| Line | Branch | Exec | Source |
|---|---|---|---|
| 1 | /* | ||
| 2 | * AAC encoder psychoacoustic model | ||
| 3 | * Copyright (C) 2008 Konstantin Shishkov | ||
| 4 | * | ||
| 5 | * This file is part of FFmpeg. | ||
| 6 | * | ||
| 7 | * FFmpeg is free software; you can redistribute it and/or | ||
| 8 | * modify it under the terms of the GNU Lesser General Public | ||
| 9 | * License as published by the Free Software Foundation; either | ||
| 10 | * version 2.1 of the License, or (at your option) any later version. | ||
| 11 | * | ||
| 12 | * FFmpeg is distributed in the hope that it will be useful, | ||
| 13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
| 14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
| 15 | * Lesser General Public License for more details. | ||
| 16 | * | ||
| 17 | * You should have received a copy of the GNU Lesser General Public | ||
| 18 | * License along with FFmpeg; if not, write to the Free Software | ||
| 19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||
| 20 | */ | ||
| 21 | |||
| 22 | /** | ||
| 23 | * @file | ||
| 24 | * AAC encoder psychoacoustic model | ||
| 25 | */ | ||
| 26 | |||
| 27 | #include "libavutil/attributes.h" | ||
| 28 | #include "libavutil/ffmath.h" | ||
| 29 | #include "libavutil/mem.h" | ||
| 30 | |||
| 31 | #include "avcodec.h" | ||
| 32 | #include "aac.h" | ||
| 33 | #include "psymodel.h" | ||
| 34 | |||
| 35 | /*********************************** | ||
| 36 | * TODOs: | ||
| 37 | * try other bitrate controlling mechanism (maybe use ratecontrol.c?) | ||
| 38 | * control quality for quality-based output | ||
| 39 | **********************************/ | ||
| 40 | |||
| 41 | /** | ||
| 42 | * constants for 3GPP AAC psychoacoustic model | ||
| 43 | * @{ | ||
| 44 | */ | ||
| 45 | #define PSY_3GPP_THR_SPREAD_HI 1.5f // spreading factor for low-to-hi threshold spreading (15 dB/Bark) | ||
| 46 | #define PSY_3GPP_THR_SPREAD_LOW 3.0f // spreading factor for hi-to-low threshold spreading (30 dB/Bark) | ||
| 47 | /* spreading factor for low-to-hi energy spreading, long block, > 22kbps/channel (20dB/Bark) */ | ||
| 48 | #define PSY_3GPP_EN_SPREAD_HI_L1 2.0f | ||
| 49 | /* spreading factor for low-to-hi energy spreading, long block, <= 22kbps/channel (15dB/Bark) */ | ||
| 50 | #define PSY_3GPP_EN_SPREAD_HI_L2 1.5f | ||
| 51 | /* spreading factor for low-to-hi energy spreading, short block (15 dB/Bark) */ | ||
| 52 | #define PSY_3GPP_EN_SPREAD_HI_S 1.5f | ||
| 53 | /* spreading factor for hi-to-low energy spreading, long block (30dB/Bark) */ | ||
| 54 | #define PSY_3GPP_EN_SPREAD_LOW_L 3.0f | ||
| 55 | /* spreading factor for hi-to-low energy spreading, short block (20dB/Bark) */ | ||
| 56 | #define PSY_3GPP_EN_SPREAD_LOW_S 2.0f | ||
| 57 | |||
| 58 | #define PSY_3GPP_RPEMIN 0.01f | ||
| 59 | #define PSY_3GPP_RPELEV 2.0f | ||
| 60 | |||
| 61 | #define PSY_3GPP_C1 3.0f /* log2(8) */ | ||
| 62 | #define PSY_3GPP_C2 1.3219281f /* log2(2.5) */ | ||
| 63 | #define PSY_3GPP_C3 0.55935729f /* 1 - C2 / C1 */ | ||
| 64 | |||
| 65 | #define PSY_SNR_1DB 7.9432821e-1f /* -1dB */ | ||
| 66 | #define PSY_SNR_25DB 3.1622776e-3f /* -25dB */ | ||
| 67 | |||
| 68 | #define PSY_3GPP_SAVE_SLOPE_L -0.46666667f | ||
| 69 | #define PSY_3GPP_SAVE_SLOPE_S -0.36363637f | ||
| 70 | #define PSY_3GPP_SAVE_ADD_L -0.84285712f | ||
| 71 | #define PSY_3GPP_SAVE_ADD_S -0.75f | ||
| 72 | #define PSY_3GPP_SPEND_SLOPE_L 0.66666669f | ||
| 73 | #define PSY_3GPP_SPEND_SLOPE_S 0.81818181f | ||
| 74 | #define PSY_3GPP_SPEND_ADD_L -0.35f | ||
| 75 | #define PSY_3GPP_SPEND_ADD_S -0.26111111f | ||
| 76 | #define PSY_3GPP_CLIP_LO_L 0.2f | ||
| 77 | #define PSY_3GPP_CLIP_LO_S 0.2f | ||
| 78 | #define PSY_3GPP_CLIP_HI_L 0.95f | ||
| 79 | #define PSY_3GPP_CLIP_HI_S 0.75f | ||
| 80 | |||
| 81 | #define PSY_3GPP_AH_THR_LONG 0.5f | ||
| 82 | #define PSY_3GPP_AH_THR_SHORT 0.63f | ||
| 83 | |||
| 84 | #define PSY_PE_FORGET_SLOPE 511 | ||
| 85 | |||
| 86 | enum { | ||
| 87 | PSY_3GPP_AH_NONE, | ||
| 88 | PSY_3GPP_AH_INACTIVE, | ||
| 89 | PSY_3GPP_AH_ACTIVE | ||
| 90 | }; | ||
| 91 | |||
| 92 | #define PSY_3GPP_BITS_TO_PE(bits) ((bits) * 1.18f) | ||
| 93 | #define PSY_3GPP_PE_TO_BITS(bits) ((bits) / 1.18f) | ||
| 94 | |||
| 95 | /* LAME psy model constants */ | ||
| 96 | #define PSY_LAME_FIR_LEN 21 ///< LAME psy model FIR order | ||
| 97 | #define AAC_BLOCK_SIZE_LONG 1024 ///< long block size | ||
| 98 | #define AAC_BLOCK_SIZE_SHORT 128 ///< short block size | ||
| 99 | #define AAC_NUM_BLOCKS_SHORT 8 ///< number of blocks in a short sequence | ||
| 100 | #define PSY_LAME_NUM_SUBBLOCKS 2 ///< Number of sub-blocks in each short block | ||
| 101 | |||
| 102 | /** | ||
| 103 | * @} | ||
| 104 | */ | ||
| 105 | |||
| 106 | /** | ||
| 107 | * information for single band used by 3GPP TS26.403-inspired psychoacoustic model | ||
| 108 | */ | ||
| 109 | typedef struct AacPsyBand{ | ||
| 110 | float energy; ///< band energy | ||
| 111 | float thr; ///< energy threshold | ||
| 112 | float thr_quiet; ///< threshold in quiet | ||
| 113 | float nz_lines; ///< number of non-zero spectral lines | ||
| 114 | float active_lines; ///< number of active spectral lines | ||
| 115 | float pe; ///< perceptual entropy | ||
| 116 | float pe_const; ///< constant part of the PE calculation | ||
| 117 | float norm_fac; ///< normalization factor for linearization | ||
| 118 | int avoid_holes; ///< hole avoidance flag | ||
| 119 | }AacPsyBand; | ||
| 120 | |||
| 121 | /** | ||
| 122 | * single/pair channel context for psychoacoustic model | ||
| 123 | */ | ||
| 124 | typedef struct AacPsyChannel{ | ||
| 125 | AacPsyBand band[128]; ///< bands information | ||
| 126 | AacPsyBand prev_band[128]; ///< bands information from the previous frame | ||
| 127 | |||
| 128 | float win_energy; ///< sliding average of channel energy | ||
| 129 | float iir_state[2]; ///< hi-pass IIR filter state | ||
| 130 | uint8_t next_grouping; ///< stored grouping scheme for the next frame (in case of 8 short window sequence) | ||
| 131 | enum WindowSequence next_window_seq; ///< window sequence to be used in the next frame | ||
| 132 | /* LAME psy model specific members */ | ||
| 133 | float attack_threshold; ///< attack threshold for this channel | ||
| 134 | float prev_energy_subshort[AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS]; | ||
| 135 | int prev_attack; ///< attack value for the last short block in the previous sequence | ||
| 136 | int next_attack0_zero; ///< whether attack[0] of the next frame is zero | ||
| 137 | }AacPsyChannel; | ||
| 138 | |||
| 139 | /** | ||
| 140 | * psychoacoustic model frame type-dependent coefficients | ||
| 141 | */ | ||
| 142 | typedef struct AacPsyCoeffs{ | ||
| 143 | float ath; ///< absolute threshold of hearing per bands | ||
| 144 | float barks; ///< Bark value for each spectral band in long frame | ||
| 145 | float spread_low[2]; ///< spreading factor for low-to-high threshold spreading in long frame | ||
| 146 | float spread_hi [2]; ///< spreading factor for high-to-low threshold spreading in long frame | ||
| 147 | float min_snr; ///< minimal SNR | ||
| 148 | }AacPsyCoeffs; | ||
| 149 | |||
| 150 | /** | ||
| 151 | * 3GPP TS26.403-inspired psychoacoustic model specific data | ||
| 152 | */ | ||
| 153 | typedef struct AacPsyContext{ | ||
| 154 | int chan_bitrate; ///< bitrate per channel | ||
| 155 | int frame_bits; ///< average bits per frame | ||
| 156 | int fill_level; ///< bit reservoir fill level | ||
| 157 | struct { | ||
| 158 | float min; ///< minimum allowed PE for bit factor calculation | ||
| 159 | float max; ///< maximum allowed PE for bit factor calculation | ||
| 160 | float previous; ///< allowed PE of the previous frame | ||
| 161 | float correction; ///< PE correction factor | ||
| 162 | } pe; | ||
| 163 | AacPsyCoeffs psy_coef[2][64]; | ||
