av_clip(avctx->global_quality / FF_QP2LAMBDA, 0, 10)].st_lrm; | |
268 | else | ||
269 | 23 | pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->ch_layout.nb_channels / 1000); | |
270 | |||
271 |
2/2✓ Branch 0 taken 552 times.
✓ Branch 1 taken 23 times.
|
575 | for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++) |
272 | 552 | pch->prev_energy_subshort[j] = 10.0f; | |
273 | } | ||
274 | 10 | } | |
275 | |||
276 | /** | ||
277 | * Calculate Bark value for given line. | ||
278 | */ | ||
279 | 640 | static av_cold float calc_bark(float f) | |
280 | { | ||
281 | 640 | return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f)); | |
282 | } | ||
283 | |||
284 | #define ATH_ADD 4 | ||
285 | /** | ||
286 | * Calculate ATH value for given frequency. | ||
287 | * Borrowed from Lame. | ||
288 | */ | ||
289 | 13036 | static av_cold float ath(float f, float add) | |
290 | { | ||
291 | 13036 | f /= 1000.0f; | |
292 | 13036 | return 3.64 * pow(f, -0.8) | |
293 | 13036 | - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4)) | |
294 | 13036 | + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7)) | |
295 | 13036 | + (0.6 + 0.04 * add) * 0.001 * f * f * f * f; | |
296 | } | ||
297 | |||
298 | 10 | static av_cold int psy_3gpp_init(FFPsyContext *ctx) { | |
299 | AacPsyContext *pctx; | ||
300 | float bark; | ||
301 | int i, j, g, start; | ||
302 | float prev, minscale, minath, minsnr, pe_min; | ||
303 |
1/2✓ Branch 0 taken 10 times.
✗ Branch 1 not taken.
|
10 | int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->ch_layout.nb_channels); |
304 | |||
305 |
5/8✓ Branch 0 taken 5 times.
✓ Branch 1 taken 5 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 5 times.
✓ Branch 4 taken 5 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 5 times.
|
10 | const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx); |
306 | 10 | const float num_bark = calc_bark((float)bandwidth); | |
307 | |||
308 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | if (bandwidth <= 0) |
309 | ✗ | return AVERROR(EINVAL); | |
310 | |||
311 | 10 | ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); | |
312 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | if (!ctx->model_priv_data) |
313 | ✗ | return AVERROR(ENOMEM); | |
314 | 10 | pctx = ctx->model_priv_data; | |
315 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f; |
316 | |||
317 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) { |
318 | /* Use the target average bitrate to compute spread parameters */ | ||
319 | ✗ | chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120)); | |
320 | } | ||
321 | |||
322 | 10 | pctx->chan_bitrate = chan_bitrate; | |
323 | 10 | pctx->frame_bits = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate); | |
324 | 10 | pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); | |
325 | 10 | pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); | |
326 | 10 | ctx->bitres.size = 6144 - pctx->frame_bits; | |
327 | 10 | ctx->bitres.size -= ctx->bitres.size % 8; | |
328 | 10 | pctx->fill_level = ctx->bitres.size; | |
329 | 10 | minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD); | |
330 |
2/2✓ Branch 0 taken 20 times.
✓ Branch 1 taken 10 times.
|
30 | for (j = 0; j < 2; j++) { |
331 | 20 | AacPsyCoeffs *coeffs = pctx->psy_coef[j]; | |
332 | 20 | const uint8_t *band_sizes = ctx->bands[j]; | |
333 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 10 times.
|
20 | float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f); |
334 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 10 times.
|
20 | float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate; |
335 | /* reference encoder uses 2.4% here instead of 60% like the spec says */ | ||
336 | 20 | float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark; | |
337 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 10 times.
|
20 | float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L; |
338 | /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */ | ||
339 |
3/4✓ Branch 0 taken 10 times.
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 10 times.
|
20 | float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1; |
340 | |||
341 | 20 | i = 0; | |
342 | 20 | prev = 0.0; | |
343 |
2/2✓ Branch 0 taken 630 times.
✓ Branch 1 taken 20 times.
|
650 | for (g = 0; g < ctx->num_bands[j]; g++) { |
344 | 630 | i += band_sizes[g]; | |
345 | 630 | bark = calc_bark((i-1) * line_to_frequency); | |
346 | 630 | coeffs[g].barks = (bark + prev) / 2.0; | |
347 | 630 | prev = bark; | |
348 | } | ||
349 |
2/2✓ Branch 0 taken 610 times.
✓ Branch 1 taken 20 times.
|
630 | for (g = 0; g < ctx->num_bands[j] - 1; g++) { |
350 | 610 | AacPsyCoeffs *coeff = &coeffs[g]; | |
351 | 610 | float bark_width = coeffs[g+1].barks - coeffs->barks; | |
352 | 610 | coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW); | |
353 | 610 | coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI); | |
354 | 610 | coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low); | |
355 | 610 | coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi); | |
356 | 610 | pe_min = bark_pe * bark_width; | |
357 | 610 | minsnr = exp2(pe_min / band_sizes[g]) - 1.5f; | |
358 | 610 | coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB); | |
359 | } | ||
360 | 20 | start = 0; | |
361 |
2/2✓ Branch 0 taken 630 times.
✓ Branch 1 taken 20 times.
|
650 | for (g = 0; g < ctx->num_bands[j]; g++) { |
362 | 630 | minscale = ath(start * line_to_frequency, ATH_ADD); | |
363 |
2/2✓ Branch 0 taken 10890 times.
✓ Branch 1 taken 630 times.
|
11520 | for (i = 1; i < band_sizes[g]; i++) |
364 |
2/2✓ Branch 1 taken 1506 times.
