Line | Branch | Exec | Source |
---|---|---|---|
1 | /* | ||
2 | * AAC encoder long term prediction extension | ||
3 | * Copyright (C) 2015 Rostislav Pehlivanov | ||
4 | * | ||
5 | * This file is part of FFmpeg. | ||
6 | * | ||
7 | * FFmpeg is free software; you can redistribute it and/or | ||
8 | * modify it under the terms of the GNU Lesser General Public | ||
9 | * License as published by the Free Software Foundation; either | ||
10 | * version 2.1 of the License, or (at your option) any later version. | ||
11 | * | ||
12 | * FFmpeg is distributed in the hope that it will be useful, | ||
13 | * but WITHOUT ANY WARRANTY; without even the implied warranty of | ||
14 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU | ||
15 | * Lesser General Public License for more details. | ||
16 | * | ||
17 | * You should have received a copy of the GNU Lesser General Public | ||
18 | * License along with FFmpeg; if not, write to the Free Software | ||
19 | * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA | ||
20 | */ | ||
21 | |||
22 | /** | ||
23 | * @file | ||
24 | * AAC encoder long term prediction extension | ||
25 | * @author Rostislav Pehlivanov ( atomnuker gmail com ) | ||
26 | */ | ||
27 | |||
28 | #include "aacenc_ltp.h" | ||
29 | #include "aacenc_quantization.h" | ||
30 | #include "aacenc_utils.h" | ||
31 | |||
32 | /** | ||
33 | * Encode LTP data. | ||
34 | */ | ||
35 | 5693 | void ff_aac_encode_ltp_info(AACEncContext *s, SingleChannelElement *sce, | |
36 | int common_window) | ||
37 | { | ||
38 | int i; | ||
39 | 5693 | IndividualChannelStream *ics = &sce->ics; | |
40 |
1/4✗ Branch 0 not taken.
✓ Branch 1 taken 5693 times.
✗ Branch 2 not taken.
✗ Branch 3 not taken.
|
5693 | if (s->profile != AV_PROFILE_AAC_LTP || !ics->predictor_present) |
41 | 5693 | return; | |
42 | ✗ | if (common_window) | |
43 | ✗ | put_bits(&s->pb, 1, 0); | |
44 | ✗ | put_bits(&s->pb, 1, ics->ltp.present); | |
45 | ✗ | if (!ics->ltp.present) | |
46 | ✗ | return; | |
47 | ✗ | put_bits(&s->pb, 11, ics->ltp.lag); | |
48 | ✗ | put_bits(&s->pb, 3, ics->ltp.coef_idx); | |
49 | ✗ | for (i = 0; i < FFMIN(ics->max_sfb, MAX_LTP_LONG_SFB); i++) | |
50 | ✗ | put_bits(&s->pb, 1, ics->ltp.used[i]); | |
51 | } | ||
52 | |||
53 | ✗ | void ff_aac_ltp_insert_new_frame(AACEncContext *s) | |
54 | { | ||
55 | ✗ | int i, ch, tag, chans, cur_channel, start_ch = 0; | |
56 | ChannelElement *cpe; | ||
57 | SingleChannelElement *sce; | ||
58 | ✗ | for (i = 0; i < s->chan_map[0]; i++) { | |
59 | ✗ | cpe = &s->cpe[i]; | |
60 | ✗ | tag = s->chan_map[i+1]; | |
61 | ✗ | chans = tag == TYPE_CPE ? 2 : 1; | |
62 | ✗ | for (ch = 0; ch < chans; ch++) { | |
63 | ✗ | sce = &cpe->ch[ch]; | |
64 | ✗ | cur_channel = start_ch + ch; | |
65 | /* New sample + overlap */ | ||
66 | ✗ | memcpy(&sce->ltp_state[0], &sce->ltp_state[1024], 1024*sizeof(sce->ltp_state[0])); | |
67 | ✗ | memcpy(&sce->ltp_state[1024], &s->planar_samples[cur_channel][2048], 1024*sizeof(sce->ltp_state[0])); | |
68 | ✗ | memcpy(&sce->ltp_state[2048], &sce->ret_buf[0], 1024*sizeof(sce->ltp_state[0])); | |
69 | ✗ | sce->ics.ltp.lag = 0; | |
70 | } | ||
71 | ✗ | start_ch += chans; | |
72 | } | ||
73 | ✗ | } | |
74 | |||
75 | ✗ | static void get_lag(float *buf, const float *new, LongTermPrediction *ltp) | |