| 164 | AacPsyChannel *ch; | ||
| 165 | float global_quality; ///< normalized global quality taken from avctx | ||
| 166 | }AacPsyContext; | ||
| 167 | |||
| 168 | /** | ||
| 169 | * LAME psy model preset struct | ||
| 170 | */ | ||
| 171 | typedef struct PsyLamePreset { | ||
| 172 | int quality; ///< Quality to map the rest of the values to. | ||
| 173 | /* This is overloaded to be both kbps per channel in ABR mode, and | ||
| 174 | * requested quality in constant quality mode. | ||
| 175 | */ | ||
| 176 | float st_lrm; ///< short threshold for L, R, and M channels | ||
| 177 | } PsyLamePreset; | ||
| 178 | |||
| 179 | /** | ||
| 180 | * LAME psy model preset table for ABR | ||
| 181 | */ | ||
| 182 | static const PsyLamePreset psy_abr_map[] = { | ||
| 183 | /* TODO: Tuning. These were taken from LAME. */ | ||
| 184 | /* kbps/ch st_lrm */ | ||
| 185 | { 8, 7.60}, | ||
| 186 | { 16, 7.60}, | ||
| 187 | { 24, 7.60}, | ||
| 188 | { 32, 7.60}, | ||
| 189 | { 40, 7.60}, | ||
| 190 | { 48, 7.60}, | ||
| 191 | { 56, 7.60}, | ||
| 192 | { 64, 7.40}, | ||
| 193 | { 80, 7.00}, | ||
| 194 | { 96, 6.60}, | ||
| 195 | {112, 6.20}, | ||
| 196 | {128, 6.20}, | ||
| 197 | {160, 6.20} | ||
| 198 | }; | ||
| 199 | |||
| 200 | /** | ||
| 201 | * LAME psy model preset table for constant quality | ||
| 202 | */ | ||
| 203 | static const PsyLamePreset psy_vbr_map[] = { | ||
| 204 | /* vbr_q st_lrm */ | ||
| 205 | { 0, 4.20}, | ||
| 206 | { 1, 4.20}, | ||
| 207 | { 2, 4.20}, | ||
| 208 | { 3, 4.20}, | ||
| 209 | { 4, 4.20}, | ||
| 210 | { 5, 4.20}, | ||
| 211 | { 6, 4.20}, | ||
| 212 | { 7, 4.20}, | ||
| 213 | { 8, 4.20}, | ||
| 214 | { 9, 4.20}, | ||
| 215 | {10, 4.20} | ||
| 216 | }; | ||
| 217 | |||
| 218 | /** | ||
| 219 | * LAME psy model FIR coefficient table | ||
| 220 | */ | ||
| 221 | static const float psy_fir_coeffs[] = { | ||
| 222 | -8.65163e-18 * 2, -0.00851586 * 2, -6.74764e-18 * 2, 0.0209036 * 2, | ||
| 223 | -3.36639e-17 * 2, -0.0438162 * 2, -1.54175e-17 * 2, 0.0931738 * 2, | ||
| 224 | -5.52212e-17 * 2, -0.313819 * 2 | ||
| 225 | }; | ||
| 226 | |||
| 227 | /** | ||
| 228 | * Calculate the ABR attack threshold from the above LAME psymodel table. | ||
| 229 | */ | ||
| 230 | 23 | static float lame_calc_attack_threshold(int bitrate) | |
| 231 | { | ||
| 232 | /* Assume max bitrate to start with */ | ||
| 233 | 23 | int lower_range = 12, upper_range = 12; | |
| 234 | 23 | int lower_range_kbps = psy_abr_map[12].quality; | |
| 235 | 23 | int upper_range_kbps = psy_abr_map[12].quality; | |
| 236 | int i; | ||
| 237 | |||
| 238 | /* Determine which bitrates the value specified falls between. | ||
| 239 | * If the loop ends without breaking our above assumption of 320kbps was correct. | ||
| 240 | */ | ||
| 241 |
2/2✓ Branch 0 taken 194 times.
✓ Branch 1 taken 4 times.
|
198 | for (i = 1; i < 13; i++) { |
| 242 |
2/2✓ Branch 0 taken 19 times.
✓ Branch 1 taken 175 times.
|
194 | if (FFMAX(bitrate, psy_abr_map[i].quality) != bitrate) { |
| 243 | 19 | upper_range = i; | |
| 244 | 19 | upper_range_kbps = psy_abr_map[i ].quality; | |
| 245 | 19 | lower_range = i - 1; | |
| 246 | 19 | lower_range_kbps = psy_abr_map[i - 1].quality; | |
| 247 | 19 | break; /* Upper range found */ | |
| 248 | } | ||
| 249 | } | ||
| 250 | |||
| 251 | /* Determine which range the value specified is closer to */ | ||
| 252 |
2/2✓ Branch 0 taken 19 times.
✓ Branch 1 taken 4 times.
|
23 | if ((upper_range_kbps - bitrate) > (bitrate - lower_range_kbps)) |
| 253 | 19 | return psy_abr_map[lower_range].st_lrm; | |
| 254 | 4 | return psy_abr_map[upper_range].st_lrm; | |
| 255 | } | ||
| 256 | |||
| 257 | /** | ||
| 258 | * LAME psy model specific initialization | ||
| 259 | */ | ||
| 260 | 10 | static av_cold void lame_window_init(AacPsyContext *ctx, AVCodecContext *avctx) | |
| 261 | { | ||
| 262 | int i, j; | ||
| 263 | |||
| 264 |
2/2✓ Branch 0 taken 23 times.
✓ Branch 1 taken 10 times.
|
33 | for (i = 0; i < avctx->ch_layout.nb_channels; i++) { |
| 265 | 23 | AacPsyChannel *pch = &ctx->ch[i]; | |
| 266 | |||
| 267 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 23 times.
|
23 | if (avctx->flags & AV_CODEC_FLAG_QSCALE) |
| 268 | ✗ | pch->attack_threshold = psy_vbr_map[av_clip(avctx->global_quality / FF_QP2LAMBDA, 0, 10)].st_lrm; | |
| 269 | else | ||
| 270 | 23 | pch->attack_threshold = lame_calc_attack_threshold(avctx->bit_rate / avctx->ch_layout.nb_channels / 1000); | |
| 271 | |||
| 272 |
2/2✓ Branch 0 taken 368 times.
✓ Branch 1 taken 23 times.
|
391 | for (j = 0; j < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; j++) |
| 273 | 368 | pch->prev_energy_subshort[j] = 10.0f; | |
| 274 | } | ||
| 275 | 10 | } | |
| 276 | |||
| 277 | /** | ||
| 278 | * Calculate Bark value for given line. | ||
| 279 | */ | ||
| 280 | 640 | static av_cold float calc_bark(float f) | |
| 281 | { | ||
| 282 | 640 | return 13.3f * atanf(0.00076f * f) + 3.5f * atanf((f / 7500.0f) * (f / 7500.0f)); | |
| 283 | } | ||
| 284 | |||
| 285 | #define ATH_ADD 4 | ||
| 286 | /** | ||
| 287 | * Calculate ATH value for given frequency. | ||
| 288 | * Borrowed from Lame. | ||
| 289 | */ | ||
| 290 | 13036 | static av_cold float ath(float f, float add) | |
| 291 | { | ||
| 292 | 13036 | f /= 1000.0f; | |
| 293 | 13036 | return 3.64 * pow(f, -0.8) | |
| 294 | 13036 | - 6.8 * exp(-0.6 * (f - 3.4) * (f - 3.4)) | |
| 295 | 13036 | + 6.0 * exp(-0.15 * (f - 8.7) * (f - 8.7)) | |
| 296 | 13036 | + (0.6 + 0.04 * add) * 0.001 * f * f * f * f; | |
| 297 | } | ||
| 298 | |||
| 299 | 10 | static av_cold int psy_3gpp_init(FFPsyContext *ctx) { | |
| 300 | AacPsyContext *pctx; | ||
| 301 | float bark; | ||
| 302 | int i, j, g, start; | ||
| 303 | float prev, minscale, minath, minsnr, pe_min; | ||
| 304 |
1/2✓ Branch 0 taken 10 times.
✗ Branch 1 not taken.
|
10 | int chan_bitrate = ctx->avctx->bit_rate / ((ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) ? 2.0f : ctx->avctx->ch_layout.nb_channels); |
| 305 | |||
| 306 |
5/8✓ Branch 0 taken 5 times.
✓ Branch 1 taken 5 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 5 times.
✓ Branch 4 taken 5 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 5 times.
|
10 | const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx); |
| 307 | 10 | const float num_bark = calc_bark((float)bandwidth); | |
| 308 | |||
| 309 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | if (bandwidth <= 0) |
| 310 | ✗ | return AVERROR(EINVAL); | |
| 311 | |||
| 312 | 10 | ctx->model_priv_data = av_mallocz(sizeof(AacPsyContext)); | |
| 313 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | if (!ctx->model_priv_data) |
| 314 | ✗ | return AVERROR(ENOMEM); | |
| 315 | 10 | pctx = ctx->model_priv_data; | |
| 316 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | pctx->global_quality = (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) * 0.01f; |
| 317 | |||
| 318 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) { |
| 319 | /* Use the target average bitrate to compute spread parameters */ | ||
| 320 | ✗ | chan_bitrate = (int)(chan_bitrate / 120.0 * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120)); | |
| 321 | } | ||
| 322 | |||
| 323 | 10 | pctx->chan_bitrate = chan_bitrate; | |
| 324 | 10 | pctx->frame_bits = FFMIN(2560, chan_bitrate * AAC_BLOCK_SIZE_LONG / ctx->avctx->sample_rate); | |
| 325 | 10 | pctx->pe.min = 8.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); | |
| 326 | 10 | pctx->pe.max = 12.0f * AAC_BLOCK_SIZE_LONG * bandwidth / (ctx->avctx->sample_rate * 2.0f); | |
| 327 | 10 | ctx->bitres.size = 6144 - pctx->frame_bits; | |
| 328 | 10 | ctx->bitres.size -= ctx->bitres.size % 8; | |
| 329 | 10 | pctx->fill_level = ctx->bitres.size; | |
| 330 | 10 | minath = ath(3410 - 0.733 * ATH_ADD, ATH_ADD); | |
| 331 |
2/2✓ Branch 0 taken 20 times.