✓ Branch 2 taken 9384 times.
|
10890 | minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD)); |
365 | 630 | coeffs[g].ath = minscale - minath; | |
366 | 630 | start += band_sizes[g]; | |
367 | } | ||
368 | } | ||
369 | |||
370 | 10 | pctx->ch = av_calloc(ctx->avctx->ch_layout.nb_channels, sizeof(*pctx->ch)); | |
371 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | if (!pctx->ch) { |
372 | ✗ | av_freep(&ctx->model_priv_data); | |
373 | ✗ | return AVERROR(ENOMEM); | |
374 | } | ||
375 | |||
376 | 10 | lame_window_init(pctx, ctx->avctx); | |
377 | |||
378 | 10 | return 0; | |
379 | } | ||
380 | |||
381 | /** | ||
382 | * IIR filter used in block switching decision | ||
383 | */ | ||
384 | ✗ | static float iir_filter(int in, float state[2]) | |
385 | { | ||
386 | float ret; | ||
387 | |||
388 | ✗ | ret = 0.7548f * (in - state[0]) + 0.5095f * state[1]; | |
389 | ✗ | state[0] = in; | |
390 | ✗ | state[1] = ret; | |
391 | ✗ | return ret; | |
392 | } | ||
393 | |||
394 | /** | ||
395 | * window grouping information stored as bits (0 - new group, 1 - group continues) | ||
396 | */ | ||
397 | static const uint8_t window_grouping[9] = { | ||
398 | 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36 | ||
399 | }; | ||
400 | |||
401 | /** | ||
402 | * Tell encoder which window types to use. | ||
403 | * @see 3GPP TS26.403 5.4.1 "Blockswitching" | ||
404 | */ | ||
405 | ✗ | static av_unused FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, | |
406 | const int16_t *audio, | ||
407 | const int16_t *la, | ||
408 | int channel, int prev_type) | ||
409 | { | ||
410 | int i, j; | ||
411 | ✗ | int br = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate; | |
412 | ✗ | int attack_ratio = br <= 16000 ? 18 : 10; | |
413 | ✗ | AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; | |
414 | ✗ | AacPsyChannel *pch = &pctx->ch[channel]; | |
415 | ✗ | uint8_t grouping = 0; | |
416 | ✗ | int next_type = pch->next_window_seq; | |
417 | ✗ | FFPsyWindowInfo wi = { { 0 } }; | |
418 | |||
419 | ✗ | if (la) { | |
420 | float s[8], v; | ||
421 | ✗ | int switch_to_eight = 0; | |
422 | ✗ | float sum = 0.0, sum2 = 0.0; | |
423 | ✗ | int attack_n = 0; | |
424 | ✗ | int stay_short = 0; | |
425 | ✗ | for (i = 0; i < 8; i++) { | |
426 | ✗ | for (j = 0; j < 128; j++) { | |
427 | ✗ | v = iir_filter(la[i*128+j], pch->iir_state); | |
428 | ✗ | sum += v*v; | |
429 | } | ||
430 | ✗ | s[i] = sum; | |
431 | ✗ | sum2 += sum; | |
432 | } | ||
433 | ✗ | for (i = 0; i < 8; i++) { | |
434 | ✗ | if (s[i] > pch->win_energy * attack_ratio) { | |
435 | ✗ | attack_n = i + 1; | |
436 | ✗ | switch_to_eight = 1; | |
437 | ✗ | break; | |
438 | } | ||
439 | } | ||
440 | ✗ | pch->win_energy = pch->win_energy*7/8 + sum2/64; | |
441 | |||
442 | ✗ | wi.window_type[1] = prev_type; | |
443 | ✗ | switch (prev_type) { | |
444 | ✗ | case ONLY_LONG_SEQUENCE: | |
445 | ✗ | wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; | |
446 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; | |
447 | ✗ | break; | |
448 | ✗ | case LONG_START_SEQUENCE: | |
449 | ✗ | wi.window_type[0] = EIGHT_SHORT_SEQUENCE; | |
450 | ✗ | grouping = pch->next_grouping; | |
451 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; | |
452 | ✗ | break; | |
453 | ✗ | case LONG_STOP_SEQUENCE: | |
454 | ✗ | wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; | |
455 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; | |
456 | ✗ | break; | |
457 | ✗ | case EIGHT_SHORT_SEQUENCE: | |
458 | ✗ | stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight; | |
459 | ✗ | wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; | |
460 | ✗ | grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0; | |
461 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; | |
462 | ✗ | break; | |
463 | } | ||
464 | |||
465 | ✗ | pch->next_grouping = window_grouping[attack_n]; | |
466 | ✗ | pch->next_window_seq = next_type; | |
467 | } else { | ||
468 | ✗ | for (i = 0; i < 3; i++) | |
469 | ✗ | wi.window_type[i] = prev_type; | |
470 | ✗ | grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; | |
471 | } | ||
472 | |||
473 | ✗ | wi.window_shape = 1; | |
474 | ✗ | if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { | |
475 | ✗ | wi.num_windows = 1; | |
476 | ✗ | wi.grouping[0] = 1; | |
477 | } else { | ||
478 | ✗ | int lastgrp = 0; | |
479 | ✗ | wi.num_windows = 8; | |
480 | ✗ | for (i = 0; i < 8; i++) { | |
481 | ✗ | if (!((grouping >> i) & 1)) | |
482 | ✗ | lastgrp = i; | |
483 | ✗ | wi.grouping[lastgrp]++; | |
484 | } | ||
485 | } | ||
486 | |||
487 | ✗ | return wi; | |
488 | } | ||
489 | |||
490 | /* 5.6.1.2 "Calculation of Bit Demand" */ | ||
491 | 9399 | static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, | |
492 | int short_window) | ||
493 | { | ||
494 |
2/2✓ Branch 0 taken 224 times.
✓ Branch 1 taken 9175 times.
|
9399 | const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L; |
495 |
2/2✓ Branch 0 taken 224 times.
✓ Branch 1 taken 9175 times.
|
9399 | const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L; |
496 |
2/2✓ Branch 0 taken 224 times.
✓ Branch 1 taken 9175 times.
|
9399 | const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L; |
497 |
2/2✓ Branch 0 taken 224 times.
✓ Branch 1 taken 9175 times.
|
9399 | const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L; |
498 | 9399 | const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L; | |
499 |
2/2✓ Branch 0 taken 224 times.