76 | { | ||
77 | ✗ | int i, j, lag = 0, max_corr = 0; | |
78 | ✗ | float max_ratio = 0.0f; | |
79 | ✗ | for (i = 0; i < 2048; i++) { | |
80 | ✗ | float corr, s0 = 0.0f, s1 = 0.0f; | |
81 | ✗ | const int start = FFMAX(0, i - 1024); | |
82 | ✗ | for (j = start; j < 2048; j++) { | |
83 | ✗ | const int idx = j - i + 1024; | |
84 | ✗ | s0 += new[j]*buf[idx]; | |
85 | ✗ | s1 += buf[idx]*buf[idx]; | |
86 | } | ||
87 | ✗ | corr = s1 > 0.0f ? s0/sqrt(s1) : 0.0f; | |
88 | ✗ | if (corr > max_corr) { | |
89 | ✗ | max_corr = corr; | |
90 | ✗ | lag = i; | |
91 | ✗ | max_ratio = corr/(2048-start); | |
92 | } | ||
93 | } | ||
94 | ✗ | ltp->lag = FFMAX(av_clip_uintp2(lag, 11), 0); | |
95 | ✗ | ltp->coef_idx = quant_array_idx(max_ratio, ff_ltp_coef, 8); | |
96 | ✗ | ltp->coef = ff_ltp_coef[ltp->coef_idx]; | |
97 | ✗ | } | |
98 | |||
99 | ✗ | static void generate_samples(float *buf, LongTermPrediction *ltp) | |
100 | { | ||
101 | ✗ | int i, samples_num = 2048; | |
102 | ✗ | if (!ltp->lag) { | |
103 | ✗ | ltp->present = 0; | |
104 | ✗ | return; | |
105 | ✗ | } else if (ltp->lag < 1024) { | |
106 | ✗ | samples_num = ltp->lag + 1024; | |
107 | } | ||
108 | ✗ | for (i = 0; i < samples_num; i++) | |
109 | ✗ | buf[i] = ltp->coef*buf[i + 2048 - ltp->lag]; | |
110 | ✗ | memset(&buf[i], 0, (2048 - i)*sizeof(float)); | |
111 | } | ||
112 | |||
113 | /** | ||
114 | * Process LTP parameters | ||
115 | * @see Patent WO2006070265A1 | ||
116 | */ | ||
117 | ✗ | void ff_aac_update_ltp(AACEncContext *s, SingleChannelElement *sce) | |
118 | { | ||
119 | ✗ | float *pred_signal = &sce->ltp_state[0]; | |
120 | ✗ | const float *samples = &s->planar_samples[s->cur_channel][1024]; | |
121 | |||
122 | ✗ | if (s->profile != AV_PROFILE_AAC_LTP) | |
123 | ✗ | return; | |
124 | |||
125 | /* Calculate lag */ | ||
126 | ✗ | get_lag(pred_signal, samples, &sce->ics.ltp); | |
127 | ✗ | generate_samples(pred_signal, &sce->ics.ltp); | |
128 | } | ||
129 | |||
130 | ✗ | void ff_aac_adjust_common_ltp(AACEncContext *s, ChannelElement *cpe) | |
131 | { | ||
132 | ✗ | int sfb, count = 0; | |
133 | ✗ | SingleChannelElement *sce0 = &cpe->ch[0]; | |
134 | ✗ | SingleChannelElement *sce1 = &cpe->ch[1]; | |
135 | |||
136 | ✗ | if (!cpe->common_window || | |
137 | ✗ | sce0->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE || | |
138 | ✗ | sce1->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
139 | ✗ | sce0->ics.ltp.present = 0; | |
140 | ✗ | return; | |
141 | } | ||
142 | |||
143 | ✗ | for (sfb = 0; sfb < FFMIN(sce0->ics.max_sfb, MAX_LTP_LONG_SFB); sfb++) { | |
144 | ✗ | int sum = sce0->ics.ltp.used[sfb] + sce1->ics.ltp.used[sfb]; | |
145 | ✗ | if (sum != 2) { | |
146 | ✗ | sce0->ics.ltp.used[sfb] = 0; | |
147 | } else { | ||
148 | ✗ | count++; | |
149 | } | ||
150 | } | ||
151 | |||
152 | ✗ | sce0->ics.ltp.present = !!count; | |
153 | ✗ | sce0->ics.predictor_present = !!count; | |
154 | } | ||
155 | |||
156 | /** | ||
157 | * Mark LTP sfb's | ||
158 | */ | ||
159 | ✗ | void ff_aac_search_for_ltp(AACEncContext *s, SingleChannelElement *sce, | |
160 | int common_window) | ||
161 | { | ||
162 | ✗ | int w, g, w2, i, start = 0, count = 0; | |
163 | ✗ | int saved_bits = -(15 + FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB)); | |