✓ Branch 1 taken 10 times.
|
30 | for (j = 0; j < 2; j++) { |
| 332 | 20 | AacPsyCoeffs *coeffs = pctx->psy_coef[j]; | |
| 333 | 20 | const uint8_t *band_sizes = ctx->bands[j]; | |
| 334 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 10 times.
|
20 | float line_to_frequency = ctx->avctx->sample_rate / (j ? 256.f : 2048.0f); |
| 335 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 10 times.
|
20 | float avg_chan_bits = chan_bitrate * (j ? 128.0f : 1024.0f) / ctx->avctx->sample_rate; |
| 336 | /* reference encoder uses 2.4% here instead of 60% like the spec says */ | ||
| 337 | 20 | float bark_pe = 0.024f * PSY_3GPP_BITS_TO_PE(avg_chan_bits) / num_bark; | |
| 338 |
2/2✓ Branch 0 taken 10 times.
✓ Branch 1 taken 10 times.
|
20 | float en_spread_low = j ? PSY_3GPP_EN_SPREAD_LOW_S : PSY_3GPP_EN_SPREAD_LOW_L; |
| 339 | /* High energy spreading for long blocks <= 22kbps/channel and short blocks are the same. */ | ||
| 340 |
3/4✓ Branch 0 taken 10 times.
✓ Branch 1 taken 10 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 10 times.
|
20 | float en_spread_hi = (j || (chan_bitrate <= 22.0f)) ? PSY_3GPP_EN_SPREAD_HI_S : PSY_3GPP_EN_SPREAD_HI_L1; |
| 341 | |||
| 342 | 20 | i = 0; | |
| 343 | 20 | prev = 0.0; | |
| 344 |
2/2✓ Branch 0 taken 630 times.
✓ Branch 1 taken 20 times.
|
650 | for (g = 0; g < ctx->num_bands[j]; g++) { |
| 345 | 630 | i += band_sizes[g]; | |
| 346 | 630 | bark = calc_bark((i-1) * line_to_frequency); | |
| 347 | 630 | coeffs[g].barks = (bark + prev) / 2.0; | |
| 348 | 630 | prev = bark; | |
| 349 | } | ||
| 350 |
2/2✓ Branch 0 taken 610 times.
✓ Branch 1 taken 20 times.
|
630 | for (g = 0; g < ctx->num_bands[j] - 1; g++) { |
| 351 | 610 | AacPsyCoeffs *coeff = &coeffs[g]; | |
| 352 | 610 | float bark_width = coeffs[g+1].barks - coeffs->barks; | |
| 353 | 610 | coeff->spread_low[0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_LOW); | |
| 354 | 610 | coeff->spread_hi [0] = ff_exp10(-bark_width * PSY_3GPP_THR_SPREAD_HI); | |
| 355 | 610 | coeff->spread_low[1] = ff_exp10(-bark_width * en_spread_low); | |
| 356 | 610 | coeff->spread_hi [1] = ff_exp10(-bark_width * en_spread_hi); | |
| 357 | 610 | pe_min = bark_pe * bark_width; | |
| 358 | 610 | minsnr = exp2(pe_min / band_sizes[g]) - 1.5f; | |
| 359 | 610 | coeff->min_snr = av_clipf(1.0f / minsnr, PSY_SNR_25DB, PSY_SNR_1DB); | |
| 360 | } | ||
| 361 | 20 | start = 0; | |
| 362 |
2/2✓ Branch 0 taken 630 times.
✓ Branch 1 taken 20 times.
|
650 | for (g = 0; g < ctx->num_bands[j]; g++) { |
| 363 | 630 | minscale = ath(start * line_to_frequency, ATH_ADD); | |
| 364 |
2/2✓ Branch 0 taken 10890 times.
✓ Branch 1 taken 630 times.
|
11520 | for (i = 1; i < band_sizes[g]; i++) |
| 365 |
2/2✓ Branch 1 taken 1506 times.
✓ Branch 2 taken 9384 times.
|
10890 | minscale = FFMIN(minscale, ath((start + i) * line_to_frequency, ATH_ADD)); |
| 366 | 630 | coeffs[g].ath = minscale - minath; | |
| 367 | 630 | start += band_sizes[g]; | |
| 368 | } | ||
| 369 | } | ||
| 370 | |||
| 371 | 10 | pctx->ch = av_calloc(ctx->avctx->ch_layout.nb_channels, sizeof(*pctx->ch)); | |
| 372 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 10 times.
|
10 | if (!pctx->ch) { |
| 373 | ✗ | av_freep(&ctx->model_priv_data); | |
| 374 | ✗ | return AVERROR(ENOMEM); | |
| 375 | } | ||
| 376 | |||
| 377 | 10 | lame_window_init(pctx, ctx->avctx); | |
| 378 | |||
| 379 | 10 | return 0; | |
| 380 | } | ||
| 381 | |||
| 382 | /** | ||
| 383 | * IIR filter used in block switching decision | ||
| 384 | */ | ||
| 385 | ✗ | static float iir_filter(int in, float state[2]) | |
| 386 | { | ||
| 387 | float ret; | ||
| 388 | |||
| 389 | ✗ | ret = 0.7548f * (in - state[0]) + 0.5095f * state[1]; | |
| 390 | ✗ | state[0] = in; | |
| 391 | ✗ | state[1] = ret; | |
| 392 | ✗ | return ret; | |
| 393 | } | ||
| 394 | |||
| 395 | /** | ||
| 396 | * window grouping information stored as bits (0 - new group, 1 - group continues) | ||
| 397 | */ | ||
| 398 | static const uint8_t window_grouping[9] = { | ||
| 399 | 0xB6, 0x6C, 0xD8, 0xB2, 0x66, 0xC6, 0x96, 0x36, 0x36 | ||
| 400 | }; | ||
| 401 | |||
| 402 | /** | ||
| 403 | * Tell encoder which window types to use. | ||
| 404 | * @see 3GPP TS26.403 5.4.1 "Blockswitching" | ||
| 405 | */ | ||
| 406 | ✗ | av_unused static FFPsyWindowInfo psy_3gpp_window(FFPsyContext *ctx, | |
| 407 | const int16_t *audio, | ||
| 408 | const int16_t *la, | ||
| 409 | int channel, int prev_type) | ||
| 410 | { | ||
| 411 | int i, j; | ||
| 412 | ✗ | int br = ((AacPsyContext*)ctx->model_priv_data)->chan_bitrate; | |
| 413 | ✗ | int attack_ratio = br <= 16000 ? 18 : 10; | |
| 414 | ✗ | AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; | |
| 415 | ✗ | AacPsyChannel *pch = &pctx->ch[channel]; | |
| 416 | ✗ | uint8_t grouping = 0; | |
| 417 | ✗ | int next_type = pch->next_window_seq; | |
| 418 | ✗ | FFPsyWindowInfo wi = { { 0 } }; | |
| 419 | |||
| 420 | ✗ | if (la) { | |
| 421 | float s[8], v; | ||
| 422 | ✗ | int switch_to_eight = 0; | |
| 423 | ✗ | float sum = 0.0, sum2 = 0.0; | |
| 424 | ✗ | int attack_n = 0; | |
| 425 | ✗ | int stay_short = 0; | |
| 426 | ✗ | for (i = 0; i < 8; i++) { | |
| 427 | ✗ | for (j = 0; j < 128; j++) { | |
| 428 | ✗ | v = iir_filter(la[i*128+j], pch->iir_state); | |
| 429 | ✗ | sum += v*v; | |
| 430 | } | ||
| 431 | ✗ | s[i] = sum; | |
| 432 | ✗ | sum2 += sum; | |
| 433 | } | ||
| 434 | ✗ | for (i = 0; i < 8; i++) { | |
| 435 | ✗ | if (s[i] > pch->win_energy * attack_ratio) { | |
| 436 | ✗ | attack_n = i + 1; | |
| 437 | ✗ | switch_to_eight = 1; | |
| 438 | ✗ | break; | |
| 439 | } | ||
| 440 | } | ||
| 441 | ✗ | pch->win_energy = pch->win_energy*7/8 + sum2/64; | |
| 442 | |||
| 443 | ✗ | wi.window_type[1] = prev_type; | |
| 444 | ✗ | switch (prev_type) { | |
| 445 | ✗ | case ONLY_LONG_SEQUENCE: | |
| 446 | ✗ | wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; | |
| 447 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; | |
| 448 | ✗ | break; | |
| 449 | ✗ | case LONG_START_SEQUENCE: | |
| 450 | ✗ | wi.window_type[0] = EIGHT_SHORT_SEQUENCE; | |
| 451 | ✗ | grouping = pch->next_grouping; | |
| 452 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; | |
| 453 | ✗ | break; | |
| 454 | ✗ | case LONG_STOP_SEQUENCE: | |
| 455 | ✗ | wi.window_type[0] = switch_to_eight ? LONG_START_SEQUENCE : ONLY_LONG_SEQUENCE; | |
| 456 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : ONLY_LONG_SEQUENCE; | |
| 457 | ✗ | break; | |
| 458 | ✗ | case EIGHT_SHORT_SEQUENCE: | |
| 459 | ✗ | stay_short = next_type == EIGHT_SHORT_SEQUENCE || switch_to_eight; | |
| 460 | ✗ | wi.window_type[0] = stay_short ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; | |
| 461 | ✗ | grouping = next_type == EIGHT_SHORT_SEQUENCE ? pch->next_grouping : 0; | |
| 462 | ✗ | next_type = switch_to_eight ? EIGHT_SHORT_SEQUENCE : LONG_STOP_SEQUENCE; | |
| 463 | ✗ | break; | |
| 464 | } | ||
| 465 | |||
| 466 | ✗ | pch->next_grouping = window_grouping[attack_n]; | |
| 467 | ✗ | pch->next_window_seq = next_type; | |
| 468 | } else { | ||
| 469 | ✗ | for (i = 0; i < 3; i++) | |
| 470 | ✗ | wi.window_type[i] = prev_type; | |
| 471 | ✗ | grouping = (prev_type == EIGHT_SHORT_SEQUENCE) ? window_grouping[0] : 0; | |
| 472 | } | ||
| 473 | |||
| 474 | ✗ | wi.window_shape = 1; | |
| 475 | ✗ | if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { | |
| 476 | ✗ | wi.num_windows = 1; | |
| 477 | ✗ | wi.grouping[0] = 1; | |
| 478 | } else { | ||
| 479 | ✗ | int lastgrp = 0; | |
| 480 | ✗ | wi.num_windows = 8; | |
| 481 | ✗ | for (i = 0; i < 8; i++) { | |
| 482 | ✗ | if (!((grouping >> i) & 1)) | |
| 483 | ✗ | lastgrp = i; | |
| 484 | ✗ | wi.grouping[lastgrp]++; | |
| 485 | } | ||
| 486 | } | ||
| 487 | |||
| 488 | ✗ | return wi; | |
| 489 | } | ||
| 490 | |||
| 491 | /* 5.6.1.2 "Calculation of Bit Demand" */ | ||
| 492 | 9375 | static int calc_bit_demand(AacPsyContext *ctx, float pe, int bits, int size, | |
| 493 | int short_window) | ||
| 494 | { | ||
| 495 |
2/2✓ Branch 0 taken 197 times.