✓ Branch 1 taken 9175 times.
|
9399 | const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L; |
500 | float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe; | ||
501 | |||
502 | 9399 | ctx->fill_level += ctx->frame_bits - bits; | |
503 | 9399 | ctx->fill_level = av_clip(ctx->fill_level, 0, size); | |
504 | 9399 | fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high); | |
505 | 9399 | clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max); | |
506 | 9399 | bit_save = (fill_level + bitsave_add) * bitsave_slope; | |
507 | assert(bit_save <= 0.3f && bit_save >= -0.05000001f); | ||
508 | 9399 | bit_spend = (fill_level + bitspend_add) * bitspend_slope; | |
509 | assert(bit_spend <= 0.5f && bit_spend >= -0.1f); | ||
510 | /* The bit factor graph in the spec is obviously incorrect. | ||
511 | * bit_spend + ((bit_spend - bit_spend))... | ||
512 | * The reference encoder subtracts everything from 1, but also seems incorrect. | ||
513 | * 1 - bit_save + ((bit_spend + bit_save))... | ||
514 | * Hopefully below is correct. | ||
515 | */ | ||
516 | 9399 | bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min); | |
517 | /* NOTE: The reference encoder attempts to center pe max/min around the current pe. | ||
518 | * Here we do that by slowly forgetting pe.min when pe stays in a range that makes | ||
519 | * it unlikely (ie: above the mean) | ||
520 | */ | ||
521 |
2/2✓ Branch 0 taken 19 times.
✓ Branch 1 taken 9380 times.
|
9399 | ctx->pe.max = FFMAX(pe, ctx->pe.max); |
522 | 18798 | forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE) | |
523 |
2/2✓ Branch 0 taken 2775 times.
✓ Branch 1 taken 6624 times.
|
9399 | + FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1); |
524 |
2/2✓ Branch 0 taken 9315 times.
✓ Branch 1 taken 84 times.
|
9399 | ctx->pe.min = FFMIN(pe, forgetful_min_pe); |
525 | |||
526 | /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid | ||
527 | * reservoir starvation from producing zero-bit frames | ||
528 | */ | ||
529 |
6/6✓ Branch 0 taken 9385 times.
✓ Branch 1 taken 14 times.
✓ Branch 2 taken 1160 times.
✓ Branch 3 taken 8239 times.
✓ Branch 4 taken 1146 times.
✓ Branch 5 taken 14 times.
|
9399 | return FFMIN( |
530 | ctx->frame_bits * bit_factor, | ||
531 | FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8)); | ||
532 | } | ||
533 | |||
534 | 1568756 | static float calc_pe_3gpp(AacPsyBand *band) | |
535 | { | ||
536 | float pe, a; | ||
537 | |||
538 | 1568756 | band->pe = 0.0f; | |
539 | 1568756 | band->pe_const = 0.0f; | |
540 | 1568756 | band->active_lines = 0.0f; | |
541 |
2/2✓ Branch 0 taken 1522192 times.
✓ Branch 1 taken 46564 times.
|
1568756 | if (band->energy > band->thr) { |
542 | 1522192 | a = log2f(band->energy); | |
543 | 1522192 | pe = a - log2f(band->thr); | |
544 | 1522192 | band->active_lines = band->nz_lines; | |
545 |
2/2✓ Branch 0 taken 729838 times.
✓ Branch 1 taken 792354 times.
|
1522192 | if (pe < PSY_3GPP_C1) { |
546 | 729838 | pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2; | |
547 | 729838 | a = a * PSY_3GPP_C3 + PSY_3GPP_C2; | |
548 | 729838 | band->active_lines *= PSY_3GPP_C3; | |
549 | } | ||
550 | 1522192 | band->pe = pe * band->nz_lines; | |
551 | 1522192 | band->pe_const = a * band->nz_lines; | |
552 | } | ||
553 | |||
554 | 1568756 | return band->pe; | |
555 | } | ||
556 | |||
557 | 22975 | static float calc_reduction_3gpp(float a, float desired_pe, float pe, | |
558 | float active_lines) | ||
559 | { | ||
560 | float thr_avg, reduction; | ||
561 | |||
562 |
2/2✓ Branch 0 taken 24 times.
✓ Branch 1 taken 22951 times.
|
22975 | if(active_lines == 0.0) |
563 | 24 | return 0; | |
564 | |||
565 | 22951 | thr_avg = exp2f((a - pe) / (4.0f * active_lines)); | |
566 | 22951 | reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg; | |
567 | |||
568 |
2/2✓ Branch 0 taken 20891 times.
✓ Branch 1 taken 2060 times.
|
22951 | return FFMAX(reduction, 0.0f); |
569 | } | ||
570 | |||
571 | 1094093 | static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, | |
572 | float reduction) | ||
573 | { | ||
574 | 1094093 | float thr = band->thr; | |
575 | |||
576 |
2/2✓ Branch 0 taken 1067422 times.
✓ Branch 1 taken 26671 times.
|
1094093 | if (band->energy > thr) { |
577 | 1067422 | thr = sqrtf(thr); | |
578 | 1067422 | thr = sqrtf(thr) + reduction; | |
579 | 1067422 | thr *= thr; | |
580 | 1067422 | thr *= thr; | |
581 | |||
582 | /* This deviates from the 3GPP spec to match the reference encoder. | ||
583 | * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands | ||
584 | * that have hole avoidance on (active or inactive). It always reduces the | ||
585 | * threshold of bands with hole avoidance off. | ||
586 | */ | ||
587 |
4/4✓ Branch 0 taken 335795 times.
✓ Branch 1 taken 731627 times.
✓ Branch 2 taken 335727 times.
✓ Branch 3 taken 68 times.
|
1067422 | if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) { |
588 |
2/2✓ Branch 0 taken 4684 times.