164 | ✗ | float *C34 = &s->scoefs[128*0], *PCD = &s->scoefs[128*1]; | |
165 | ✗ | float *PCD34 = &s->scoefs[128*2]; | |
166 | ✗ | const int max_ltp = FFMIN(sce->ics.max_sfb, MAX_LTP_LONG_SFB); | |
167 | |||
168 | ✗ | if (sce->ics.window_sequence[0] == EIGHT_SHORT_SEQUENCE) { | |
169 | ✗ | if (sce->ics.ltp.lag) { | |
170 | ✗ | memset(&sce->ltp_state[0], 0, 3072*sizeof(sce->ltp_state[0])); | |
171 | ✗ | memset(&sce->ics.ltp, 0, sizeof(LongTermPrediction)); | |
172 | } | ||
173 | ✗ | return; | |
174 | } | ||
175 | |||
176 | ✗ | if (!sce->ics.ltp.lag || s->lambda > 120.0f) | |
177 | ✗ | return; | |
178 | |||
179 | ✗ | for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
180 | ✗ | start = 0; | |
181 | ✗ | for (g = 0; g < sce->ics.num_swb; g++) { | |
182 | ✗ | int bits1 = 0, bits2 = 0; | |
183 | ✗ | float dist1 = 0.0f, dist2 = 0.0f; | |
184 | ✗ | if (w*16+g > max_ltp) { | |
185 | ✗ | start += sce->ics.swb_sizes[g]; | |
186 | ✗ | continue; | |
187 | } | ||
188 | ✗ | for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
189 | int bits_tmp1, bits_tmp2; | ||
190 | ✗ | FFPsyBand *band = &s->psy.ch[s->cur_channel].psy_bands[(w+w2)*16+g]; | |
191 | ✗ | for (i = 0; i < sce->ics.swb_sizes[g]; i++) | |
192 | ✗ | PCD[i] = sce->coeffs[start+(w+w2)*128+i] - sce->lcoeffs[start+(w+w2)*128+i]; | |
193 | ✗ | s->aacdsp.abs_pow34(C34, &sce->coeffs[start+(w+w2)*128], sce->ics.swb_sizes[g]); | |
194 | ✗ | s->aacdsp.abs_pow34(PCD34, PCD, sce->ics.swb_sizes[g]); | |
195 | ✗ | dist1 += quantize_band_cost(s, &sce->coeffs[start+(w+w2)*128], C34, sce->ics.swb_sizes[g], | |
196 | ✗ | sce->sf_idx[(w+w2)*16+g], sce->band_type[(w+w2)*16+g], | |
197 | ✗ | s->lambda/band->threshold, INFINITY, &bits_tmp1, NULL); | |
198 | ✗ | dist2 += quantize_band_cost(s, PCD, PCD34, sce->ics.swb_sizes[g], | |
199 | ✗ | sce->sf_idx[(w+w2)*16+g], | |
200 | ✗ | sce->band_type[(w+w2)*16+g], | |
201 | ✗ | s->lambda/band->threshold, INFINITY, &bits_tmp2, NULL); | |
202 | ✗ | bits1 += bits_tmp1; | |
203 | ✗ | bits2 += bits_tmp2; | |
204 | } | ||
205 | ✗ | if (dist2 < dist1 && bits2 < bits1) { | |
206 | ✗ | for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) | |
207 | ✗ | for (i = 0; i < sce->ics.swb_sizes[g]; i++) | |
208 | ✗ | sce->coeffs[start+(w+w2)*128+i] -= sce->lcoeffs[start+(w+w2)*128+i]; | |
209 | ✗ | sce->ics.ltp.used[w*16+g] = 1; | |
210 | ✗ | saved_bits += bits1 - bits2; | |
211 | ✗ | count++; | |
212 | } | ||
213 | ✗ | start += sce->ics.swb_sizes[g]; | |
214 | } | ||
215 | } | ||
216 | |||
217 | ✗ | sce->ics.ltp.present = !!count && (saved_bits >= 0); | |
218 | ✗ | sce->ics.predictor_present = !!sce->ics.ltp.present; | |
219 | |||
220 | /* Reset any marked sfbs */ | ||
221 | ✗ | if (!sce->ics.ltp.present && !!count) { | |
222 | ✗ | for (w = 0; w < sce->ics.num_windows; w += sce->ics.group_len[w]) { | |
223 | ✗ | start = 0; | |
224 | ✗ | for (g = 0; g < sce->ics.num_swb; g++) { | |
225 | ✗ | if (sce->ics.ltp.used[w*16+g]) { | |
226 | ✗ | for (w2 = 0; w2 < sce->ics.group_len[w]; w2++) { | |
227 | ✗ | for (i = 0; i < sce->ics.swb_sizes[g]; i++) { | |
228 | ✗ | sce->coeffs[start+(w+w2)*128+i] += sce->lcoeffs[start+(w+w2)*128+i]; | |
229 | } | ||
230 | } | ||
231 | } | ||
232 | ✗ | start += sce->ics.swb_sizes[g]; | |
233 | } | ||
234 | } | ||
235 | } | ||
236 | } | ||
237 |