✓ Branch 1 taken 9178 times.
|
9375 | const float bitsave_slope = short_window ? PSY_3GPP_SAVE_SLOPE_S : PSY_3GPP_SAVE_SLOPE_L; |
| 496 |
2/2✓ Branch 0 taken 197 times.
✓ Branch 1 taken 9178 times.
|
9375 | const float bitsave_add = short_window ? PSY_3GPP_SAVE_ADD_S : PSY_3GPP_SAVE_ADD_L; |
| 497 |
2/2✓ Branch 0 taken 197 times.
✓ Branch 1 taken 9178 times.
|
9375 | const float bitspend_slope = short_window ? PSY_3GPP_SPEND_SLOPE_S : PSY_3GPP_SPEND_SLOPE_L; |
| 498 |
2/2✓ Branch 0 taken 197 times.
✓ Branch 1 taken 9178 times.
|
9375 | const float bitspend_add = short_window ? PSY_3GPP_SPEND_ADD_S : PSY_3GPP_SPEND_ADD_L; |
| 499 | 9375 | const float clip_low = short_window ? PSY_3GPP_CLIP_LO_S : PSY_3GPP_CLIP_LO_L; | |
| 500 |
2/2✓ Branch 0 taken 197 times.
✓ Branch 1 taken 9178 times.
|
9375 | const float clip_high = short_window ? PSY_3GPP_CLIP_HI_S : PSY_3GPP_CLIP_HI_L; |
| 501 | float clipped_pe, bit_save, bit_spend, bit_factor, fill_level, forgetful_min_pe; | ||
| 502 | |||
| 503 | 9375 | ctx->fill_level += ctx->frame_bits - bits; | |
| 504 | 9375 | ctx->fill_level = av_clip(ctx->fill_level, 0, size); | |
| 505 | 9375 | fill_level = av_clipf((float)ctx->fill_level / size, clip_low, clip_high); | |
| 506 | 9375 | clipped_pe = av_clipf(pe, ctx->pe.min, ctx->pe.max); | |
| 507 | 9375 | bit_save = (fill_level + bitsave_add) * bitsave_slope; | |
| 508 | assert(bit_save <= 0.3f && bit_save >= -0.05000001f); | ||
| 509 | 9375 | bit_spend = (fill_level + bitspend_add) * bitspend_slope; | |
| 510 | assert(bit_spend <= 0.5f && bit_spend >= -0.1f); | ||
| 511 | /* The bit factor graph in the spec is obviously incorrect. | ||
| 512 | * bit_spend + ((bit_spend - bit_spend))... | ||
| 513 | * The reference encoder subtracts everything from 1, but also seems incorrect. | ||
| 514 | * 1 - bit_save + ((bit_spend + bit_save))... | ||
| 515 | * Hopefully below is correct. | ||
| 516 | */ | ||
| 517 | 9375 | bit_factor = 1.0f - bit_save + ((bit_spend - bit_save) / (ctx->pe.max - ctx->pe.min)) * (clipped_pe - ctx->pe.min); | |
| 518 | /* NOTE: The reference encoder attempts to center pe max/min around the current pe. | ||
| 519 | * Here we do that by slowly forgetting pe.min when pe stays in a range that makes | ||
| 520 | * it unlikely (ie: above the mean) | ||
| 521 | */ | ||
| 522 |
2/2✓ Branch 0 taken 19 times.
✓ Branch 1 taken 9356 times.
|
9375 | ctx->pe.max = FFMAX(pe, ctx->pe.max); |
| 523 | 18750 | forgetful_min_pe = ((ctx->pe.min * PSY_PE_FORGET_SLOPE) | |
| 524 |
2/2✓ Branch 0 taken 2769 times.
✓ Branch 1 taken 6606 times.
|
9375 | + FFMAX(ctx->pe.min, pe * (pe / ctx->pe.max))) / (PSY_PE_FORGET_SLOPE + 1); |
| 525 |
2/2✓ Branch 0 taken 9297 times.
✓ Branch 1 taken 78 times.
|
9375 | ctx->pe.min = FFMIN(pe, forgetful_min_pe); |
| 526 | |||
| 527 | /* NOTE: allocate a minimum of 1/8th average frame bits, to avoid | ||
| 528 | * reservoir starvation from producing zero-bit frames | ||
| 529 | */ | ||
| 530 |
6/6✓ Branch 0 taken 9361 times.
✓ Branch 1 taken 14 times.
✓ Branch 2 taken 1147 times.
✓ Branch 3 taken 8228 times.
✓ Branch 4 taken 1133 times.
✓ Branch 5 taken 14 times.
|
9375 | return FFMIN( |
| 531 | ctx->frame_bits * bit_factor, | ||
| 532 | FFMAX(ctx->frame_bits + size - bits, ctx->frame_bits / 8)); | ||
| 533 | } | ||
| 534 | |||
| 535 | 1562498 | static float calc_pe_3gpp(AacPsyBand *band) | |
| 536 | { | ||
| 537 | float pe, a; | ||
| 538 | |||
| 539 | 1562498 | band->pe = 0.0f; | |
| 540 | 1562498 | band->pe_const = 0.0f; | |
| 541 | 1562498 | band->active_lines = 0.0f; | |
| 542 |
2/2✓ Branch 0 taken 1517484 times.
✓ Branch 1 taken 45014 times.
|
1562498 | if (band->energy > band->thr) { |
| 543 | 1517484 | a = log2f(band->energy); | |
| 544 | 1517484 | pe = a - log2f(band->thr); | |
| 545 | 1517484 | band->active_lines = band->nz_lines; | |
| 546 |
2/2✓ Branch 0 taken 730962 times.
✓ Branch 1 taken 786522 times.
|
1517484 | if (pe < PSY_3GPP_C1) { |
| 547 | 730962 | pe = pe * PSY_3GPP_C3 + PSY_3GPP_C2; | |
| 548 | 730962 | a = a * PSY_3GPP_C3 + PSY_3GPP_C2; | |
| 549 | 730962 | band->active_lines *= PSY_3GPP_C3; | |
| 550 | } | ||
| 551 | 1517484 | band->pe = pe * band->nz_lines; | |
| 552 | 1517484 | band->pe_const = a * band->nz_lines; | |
| 553 | } | ||
| 554 | |||
| 555 | 1562498 | return band->pe; | |
| 556 | } | ||
| 557 | |||
| 558 | 22813 | static float calc_reduction_3gpp(float a, float desired_pe, float pe, | |
| 559 | float active_lines) | ||
| 560 | { | ||
| 561 | float thr_avg, reduction; | ||
| 562 | |||
| 563 |
2/2✓ Branch 0 taken 24 times.
✓ Branch 1 taken 22789 times.
|
22813 | if(active_lines == 0.0) |
| 564 | 24 | return 0; | |
| 565 | |||
| 566 | 22789 | thr_avg = exp2f((a - pe) / (4.0f * active_lines)); | |
| 567 | 22789 | reduction = exp2f((a - desired_pe) / (4.0f * active_lines)) - thr_avg; | |
| 568 | |||
| 569 |
2/2✓ Branch 0 taken 20760 times.
✓ Branch 1 taken 2029 times.
|
22789 | return FFMAX(reduction, 0.0f); |
| 570 | } | ||
| 571 | |||
| 572 | 1090712 | static float calc_reduced_thr_3gpp(AacPsyBand *band, float min_snr, | |
| 573 | float reduction) | ||
| 574 | { | ||
| 575 | 1090712 | float thr = band->thr; | |
| 576 | |||
| 577 |
2/2✓ Branch 0 taken 1064622 times.
✓ Branch 1 taken 26090 times.
|
1090712 | if (band->energy > thr) { |
| 578 | 1064622 | thr = sqrtf(thr); | |
| 579 | 1064622 | thr = sqrtf(thr) + reduction; | |
| 580 | 1064622 | thr *= thr; | |
| 581 | 1064622 | thr *= thr; | |
| 582 | |||
| 583 | /* This deviates from the 3GPP spec to match the reference encoder. | ||
| 584 | * It performs min(thr_reduced, max(thr, energy/min_snr)) only for bands | ||
| 585 | * that have hole avoidance on (active or inactive). It always reduces the | ||
| 586 | * threshold of bands with hole avoidance off. | ||
| 587 | */ | ||
| 588 |
4/4✓ Branch 0 taken 335892 times.