✓ Branch 1 taken 331043 times.
|
335727 | thr = FFMAX(band->thr, band->energy * min_snr); |
589 | 335727 | band->avoid_holes = PSY_3GPP_AH_ACTIVE; | |
590 | } | ||
591 | } | ||
592 | |||
593 | 1094093 | return thr; | |
594 | } | ||
595 | |||
596 | #ifndef calc_thr_3gpp | ||
597 | 9399 | static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch, | |
598 | const uint8_t *band_sizes, const float *coefs, const int cutoff) | ||
599 | { | ||
600 | int i, w, g; | ||
601 | 9399 | int start = 0, wstart = 0; | |
602 |
2/2✓ Branch 0 taken 10967 times.
✓ Branch 1 taken 9399 times.
|
20366 | for (w = 0; w < wi->num_windows*16; w += 16) { |
603 | 10967 | wstart = 0; | |
604 |
2/2✓ Branch 0 taken 474663 times.
✓ Branch 1 taken 10967 times.
|
485630 | for (g = 0; g < num_bands; g++) { |
605 | 474663 | AacPsyBand *band = &pch->band[w+g]; | |
606 | |||
607 | 474663 | float form_factor = 0.0f; | |
608 | float Temp; | ||
609 | 474663 | band->energy = 0.0f; | |
610 |
2/2✓ Branch 0 taken 466912 times.
✓ Branch 1 taken 7751 times.
|
474663 | if (wstart < cutoff) { |
611 |
2/2✓ Branch 0 taken 9307424 times.
✓ Branch 1 taken 466912 times.
|
9774336 | for (i = 0; i < band_sizes[g]; i++) { |
612 | 9307424 | band->energy += coefs[start+i] * coefs[start+i]; | |
613 | 9307424 | form_factor += sqrtf(fabs(coefs[start+i])); | |
614 | } | ||
615 | } | ||
616 |
2/2✓ Branch 0 taken 457427 times.
✓ Branch 1 taken 17236 times.
|
474663 | Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0; |
617 | 474663 | band->thr = band->energy * 0.001258925f; | |
618 | 474663 | band->nz_lines = form_factor * sqrtf(Temp); | |
619 | |||
620 | 474663 | start += band_sizes[g]; | |
621 | 474663 | wstart += band_sizes[g]; | |
622 | } | ||
623 | } | ||
624 | 9399 | } | |
625 | #endif /* calc_thr_3gpp */ | ||
626 | |||
627 | #ifndef psy_hp_filter | ||
628 | 6370 | static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs) | |
629 | { | ||
630 | int i, j; | ||
631 |
2/2✓ Branch 0 taken 6522880 times.
✓ Branch 1 taken 6370 times.
|
6529250 | for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) { |
632 | float sum1, sum2; | ||
633 | 6522880 | sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2]; | |
634 | 6522880 | sum2 = 0.0; | |
635 |
2/2✓ Branch 0 taken 32614400 times.
✓ Branch 1 taken 6522880 times.
|
39137280 | for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) { |
636 | 32614400 | sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]); | |
637 | 32614400 | sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]); | |
638 | } | ||
639 | /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768. | ||
640 | * Tuning this for normalized floats would be difficult. */ | ||
641 | 6522880 | hpfsmpl[i] = (sum1 + sum2) * 32768.0f; | |
642 | } | ||
643 | 6370 | } | |
644 | #endif /* psy_hp_filter */ | ||
645 | |||
646 | /** | ||
647 | * Calculate band thresholds as suggested in 3GPP TS26.403 | ||
648 | */ | ||
649 | 9399 | static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel, | |
650 | const float *coefs, const FFPsyWindowInfo *wi) | ||
651 | { | ||
652 | 9399 | AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; | |
653 | 9399 | AacPsyChannel *pch = &pctx->ch[channel]; | |
654 | int i, w, g; | ||
655 | 9399 | float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0}; | |
656 | 9399 | float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f; | |
657 |
1/4✗ Branch 0 not taken.
✓ Branch 1 taken 9399 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
9399 | float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f); |
658 |
2/2✓ Branch 0 taken 224 times.
✓ Branch 1 taken 9175 times.
|
9399 | const int num_bands = ctx->num_bands[wi->num_windows == 8]; |
659 |
2/2✓ Branch 0 taken 224 times.
✓ Branch 1 taken 9175 times.
|
9399 | const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; |
660 | 9399 | AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; | |
661 |
2/2✓ Branch 0 taken 224 times.
✓ Branch 1 taken 9175 times.
|
9399 | const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG; |
662 |
5/8✓ Branch 0 taken 4904 times.
✓ Branch 1 taken 4495 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 4495 times.
✓ Branch 4 taken 4495 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 4495 times.
|
9399 | const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx); |
663 | 9399 | const int cutoff = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate; | |
664 | |||
665 | //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" | ||
666 | 9399 | calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff); | |
667 | |||
668 | //modify thresholds and energies - spread, threshold in quiet, pre-echo control | ||
669 |
2/2✓ Branch 0 taken 10967 times.
✓ Branch 1 taken 9399 times.
|
20366 | for (w = 0; w < wi->num_windows*16; w += 16) { |
670 | 10967 | AacPsyBand *bands = &pch->band[w]; | |
671 | |||
672 | /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */ | ||
673 | 10967 | spread_en[0] = bands[0].energy; | |
674 |
2/2✓ Branch 0 taken 463696 times.
✓ Branch 1 taken 10967 times.
|
474663 | for (g = 1; g < num_bands; g++) { |
675 |
2/2✓ Branch 0 taken 446532 times.
✓ Branch 1 taken 17164 times.
|
463696 | bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]); |
676 |
2/2✓ Branch 0 taken 447019 times.
✓ Branch 1 taken 16677 times.
|
463696 | spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]); |
677 | } | ||
678 |
2/2✓ Branch 0 taken 463696 times.
✓ Branch 1 taken 10967 times.
|
474663 | for (g = num_bands - 2; g >= 0; g--) { |
679 |
2/2✓ Branch 0 taken 449647 times.
✓ Branch 1 taken 14049 times.
|
463696 | bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]); |
680 |
2/2✓ Branch 0 taken 447511 times.
✓ Branch 1 taken 16185 times.
|
463696 | spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]); |
681 | } | ||
682 | //5.4.2.4 "Threshold in quiet" | ||
683 |
2/2✓ Branch 0 taken 474663 times.
✓ Branch 1 taken 10967 times.
|
485630 | for (g = 0; g < num_bands; g++) { |
684 | 474663 | AacPsyBand *band = &bands[g]; | |
685 | |||
686 |
2/2✓ Branch 0 taken 346692 times.
✓ Branch 1 taken 127971 times.
|
474663 | band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath); |
687 | //5.4.2.5 "Pre-echo control" | ||
688 |
6/6✓ Branch 0 taken 469518 times.
✓ Branch 1 taken 5145 times.
✓ Branch 2 taken 447566 times.
✓ Branch 3 taken 21952 times.
✓ Branch 4 taken 445900 times.
✓ Branch 5 taken 1666 times.
|
474663 | if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (!w && wi->window_type[1] == LONG_START_SEQUENCE))) |
689 |
6/6✓ Branch 0 taken 53907 times.
✓ Branch 1 taken 413945 times.
✓ Branch 2 taken 4468 times.
✓ Branch 3 taken 463384 times.
✓ Branch 4 taken 49439 times.
✓ Branch 5 taken 413945 times.
|
467852 | band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr, |
690 | PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); | ||
691 | |||
692 | /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */ | ||
693 | 474663 | pe += calc_pe_3gpp(band); | |
694 | 474663 | a += band->pe_const; | |
695 | 474663 | active_lines += band->active_lines; | |
696 | |||
697 | /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */ | ||
698 |
3/4✓ Branch 0 taken 474460 times.
✓ Branch 1 taken 203 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 474460 times.
|
474663 | if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f) |
699 | 203 | band->avoid_holes = PSY_3GPP_AH_NONE; | |
700 | else | ||
701 | 474460 | band->avoid_holes = PSY_3GPP_AH_INACTIVE; | |
702 | } | ||
703 | } | ||
704 | |||
705 | /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */ | ||
706 | 9399 | ctx->ch[channel].entropy = pe; | |
707 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 9399 times.
|
9399 | if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) { |
708 | /* (2.5 * 120) achieves almost transparent rate, and we want to give | ||
709 | * ample room downwards, so we make that equivalent to QSCALE=2.4 | ||
710 | */ | ||
711 | ✗ | desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f); | |
712 | ✗ | desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe)); | |
713 | ✗ | desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping | |
714 | |||
715 | /* PE slope smoothing */ | ||
716 | ✗ | if (ctx->bitres.bits > 0) { | |
717 | ✗ | desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe)); | |
718 | ✗ | desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping | |
719 | } | ||
720 | |||
721 | ✗ | pctx->pe.max = FFMAX(pe, pctx->pe.max); | |
722 | ✗ | pctx->pe.min = FFMIN(pe, pctx->pe.min); | |
723 | } else { | ||
724 | 9399 | desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8); | |
725 | 9399 | desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); | |
726 | |||
727 | /* NOTE: PE correction is kept simple. During initial testing it had very | ||
728 | * little effect on the final bitrate. Probably a good idea to come | ||
729 | * back and do more testing later. | ||
730 | */ | ||
731 |
2/2✓ Branch 0 taken 9338 times.
✓ Branch 1 taken 61 times.
|
9399 | if (ctx->bitres.bits > 0) |
732 | 9338 | desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits), | |
733 | 0.85f, 1.15f); | ||
734 | } | ||
735 | 9399 | pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits); | |
736 | 9399 | ctx->bitres.alloc = desired_bits; | |
737 | |||
738 |
2/2✓ Branch 0 taken 9290 times.
✓ Branch 1 taken 109 times.
|
9399 | if (desired_pe < pe) { |
739 | /* 5.6.1.3.4 "First Estimation of the reduction value" */ | ||
740 |
2/2✓ Branch 0 taken 10312 times.
✓ Branch 1 taken 9290 times.
|
19602 | for (w = 0; w < wi->num_windows*16; w += 16) { |
741 | 10312 | reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines); | |
742 | 10312 | pe = 0.0f; | |
743 | 10312 | a = 0.0f; | |
744 | 10312 | active_lines = 0.0f; | |
745 |
2/2✓ Branch 0 taken 464408 times.
✓ Branch 1 taken 10312 times.
|
474720 | for (g = 0; g < num_bands; g++) { |
746 | 464408 | AacPsyBand *band = &pch->band[w+g]; | |
747 | |||
748 | 464408 | band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); | |
749 | /* recalculate PE */ | ||
750 | 464408 | pe += calc_pe_3gpp(band); | |
751 | 464408 | a += band->pe_const; | |
752 | 464408 | active_lines += band->active_lines; | |
753 | } | ||
754 | } | ||
755 | |||
756 | /* 5.6.1.3.5 "Second Estimation of the reduction value" */ | ||
757 |
2/2✓ Branch 0 taken 12663 times.
✓ Branch 1 taken 3373 times.
|
16036 | for (i = 0; i < 2; i++) { |
758 | 12663 | float pe_no_ah = 0.0f, desired_pe_no_ah; | |
759 | 12663 | active_lines = a = 0.0f; | |
760 |
2/2✓ Branch 0 taken 13685 times.
✓ Branch 1 taken 12663 times.
|
26348 | for (w = 0; w < wi->num_windows*16; w += 16) { |
761 |
2/2✓ Branch 0 taken 629685 times.
✓ Branch 1 taken 13685 times.
|
643370 | for (g = 0; g < num_bands; g++) { |
762 | 629685 | AacPsyBand *band = &pch->band[w+g]; | |
763 | |||
764 |
2/2✓ Branch 0 taken 502734 times.
✓ Branch 1 taken 126951 times.
|
629685 | if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) { |
765 | 502734 | pe_no_ah += band->pe; | |
766 | 502734 | a += band->pe_const; | |
767 | 502734 | active_lines += band->active_lines; | |
768 | } | ||
769 | } | ||
770 | } | ||
771 |
2/2✓ Branch 0 taken 12627 times.