✓ Branch 1 taken 728730 times.
✓ Branch 2 taken 335824 times.
✓ Branch 3 taken 68 times.
|
1064622 | if (thr > band->energy * min_snr && band->avoid_holes != PSY_3GPP_AH_NONE) { |
| 589 |
2/2✓ Branch 0 taken 4668 times.
✓ Branch 1 taken 331156 times.
|
335824 | thr = FFMAX(band->thr, band->energy * min_snr); |
| 590 | 335824 | band->avoid_holes = PSY_3GPP_AH_ACTIVE; | |
| 591 | } | ||
| 592 | } | ||
| 593 | |||
| 594 | 1090712 | return thr; | |
| 595 | } | ||
| 596 | |||
| 597 | 9375 | static void calc_thr_3gpp(const FFPsyWindowInfo *wi, const int num_bands, AacPsyChannel *pch, | |
| 598 | const uint8_t *band_sizes, const float *coefs, const int cutoff) | ||
| 599 | { | ||
| 600 | int i, w, g; | ||
| 601 | 9375 | int start = 0, wstart = 0; | |
| 602 |
2/2✓ Branch 0 taken 10754 times.
✓ Branch 1 taken 9375 times.
|
20129 | for (w = 0; w < wi->num_windows*16; w += 16) { |
| 603 | 10754 | wstart = 0; | |
| 604 |
2/2✓ Branch 0 taken 471786 times.
✓ Branch 1 taken 10754 times.
|
482540 | for (g = 0; g < num_bands; g++) { |
| 605 | 471786 | AacPsyBand *band = &pch->band[w+g]; | |
| 606 | |||
| 607 | 471786 | float form_factor = 0.0f; | |
| 608 | float Temp; | ||
| 609 | 471786 | band->energy = 0.0f; | |
| 610 |
2/2✓ Branch 0 taken 464322 times.
✓ Branch 1 taken 7464 times.
|
471786 | if (wstart < cutoff) { |
| 611 |
2/2✓ Branch 0 taken 9293760 times.
✓ Branch 1 taken 464322 times.
|
9758082 | for (i = 0; i < band_sizes[g]; i++) { |
| 612 | 9293760 | band->energy += coefs[start+i] * coefs[start+i]; | |
| 613 | 9293760 | form_factor += sqrtf(fabs(coefs[start+i])); | |
| 614 | } | ||
| 615 | } | ||
| 616 |
2/2✓ Branch 0 taken 455509 times.
✓ Branch 1 taken 16277 times.
|
471786 | Temp = band->energy > 0 ? sqrtf((float)band_sizes[g] / band->energy) : 0; |
| 617 | 471786 | band->thr = band->energy * 0.001258925f; | |
| 618 | 471786 | band->nz_lines = form_factor * sqrtf(Temp); | |
| 619 | |||
| 620 | 471786 | start += band_sizes[g]; | |
| 621 | 471786 | wstart += band_sizes[g]; | |
| 622 | } | ||
| 623 | } | ||
| 624 | 9375 | } | |
| 625 | |||
| 626 | 6370 | static void psy_hp_filter(const float *firbuf, float *hpfsmpl, const float *psy_fir_coeffs) | |
| 627 | { | ||
| 628 | int i, j; | ||
| 629 |
2/2✓ Branch 0 taken 6522880 times.
✓ Branch 1 taken 6370 times.
|
6529250 | for (i = 0; i < AAC_BLOCK_SIZE_LONG; i++) { |
| 630 | float sum1, sum2; | ||
| 631 | 6522880 | sum1 = firbuf[i + (PSY_LAME_FIR_LEN - 1) / 2]; | |
| 632 | 6522880 | sum2 = 0.0; | |
| 633 |
2/2✓ Branch 0 taken 32614400 times.
✓ Branch 1 taken 6522880 times.
|
39137280 | for (j = 0; j < ((PSY_LAME_FIR_LEN - 1) / 2) - 1; j += 2) { |
| 634 | 32614400 | sum1 += psy_fir_coeffs[j] * (firbuf[i + j] + firbuf[i + PSY_LAME_FIR_LEN - j]); | |
| 635 | 32614400 | sum2 += psy_fir_coeffs[j + 1] * (firbuf[i + j + 1] + firbuf[i + PSY_LAME_FIR_LEN - j - 1]); | |
| 636 | } | ||
| 637 | /* NOTE: The LAME psymodel expects it's input in the range -32768 to 32768. | ||
| 638 | * Tuning this for normalized floats would be difficult. */ | ||
| 639 | 6522880 | hpfsmpl[i] = (sum1 + sum2) * 32768.0f; | |
| 640 | } | ||
| 641 | 6370 | } | |
| 642 | |||
| 643 | /** | ||
| 644 | * Calculate band thresholds as suggested in 3GPP TS26.403 | ||
| 645 | */ | ||
| 646 | 9375 | static void psy_3gpp_analyze_channel(FFPsyContext *ctx, int channel, | |
| 647 | const float *coefs, const FFPsyWindowInfo *wi) | ||
| 648 | { | ||
| 649 | 9375 | AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; | |
| 650 | 9375 | AacPsyChannel *pch = &pctx->ch[channel]; | |
| 651 | int i, w, g; | ||
| 652 | 9375 | float desired_bits, desired_pe, delta_pe, reduction= NAN, spread_en[128] = {0}; | |
| 653 | 9375 | float a = 0.0f, active_lines = 0.0f, norm_fac = 0.0f; | |
| 654 |
1/4✗ Branch 0 not taken.
✓ Branch 1 taken 9375 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
9375 | float pe = pctx->chan_bitrate > 32000 ? 0.0f : FFMAX(50.0f, 100.0f - pctx->chan_bitrate * 100.0f / 32000.0f); |
| 655 |
2/2✓ Branch 0 taken 197 times.
✓ Branch 1 taken 9178 times.
|
9375 | const int num_bands = ctx->num_bands[wi->num_windows == 8]; |
| 656 |
2/2✓ Branch 0 taken 197 times.
✓ Branch 1 taken 9178 times.
|
9375 | const uint8_t *band_sizes = ctx->bands[wi->num_windows == 8]; |
| 657 | 9375 | AacPsyCoeffs *coeffs = pctx->psy_coef[wi->num_windows == 8]; | |
| 658 |
2/2✓ Branch 0 taken 197 times.
✓ Branch 1 taken 9178 times.
|
9375 | const float avoid_hole_thr = wi->num_windows == 8 ? PSY_3GPP_AH_THR_SHORT : PSY_3GPP_AH_THR_LONG; |
| 659 |
5/8✓ Branch 0 taken 4900 times.
✓ Branch 1 taken 4475 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 4475 times.
✓ Branch 4 taken 4475 times.
✗ Branch 5 not taken.
✗ Branch 6 not taken.
✓ Branch 7 taken 4475 times.
|
9375 | const int bandwidth = ctx->cutoff ? ctx->cutoff : AAC_CUTOFF(ctx->avctx); |
| 660 | 9375 | const int cutoff = bandwidth * 2048 / wi->num_windows / ctx->avctx->sample_rate; | |
| 661 | |||
| 662 | //calculate energies, initial thresholds and related values - 5.4.2 "Threshold Calculation" | ||
| 663 | 9375 | calc_thr_3gpp(wi, num_bands, pch, band_sizes, coefs, cutoff); | |
| 664 | |||
| 665 | //modify thresholds and energies - spread, threshold in quiet, pre-echo control | ||
| 666 |
2/2✓ Branch 0 taken 10754 times.
✓ Branch 1 taken 9375 times.
|
20129 | for (w = 0; w < wi->num_windows*16; w += 16) { |
| 667 | 10754 | AacPsyBand *bands = &pch->band[w]; | |
| 668 | |||
| 669 | /* 5.4.2.3 "Spreading" & 5.4.3 "Spread Energy Calculation" */ | ||
| 670 | 10754 | spread_en[0] = bands[0].energy; | |
| 671 |
2/2✓ Branch 0 taken 461032 times.
✓ Branch 1 taken 10754 times.
|
471786 | for (g = 1; g < num_bands; g++) { |
| 672 |
2/2✓ Branch 0 taken 444776 times.
✓ Branch 1 taken 16256 times.
|
461032 | bands[g].thr = FFMAX(bands[g].thr, bands[g-1].thr * coeffs[g].spread_hi[0]); |
| 673 |
2/2✓ Branch 0 taken 445266 times.
✓ Branch 1 taken 15766 times.
|
461032 | spread_en[w+g] = FFMAX(bands[g].energy, spread_en[w+g-1] * coeffs[g].spread_hi[1]); |
| 674 | } | ||
| 675 |
2/2✓ Branch 0 taken 461032 times.
✓ Branch 1 taken 10754 times.
|
471786 | for (g = num_bands - 2; g >= 0; g--) { |
| 676 |
2/2✓ Branch 0 taken 447815 times.
✓ Branch 1 taken 13217 times.
|
461032 | bands[g].thr = FFMAX(bands[g].thr, bands[g+1].thr * coeffs[g].spread_low[0]); |
| 677 |
2/2✓ Branch 0 taken 445857 times.
✓ Branch 1 taken 15175 times.
|
461032 | spread_en[w+g] = FFMAX(spread_en[w+g], spread_en[w+g+1] * coeffs[g].spread_low[1]); |
| 678 | } | ||
| 679 | //5.4.2.4 "Threshold in quiet" | ||
| 680 |
2/2✓ Branch 0 taken 471786 times.
✓ Branch 1 taken 10754 times.
|
482540 | for (g = 0; g < num_bands; g++) { |
| 681 | 471786 | AacPsyBand *band = &bands[g]; | |
| 682 | |||
| 683 |
2/2✓ Branch 0 taken 345402 times.