✓ Branch 1 taken 36 times.
|
12663 | desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f); |
772 |
1/2✓ Branch 0 taken 12663 times.
✗ Branch 1 not taken.
|
12663 | if (active_lines > 0.0f) |
773 | 12663 | reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines); | |
774 | |||
775 | 12663 | pe = 0.0f; | |
776 |
2/2✓ Branch 0 taken 13685 times.
✓ Branch 1 taken 12663 times.
|
26348 | for (w = 0; w < wi->num_windows*16; w += 16) { |
777 |
2/2✓ Branch 0 taken 629685 times.
✓ Branch 1 taken 13685 times.
|
643370 | for (g = 0; g < num_bands; g++) { |
778 | 629685 | AacPsyBand *band = &pch->band[w+g]; | |
779 | |||
780 |
1/2✓ Branch 0 taken 629685 times.
✗ Branch 1 not taken.
|
629685 | if (active_lines > 0.0f) |
781 | 629685 | band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); | |
782 | 629685 | pe += calc_pe_3gpp(band); | |
783 |
1/2✓ Branch 0 taken 629685 times.
✗ Branch 1 not taken.
|
629685 | if (band->thr > 0.0f) |
784 | 629685 | band->norm_fac = band->active_lines / band->thr; | |
785 | else | ||
786 | ✗ | band->norm_fac = 0.0f; | |
787 | 629685 | norm_fac += band->norm_fac; | |
788 | } | ||
789 | } | ||
790 | 12663 | delta_pe = desired_pe - pe; | |
791 |
2/2✓ Branch 0 taken 5917 times.
✓ Branch 1 taken 6746 times.
|
12663 | if (fabs(delta_pe) > 0.05f * desired_pe) |
792 | 5917 | break; | |
793 | } | ||
794 | |||
795 |
2/2✓ Branch 0 taken 5065 times.
✓ Branch 1 taken 4225 times.
|
9290 | if (pe < 1.15f * desired_pe) { |
796 | /* 6.6.1.3.6 "Final threshold modification by linearization" */ | ||
797 |
1/2✓ Branch 0 taken 5065 times.
✗ Branch 1 not taken.
|
5065 | norm_fac = norm_fac ? 1.0f / norm_fac : 0; |
798 |
2/2✓ Branch 0 taken 5065 times.
✓ Branch 1 taken 5065 times.
|
10130 | for (w = 0; w < wi->num_windows*16; w += 16) { |
799 |
2/2✓ Branch 0 taken 248185 times.
✓ Branch 1 taken 5065 times.
|
253250 | for (g = 0; g < num_bands; g++) { |
800 | 248185 | AacPsyBand *band = &pch->band[w+g]; | |
801 | |||
802 |
2/2✓ Branch 0 taken 241414 times.
✓ Branch 1 taken 6771 times.
|
248185 | if (band->active_lines > 0.5f) { |
803 | 241414 | float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe; | |
804 | 241414 | float thr = band->thr; | |
805 | |||
806 | 241414 | thr *= exp2f(delta_sfb_pe / band->active_lines); | |
807 |
4/4✓ Branch 0 taken 23009 times.
✓ Branch 1 taken 218405 times.
✓ Branch 2 taken 66 times.
✓ Branch 3 taken 22943 times.
|
241414 | if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE) |
808 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 66 times.
|
66 | thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy); |
809 | 241414 | band->thr = thr; | |
810 | } | ||
811 | } | ||
812 | } | ||
813 | } else { | ||
814 | /* 5.6.1.3.7 "Further perceptual entropy reduction" */ | ||
815 | 4225 | g = num_bands; | |
816 |
4/4✓ Branch 0 taken 205756 times.
✓ Branch 1 taken 14 times.
✓ Branch 2 taken 201545 times.
✓ Branch 3 taken 4211 times.
|
205770 | while (pe > desired_pe && g--) { |
817 |
2/2✓ Branch 0 taken 215853 times.
✓ Branch 1 taken 201545 times.
|
417398 | for (w = 0; w < wi->num_windows*16; w+= 16) { |
818 | 215853 | AacPsyBand *band = &pch->band[w+g]; | |
819 |
4/4✓ Branch 0 taken 215709 times.
✓ Branch 1 taken 144 times.
✓ Branch 2 taken 367 times.
✓ Branch 3 taken 215342 times.
|
215853 | if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) { |
820 | 367 | coeffs[g].min_snr = PSY_SNR_1DB; | |
821 | 367 | band->thr = band->energy * PSY_SNR_1DB; | |
822 | 367 | pe += band->active_lines * 1.5f - band->pe; | |
823 | } | ||
824 | } | ||
825 | } | ||
826 | /* TODO: allow more holes (unused without mid/side) */ | ||
827 | } | ||
828 | } | ||
829 | |||
830 |
2/2✓ Branch 0 taken 10967 times.
✓ Branch 1 taken 9399 times.
|
20366 | for (w = 0; w < wi->num_windows*16; w += 16) { |
831 |
2/2✓ Branch 0 taken 474663 times.
✓ Branch 1 taken 10967 times.
|
485630 | for (g = 0; g < num_bands; g++) { |
832 | 474663 | AacPsyBand *band = &pch->band[w+g]; | |
833 | 474663 | FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g]; | |
834 | |||
835 | 474663 | psy_band->threshold = band->thr; | |
836 | 474663 | psy_band->energy = band->energy; | |
837 | 474663 | psy_band->spread = band->active_lines * 2.0f / band_sizes[g]; | |
838 | 474663 | psy_band->bits = PSY_3GPP_PE_TO_BITS(band->pe); | |
839 | } | ||
840 | } | ||
841 | |||
842 | 9399 | memcpy(pch->prev_band, pch->band, sizeof(pch->band)); | |
843 | 9399 | } | |
844 | |||
845 | 5032 | static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, | |
846 | const float **coeffs, const FFPsyWindowInfo *wi) | ||
847 | { | ||
848 | int ch; | ||
849 | 5032 | FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel); | |
850 | |||
851 |
2/2✓ Branch 0 taken 9399 times.
✓ Branch 1 taken 5032 times.
|
14431 | for (ch = 0; ch < group->num_ch; ch++) |
852 | 9399 | psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]); | |
853 | 5032 | } | |
854 | |||
855 | 10 | static av_cold void psy_3gpp_end(FFPsyContext *apc) | |
856 | { | ||
857 | 10 | AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data; | |
858 |
1/2✓ Branch 0 taken 10 times.
✗ Branch 1 not taken.
|
10 | if (pctx) |
859 | 10 | av_freep(&pctx->ch); | |
860 | 10 | av_freep(&apc->model_priv_data); | |
861 | 10 | } | |
862 | |||
863 | 6414 | static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock) | |
864 | { | ||
865 | 6414 | int blocktype = ONLY_LONG_SEQUENCE; | |
866 |
2/2✓ Branch 0 taken 6270 times.
✓ Branch 1 taken 144 times.
|
6414 | if (uselongblock) { |
867 |
2/2✓ Branch 0 taken 106 times.
✓ Branch 1 taken 6164 times.
|
6270 | if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE) |
868 | 106 | blocktype = LONG_STOP_SEQUENCE; | |
869 | } else { | ||
870 | 144 | blocktype = EIGHT_SHORT_SEQUENCE; | |
871 |
2/2✓ Branch 0 taken 105 times.
✓ Branch 1 taken 39 times.
|
144 | if (ctx->next_window_seq == ONLY_LONG_SEQUENCE) |
872 | 105 | ctx->next_window_seq = LONG_START_SEQUENCE; | |
873 |
2/2✓ Branch 0 taken 16 times.
✓ Branch 1 taken 128 times.
|
144 | if (ctx->next_window_seq == LONG_STOP_SEQUENCE) |
874 | 16 | ctx->next_window_seq = EIGHT_SHORT_SEQUENCE; | |
875 | } | ||
876 | |||
877 | 6414 | wi->window_type[0] = ctx->next_window_seq; | |
878 | 6414 | ctx->next_window_seq = blocktype; | |
879 | 6414 | } | |
880 | |||
881 | 6414 | static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio, | |
882 | const float *la, int channel, int prev_type) | ||
883 | { | ||
884 | 6414 | AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; | |
885 | 6414 | AacPsyChannel *pch = &pctx->ch[channel]; | |
886 | 6414 | int grouping = 0; | |
887 | 6414 | int uselongblock = 1; | |
888 | 6414 | int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; | |
889 | int i; | ||
890 | 6414 | FFPsyWindowInfo wi = { { 0 } }; | |
891 | |||
892 |
2/2✓ Branch 0 taken 6370 times.
✓ Branch 1 taken 44 times.
|
6414 | if (la) { |
893 | float hpfsmpl[AAC_BLOCK_SIZE_LONG]; | ||
894 | 6370 | const float *pf = hpfsmpl; | |
895 | float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; | ||
896 | float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; | ||
897 | 6370 | float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; | |
898 | 6370 | const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN); | |
899 | 6370 | int att_sum = 0; | |
900 | |||
901 | /* LAME comment: apply high pass filter of fs/4 */ | ||
902 | 6370 | psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs); | |
903 | |||
904 | /* Calculate the energies of each sub-shortblock */ | ||
905 |
2/2✓ Branch 0 taken 19110 times.
✓ Branch 1 taken 6370 times.
|
25480 | for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) { |
906 | 19110 | energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)]; | |
907 | assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)] > 0); | ||
908 | 19110 | attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 2) * PSY_LAME_NUM_SUBBLOCKS + 1)]; | |
909 | 19110 | energy_short[0] += energy_subshort[i]; | |
910 | } | ||
911 | |||
912 |
2/2✓ Branch 0 taken 152880 times.
✓ Branch 1 taken 6370 times.
|
159250 | for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) { |
913 | 152880 | const float *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS); | |
914 | 152880 | float p = 1.0f; | |
915 |
2/2✓ Branch 0 taken 6420960 times.
✓ Branch 1 taken 152880 times.
|
6573840 | for (; pf < pfe; pf++) |
916 |
2/2✓ Branch 0 taken 5673974 times.
✓ Branch 1 taken 746986 times.
|
6420960 | p = FFMAX(p, fabsf(*pf)); |
917 | 152880 | pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p; | |
918 | 152880 | energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p; | |
919 | /* NOTE: The indexes below are [i + 3 - 2] in the LAME source. | ||
920 | * Obviously the 3 and 2 have some significance, or this would be just [i + 1] | ||
921 | * (which is what we use here). What the 3 stands for is ambiguous, as it is both | ||
922 | * number of short blocks, and the number of sub-short blocks. | ||
923 | * It seems that LAME is comparing each sub-block to sub-block + 1 in the | ||
924 | * previous block. | ||
925 | */ | ||
926 |
2/2✓ Branch 0 taken 75711 times.
✓ Branch 1 taken 77169 times.
|
152880 | if (p > energy_subshort[i + 1]) |
927 | 75711 | p = p / energy_subshort[i + 1]; | |
928 |
2/2✓ Branch 0 taken 47 times.
✓ Branch 1 taken 77122 times.
|
77169 | else if (energy_subshort[i + 1] > p * 10.0f) |
929 | 47 | p = energy_subshort[i + 1] / (p * 10.0f); | |
930 | else | ||
931 | 77122 | p = 0.0; | |
932 | 152880 | attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p; | |
933 | } | ||
934 | |||
935 | /* compare energy between sub-short blocks */ | ||
936 |
2/2✓ Branch 0 taken 171990 times.
✓ Branch 1 taken 6370 times.
|
178360 | for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++) |
937 |
2/2✓ Branch 0 taken 171825 times.