✓ Branch 1 taken 126384 times.
|
471786 | band->thr_quiet = band->thr = FFMAX(band->thr, coeffs[g].ath); |
| 684 | //5.4.2.5 "Pre-echo control" | ||
| 685 |
6/6✓ Branch 0 taken 467621 times.
✓ Branch 1 taken 4165 times.
✓ Branch 2 taken 448315 times.
✓ Branch 3 taken 19306 times.
✓ Branch 4 taken 447041 times.
✓ Branch 5 taken 1274 times.
|
471786 | if (!(wi->window_type[0] == LONG_STOP_SEQUENCE || (!w && wi->window_type[1] == LONG_START_SEQUENCE))) |
| 686 |
6/6✓ Branch 0 taken 53844 times.
✓ Branch 1 taken 412503 times.
✓ Branch 2 taken 4450 times.
✓ Branch 3 taken 461897 times.
✓ Branch 4 taken 49394 times.
✓ Branch 5 taken 412503 times.
|
466347 | band->thr = FFMAX(PSY_3GPP_RPEMIN*band->thr, FFMIN(band->thr, |
| 687 | PSY_3GPP_RPELEV*pch->prev_band[w+g].thr_quiet)); | ||
| 688 | |||
| 689 | /* 5.6.1.3.1 "Preparatory steps of the perceptual entropy calculation" */ | ||
| 690 | 471786 | pe += calc_pe_3gpp(band); | |
| 691 | 471786 | a += band->pe_const; | |
| 692 | 471786 | active_lines += band->active_lines; | |
| 693 | |||
| 694 | /* 5.6.1.3.3 "Selection of the bands for avoidance of holes" */ | ||
| 695 |
3/4✓ Branch 0 taken 471591 times.
✓ Branch 1 taken 195 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 471591 times.
|
471786 | if (spread_en[w+g] * avoid_hole_thr > band->energy || coeffs[g].min_snr > 1.0f) |
| 696 | 195 | band->avoid_holes = PSY_3GPP_AH_NONE; | |
| 697 | else | ||
| 698 | 471591 | band->avoid_holes = PSY_3GPP_AH_INACTIVE; | |
| 699 | } | ||
| 700 | } | ||
| 701 | |||
| 702 | /* 5.6.1.3.2 "Calculation of the desired perceptual entropy" */ | ||
| 703 | 9375 | ctx->ch[channel].entropy = pe; | |
| 704 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 9375 times.
|
9375 | if (ctx->avctx->flags & AV_CODEC_FLAG_QSCALE) { |
| 705 | /* (2.5 * 120) achieves almost transparent rate, and we want to give | ||
| 706 | * ample room downwards, so we make that equivalent to QSCALE=2.4 | ||
| 707 | */ | ||
| 708 | ✗ | desired_pe = pe * (ctx->avctx->global_quality ? ctx->avctx->global_quality : 120) / (2 * 2.5f * 120.0f); | |
| 709 | ✗ | desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe)); | |
| 710 | ✗ | desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping | |
| 711 | |||
| 712 | /* PE slope smoothing */ | ||
| 713 | ✗ | if (ctx->bitres.bits > 0) { | |
| 714 | ✗ | desired_bits = FFMIN(2560, PSY_3GPP_PE_TO_BITS(desired_pe)); | |
| 715 | ✗ | desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); // reflect clipping | |
| 716 | } | ||
| 717 | |||
| 718 | ✗ | pctx->pe.max = FFMAX(pe, pctx->pe.max); | |
| 719 | ✗ | pctx->pe.min = FFMIN(pe, pctx->pe.min); | |
| 720 | } else { | ||
| 721 | 9375 | desired_bits = calc_bit_demand(pctx, pe, ctx->bitres.bits, ctx->bitres.size, wi->num_windows == 8); | |
| 722 | 9375 | desired_pe = PSY_3GPP_BITS_TO_PE(desired_bits); | |
| 723 | |||
| 724 | /* NOTE: PE correction is kept simple. During initial testing it had very | ||
| 725 | * little effect on the final bitrate. Probably a good idea to come | ||
| 726 | * back and do more testing later. | ||
| 727 | */ | ||
| 728 |
2/2✓ Branch 0 taken 9314 times.
✓ Branch 1 taken 61 times.
|
9375 | if (ctx->bitres.bits > 0) |
| 729 | 9314 | desired_pe *= av_clipf(pctx->pe.previous / PSY_3GPP_BITS_TO_PE(ctx->bitres.bits), | |
| 730 | 0.85f, 1.15f); | ||
| 731 | } | ||
| 732 | 9375 | pctx->pe.previous = PSY_3GPP_BITS_TO_PE(desired_bits); | |
| 733 | 9375 | ctx->bitres.alloc = desired_bits; | |
| 734 | |||
| 735 |
2/2✓ Branch 0 taken 9272 times.
✓ Branch 1 taken 103 times.
|
9375 | if (desired_pe < pe) { |
| 736 | /* 5.6.1.3.4 "First Estimation of the reduction value" */ | ||
| 737 |
2/2✓ Branch 0 taken 10147 times.
✓ Branch 1 taken 9272 times.
|
19419 | for (w = 0; w < wi->num_windows*16; w += 16) { |
| 738 | 10147 | reduction = calc_reduction_3gpp(a, desired_pe, pe, active_lines); | |
| 739 | 10147 | pe = 0.0f; | |
| 740 | 10147 | a = 0.0f; | |
| 741 | 10147 | active_lines = 0.0f; | |
| 742 |
2/2✓ Branch 0 taken 462203 times.
✓ Branch 1 taken 10147 times.
|
472350 | for (g = 0; g < num_bands; g++) { |
| 743 | 462203 | AacPsyBand *band = &pch->band[w+g]; | |
| 744 | |||
| 745 | 462203 | band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); | |
| 746 | /* recalculate PE */ | ||
| 747 | 462203 | pe += calc_pe_3gpp(band); | |
| 748 | 462203 | a += band->pe_const; | |
| 749 | 462203 | active_lines += band->active_lines; | |
| 750 | } | ||
| 751 | } | ||
| 752 | |||
| 753 | /* 5.6.1.3.5 "Second Estimation of the reduction value" */ | ||
| 754 |
2/2✓ Branch 0 taken 12666 times.
✓ Branch 1 taken 3394 times.
|
16060 | for (i = 0; i < 2; i++) { |
| 755 | 12666 | float pe_no_ah = 0.0f, desired_pe_no_ah; | |
| 756 | 12666 | active_lines = a = 0.0f; | |
| 757 |
2/2✓ Branch 0 taken 13541 times.
✓ Branch 1 taken 12666 times.
|
26207 | for (w = 0; w < wi->num_windows*16; w += 16) { |
| 758 |
2/2✓ Branch 0 taken 628509 times.
✓ Branch 1 taken 13541 times.
|
642050 | for (g = 0; g < num_bands; g++) { |
| 759 | 628509 | AacPsyBand *band = &pch->band[w+g]; | |
| 760 | |||
| 761 |
2/2✓ Branch 0 taken 501873 times.
✓ Branch 1 taken 126636 times.
|
628509 | if (band->avoid_holes != PSY_3GPP_AH_ACTIVE) { |
| 762 | 501873 | pe_no_ah += band->pe; | |
| 763 | 501873 | a += band->pe_const; | |
| 764 | 501873 | active_lines += band->active_lines; | |
| 765 | } | ||
| 766 | } | ||
| 767 | } | ||
| 768 |
2/2✓ Branch 0 taken 12629 times.
✓ Branch 1 taken 37 times.
|
12666 | desired_pe_no_ah = FFMAX(desired_pe - (pe - pe_no_ah), 0.0f); |
| 769 |
1/2✓ Branch 0 taken 12666 times.
✗ Branch 1 not taken.
|
12666 | if (active_lines > 0.0f) |
| 770 | 12666 | reduction = calc_reduction_3gpp(a, desired_pe_no_ah, pe_no_ah, active_lines); | |
| 771 | |||
| 772 | 12666 | pe = 0.0f; | |
| 773 |
2/2✓ Branch 0 taken 13541 times.
✓ Branch 1 taken 12666 times.
|
26207 | for (w = 0; w < wi->num_windows*16; w += 16) { |
| 774 |
2/2✓ Branch 0 taken 628509 times.
✓ Branch 1 taken 13541 times.
|
642050 | for (g = 0; g < num_bands; g++) { |
| 775 | 628509 | AacPsyBand *band = &pch->band[w+g]; | |
| 776 | |||
| 777 |
1/2✓ Branch 0 taken 628509 times.
✗ Branch 1 not taken.
|
628509 | if (active_lines > 0.0f) |
| 778 | 628509 | band->thr = calc_reduced_thr_3gpp(band, coeffs[g].min_snr, reduction); | |
| 779 | 628509 | pe += calc_pe_3gpp(band); | |
| 780 |
1/2✓ Branch 0 taken 628509 times.
✗ Branch 1 not taken.
|
628509 | if (band->thr > 0.0f) |
| 781 | 628509 | band->norm_fac = band->active_lines / band->thr; | |
| 782 | else | ||
| 783 | ✗ | band->norm_fac = 0.0f; | |
| 784 | 628509 | norm_fac += band->norm_fac; | |
| 785 | } | ||
| 786 | } | ||
| 787 | 12666 | delta_pe = desired_pe - pe; | |
| 788 |
2/2✓ Branch 0 taken 5878 times.
✓ Branch 1 taken 6788 times.
|
12666 | if (fabs(delta_pe) > 0.05f * desired_pe) |
| 789 | 5878 | break; | |
| 790 | } | ||
| 791 | |||
| 792 |
2/2✓ Branch 0 taken 5004 times.
✓ Branch 1 taken 4268 times.
|
9272 | if (pe < 1.15f * desired_pe) { |
| 793 | /* 6.6.1.3.6 "Final threshold modification by linearization" */ | ||
| 794 |
1/2✓ Branch 0 taken 5004 times.
✗ Branch 1 not taken.
|
5004 | norm_fac = norm_fac ? 1.0f / norm_fac : 0; |
| 795 |
2/2✓ Branch 0 taken 5004 times.
✓ Branch 1 taken 5004 times.
|
10008 | for (w = 0; w < wi->num_windows*16; w += 16) { |
| 796 |
2/2✓ Branch 0 taken 245196 times.
✓ Branch 1 taken 5004 times.
|
250200 | for (g = 0; g < num_bands; g++) { |
| 797 | 245196 | AacPsyBand *band = &pch->band[w+g]; | |
| 798 | |||
| 799 |
2/2✓ Branch 0 taken 238349 times.
✓ Branch 1 taken 6847 times.
|
245196 | if (band->active_lines > 0.5f) { |
| 800 | 238349 | float delta_sfb_pe = band->norm_fac * norm_fac * delta_pe; | |
| 801 | 238349 | float thr = band->thr; | |
| 802 | |||
| 803 | 238349 | thr *= exp2f(delta_sfb_pe / band->active_lines); | |
| 804 |
4/4✓ Branch 0 taken 22321 times.
✓ Branch 1 taken 216028 times.
✓ Branch 2 taken 61 times.
✓ Branch 3 taken 22260 times.
|
238349 | if (thr > coeffs[g].min_snr * band->energy && band->avoid_holes == PSY_3GPP_AH_INACTIVE) |
| 805 |
1/2✗ Branch 0 not taken.
✓ Branch 1 taken 61 times.
|
61 | thr = FFMAX(band->thr, coeffs[g].min_snr * band->energy); |
| 806 | 238349 | band->thr = thr; | |
| 807 | } | ||
| 808 | } | ||
| 809 | } | ||
| 810 | } else { | ||
| 811 | /* 5.6.1.3.7 "Further perceptual entropy reduction" */ | ||
| 812 | 4268 | g = num_bands; | |
| 813 |
4/4✓ Branch 0 taken 208641 times.
✓ Branch 1 taken 14 times.
✓ Branch 2 taken 204387 times.
✓ Branch 3 taken 4254 times.
|
208655 | while (pe > desired_pe && g--) { |
| 814 |
2/2✓ Branch 0 taken 216637 times.
✓ Branch 1 taken 204387 times.
|
421024 | for (w = 0; w < wi->num_windows*16; w+= 16) { |
| 815 | 216637 | AacPsyBand *band = &pch->band[w+g]; | |
| 816 |
4/4✓ Branch 0 taken 216501 times.
✓ Branch 1 taken 136 times.
✓ Branch 2 taken 367 times.
✓ Branch 3 taken 216134 times.
|
216637 | if (band->avoid_holes != PSY_3GPP_AH_NONE && coeffs[g].min_snr < PSY_SNR_1DB) { |
| 817 | 367 | coeffs[g].min_snr = PSY_SNR_1DB; | |
| 818 | 367 | band->thr = band->energy * PSY_SNR_1DB; | |
| 819 | 367 | pe += band->active_lines * 1.5f - band->pe; | |
| 820 | } | ||
| 821 | } | ||
| 822 | } | ||
| 823 | /* TODO: allow more holes (unused without mid/side) */ | ||
| 824 | } | ||
| 825 | } | ||
| 826 | |||
| 827 |
2/2✓ Branch 0 taken 10754 times.
✓ Branch 1 taken 9375 times.
|
20129 | for (w = 0; w < wi->num_windows*16; w += 16) { |
| 828 |
2/2✓ Branch 0 taken 471786 times.
✓ Branch 1 taken 10754 times.
|
482540 | for (g = 0; g < num_bands; g++) { |
| 829 | 471786 | AacPsyBand *band = &pch->band[w+g]; | |
| 830 | 471786 | FFPsyBand *psy_band = &ctx->ch[channel].psy_bands[w+g]; | |
| 831 | |||
| 832 | 471786 | psy_band->threshold = band->thr; | |
| 833 | 471786 | psy_band->energy = band->energy; | |
| 834 | 471786 | psy_band->spread = band->active_lines * 2.0f / band_sizes[g]; | |
| 835 | 471786 | psy_band->bits = PSY_3GPP_PE_TO_BITS(band->pe); | |
| 836 | } | ||
| 837 | } | ||
| 838 | |||
| 839 | 9375 | memcpy(pch->prev_band, pch->band, sizeof(pch->band)); | |
| 840 | 9375 | } | |
| 841 | |||
| 842 | 5015 | static void psy_3gpp_analyze(FFPsyContext *ctx, int channel, | |
| 843 | const float **coeffs, const FFPsyWindowInfo *wi) | ||
| 844 | { | ||
| 845 | int ch; | ||
| 846 | 5015 | FFPsyChannelGroup *group = ff_psy_find_group(ctx, channel); | |
| 847 | |||
| 848 |
2/2✓ Branch 0 taken 9375 times.
✓ Branch 1 taken 5015 times.
|
14390 | for (ch = 0; ch < group->num_ch; ch++) |
| 849 | 9375 | psy_3gpp_analyze_channel(ctx, channel + ch, coeffs[ch], &wi[ch]); | |
| 850 | 5015 | } | |
| 851 | |||
| 852 | 10 | static av_cold void psy_3gpp_end(FFPsyContext *apc) | |
| 853 | { | ||
| 854 | 10 | AacPsyContext *pctx = (AacPsyContext*) apc->model_priv_data; | |
| 855 |
1/2✓ Branch 0 taken 10 times.
✗ Branch 1 not taken.
|
10 | if (pctx) |
| 856 | 10 | av_freep(&pctx->ch); | |
| 857 | 10 | av_freep(&apc->model_priv_data); | |
| 858 | 10 | } | |
| 859 | |||
| 860 | 6414 | static void lame_apply_block_type(AacPsyChannel *ctx, FFPsyWindowInfo *wi, int uselongblock) | |
| 861 | { | ||
| 862 | 6414 | int blocktype = ONLY_LONG_SEQUENCE; | |
| 863 |
2/2✓ Branch 0 taken 6294 times.
✓ Branch 1 taken 120 times.
|
6414 | if (uselongblock) { |
| 864 |
2/2✓ Branch 0 taken 79 times.
✓ Branch 1 taken 6215 times.
|
6294 | if (ctx->next_window_seq == EIGHT_SHORT_SEQUENCE) |
| 865 | 79 | blocktype = LONG_STOP_SEQUENCE; | |
| 866 | } else { | ||
| 867 | 120 | blocktype = EIGHT_SHORT_SEQUENCE; | |
| 868 |
2/2✓ Branch 0 taken 79 times.
✓ Branch 1 taken 41 times.
|
120 | if (ctx->next_window_seq == ONLY_LONG_SEQUENCE) |
| 869 | 79 | ctx->next_window_seq = LONG_START_SEQUENCE; | |
| 870 |
2/2✓ Branch 0 taken 14 times.
✓ Branch 1 taken 106 times.
|
120 | if (ctx->next_window_seq == LONG_STOP_SEQUENCE) |
| 871 | 14 | ctx->next_window_seq = EIGHT_SHORT_SEQUENCE; | |
| 872 | } | ||
| 873 | |||
| 874 | 6414 | wi->window_type[0] = ctx->next_window_seq; | |
| 875 | 6414 | ctx->next_window_seq = blocktype; | |
| 876 | 6414 | } | |
| 877 | |||
| 878 | 6414 | static FFPsyWindowInfo psy_lame_window(FFPsyContext *ctx, const float *audio, | |
| 879 | const float *la, int channel, int prev_type) | ||
| 880 | { | ||
| 881 | 6414 | AacPsyContext *pctx = (AacPsyContext*) ctx->model_priv_data; | |
| 882 | 6414 | AacPsyChannel *pch = &pctx->ch[channel]; | |
| 883 | 6414 | int grouping = 0; | |
| 884 | 6414 | int uselongblock = 1; | |
| 885 | 6414 | int attacks[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; | |
| 886 | int i; | ||
| 887 | 6414 | FFPsyWindowInfo wi = { { 0 } }; | |
| 888 | |||
| 889 |
2/2✓ Branch 0 taken 6370 times.
✓ Branch 1 taken 44 times.
|
6414 | if (la) { |
| 890 | float hpfsmpl[AAC_BLOCK_SIZE_LONG]; | ||
| 891 | 6370 | const float *pf = hpfsmpl; | |
| 892 | float attack_intensity[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; | ||
| 893 | float energy_subshort[(AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS]; | ||
| 894 | 6370 | float energy_short[AAC_NUM_BLOCKS_SHORT + 1] = { 0 }; | |
| 895 | 6370 | const float *firbuf = la + (AAC_BLOCK_SIZE_SHORT/4 - PSY_LAME_FIR_LEN); | |
| 896 | 6370 | int att_sum = 0; | |
| 897 | |||
| 898 | /* LAME comment: apply high pass filter of fs/4 */ | ||
| 899 | 6370 | psy_hp_filter(firbuf, hpfsmpl, psy_fir_coeffs); | |
| 900 | |||
| 901 | /* Calculate the energies of each sub-shortblock */ | ||
| 902 |
2/2✓ Branch 0 taken 12740 times.
✓ Branch 1 taken 6370 times.
|
19110 | for (i = 0; i < PSY_LAME_NUM_SUBBLOCKS; i++) { |
| 903 | 12740 | energy_subshort[i] = pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS)]; | |
| 904 | assert(pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS - 2)] > 0); | ||
| 905 | 12740 | attack_intensity[i] = energy_subshort[i] / pch->prev_energy_subshort[i + ((AAC_NUM_BLOCKS_SHORT - 1) * PSY_LAME_NUM_SUBBLOCKS - 2)]; | |
| 906 | 12740 | energy_short[0] += energy_subshort[i]; | |
| 907 | } | ||
| 908 | |||
| 909 |
2/2✓ Branch 0 taken 101920 times.