✓ Branch 1 taken 165 times.
|
171990 | if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS]) |
938 |
2/2✓ Branch 0 taken 169 times.
✓ Branch 1 taken 171656 times.
|
171825 | if (attack_intensity[i] > pch->attack_threshold) |
939 | 169 | attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1; | |
940 | |||
941 | /* should have energy change between short blocks, in order to avoid periodic signals */ | ||
942 | /* Good samples to show the effect are Trumpet test songs */ | ||
943 | /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */ | ||
944 | /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */ | ||
945 |
2/2✓ Branch 0 taken 50960 times.
✓ Branch 1 taken 6370 times.
|
57330 | for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) { |
946 | 50960 | const float u = energy_short[i - 1]; | |
947 | 50960 | const float v = energy_short[i]; | |
948 |
2/2✓ Branch 0 taken 25901 times.
✓ Branch 1 taken 25059 times.
|
50960 | const float m = FFMAX(u, v); |
949 |
2/2✓ Branch 0 taken 47964 times.
✓ Branch 1 taken 2996 times.
|
50960 | if (m < 40000) { /* (2) */ |
950 |
4/4✓ Branch 0 taken 46705 times.
✓ Branch 1 taken 1259 times.
✓ Branch 2 taken 45159 times.
✓ Branch 3 taken 1546 times.
|
47964 | if (u < 1.7f * v && v < 1.7f * u) { /* (1) */ |
951 |
4/4✓ Branch 0 taken 5611 times.
✓ Branch 1 taken 39548 times.
✓ Branch 2 taken 8 times.
✓ Branch 3 taken 5603 times.
|
45159 | if (i == 1 && attacks[0] < attacks[i]) |
952 | 8 | attacks[0] = 0; | |
953 | 45159 | attacks[i] = 0; | |
954 | } | ||
955 | } | ||
956 | 50960 | att_sum += attacks[i]; | |
957 | } | ||
958 | |||
959 |
1/2✓ Branch 0 taken 6370 times.
✗ Branch 1 not taken.
|
6370 | if (attacks[0] <= pch->prev_attack) |
960 | 6370 | attacks[0] = 0; | |
961 | |||
962 | 6370 | att_sum += attacks[0]; | |
963 | /* 3 below indicates the previous attack happened in the last sub-block of the previous sequence */ | ||
964 |
4/4✓ Branch 0 taken 6358 times.
✓ Branch 1 taken 12 times.
✓ Branch 2 taken 117 times.
✓ Branch 3 taken 6241 times.
|
6370 | if (pch->prev_attack == 3 || att_sum) { |
965 | 129 | uselongblock = 0; | |
966 | |||
967 |
2/2✓ Branch 0 taken 1032 times.
✓ Branch 1 taken 129 times.
|
1161 | for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) |
968 |
3/4✓ Branch 0 taken 127 times.
✓ Branch 1 taken 905 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 127 times.
|
1032 | if (attacks[i] && attacks[i-1]) |
969 | ✗ | attacks[i] = 0; | |
970 | } | ||
971 | } else { | ||
972 | /* We have no lookahead info, so just use same type as the previous sequence. */ | ||
973 | 44 | uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE); | |
974 | } | ||
975 | |||
976 | 6414 | lame_apply_block_type(pch, &wi, uselongblock); | |
977 | |||
978 | 6414 | wi.window_type[1] = prev_type; | |
979 |
2/2✓ Branch 0 taken 6269 times.
✓ Branch 1 taken 145 times.
|
6414 | if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
980 | |||
981 | 6269 | wi.num_windows = 1; | |
982 | 6269 | wi.grouping[0] = 1; | |
983 |
2/2✓ Branch 0 taken 105 times.
✓ Branch 1 taken 6164 times.
|
6269 | if (wi.window_type[0] == LONG_START_SEQUENCE) |
984 | 105 | wi.window_shape = 0; | |
985 | else | ||
986 | 6164 | wi.window_shape = 1; | |
987 | |||
988 | } else { | ||
989 | 145 | int lastgrp = 0; | |
990 | |||
991 | 145 | wi.num_windows = 8; | |
992 | 145 | wi.window_shape = 0; | |
993 |
2/2✓ Branch 0 taken 1160 times.
✓ Branch 1 taken 145 times.
|
1305 | for (i = 0; i < 8; i++) { |
994 |
2/2✓ Branch 0 taken 552 times.
✓ Branch 1 taken 608 times.
|
1160 | if (!((pch->next_grouping >> i) & 1)) |
995 | 552 | lastgrp = i; | |
996 | 1160 | wi.grouping[lastgrp]++; | |
997 | } | ||
998 | } | ||
999 | |||
1000 | /* Determine grouping, based on the location of the first attack, and save for | ||
1001 | * the next frame. | ||
1002 | * FIXME: Move this to analysis. | ||
1003 | * TODO: Tune groupings depending on attack location | ||
1004 | * TODO: Handle more than one attack in a group | ||
1005 | */ | ||
1006 |
2/2✓ Branch 0 taken 57367 times.
✓ Branch 1 taken 6297 times.
|
63664 | for (i = 0; i < 9; i++) { |
1007 |
2/2✓ Branch 0 taken 117 times.
✓ Branch 1 taken 57250 times.
|
57367 | if (attacks[i]) { |
1008 | 117 | grouping = i; | |
1009 | 117 | break; | |
1010 | } | ||
1011 | } | ||
1012 | 6414 | pch->next_grouping = window_grouping[grouping]; | |
1013 | |||
1014 | 6414 | pch->prev_attack = attacks[8]; | |
1015 | |||
1016 | 6414 | return wi; | |
1017 | } | ||
1018 | |||
1019 | const FFPsyModel ff_aac_psy_model = | ||
1020 | { | ||
1021 | .name = "3GPP TS 26.403-inspired model", | ||
1022 | .init = psy_3gpp_init, | ||
1023 | .window = psy_lame_window, | ||
1024 | .analyze = psy_3gpp_analyze, | ||
1025 | .end = psy_3gpp_end, | ||
1026 | }; | ||
1027 |