✓ Branch 1 taken 6370 times.
|
108290 | for (i = 0; i < AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS; i++) { |
| 910 | 101920 | const float *const pfe = pf + AAC_BLOCK_SIZE_LONG / (AAC_NUM_BLOCKS_SHORT * PSY_LAME_NUM_SUBBLOCKS); | |
| 911 | 101920 | float p = 1.0f; | |
| 912 |
2/2✓ Branch 0 taken 6522880 times.
✓ Branch 1 taken 101920 times.
|
6624800 | for (; pf < pfe; pf++) |
| 913 |
2/2✓ Branch 0 taken 5963378 times.
✓ Branch 1 taken 559502 times.
|
6522880 | p = FFMAX(p, fabsf(*pf)); |
| 914 | 101920 | pch->prev_energy_subshort[i] = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS] = p; | |
| 915 | 101920 | energy_short[1 + i / PSY_LAME_NUM_SUBBLOCKS] += p; | |
| 916 | |||
| 917 | /* NOTE: The indexes below are [i + 3 - 2] in the LAME source. Compare each sub-block to sub-block - 2 */ | ||
| 918 |
2/2✓ Branch 0 taken 50944 times.
✓ Branch 1 taken 50976 times.
|
101920 | if (p > energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS - 2]) |
| 919 | 50944 | p = p / energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS - 2]; | |
| 920 |
2/2✓ Branch 0 taken 40 times.
✓ Branch 1 taken 50936 times.
|
50976 | else if (energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS - 2] > p * 10.0f) |
| 921 | 40 | p = energy_subshort[i + PSY_LAME_NUM_SUBBLOCKS - 2] / (p * 10.0f); | |
| 922 | else | ||
| 923 | 50936 | p = 0.0; | |
| 924 | |||
| 925 | 101920 | attack_intensity[i + PSY_LAME_NUM_SUBBLOCKS] = p; | |
| 926 | } | ||
| 927 | |||
| 928 | /* compare energy between sub-short blocks */ | ||
| 929 |
2/2✓ Branch 0 taken 114660 times.
✓ Branch 1 taken 6370 times.
|
121030 | for (i = 0; i < (AAC_NUM_BLOCKS_SHORT + 1) * PSY_LAME_NUM_SUBBLOCKS; i++) |
| 930 |
2/2✓ Branch 0 taken 114590 times.
✓ Branch 1 taken 70 times.
|
114660 | if (!attacks[i / PSY_LAME_NUM_SUBBLOCKS]) |
| 931 |
2/2✓ Branch 0 taken 118 times.
✓ Branch 1 taken 114472 times.
|
114590 | if (attack_intensity[i] > pch->attack_threshold) |
| 932 | 118 | attacks[i / PSY_LAME_NUM_SUBBLOCKS] = (i % PSY_LAME_NUM_SUBBLOCKS) + 1; | |
| 933 | |||
| 934 | /* should have energy change between short blocks, in order to avoid periodic signals */ | ||
| 935 | /* Good samples to show the effect are Trumpet test songs */ | ||
| 936 | /* GB: tuned (1) to avoid too many short blocks for test sample TRUMPET */ | ||
| 937 | /* RH: tuned (2) to let enough short blocks through for test sample FSOL and SNAPS */ | ||
| 938 |
2/2✓ Branch 0 taken 50960 times.
✓ Branch 1 taken 6370 times.
|
57330 | for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) { |
| 939 | 50960 | const float u = energy_short[i - 1]; | |
| 940 | 50960 | const float v = energy_short[i]; | |
| 941 |
2/2✓ Branch 0 taken 25770 times.
✓ Branch 1 taken 25190 times.
|
50960 | const float m = FFMAX(u, v); |
| 942 |
2/2✓ Branch 0 taken 48570 times.
✓ Branch 1 taken 2390 times.
|
50960 | if (m < 40000) { /* (2) */ |
| 943 |
4/4✓ Branch 0 taken 48262 times.
✓ Branch 1 taken 308 times.
✓ Branch 2 taken 47765 times.
✓ Branch 3 taken 497 times.
|
48570 | if (u < 2.3f * v && v < 2.3f * u) { /* (1) */ |
| 944 |
3/4✓ Branch 0 taken 5918 times.
✓ Branch 1 taken 41847 times.
✗ Branch 2 not taken.
✓ Branch 3 taken 5918 times.
|
47765 | if (i == 1 && attacks[0] < attacks[i]) |
| 945 | ✗ | attacks[0] = 0; | |
| 946 | 47765 | attacks[i] = 0; | |
| 947 | } | ||
| 948 | } | ||
| 949 | 50960 | att_sum += attacks[i]; | |
| 950 | } | ||
| 951 | |||
| 952 |
2/2✓ Branch 0 taken 6321 times.
✓ Branch 1 taken 49 times.
|
6370 | if (pch->next_attack0_zero) |
| 953 | 6321 | attacks[0] = 0; | |
| 954 | 6370 | pch->next_attack0_zero = !attacks[AAC_NUM_BLOCKS_SHORT]; | |
| 955 | |||
| 956 |
2/2✓ Branch 0 taken 6344 times.
✓ Branch 1 taken 26 times.
|
6370 | if (attacks[0] <= pch->prev_attack) |
| 957 | 6344 | attacks[0] = 0; | |
| 958 | |||
| 959 | 6370 | att_sum += attacks[0]; | |
| 960 | |||
| 961 | /* If the previous attack happened in the last sub-block of the previous sequence, | ||
| 962 | * or if there's a new attack, use short window */ | ||
| 963 |
4/4✓ Branch 0 taken 6369 times.
✓ Branch 1 taken 1 times.
✓ Branch 2 taken 105 times.
✓ Branch 3 taken 6264 times.
|
6370 | if (pch->prev_attack == PSY_LAME_NUM_SUBBLOCKS || att_sum) { |
| 964 | 106 | uselongblock = 0; | |
| 965 | |||
| 966 |
2/2✓ Branch 0 taken 848 times.
✓ Branch 1 taken 106 times.
|
954 | for (i = 1; i < AAC_NUM_BLOCKS_SHORT + 1; i++) |
| 967 |
4/4✓ Branch 0 taken 89 times.
✓ Branch 1 taken 759 times.
✓ Branch 2 taken 1 times.
✓ Branch 3 taken 88 times.
|
848 | if (attacks[i] && attacks[i-1]) |
| 968 | 1 | attacks[i] = 0; | |
| 969 | } | ||
| 970 | } else { | ||
| 971 | /* We have no lookahead info, so just use same type as the previous sequence. */ | ||
| 972 | 44 | uselongblock = !(prev_type == EIGHT_SHORT_SEQUENCE); | |
| 973 | } | ||
| 974 | |||
| 975 | 6414 | lame_apply_block_type(pch, &wi, uselongblock); | |
| 976 | |||
| 977 | 6414 | wi.window_type[1] = prev_type; | |
| 978 |
2/2✓ Branch 0 taken 6294 times.
✓ Branch 1 taken 120 times.
|
6414 | if (wi.window_type[0] != EIGHT_SHORT_SEQUENCE) { |
| 979 | |||
| 980 | 6294 | wi.num_windows = 1; | |
| 981 | 6294 | wi.grouping[0] = 1; | |
| 982 |
2/2✓ Branch 0 taken 79 times.
✓ Branch 1 taken 6215 times.
|
6294 | if (wi.window_type[0] == LONG_START_SEQUENCE) |
| 983 | 79 | wi.window_shape = 0; | |
| 984 | else | ||
| 985 | 6215 | wi.window_shape = 1; | |
| 986 | |||
| 987 | } else { | ||
| 988 | 120 | int lastgrp = 0; | |
| 989 | |||
| 990 | 120 | wi.num_windows = 8; | |
| 991 | 120 | wi.window_shape = 0; | |
| 992 |
2/2✓ Branch 0 taken 960 times.
✓ Branch 1 taken 120 times.
|
1080 | for (i = 0; i < 8; i++) { |
| 993 |
2/2✓ Branch 0 taken 439 times.
✓ Branch 1 taken 521 times.
|
960 | if (!((pch->next_grouping >> i) & 1)) |
| 994 | 439 | lastgrp = i; | |
| 995 | 960 | wi.grouping[lastgrp]++; | |
| 996 | } | ||
| 997 | } | ||
| 998 | |||
| 999 | /* Determine grouping, based on the location of the first attack, and save for | ||
| 1000 | * the next frame. | ||
| 1001 | * FIXME: Move this to analysis. | ||
| 1002 | * TODO: Tune groupings depending on attack location | ||
| 1003 | * TODO: Handle more than one attack in a group | ||
| 1004 | */ | ||
| 1005 |
2/2✓ Branch 0 taken 57224 times.
✓ Branch 1 taken 6309 times.
|
63533 | for (i = 0; i < 9; i++) { |
| 1006 |
2/2✓ Branch 0 taken 105 times.
✓ Branch 1 taken 57119 times.
|
57224 | if (attacks[i]) { |
| 1007 | 105 | grouping = i; | |
| 1008 | 105 | break; | |
| 1009 | } | ||
| 1010 | } | ||
| 1011 | 6414 | pch->next_grouping = window_grouping[grouping]; | |
| 1012 | |||
| 1013 | 6414 | pch->prev_attack = attacks[AAC_NUM_BLOCKS_SHORT - 1]; | |
| 1014 | |||
| 1015 | 6414 | return wi; | |
| 1016 | } | ||
| 1017 | |||
| 1018 | const FFPsyModel ff_aac_psy_model = | ||
| 1019 | { | ||
| 1020 | .name = "3GPP TS 26.403-inspired model", | ||
| 1021 | .init = psy_3gpp_init, | ||
| 1022 | .window = psy_lame_window, | ||
| 1023 | .analyze = psy_3gpp_analyze, | ||
| 1024 | .end = psy_3gpp_end, | ||
| 1025 | }; | ||
| 1026 |